
Vol.:(0123456789)

Electronic Commerce Research
https://doi.org/10.1007/s10660-024-09821-w

1 3

AI pricing algorithms under platform competition

J. Manuel Sanchez‑Cartas1  · Evangelos Katsamakas2

Accepted: 29 January 2024 
© The Author(s) 2024

Abstract
Platforms play an essential role in the modern economy. At the same time, due to 
advances in artificial intelligence (AI), algorithms are becoming more widely used 
for pricing and other business functions. Previous literature examined algorithmic 
pricing, but not in the context of network effects and platforms. Moreover, platform 
competition literature has not considered how algorithms may affect competition. 
We study the performance of AI pricing algorithms (Q-learning and Particle Swarm 
Optimization) and naïve algorithms (price-matching) under platform competition. 
We find that algorithms set an optimal price structure that internalizes network 
effects. However, no algorithm is always the best because profitability depends on 
the type of competing algorithms and market characteristics, such as differentiation 
and network effects. Additionally, algorithms learn autonomously when an equilib-
rium is unstable and avoid it. When algorithm adoption is an endogenous strategic 
decision, several algorithms can be adopted in equilibrium; we characterize the con-
ditions for the various outcomes and show that the equilibrium and platform prof-
its are sensitive to algorithm design changes. Overall, our research suggests that AI 
algorithms can be effective in the presence of network effects, and platforms are 
likely to adopt a variety of algorithms. Lastly, we reflect on the business value of 
AI and identify opportunities for future research at the intersection of AI algorithms 
and platforms.
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1 Introduction

Using algorithms instead of humans to make decisions is becoming more wide-
spread in business. Algorithms are crucial for platforms such as social media 
(Facebook, TikTok), the sharing economy (Uber, Airbnb), video games, e-mar-
ketplaces, and many others. Platforms rely on algorithms to set prices, among 
other tasks. For example, Uber’s ride fares may vary depending on the exact hour, 
destination, and weather conditions. The price of a Facebook advertisement var-
ies depending on the audience and the ad format.

As digital platforms become prominent in the economy [1–3], understanding 
algorithmic pricing in the context of platforms is valuable for many companies. 
However, despite the vast research literature on platforms [4–6] and a growing 
literature on algorithmic pricing [7, 8], there is very little work on platform com-
petition when platforms use pricing algorithms.

Platform pricing poses a challenge for algorithms because they must deal with 
network effects, and it is unclear whether algorithms can do that effectively. They 
must learn to set an optimal price structure to solve the coordination problem 
and get both sides on board [9–12]. Therefore, it is essential to understand how 
pricing algorithms behave under platform competition and whether the literature 
on pricing algorithms is robust in platform settings because one-sided intuitions 
often do not apply to multisided platforms. Moreover, it is unclear whether algo-
rithms are effective in the presence of multiple equilibria. Most importantly, it 
is unclear what factors digital platforms need to consider when adopting pricing 
algorithms and what the competitive impact of those algorithms is.

This research aims to analyze the behavior of pricing algorithms used by com-
peting platforms and how those algorithms affect platform competition outcomes 
(prices and profits). Our primary research questions are as follows: What is the 
performance of pricing algorithms when used by competing platforms? What fac-
tors should a platform consider when adopting a pricing algorithm? What algo-
rithm should a platform choose when the choice of algorithm becomes an endog-
enous strategic decision?

To answer those questions, we build a computational model of two compet-
ing platforms grounded in game-theoretic economic literature. We use the classic 
Armstrong platform competition model [11] as a benchmark. We let the platforms 
use algorithmic pricing in a computer-simulated market and compare the prices 
and profits with the benchmark. Specifically, we analyze the pricing behavior of 
two advanced AI algorithms (Particle Swarm Optimization and Q-learning) and a 
naïve one (price-matching algorithm). We analyze what happens when platforms 
adopt the same algorithm or different algorithms. We also consider the choice 
of algorithm as a strategic platform decision: we let the platforms decide which 
algorithm to adopt and characterize the resulting equilibrium. We emphasize the 
firm perspective, focusing on how platform firms can do well using algorithms, 
but we also discuss potential competition policy implications.

Our framework allows us to consider the role of differentiation, network 
effects, and the possibility of multiple equilibria. In this regard, we analyze cases 
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with a unique and stable equilibrium, those with multiple equilibria, and those 
with asymmetric network effects. We evaluate various scenarios, allowing for 
a comprehensive evaluation of pricing algorithm performance under platform 
competition.

The article contributes to the literature on algorithmic pricing by showing that the 
algorithms learn the presence of network effects and set prices accordingly. It also 
contributes to the platform competition literature by showing that platform profit-
ability depends on the algorithms used by competing platforms and market charac-
teristics (differentiation and network effects). Moreover, it characterizes what algo-
rithm platforms are expected to adopt when the choice of algorithm is endogenous, 
in which case platforms compete on algorithms and could differentiate themselves 
by choosing an algorithm that differs from the competitor. In addition, an exten-
sion explores how algorithmic memory (i.e., conditioning its play to the immediate 
past actions of the competitors) matters in algorithmic platform competition. Lastly, 
by evaluating AI algorithms, the article derives nuanced insights into the business 
value of AI and identifies opportunities for future research at the intersection of AI 
algorithms and platforms.

The rest of the article is organized as follows. Section 2 reviews related litera-
ture on algorithmic pricing and platforms. Section 3 presents the model we use as 
a framework, while Sect. 4 discusses the algorithms and parametrization. Section 5 
presents computational experiments and results. Section  6 presents a sensitivity 
analysis, and Sect.  7 studies the algorithm adoption decisions of platforms. Sec-
tion 8 discusses an extension with algorithmic memory. The discussion and conclu-
sion are in Sects. 9 and 10.

2  Literature review

We review related literature on algorithmic pricing and platform competition.

2.1  Algorithmic pricing

Algorithmic pricing is a method of automatically setting prices to maximize the 
profits of a firm. In some sectors, such as e-marketplaces, pricing algorithms are 
used extensively [13]. Pricing algorithms benefit firms by lowering the cost of set-
ting prices, but they can also reduce prices and increase consumer surplus [14, 15]. 
They may lead to more contestable markets, better service, better product availa-
bility, and an improved customer experience [16]. Although collusion is possible 
[7, 17, 18], it is unlikely in practice [19] and algorithmic design can help mitigate 
it [17]. However, it is more likely to find supracompetitive prices when firms use 
price-matching algorithms [20, 21] or when the training of algorithms is incomplete 
[22].

