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Abstract

As chatbots become more advanced and popular, marketing research has paid
enormous attention to the antecedents of consumer adoption of chatbots. This has
become increasingly relevant because chatbots can help mitigate the fear and loneli-
ness caused by the global pandemic. Therefore, unlike previous work that focused
on design factors, we theorize that social presence serves a mediating role between
consumer motivations (i.e., hedonic and utilitarian) and intention to use a chatbot
service based on self-determination theory. Our results from a structural equation
model (n=377) indicate that hedonic (but not utilitarian) motivation significantly
affects chatbots’ social presence, ultimately influencing intention to use the chatbot
service. We also found that fear of COVID-19 amplifies the effect of social presence
on intention to use the chatbot service. In this dynamic, we found an additional mod-
erated moderation effect of generational cohorts (i.e., baby boomers and Genera-
tions X, Y, and Z) in experiencing different levels of fear of COVID-19. Overall, our
findings emphasize the importance of motivation-matching features for consumer
adoption of chatbot services. Our findings also indicate that marketers may utilize
the fear element to increase adoption of chatbot services, especially when targeting
the young generations (e.g., Generation Z).
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1 Introduction

During the COVID-19 pandemic, worldwide precautions such as social distanc-
ing and quarantining have restricted direct human-to-human interaction [1, 72]
and, in turn, heightened our desire for social interaction [29]. As a result, con-
sumers have felt more socially isolated and lonely during (vs. before) the pan-
demic [32, 114]. As artificial intelligence (AI) chatbots can stimulate human-like
conversations anywhere and anytime [43, 74], this paper aims to address the fol-
lowing question: Can chatbots replace human warmth and fulfill social presence,
especially in the global pandemic?

Addressing the above question is timely because as technologies advance, Al
chatbots can now respond to almost any text-based or voice-based requests in a
less robotic, more natural, and intelligent manner [77]. Not surprisingly, chat-
bot services are rapidly entering various business sectors to help reduce human
labor cost and increase operational efficiencies [108]. Indeed, experts have pro-
jected that the chatbot market will grow steadily from $17.17 billion in 2020 to
$102.29 billion by 2026 [122]. However, literature related to consumer adoption
of chatbot services is relatively scant and predominantly features chatbots’ exter-
nal design (e.g., appearances) and anthropomorphic elements (e.g., gender iden-
tity) [4, 9, 43, 55, 64]. Despite the continuous growth and wide popularity of
chatbots, unfortunately, little is known about the motivational drivers of how and
why consumers engage with chatbots.

This paper aims to fill these gaps in the literature by revealing the underly-
ing mechanism of chatbot adoption based on self-determination theory (SDT)
[26, 104]. According to SDT, consumer behavior is driven either by hedonic (or
intrinsic) motivation, which pursues fun, pleasure, and/or satisfaction, or by util-
itarian (or extrinsic) motivation, which seeks to attain resources and/or reduce
of (the risk of) punishment. We argue that these two types of motivation differ-
ently shape consumer adoption of chatbot services. Furthermore, this paper aims
to reveal an underlying mechanism by highlighting the role of social presence,
which is defined as the perceived presence of another social being, characterized
by human warmth and personal touch, via a technological medium [8, 107]. This
paper also examines the fear of the pandemic as a moderator between social pres-
ence and intention to use chatbot services. Additionally, this paper shows that
generational cohort further moderates the effect of fear. The overall conceptual
model is presented in Fig. 1.

Our research offers the following contributions. First, it extends the literature
on SDT and consumer-chatbot interaction by illustrating the effects of consumers’
motivation on the pursuit of social presence from chatbots. Second, it contributes to
the literature on emotions by showing fear’s positive role in facilitating consumers’
adoption of chatbots. Third, it offers new insights by comparing the levels of fear felt
during pandemics across different generations to further examine the relationship
between social presence and chatbot adoption. Altogether, this paper advances cur-
rent theoretical and managerial understandings of Al-based chatbots by examining
an emerging dynamic of the consumer-chatbot relationship.
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Fig. 1 Conceptual model

2 Literature review and hypotheses
2.1 Chatbots

A chatbot, or bot or conversational agent, is a computer program that uses auto-
mated algorithm-based technologies, such as natural language processing, machine
learning, and Al, to mimic conversational interactions with humans [22]. Research-
ers have classified chatbots based on their form of existence (physical or virtual and
embodied or disembodied), type of communication (text-based or voice-based), and
abilities (mechanical chatbots for routine tasks vs. thinking chatbots for idiosyn-
cratic tasks) [4, 52, 106]. At base, the primary function of a chatbot is to quickly
generate relevant responses by mimicking human-to-human conversation processes.
However, recent technologies have also allowed chatbots to provide instant, conveni-
ent, personalized, round-the-clock customer services [43], and in parallel, the adop-
tion of chatbots has grown rapidly [37, 119].