The current algorithmic pricing literature is primarily focused on Q-learning 
because is simple and can be fully characterized by just a few parameters with 
economic interpretation [7]. Q-learning is a reinforcement learning algorithm 
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which is used to find the optimal action-selection policy in a given environment. 
Another option that has also attracted interest is the Particle Swarm Optimiza-
tion (PSO) algorithm. PSO is a stochastic optimization technique that generates 
random points in a multidimensional space (particles) that move towards an opti-
mal solution by sharing information about which points perform better [23]. This 
concept can easily be extended to price competition by assuming that each firm 
may test a limited set of prices (particles) before going to the market [24, 25]. 
PSO can also be characterized by just a few parameters and has the advantage of 
not suffering the dimensionality problem of Q-learning. Therefore, PSO would be 
a good option for multi-sided platforms that need to consider multiple sides and 
competitors.

Q-learning and PSO are sophisticated algorithms. However, some firms may 
utilize naïve algorithms such as price-matching, which has been studied since 
the early days of electronic commerce. Price-matching algorithms commit them-
selves to match (or beat) competitor prices. Therefore, they are easy to implement 
and allow setting prices at the same frequency as competitors when the moni-
toring is continuous. However, price-matching algorithms also raise policy con-
cerns because they tend to tacitly collude [20, 21]. Despite this, their simplicity 
and wide availability make them ubiquitous in online marketplaces, as they are 
offered by many companies, such as Netrivals or Prisync.

There are many other algorithm options with varying degrees of sophistication 
and economic intuition. However, not all of them have been applied to economic 
problems (such as pricing) or are currently under development, with results that 
are not yet robust enough. Therefore, this paper focuses on Q-learning, PSO, and 
price-matching algorithms.

Although the literature has concentrated on just a few algorithms, the experi-
mental evidence on algorithmic pricing is still limited. Only a few studies have 
adopted sophisticated AI algorithms to set prices in controlled environments [7, 
8, 18, 26–29]. One key feature of this literature is the focus on a single algo-
rithm, although comparative studies, which is another area to which we contrib-
ute, are beginning to attract attention [30–32]. Another feature is the focus on the 
possibility of supracompetitive prices that can emerge from various causes, such 
as collusion, miscoordination, imperfect training, or poor design. One specific 
aspect that has also attracted attention recently is the market framework, as the 
performance of an algorithm may vary in different markets [8, 33]. However, an 
aspect that has not been considered so far is the role of network effects that char-
acterize many digital products and services, especially digital platforms.

The lack of literature on algorithmic platform pricing is explained by the devel-
opment of algorithmic pricing literature, which mainly focuses on collusion. This 
phenomenon is much less understood and more complex in platform markets [34]. 
Therefore, the literature prefers to adopt simpler market frameworks. On the other 
hand, the experimental literature addresses the interaction between humans and 
algorithms but uses simple models for similar reasons [18]. Thus, the first contribu-
tion of this paper is to account for the impact of these algorithms in markets with 
network effects.
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2.2  Platform competition and algorithmic pricing

A platform provides an infrastructure that facilitates the interaction between two (or 
more) groups, or sides, of platform participants, such as drivers and riders, in the 
case of ride-sharing platforms like Uber. A platform firm must consider the cross-
side (indirect) network effects between the sides and set a price structure and level 
that maximizes the platform profit [11, 12, 35]. These network effects introduce a 
complexity in pricing, as platforms have to consider not only how competitors react 
to price changes, but also where those changes occur (on which side) and how com-
petitors react to changes in the pricing structure (which side is cheaper). This prob-
lem appears because the platform firm faces a coordination (chicken-and-egg) prob-
lem: the agents’ decision to join depends on what the other side does. For instance, 
consumers will not use a ride-sharing app with no drivers. The firm must solve the 
coordination problem between the two sides to ensure platform survival and growth, 
which involves deciding between charging both sides, letting one side access the 
platform for free, or subsidizing one side.

A vast platform economics literature considers several strategic issues such as 
price structure [9, 36], openness [37–40] and many others. However, the platform 
economics literature does not consider pricing algorithms used by platforms in plat-
form competition settings [6] as we aim to do in this article.

It is important to clarify that some recent work analyzes a slightly different prob-
lem than ours: what happens when platform participants adopt algorithmic pricing. 
For instance, [41] considers a platform that shows sellers to users, and it finds that 
sellers using Q-learning set supracompetitive prices. Related empirical research on 
Amazon finds that repricing algorithms may reduce welfare [42]. There is also evi-
dence of higher prices when algorithms compete on Bol.com [43].

However, we still lack a proper theoretical analysis of how algorithms deployed 
by platforms set prices. Without such a theoretical framework, we do not know 
whether the benchmark for comparison is too low or too high, as the equilibrium 
behavior of algorithms may deviate from that of classical models. In other words, 
we do not know how algorithms set platform prices and how their behavior is 
affected by the presence and strength of indirect network effects. Additionally, it is 
unclear whether all algorithms behave similarly enough to derive global insights. 
Thus, this paper aims to fill these two gaps: it illustrates how pricing algorithms set 
prices when used by competing platforms and gives an account of the algorithms’ 
characteristics that influence those prices.

3  Model

Our model considers two platform firms that compete using pricing algorithms. 
We adopt the seminal two-sided market model of Armstrong [11]. There are 
two groups (sides) of agents whose population is normalized to one and are uni-
formly distributed on a line with unit length, and the two platforms are at loca-
tions 0 and 1 of the unit line. Each agent participates only in one platform; each 
agent on each side compares the two platforms and chooses the one with higher 
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utility. Agents value the presence of the other group on a platform. An agent on 
side j located at x receives the following utility from joining platform i:

Parameter t represents the mismatch cost and measures the intensity of com-
petition between the competing platforms. A smaller value of t  implies a higher 
competition intensity (lower level of differentiation). The expression t||

|
xj − li

|
|
|
 

reflects the distance between the agent and the platform weighted by the mis-
match cost and represents the heterogeneity of agent tastes. The parameter v cap-
tures the intrinsic value of the platform; we assume v is high enough to guaran-
tee that all agents participate. The parameter �ni

−j
 captures the network effect 

(i.e., how valuable is the presence of the opposite group on the platform), where 
ni
−j

 is the number of agents on the other side of the platform i, and α represents 
the valuation of an extra agent on the other side, which we assume is α ∈ [−1, 1] . 
Intuitively, positive values represent those cases where one side values more 
users on the other side. For example, sellers are better off with more buyers in a 
market and vice versa. Conversely, negative values represent those cases where 
one side prefers fewer users on the other side. For example, users may dislike 
advertising and prefer platforms with fewer advertisers [44, 45]. Lastly, pi repre-
sents the price paid by agents. Formally, the side j demand for platform i is as 
follows:

In all the scenarios, the profit of platform i is �i =
(
pi
j
− ci

j

)
ni
j
+
(
pi
−j
− ci

−j

)
ni
−j

 , 
where ci

j
 is the marginal cost on side j of platform i (i.e., the cost of attracting an 

additional user). The theoretical equilibrium in this model is defined by 
pi
j
= ci

j
+ t − α−j and equilibrium profits equal to �i = t −

αj+α−j

2
 . For simplicity 

and without loss of generality, we assume a zero marginal cost ( ci
j
= ci

−j
= 0) , 

thus the equilibrium is defined by two parameters, the mismatch cost ( t) and net-
work effects ( α) . This theoretical equilibrium provides the benchmark prices and 
profits for our analysis that follows. The theoretical market model allows us to 
test the algorithms in a controlled environment where the effect of all model 
components is known, facilitating the interpretation of results. Furthermore, the 
Armstrong model is used widely in platform economics and, therefore, consti-
tutes a robust framework to test novel strategies such as the introduction of algo-
rithmic pricing. Finally, note that the algorithms will play this game repeatedly, 
but this does not make it a repeated game because the algorithms cannot condi-
tion their play on the competitor’s previous play.
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4  Algorithms and parametrization

This research considers Q-learning and PSO, two sophisticated AI-enabled pric-
ing algorithms. We selected these two because (i) they are widely used in the 
literature, (ii) both are characterized by parameters that allow a clear interpreta-
tion of the results, and (iii) they are linked to economic concepts. Additionally, 
Q-learning and PSO have been studied extensively in experimental economic 
research, which provides us with a framework for comparison [7, 24–26, 46].

4.1  Q‑learning

Q-learning is a method for finding an optimal policy with no prior knowledge of 
the inherent structure of the game. The method works by iteratively estimating the 
Q-function Qi

(
s, ai

)
 , which represents the cumulative discounted payoff of taking 

action ai ∈ A in state s ∈ S by agent i. Q-learning starts from an arbitrary value, 
which is updated at each iteration. After choosing at

i
 in state st , the algorithm 

observes the payoff �t
i
 , the next state st+1 , and updates Qi

(
s, ai

)
 for 

(
s, ai

)
=
(
st, at

i

)
 

following the learning equation:

The weight α ∈ [0,1] is the learning rate and � the discount rate, or how past 
performance influences current Q values. The algorithm chooses the action with 
the highest Q-value in the current state with probability 1 − � (exploitation mode) 
and randomizes uniformly across all possible actions with probability � (explora-
tion mode). At the start, given the lack of knowledge about the game, the algo-
rithm should explore widely, but over time, the algorithm must start exploiting 
the best outcomes it has found. To reproduce such a behavior, we posit a time-
declining exploration rate: � = (1 − β)t , where β > 0 is a parameter. The algorithm 
will start by randomly selecting actions (exploration). The larger the β, the faster 
the exploration vanishes and the larger the likelihood of choosing the best action 
found so far (exploitation).

4.2  PSO

PSO generates random points in a multidimensional space (particles) that move 
towards an optimal solution by sharing information about which points perform 
better. In our application, we assume that each firm will consider a set of k poten-
tial prices, where k is the number of particles. The position of each particle in 
the real numbers represents a price. The algorithm will test each price and share 
which performs best (higher profits) with all the particles. Over time, the posi-
tion of each particle changes as it moves toward those positions that perform 
best. This evolution is given by pi,t = pi,t−1 + vi,t−1 , where vi,t is the evolutionary 

Qt+1
i

(
s, ai

)
= (1 − �)Qt

i

(
s, ai

)
+ �

[
�t
i
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α∈A
Qt
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(
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velocity, which is determined by the best position the particle has found before 
( pl

i
 ) and the best position any other particle has found ( pg):

where w is an inertia weight factor that represents how past actions (prices) influ-
ence the current action (price); l1 and l2 are learning parameters and are called self-
confidence and swarm confidence factors, respectively; and u1 and u2 are U(0,1) 
random numbers. Like in Q-learning, there is a trade-off between exploration and 
exploitation controlled by the inertia weight. We assume a similar time-declining 
exploration rate represented by a declining inertia weight given by wt =

(
1 − wo

)t 
where w0 is a constant initial decrease parameter.

4.3  Parametrization

We adopt the baseline parametrization of related literature [7, 8, 47]. This facilitates 
the comparison with other studies, and there is no additional theoretical justifica-
tion. A novelty of our approach, simplifying the problem at hand, is that algorithms 
cannot condition their play on the past play of their opponents. In other words, algo-
rithms cannot recall the actions taken in the previous period, which is the basis for 
sustaining punishment strategies. Instead, algorithms observe other’s actions, learn 
which prices work best, and set prices accordingly. For example, if algorithms set 
prices equal to 1 and gain profits 2 in iteration t , they use this information to update 
the payoff matrix but, in this update, they do not consider what they did and earned 
in t − 1 . This assumption simplifies the computational complexity but does not 
remove the strategic interactions between the platforms, as the price set by a plat-
form depends on the price set by its competitor, which affects the profits. Further-
more, each platform pursues its own objectives (profit maximization) uncoordinated 
and independently, which implies that there are simultaneous learning processes that 
influence each other.

This assumption is important to separate the effects that the possibility of imple-
menting additional strategies (such as tit-for-tat or grim trigger strategies) may have 
on the ability to set prices in a multi-sided market. The strategic interdependence 
between the platforms is still present but we only remove collusive behavior issues 
that stem from the possibility of conditional play (algorithmic memory) [7, 30] 
that are outside the main focus of this research. The main focus is understanding 
the interaction and performance of the studied pricing algorithms under platform 
competition. Formally, if we define memory as the set of all past prices in the last 
k-periods: st = {pt−1,… , pt−k} , Where k is the length of the memory. Our assump-
tion is equivalent to k = 0 . In addition, Sect.  8 provides an extension that relaxes 
that assumption.