In response to the hype, marketing scholars have begun investigating factors that
influence consumers’ attitudes and behaviors toward chatbots. As shown in Table 1,
prior research has primarily focused on chatbots’ design cues, particularly anthropo-
morphic cues, including communication style [64], visual appearance [43], and gen-
der identity [9]. Scholars have argued that people not only are motivated to detect
such cues in non-human entities like chatbots [31], but also rely on those cues as per-
ceivable heuristics to form judgments about chatbots [3]. Other scholars have also
adopted the technology acceptance model or use and gratification theory to exam-
ine how consumers employ chatbots to achieve utilitarian (e.g., informativeness and
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usefulness), hedonic (e.g., escapism and playfulness), symbolic (e.g., trendiness),
or social (e.g., social attraction) benefits [15, 17, 71, 83, 87, 91, 97]. Despite those
benefits, consumers may still be hesitant about using chatbots due to potential secu-
rity and privacy risks [15, 83, 91, 100, 116]. Additionally, chatbot studies have also
examined the role of user-related elements such as age and gender [83], technology
anxiety [100], social phobias [56], anger [22], or even time orientation [102].

2.2 Hedonic and utilitarian motivation

SDT is a metatheory encompassing six mini-theories, each of which explains a col-
lection of motivational occurrences [104]. Within the scope of SDT, cognitive eval-
uation theory, organismic integration theory, and goal contents theory define and
distinguish two fundamental human motivations (i.e., intrinsic and extrinsic) based
on the reasons and goals that drive our actions [27, 104]. As a result, marketing lit-
erature has adopted SDT to argue that consumers search for, purchase, and consume
products and services for either hedonic or utilitarian reasons [5, 7, 10, 121].

On the one hand, cognitive evaluation theory [26] defines hedonic motivation (or
intrinsic motivation) as the driver of a behavior related to achieving the satisfactions
inherent in performing that behavior. For reasons of amusement, escapism, excite-
ment, enjoyment, and fantasy fulfillment, performing such behavior often gives rise
to experiential, multisensory, and/or emotional satisfaction [5, 121]. Hedonic moti-
vation has an internal locus of causality [10], meaning that consumers endorse and
willingly engage in the behaviors [27]. On the other hand, organismic integration
theory [104] defines utilitarian motivation (or extrinsic motivation) as the driver of
behavior that aims to attain instrumental values such as external rewards or social
approval. Prior research often considers utilitarian behavior as a means to an end
that allows individuals to execute tasks successfully, efficiently, and on time in order
to attain external goals [5, 121]. Utilitarian motivation has an external locus of cau-
sality [10]. As a result, the literature usually describes hedonic motivation in terms
of “fun” and utilitarian motivation in terms of “work’ [5].

According to SDT [103], consumers engage in an activity with either hedonic
motivation (i.e., out of pure interest) or utilitarian motivation (i.e., for external
rewards). In either case, motivation is a powerful force that activates behavioral
intentions. In this research, we expected that hedonic motivation would increase
intention to use chatbots. This is because chatbots can converse with consumers
in an automatic and interactive manner (e.g., telling jokes) whereas older one-way
technologies such as websites cannot. As a result, consumers can achieve a true
sense of joy, entertainment, playfulness, and escapism when interacting with chat-
bots [17, 87, 97]. Similarly, we also expected that consumers’ utilitarian motiva-
tion would increase their intention to use chatbot services, but for different reasons:
because chatbots are informative [15, 71] and easy to use [97]. Hence, chatbots help
consumers make the right decisions [86], solve their problems [17], and accom-
plish their desired goals [116]. In that regard, research has shown that hedonic and
utilitarian aspects such as benefits [83], values [86], and attitudes [87] positively
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influence consumers’ intention to use and patronize chatbots. Thus, we first hypoth-
esized the following:

H1la Consumers’ hedonic motivation positively influences their intention to use a
chatbot service.

H1b Consumers’ utilitarian motivation positively influences their intention to use a
chatbot service.