This simplification has the consequence that parameters do not play the same 
role. Therefore, we must reproduce the same conditions as those in the literature 
in our framework (same exploration and learning rate, for example). Then, the 
baseline parametrization we use is as follows. For prices, we take the minimum 

vi,t−1 = wvi,t−2 + l1u1
(
pl
i
− pi,t−1

)
+ l2u2

(
pg − pi,t−1

)
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( pmin = −1.5 ) and maximum ( pmax = v = 1.75 ) feasible prices, and we build a set A 
of feasible prices to be given by m equally spaced points in the interval [ pmin, pmax] , 
where m = 50 . For the learning and exploration parameters, we assume � = 0.15 
and � = 0.01 , meaning that each cell in the Q-matrix is visited almost 20 times just 
by random exploration. Finally, we assume � = 0.95 . On the other hand, the baseline 
PSO algorithm consists of 5 particles ( k = 5 ) with l1 = l2 = 1.75 , and w0 = 0.025 . 
We also limit the evolutionary velocity range, vi ∈ [−0.3;0.3]  to avoid jumping 
between corner solutions [25].

To test the robustness of the results found under this parameterization, we per-
form a sensitivity analysis in Sect. 6, where the impact and intuition of those param-
eters are further analyzed.

For each parameter combination, we run 30 simulations (experiments) to remove 
any stochastic noise. Each simulation is initialized with random prices in the action 
set. Each simulation runs 50,000 iterations, enough to reach a stationary state in all 
cases analyzed (no deviation is present in the last 10,000 iterations). All the results 
we present are an average of 1000 last iterations of each experiment. For all param-
eter combinations, this is sufficient to ensure a thorough exploration and subsequent 
exploitation of the results. We compare these simulated results with the theoretical 
equilibrium defined previously. In all simulations, we observe that the algorithms 
converge to this equilibrium (or to corner solutions), convergence being understood 
as reaching these points and remaining there indefinitely.

5  Computational experiments and results

Our model considers two competing platforms, each using one of three pricing algo-
rithms: Q-learning, PSO, and price matching. Therefore, we need to compare plat-
form prices and profits in six cases corresponding to all the pair-wise combinations 
of pricing algorithms used by the two platforms.

First, we present the results for the two different regions of the model. The first 
region has a unique stable equilibrium. The second region has corner solutions, and 
it is unclear how the algorithms may react in such a situation. Then, we explore the 
role of asymmetric network effects.

5.1  Algorithmic platform pricing with a unique interior equilibrium

The Armstrong model has a unique interior equilibrium when the mismatch cost is 
high enough compared to network effects. In what follows, we compare the differ-
ences between the simulated and benchmark prices and profits when this condition 
holds.

Figures  1 and 2 show the pairwise comparison of the three algorithms. Two 
results stand out from these simulations. First, price-matching algorithms lead to 
supracompetitive prices even without the possibility of conditioning its play on the 
opponent’s past play. On the one hand, the possibility of tacit collusion with these 
types of algorithms seems to be robust to the presence of network effects. Price 
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undercutting only happens if the market is growing [20]. Intuitively, by undercut-
ting, platforms may create sufficient incremental sales to compensate for the lost 
revenue from its installed base. However, once the market is covered, this incen-
tive disappears, and prices are expected to remain as high as possible. On the other 
hand, Q-learning is influenced by the discretization of space, and this is especially 
relevant when network effects increase or mismatch costs decrease. In these cases, 

Fig. 1  Difference between simulated and benchmark platform prices

Fig. 2  Difference between simulated and benchmark platform profit
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the market becomes more sensitive to feedback loops between sides (i.e., more com-
petitive), and there is downward pressure on prices that algorithms do not recognize. 
Discretizing the state space implies that price changes are less informative, and the 
algorithm is less able to learn this feedback. In contrast, PSO does not suffer from 
this problem, but since it does not operate at an infinitesimal level, this error is pre-
sent but mitigated. Nonetheless, when different algorithms are combined, they are 
more likely to experiment differently, but it does not guarantee a better internaliza-
tion of these feedback loops, which leads to small supracompetitive prices.

Second, our simulation outcomes are close to the benchmark results in most 
cases. Therefore, even the simplest forms of these algorithms learn to set prices in 
environments where consumer decisions are interrelated. However, when network 
effects are negative (i.e., cases in which users prefer to join platforms with smaller 
users bases, e.g. congested platforms), algorithms exhibit deviations from the bench-
mark. If mismatch cost is low, these deviations are positive, indicating that prices 
and profits are higher than the benchmark. In contrast, we find almost no deviation 
when network externalities are positive. Note that prices should increase when nega-
tive network effects are present. Intuitively, if platforms are trying to avoid attracting 
people, they use prices as a deterrent. If mismatch costs are low, this effect needs 
to be greater to be an effective deterrent. What we observe here is the effect of the 
imperfect learning of network effects, which is more pronounced in this case as the 
direction of the effect calls for a higher price and the tendency to price above the 
optimum is slightly reinforced.

Figure  2 shows some deviations but does not clearly indicate which combina-
tion of algorithms leads to higher profits or when. Figure 3 compares the average 

Fig. 3  Average profit by deviation from theoretical profit
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profit and the average difference with theoretical profits generated by each pair of 
algorithms. The first result is the dominance of price-matching algorithms when 
combined with other price-matching algorithms. However, if price-matching algo-
rithms face another type of algorithm, all the supracompetitive profits disappear, and 
the simulated results are close to benchmark values. This result suggests that price-
matching algorithms may not be a good option when competitors use other algo-
rithms. However, this is not the case with other algorithms, such as Q-learning or 
PSO, whose behavior is more stable.

Despite the small price differences, we observe that the algorithms deviate posi-
tively when considering their impact on profits, highlighting that they capture extra 
profits. This suggests that, on average, the implementation of algorithmic pricing is 
positive for platforms, as it is more profitable than traditional pricing. The reasons 
why this happens are manifold and depend on each combination of algorithms. For 
example, price-matching algorithms tacitly collude when it is not possible to expand 
the market [20]. In the case of Q-learning and PSO, as feedback loops become more 
relevant and algorithms learn more imperfectly, supracompetitive pricing becomes 
more prevalent, leading to higher profits. When two algorithms that exhibit this 
problem are combined (PSO vs Q-learning), learning does not improve but worsens.

We also find that simulated profits are close to the benchmark profits in all cases 
in which price-matching algorithms compete with other types of algorithms. This 
suggests that the presence of a price-matching algorithm increases price competition 
even when sophisticated algorithms are present.

Proposition 1 Algorithms can lead to supracompetitive prices in platform markets. 
However, such deviations are slightly above the theoretical benchmark, suggesting 
that the algorithms make small upward errors that may generate profits greater than 
or equal to those of a rational agent.

5.2  Algorithmic platform pricing with multiple equilibria

When network effects are extreme, one platform can dominate the market by attract-
ing all consumers. However, both platforms may coexist with zero profits if they 
imitate each other in pricing. Those two outcomes are possible, but we do not know 
which is more likely. This situation of multiple equilibria challenges algorithms as 
they need to coordinate in one equilibrium. Figures 4 and 5 show the differences 
between simulated and interior equilibrium to facilitate a comparison with the previ-
ous section. Significant deviations are apparent this time because the algorithms do 
not always coordinate in the same way.

In contrast to the previous section, prices differ significantly in each case, sug-
gesting that algorithms do not always coordinate (Fig.  4). Although the results 
vary according to the algorithms used, there is a common theme. Prices go in 
the opposite direction of what the benchmark suggests. In the benchmark model, 
positive network effects call for a price reduction, and the opposite is true if net-
work effects are negative. However, algorithmic pricing does not follow these 
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intuitions, and we note a clear distinction between the regions with positive and 
negative network effects. In other words, algorithms autonomously learn to devi-
ate to other (more stable) equilibria, such as the corner solutions. Note that, in all 
these cases, competition is extreme in the sense that network effects are stronger 
than differentiation (mismatch costs). This implies that price undercutting cre-
ates feedback loops that can attract all consumers on one side. In these cases, 

Fig. 4  Difference between simulated prices and interior equilibrium platform prices

Fig. 5  Difference between simulated profits and interior equilibrium platform profits
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the interior equilibrium is unstable as there is an incentive to deviate. What we 
observe here are the consequences of this process. Once a platform conquers the 
entire market, it sets prices without considering network effects as it has driven 
its competitor out of the market. This effect is stronger in the case of PSO because 
its granularity helps it learn feedback loops better than Q-learning, whose discre-
tization of the state space makes it harder.

Considering the two regions together, we discover an interesting insight 
regarding the algorithm characteristics. In our simulations, PSO only overper-
forms Q-learning when network effects are positive, and there are multiple equi-
libria (yellow area), as shown in Fig.  6. In all other cases, Q-learning matches 
PSO or overperforms it. This situation highlights that the performance we 
observe in Fig.  3 is not fixed, and depending on whether we consider specific 
cases, such as the yellow area of Fig. 6 or all the potential cases of the benchmark 
model, the profitability of the algorithms will vary. This is a consequence of how 
each algorithm learns about network effects. When those network effects are cru-
cial to determining the winner, the algorithm with the highest granularity has an 
advantage (PSO). However, when the strength of the network effects is moderate, 
other algorithms may have an advantage because their coexistence is not at risk 
(Q-learning), allowing supracompetitive prices to be sustained.

Fig. 6  Profit differential between PSO and Q-learning when competing against each other
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Proposition 2 As network effects increase, algorithms with greater granularity in 
their action space have an advantage over other algorithms because they can set 
prices that drive out competitors.

5.3  Algorithmic platform pricing with asymmetric network effects

In previous scenarios, we considered symmetric sides with respect to network 
effects ( �j = �−j) . In what follows, we examine asymmetric network effects to deter-
mine the robustness of prior insights and whether the algorithms can set the optimal 
price structure (Fig. 7). We set the mismatch cost equal to one to focus on the impact 
of asymmetric network effects. The intuitions are qualitatively the same for other 
values of mismatch cost.

Figure 7 shows that prices differ little from the benchmark. This result implies 
that algorithms learn to set the correct price structure. A few exceptions in which 
algorithms make significant errors cluster around the figure’s corners. That suggests 
that algorithms have problems setting the correct price structure only in extreme 
cases of strong network effects, especially when Q-learning and PSO compete, 
which is the case with the largest price differences. These results highlight that it 
does not matter having asymmetric network effects; the algorithms can deal with 
that. What matters is the relationship between network effects and mismatch costs 
that we observed in the previous sections.

Fig. 7  Difference between simulated and benchmark platform prices. We do not depict the results for 
pair “Price Matching & Price Matching” as it reproduces the collusive price scheme and does not allow 
us to compare the rest of the cases easily
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This insight is better shown in Fig. 8, reinforcing the idea that algorithms learn 
how to handle network effects. However, we find significant deviations when both 
network effects are extremely negative, in which profits are significantly lower 
than in the benchmark. This could be the case for platforms that suffer from con-
gestion. For example, e-commerce platforms that rely on shipping services that 
quickly become saturated can generate growth aversion on either side of the plat-
form, and algorithmic pricing can worsen this situation. Only in these situations 
may prior insights require nuances, but it will depend on whether we have the 
case with stable interior equilibrium or not. In experiments with other mismatch 
costs, we observe that these cases tend to corner solutions where only one plat-
form survives, as noted in the previous section.

Proposition 3 Algorithms can learn about asymmetric network structures and set 
prices accordingly.

Although algorithms may make some errors in setting the correct price struc-
ture, those errors are minimal. Figure 9 shows that profits are indistinguishable 
from the benchmark model, suggesting almost no deviation from the benchmark. 
This result also implies that asymmetries in network effects are not the source 
of price and profit deviations documented previously (Fig. 3) but the interaction 
between mismatch costs and network effects. This insight is especially relevant 
for companies seeking to implement algorithmic pricing, as it suggests that mar-
ket characteristics determine which algorithm is more profitable. However, as we 
illustrate in the following sections, this is not the only aspect to consider.