2.3 Chatbots’ social presence

Whereas prior consumer research has focused on humans’ actual social presence
(i.e., the physical presence of other human beings in the same environment) [23],
our research focuses on technology-mediated social presence. In technology-medi-
ated settings, social presence refers to the extent to which a medium allows indi-
viduals to feel as if others are psychologically present [8, 107]. According to social
presence theory [107], technology with high social presence is often characterized
as being warm, personal, sensitive, and sociable. Because those characteristics are
often valued in interpersonal relationships, communication technology with high
social presence (e.g., video and voice calls) are preferred for tasks involving inter-
personal engagement [107]. In contrast, technology with low social presence (e.g.,
email and fax) are preferred for efficiency-focused tasks that require less interac-
tion [113]. According to Biocca et al. [8], social presence is often examined in the
human—computer domain because it explains why design cues facilitate favorable
attitudinal or behavioral responses [24, 43, 83].

Chatbots are, by definition, artificial representations of human-like intelligence
with the ability to mimic human-to-human conversations [22]. Therefore, social
presence is prevalent in research on human—chatbot interaction because it describes
“sense of being with another... either a human or artificial intelligence” [8] (p. 456).
Prior research has indicated that a chatbot’s social presence increases when it has a
socially oriented interactive style [24], a cute communication style [55], or a human-
oid avatar or human voice [99]. Meanwhile, other antecedents of chatbots’ social
presence have remained unexplored. To the best of our knowledge, only Li and Mao
[71] have examined antecedents of chatbots’ social presence other than design cues.
They found that chatbots’ hedonic values (e.g., perceived engagement and perceived
enjoyment) positively influence their social presence whereas utilitarian values (e.g.,
informativeness and credibility) do not. The present study differs from theirs in two
ways. First, although both examined hedonic and utilitarian antecedents of chatbots’
social presence, Li and Mao [71] focused on value-based aspects (i.e., what consum-
ers can obtain from using chatbots). In contrast, because consumers’ motivations
shape their perceptions [80, 121, 124], we focused on motivation-based aspects (i.e.,
why people use chatbots). That distinction is congruent with the taxonomy in Ling
et al. [74], in which they considered benefits as usage-related factors and motiva-
tions as user-related factors. Second, whereas Li and Mao [71] did not explain why
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utilitarian benefits do not impact social presence, this paper adopts SDT to explain
that phenomenon.

SDT [26, 103] posits that our fundamental need for relatedness emerges at birth,
as evidenced by the fact that infants feel most secure when staying close to their
parents. In addition, although relatedness can provide extrinsic benefits (e.g., admi-
ration from peers), humans have evolved to be intrinsically motivated to find, estab-
lish, and maintain high-quality (i.e., close, open, and trusting) relationships with
others [104]. As mentioned, social presence is characterized by humans’ warmth,
personal touch, sensitivity, and sociability [107]. Those are common characteristics
of high-quality interpersonal relationships [12, 25]. Therefore, we argue that when
consumers are hedonically motivated, they expect to form high-quality relationships
with other social beings [28], which is more likely with chatbots possessing high
social presence. By contrast, SDT also postulates that utilitarian motivation makes
people focus more on instrumental outcomes such as financial resources, fame,
power, or outward attractiveness [104]. In such case, people tend to perceive their
relationship partners as instruments for achieving utilitarian goals, rather than as
mutually respected or supported partners [28, 61]. Research has shown that in peer-
to-peer accommodation settings, when the guests have utilitarian motivations, social
interaction with the host can be regarded as a burden rather than a reward [42]. Thus,
we argue that when consumers focus on utilitarian motivations, a chatbot’s warmth
or sociability contributes little to their usage goals. As a result, such consumers are
unlikely to seek a sense of social presence from chatbots. Based on those arguments
and findings, we hypothesized that:

H2 The positive impact of consumers’ hedonic motivation on chatbots’ social
presence is stronger than the impact of utilitarian motivation on chatbots’ social
presence.

The computer-as-social-actors paradigm suggests that although people fully
acknowledge chatbots’ non-human nature, they still tend to treat chatbots with social
presence as if they were human [69, 101]. In such situations, because people’s men-
tal schema about chatbots is congruent with their preexisting schema about humans,
they are likely to treat chatbots more favorably [3]. Moreover, people have a basic
need for social relatedness [104], and chatbots with high social presence possess
characteristics (e.g., warmth and sociability) required to facilitate high-quality rela-
tionships [12, 25]. Thus, chatbots’ social presence can satisfy people’s need for
relatedness, motivating them to accept and use chatbots. Likewise, past research has
shown that social presence is positively associated with chatbot adoption [35, 43,
71, 83]. Based on the preceding arguments and findings, we also hypothesized that:

H3 A chatbot’s social presence positively affects consumers’ intentions to use the
chatbot service.
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2.4 The moderating effect of COVID-19 fear

Fear, a negatively valanced emotion activated in response to present or potential dan-
gers, can prompt a defensive reaction for self-protection [67]. During the COVID-19
pandemic, people have often felt fear because the virus is highly contagious [65]
and deadly [109]. Furthermore, the lack of face-to-face interactions resulting from
social distancing policies has also increased loneliness in the general population
[32]. Since loneliness negatively affects mental well-being [54, 112], people have
also been afraid of being lonely during the pandemic [60]. Therefore, we positioned
fear of COVID-19 as a context-specific moderator of the relationship between chat-
bots’ social presence and consumers’ intention to use chatbot services.

Chatbot research has found that the relationship between social presence and
consumers’ adoption is moderated by factors such as design cues [55], perceived
privacy risk [83], and usage frequency or preference for technology over humans
[35]. However, the moderating role of the psychological consequences of exogenous
events (e.g., fear of a pandemic) in that relationship remains unknown. This factor
is critical because people have been afraid of the pandemic [109], causing them to
rely more on virtual technologies [16]. Therefore, this research aims to explain the
moderating role of COVID-19 fear based on social support theory.

According to the stress-buffering hypothesis (or social support theory) [18, 20],
social support is an effective resource that can buffer the pathogenic and psycho-
logical impacts of stressful events. Particularly, social support helps to modify the
appraisal of stress, reduce adverse effects of stress, and facilitate adaptive coping
against stress [94]. Therefore, social support from all sources can help mitigate the
psychological consequences of the COVID-19 pandemic.

We expect that as consumers’ fear of COVID-19 increases, the impact of chat-
bots’ social presence on intention to use chatbots will be more pronounced. This
is because as consumers become more fearful of the pandemic, they feel more dis-
tressed and need more psychological resources to cope with it [18, 20]. Under such
circumstances, a chatbot with high social presence can offer consumers a sense of
warmth, human touch, sensitivity, and sociability [107]. Furthermore, all those char-
acteristics foster high-quality interpersonal relationships [12, 25]. Because using
chatbots allows consumers to maintain social interactions, it also helps to promote
their social well-being [34] which in turn helps them to cope with the psychological
stress resulting from their fears [21]. Conversely, individuals who are less fearful of
the pandemic require fewer psychological resources to cope and are thus less likely
to use chatbots to obtain those resources. In line with our argument, [29] found that
for consumers with a high (vs. low) level of fear of COVID-19, perceived human
presence in shared houses increases their sense of social connectedness, making
them more likely to stay in shared houses. Therefore, we hypothesized that:

H4 Fear of COVID-19 amplifies the impact of a chatbot’s social presence on con-
sumers’ intentions to use the chatbot service.
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2.5 The moderated moderating effect of generational cohort

According to generational cohort theory, individuals’ thoughts and behaviors are
often shaped by the socio-historical events that occurred during their youth [30].
Because individuals born during the same period often experience the same socio-
historical events, they share similar values, beliefs, and expectations that later define
their generational identity [14]. Considering that dynamic, prior studies have found
that consumers’ behaviors vary across different generations in contexts such as tour-
ism [14], automobiles [89], and retailing [30].

In our study, we expected that the moderating effect of fear on the relationship
between social presence and intention to use would be further moderated by gen-
erational cohort for three reasons. First, different generations fear the pandemic to
varying extents. As humans age, negative life events and chronic life conditions
accumulate [96]. Also, older generations have already lived through several pan-
demics, including the Asian flu (1957-1958), the Hong Kong flu (1968-1970), HIV/
AIDS (1981-present), SARS (2002-2003), and swine flu (2009-2010) [105]. Thus,
older generations tend to be more psychologically resilient against such stressful
events [96] and to have a higher threshold for loneliness than younger generations
[50]. Second, compared to the older generation, younger generations have exhib-
ited greater levels of loneliness [114], anxiety [11], and stress and depression [59],
as well as lower levels of resilience, during the COVID-19 pandemic [45]. Third,
as digital natives, younger generations (e.g., Generation Z) tend to have easier and
more frequent access to new technologies, as well as a greater capability to learn
how to use them [85]. This makes younger generations more willing to interact
with chatbots than older generations [13]. Thus, when experiencing fear of COVID-
19, younger generations are more likely to interact with chatbots as surrogates for
human warmth than the older generation. Accordingly, we hypothesized that:

H5 Generational cohort moderates the moderating effect of COVID-19 fear on the
relationship between chatbots’ social presence and intention to use chatbot services,
such that as the generation cohort becomes younger, an increase in the level of
COVID-19 fear will strengthen the positive impact of chatbots’ social presence on
their intention to use chatbot services.