Fig. 8  Profit differences with asymmetric network effects
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6  Sensitivity to algorithm parameters

Parameterization can affect the results in terms of convergence, accuracy, or 
computational complexity, among others [48, 49]. In this sensitivity analysis, we 
explore the parameter grid of Q-learning and PSO to show (i) that parameteriza-
tion matters but is not critical in terms of equilibrium prediction and (ii) some 
parameters are more relevant than others in defining price behavior.

6.1  Q‑learning

Like other reinforcement-learning algorithms, Q-learning adapts its behavior to 
past experiences, taking actions that have proven to be successful more often. 
To be able to do that, it learns by experimentation. As defined previously, 
two parameters control these two activities: � controls learning and � controls 
experimentation.

In principle,  � may range from 0 to 1 but it is well known that high values of 
� disrupt the learning process because the algorithm quickly forgets what it has 
learned [7]. Accordingly, we consider 20 equally spaced points in the interval 
[0,01; 0.28]. The experimentation parameter ( � ) suffers from a similar problem 
in that experimentation is needed, but too much may introduce noise that com-
plicates the learning process. To understand what this parameter represents, let 
us consider how likely exploration is after several iterations. In our baseline sce-
nario, all cells are expected to be randomly visited almost 20 times by the end of 
the simulation. To account for the impact of exploration, we consider 20 equally 

Fig. 9  Average profit by deviation from benchmark profit with asymmetric network effects
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spaced points in the interval [0.01;0.15], equivalent to assuming that all cells are 
expected to be visited 20 to 2 times on average.

Although these two parameters have attracted the most attention lately [7, 26], 
the action space size is also essential. To illustrate this point, we consider three 
cases in which we subdivide the set of feasible prices into 10, 20, and 30 spaces 
( m = 10, 20, 30).

Figure  10 shows all combinations of the previous parameters and depicts the 
deviations in the simulated profits with respect to theoretical results in all the mar-
ket simulations analyzed in previous cases. Although we observe variations, these 
are relatively small and tend to be mitigated the larger the action space.1 Similar 
results can be found in other works [7, 26]. Although there is evidence that insuf-
ficient exploration can lead to seemingly collusive results [30, 50], this effect is sig-
nificantly mitigated because we assume that algorithms cannot condition their play. 
Therefore, we can trust the robustness of previous insights regarding Q-learning.

6.2  PSO

Although the PSO algorithm has multiple variations, a common feature is its reliability 
in solving multidimensional optimization problems. Since our problem is unidimen-
sional (prices), choosing a particular version is not critical. However, the algorithm’s 
performance is highly dependent on the chosen parameter values, as was the case for 

Fig. 10  Sensitivity analysis: Q-learning parameters

1 We also performed a similar experiment with the discount parameter, which can take values from 0 to 
1, but the variability of the results is even lower. The reason is that platforms cannot condition their play 
on competitor’s past actions, a result already highlighted by [7]
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Q-learning. In this sense, the learning parameters and the inertia weight, which controls 
the trade-off between exploration and exploitation, are the most relevant [49].

An interesting feature of PSO that contrasts with other approaches is that the 
exploration/exploitation parameter must be chosen along with the learning factors 
and should not be chosen individually. In this sense, we consider 10 equally symmet-
ric spaced intervals between 1 and 2 for the learning parameters, l1, l2 ∈ [1, 2] [51]. 
Following classical models, inertia weight linearly decreases over time [52]. We con-
sider 10 equally spaced values between 0.01 and 0.09 for this declining parameter, 
w0 ∈ [0.01;0.09] . Like the action space in Q-learning, the number of particles in PSO 
is also critical. Therefore, we consider three additional experiments with 3, 5 and 10 
particles ( k = 3, 5, 10).

We find little variation in the PSO results when comparing different parameter varia-
tions, see Fig. 11. Note that these results aggregate the multiple scenarios from the pre-
vious sections. However, it is interesting to highlight that the decrease in inertia plays a 
key role, especially when the number of particles is small. This highlights the need to 
consider the parametrization of PSO altogether [49]. In general, the insights from prior 
sections are robust, given the small variation in results.

However, there is no guarantee that this apparent robustness will hold in other mar-
ket frameworks; previous evidence in Q-learning and PSO experiments has highlighted 
that the performance of algorithms also depends on the problem at hand.

7  Platforms choose algorithms

What algorithm should a platform adopt to maximize profit in a competitive set-
ting? To explore that question, we make the pricing algorithm choice endogenous. 
In particular, we study a two-stage game in which platforms choose algorithms 

Fig. 11  Sensitivity analysis: Particle Swarm Optimization algorithm
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simultaneously in the first stage, and then they compete by setting prices in the sec-
ond stage. Table 1 summarizes the profits for each pair of algorithms considering all 
the cases of Sect. 5.1, which are the most widely studied in the platform literature. 
For this exercise, we do not consider how costly each algorithm is to implement. We 
focus only on the average profits they generate. Although this is a partial view, the 
objective here is to illustrate how the difference in pricing behavior can translate into 
differences in profits, which can influence the adoption decision.2 Buchali et al. [31] 
performs a similar exercise with different pricing rules for logit and linear demands.

Table 1 highlights the presence of two Nash equilibria in pure strategies, one in 
which both firms adopt PSO and one in which both use Price-Matching. The result 
predicts that both sophisticated and naïve algorithms are likely to be used by plat-
forms. Furthermore, this result shows that even if we make extreme simplifications, 
such as considering a theoretical model and addressing only average profits, we have 
multiple equilibria. It may seem surprising that Q-learning is not an equilibrium in 
this game, given that it is the most studied algorithm in the literature so far. How-
ever, there is preliminary evidence that such an algorithm would not be the optimal 
choice in multiple cases [30, 31].

The {Price-Matching, Price-Matching} equilibrium gives the highest profits 
to the platform firms, although price matching is a naïve algorithm. If one looks 
beyond the context of platforms, retailers in the US widely use price matching, and 
it can be an equilibrium when these rules compete with Q-learning in linear and 
logit markets [31]. On the other hand, PSO is also a potential equilibrium, and its 
widespread use justifies its analysis and suitability as a pricing algorithm [53].

Interestingly, there is no asymmetric equilibrium with firms adopting different 
algorithms. This result highlights that asymmetric equilibrium may require firm het-
erogeneity or other types of algorithms. All in all, what is clear is that even in simple 
environments, platforms face a coordination problem in choosing algorithms.

While this comparison is not exhaustive, our analysis shares some insights with 
[30] that found that Continuous-Actor-Critic (CAC) algorithms outperform Q-learn-
ing. Similarly, in our setting, the adoption of Q-learning seems suboptimal.

Table 1  Platform profits in 
a reduced-form algorithmic 
pricing game. All games

*Denotes an equilibrium outcome. The {Price-Matching, Price-
Matching} pair is computed following [20] and [21]

Firm 1 Firm 2

F2: Q-learn-
ing

F2: PSO F2: Price-
matching

F1: Q-learning 0.68 0.68 0.82 0.65 0.71 0.76
F1: PSO 0.65 0.82 0.82* 0.82* 0.67 0.71
F1: Price-Matching 0.76 0.71 0.71 0.67 2.7* 2.7*

2 Implementation cost can differ greatly between algorithms and is a dimension that must be considered. 
However, since we focus on addressing the performance of the algorithms and not their implementation, 
we abstract from this aspect. We thank one of the reviewers for raising this point.
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Moreover, our result that Price-Matching and PSO are the best algorithms is 
unlikely robust. For instance, it would be reasonable to assume that the adoption 
decision also occurs in a repeated game setting, where the manager must decide 
whether to continue using a specific algorithm or change it in certain periods. This 
simple modification will likely alter our conclusions about how many equilibria 
exist and which algorithms are part of an equilibrium.3

Proposition 4 There is no one algorithm that is always best, and multiple equilibria 
can be found. Platforms face a coordination problem.

Note that this section focused on the region with a unique and global price equi-
librium. This coordination problem persists in cases with multiple equilibria. If we 
consider the cases of Sect. 5.2, the results are robust, and the conclusion is the same.

8  Extension: conditional play

In our previous analysis, we assume that algorithms could not condition their play on 
competitor’s past play (also known as algorithmic memory). We introduced such an 
assumption to separate out the effects that the possibility of implementing additional 
strategies (such as tit-for-tat or grim trigger strategies) may have on our results. In 
other words, do the results change if the algorithms can condition their play?

Assuming that the algorithms can condition their play does change the results. 
First, the new profit levels are generally higher than in the previous cases (Table 2). 
This happens because algorithms learn that setting higher prices may be profitable 
even in the face of deviations. Even if competitors deviate and reduce their prices, 
in the long run, it may be profitable to set higher prices and reduce them only if the 
competitor does so. Algorithms seem to learn to play a tit-for-tat strategy. In other 
words, we observe that prices are above benchmark levels, and if the competitor 
deviates to lower prices, the algorithm follows. Conversely, if the competitor raises 
its price, the algorithm also follows. Whether this is an actual tit-for-tat strategy is 
beyond the scope of this paper, but it is a possibility [7].

Table 2  Platform profits by pair 
of algorithms when algorithms 
have memory

*Denotes an equilibrium outcome. The {Price-Matching, Price-
Matching} pair is computed following [20] and [21]

Firm 1 Firm 2

F2: Q-learning F2: PSO F2: Price-
matching

F1: Q-learning 0.94* 1* 0.8 0.77 0.75 0.75
F1: PSO 0.77 0.8 0.75 0.76 0.74 0.74
F1: Price-Matching 0.75 0.75 0.74 0.74 2.7* 2.7*

3 We thank one of the reviewers for providing us this example.
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Second and most importantly, there is a change in the equilibria. In particular, the 
{PSO, PSO} strategy is no longer an equilibrium; instead {Q-learning, Q-learning} 
becomes one. Algorithmic memory makes Q-learning more prone to focus on equi-
libria other than one-shot. In contrast, PSO does not markedly deviate from the one-
shot equilibrium. This result further emphasizes that the optimal set of algorithms in 
a platform market depends on the market structure and algorithmic characteristics. 
Firms interested in adopting pricing algorithms should consider that the profitability 
of introducing algorithmic pricing depends on the market structure (differentiation, 
network effects) but also on the type of algorithm chosen (PSO, Q-learning, price 
matching), its characteristics (e.g., conditional play) and what competitors do.

The analysis of this section represents a reduced-form game in which two firms 
must choose their pricing algorithms simultaneously and have complete informa-
tion. This assumption may seem strong, but digital firms likely have the knowledge 
and expertise to know how each algorithm performs in real situations. On the other 
hand, the idea of simultaneous moves represents the lack of coordination between 
different firms. Nevertheless, comparing Tables  1 and 2 provides valuable insight 
into the incentives to adopt AI pricing solutions, and future research could relax 
some of the assumptions. Note that we do not consider adoption costs. While algo-
rithms with more complex behavior (such as conditional play) are more likely to be 
an option, they are also likely to be more expensive. Although more sophisticated 
algorithms can implement more complex strategies, our work should reassure man-
agers interested in simple algorithms because we show that they are capable of pric-
ing competitively. In our framework, all algorithms generate profits greater than or 
equal to the theoretical model.

9  Discussion

We discuss theoretical and managerial implications and identify opportunities for 
future research.

9.1  Theoretical implications

This research analyzes how platform adoption of pricing algorithms affects competi-
tion outcomes (prices and profits). We consider three algorithms (PSO, Q-learning, 
and price-matching algorithm) used by platforms and compare all the pair-wise 
combinations. At the same time, the theoretical prices and profits of the Armstrong 
model provide a benchmark.

We find that algorithms can effectively set prices close to the benchmark values 
in most cases. Notably, the results differ significantly in the region with negative 
network effects. This is especially relevant for platforms subject to negative network 
effects, such as social media platforms where the sharing of fake news is extensive, 
as it reduces the value of new users to advertisers, and users may view advertis-
ers as promoters of that fake news, creating negative cross-network effects. Or an 
e-commerce platform that may experience indirect negative network effects that call 
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for fewer users and sellers if the quality of shipping and delivery declines as the 
platform grows. In these cases, caution is advised. Furthermore, we find that when 
different algorithms compete with each other, the algorithms with greater granular-
ity in their action space have an advantage because they can set prices that may drive 
out competitors if price competition is extreme.

When considering multiple equilibria, algorithms do not always coordinate. The 
outcome depends on the characteristics of the market, the competitors’ algorithms, 
and the parameterization. Therefore, determining the optimal algorithm for a plat-
form in all cases is challenging. We illustrate that the profitability of algorithms 
depends on which cases we consider. Platforms will not choose the most profitable 
algorithm if they do not adequately analyze all the potential cases.

Lastly, we address which algorithm is more likely to be adopted by profit-maxi-
mizing platform firms. Our results suggest that two equilibria are possible. One in 
which platforms adopt PSO and another in which platforms adopt price-matching. 
However, this result is altered with the introduction of algorithms that condition 
their play to the immediate past actions of the competitors (i.e., algorithmic mem-
ory). In the latter case, PSO is no longer an equilibrium, but Q-learning is. This 
result emphasizes that choosing the best algorithm is challenging and depends on 
market characteristics, algorithmic features, and competitors’ choices.

9.2  Managerial and policy implications

This paper provides a general framework based on Armstrong’s abstract platform 
competition framework. The goal of our framework is not to capture a particular 
platform in detail. Instead, it is about abstracting away from the details to identify 
important platform market parameters and characterize the behavior of pricing algo-
rithms. A manager using our model should first consider what parameter values are 
closer to their business situation and then check the relevant results. Some general 
insights are outlined next.

We discuss insights for managers considering algorithmic pricing in their plat-
form strategies. It is clear that algorithms can effectively set prices. Algorithms can 
autonomously learn the presence and strength of network effects in platform markets 
and coordinate the two sides accordingly. This insight is encouraging for platform 
firms that seek more and more automation. It also suggests that the algorithms could 
be used as an exploratory tool to learn which sides to subsidize. However, profits 
vary significantly when considering different algorithms, although generally higher 
than or equal to those expected in theory.

Interestingly, when facing multiple equilibria, algorithms learn autonomously to 
deviate from those that may not be stable, which further encourages the use of algo-
rithms as pricing tools. Only when platforms face negative network externalities, 
such as congestion, pricing algorithms may not perform well.

Furthermore, the choice of the algorithm can significantly impact profitability. 
For instance, price-matching algorithms generate the highest profits but only when 
facing other price-matching algorithms. Price-matching algorithms are simple to 
implement, but profits can be lower if competitors adopt different algorithms. In this 
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sense, companies must also consider what their competitors do. One algorithm can 
outperform another, but a slight change in the market characteristics may turn the 
tables. Therefore, companies must consider the market structure, the type of algo-
rithm chosen, its characteristics, and what competitors do when deciding whether 
and how to adopt algorithmic pricing. Selecting a pricing algorithm is similar to the 
platform making a strategic investment—a careful evaluation is therefore required.

We now reflect on the business value of AI motivated by our analysis of AI-
enabled pricing algorithms. First, the popular business press often talks about algo-
rithms, or AI more general, like it is one homogeneous object with well-defined 
effects [54]. Our analysis suggests this perception is misleading, and more nuance 
is needed. In particular, we show that in the context of platforms, the effects of 
pricing algorithms differ depending on the type of algorithm, the market charac-
teristics, and the design parameters of the competing algorithms. Managers need to 
take a more nuanced approach that accounts for algorithmic design diversity that 
can drive diverse market outcomes. Besides managers, policymakers should refrain 
from enforcing general rules on algorithmic pricing for platforms since the effect 
of algorithms on competition is far from homogenous. Moreover, sophisticated AI 
algorithms, which are costly to implement, are not always better than following sim-
ple rules like price matching. This again suggests caution about the drive to use AI 
everywhere in business.

9.3  Limitations and future research

This research evaluates three types of algorithms: Q-learning, PSO, and price-
matching algorithms. Future research could compare more types of algorithms and 
more algorithm design choices. Moreover, future work could analyze additional 
platform competition frameworks. It could also study more dimensions of algorith-
mic platform competition beyond algorithmic pricing.

A key assumption in our study and the related literature is the lack of adoption 
costs. Implementing sophisticated AI algorithms is likely more costly than simple 
price-matching rules. If sophisticated AI algorithms are prohibitively expensive to 
adopt, firms will not consider them. However, advances in AI and computing bring 
those costs lower over time, and more empirical research is needed to understand the 
structure of those costs. In summary, modeling adoption costs introduces additional 
complexity that requires a separate future study.

This article assumes that agents are rational and can forecast that a price change 
on the other side will impact them. However, agents may not be aware of price 
changes on the other side or may not be entirely rational. In those cases, prices may 
likely be higher due to the demand specification, but more research is needed. Over-
all, the growing importance of platforms and algorithms in the economy suggests 
a strong need for more research into related issues. More broadly, we recommend 
more research at the intersection of platforms and artificial intelligence.
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10  Conclusion

The article builds an agent-based model that studies algorithmic platform pricing 
under competition. The model integrates algorithmic pricing into the classic Arm-
strong platform competition model. We evaluate three types of algorithms: Q-learn-
ing, PSO, and price-matching. We consider various scenarios, including multiple 
equilibria, asymmetric network effects, endogenous choice of pricing algorithm, and 
the possibility of conditioning algorithm play to competitor’s past actions. Our sim-
ulation study, grounded on game-theoretic economic logic, contributes to the plat-
form literature and the algorithmic pricing literature.

We summarize three main findings. First, the algorithms learn the presence of 
network effects and set prices accordingly. We find that the interaction of network 
effects and mismatch (differentiation) costs is crucial to algorithmic pricing. Sec-
ond, profitability depends on market characteristics and algorithmic features like 
the possibility of playing conditional strategies. In this sense, the managerial con-
siderations in the traditional economics literature apply, but algorithms also present 
additional ones. For example, strong network effects are related to the possibility 
of winner-take-all; when considering algorithms, we should realize that those algo-
rithms with a richer action space have an advantage in terms of profitability. Third, 
there is no unique equilibrium in which only one algorithm is chosen. In fact, the 
set of optimal algorithms changes when considering different algorithmic charac-
teristics. Even if we abstract from implementation costs and reduce the decision to 
a simple game in normal form, we find multiple equilibria. Moreover, this implies 
that platforms may face an additional coordination challenge, which provides an 
answer to why multiple pricing algorithms based on different technologies are cur-
rently available. In summary, while algorithmic pricing can be a valuable tool for 
companies seeking to optimize their pricing strategies, it is crucial to recognize the 
limitations of algorithms and the potential for mismatches between theoretical and 
actual profits. Companies should carefully consider the market structure, the type 
of algorithm used, and the potential costs and benefits of implementing algorithmic 
pricing before making any decisions.
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