3 Method

3.1 Data collection and sampling

We collected data via an online survey on Amazon Mechanical Turk. The survey
included four sections. First, we provided them with general instructions on how
to complete the survey. Second, we provided our definition of chatbot and an illus-
tration of a wealth management app powered by a chatbot (see Appendix A). This
aimed to ensure that all participants shared a similar understanding of the chatbot
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service. Third, we asked participants to answer questions relevant to the investigated
constructs. Lastly, we collected their demographic information.

To determine the required sample size, we conducted an a priori power analysis,
which requires the desired effect size, power levels, statistical probability levels, and
the degrees of freedom of the model [120]. The degrees of freedom was calculated
using the number of latent constructs and observed items [57]. As a rule of thumb,
we considered 0.30 as the desired effect size, 0.90 as the desired power level, and
0.05 as the desired probability level [19, 110]. The minimum sample size was calcu-
lated to be 188 [110].

Although 400 questionnaires were distributed, only 377 valid responses were
obtained after unqualified participants were screened by attention-checking ques-
tions. Our sample was proportionately distributed in terms of gender (men: 65%;
women: 35%), age (20-29 years old: 19%; 30-39 years old: 36%; 40 years old
and older: 45%), level of education (less than a bachelor’s degree: 21%; bachelor’s
degree: 60%; master’s degree and higher: 29%), employment status (full-time:
69%; part-time: 16%; self-employed: 7%; unemployed: 3%; student: 3%; retired:
2%), and annual household income (<US $50,000: 48%; $50,000-$100,000: 38%;
>$100,000: 14%).

3.2 Measurements

We measured utilitarian motivation with a three-item scale and hedonic motivation
with a five-item scale adapted from [5]. The scale for social presence contained four
items adapted from [41]. The scale for intention to use contained three items adapted
from [115]. Fear of COVID-19 was measured with six items adapted from [123].
We used a 7-point scale (1 =not at all, 7=extremely) for fear and a 5-point Likert
scale (1 =strongly disagree, 5= strongly agree) for the other constructs. Appendix B
provides the measurement items for our constructs.

4 Results

4.1 Common method biases

Following Podsakoff et al. [98], we ensured our participants that their anonym-
ity would be protected, that there were no right or wrong answers, and that their
responses would be used for academic purposes only. Beyond that, we conducted
a pre-test with 40 participants to ensure that the survey was free of ambiguity and
complex syntax [79]. Nonetheless, because we simultaneously collected data for the
dependent and independent variables in the same self-administered survey, there
was a risk of common method biases (CMBs) [98]. Therefore, we conducted a series
of procedures to assess the potential presence of CMBs.

First, the results of Harman’s single-factor test in our exploratory factor analysis
[98] revealed that the first principal component accounted for less than 50% of the
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Table 2 Reliability and convergent validity

Construct Items Mean SD Loading Cronbach’s CR AVE
Alpha (a)
Utilitarian motivation UM_1 3812 0.878 0.789 0.831 0.832  0.622

UM_2 3968 0.853 0.802
UM_3 3886 0905 0.775
Hedonic motivation HM_1 3.536 1.103 0.746 0.891 0.892 0.623
HM_2 3371 1209 0.830
HM_3 3.316 1256 0.793
HM_4 3.324 1.195 0.761
HM_5 3.302 1.248 0.815
Social presence SP_1 3.308 1.154 0.837 0.917 0912 0.723
SP_2 3271 1.227 0.847
SP_3 3382  1.159 0.817
SP_4 3.178 1310 0.898
Fear of COVID-19 FC_1 4255 1.849 0.844 0.945 0.946  0.745
FC_2 4355 1819 0914
FC_3 4408 1915 0915
FC_4 4427 1902 0.907
FC_5 4430 1.860 0.825
FC_6 3.668 2.119 0.763
Intention to use a chatbot service ITU_1 3.650 1.041 0.856 0.864 0.866 0.684
IU_2 3599 1.017 0.846
1U_3 3.655 1.048 0.776

SD =standard deviation, CR =composite reliability, AVE =average variance extracted

total variance (i.e., 39.08%). Therefore, no single factor explained most of the vari-
ance. Second, we conducted a confirmatory factor analysis to examine if a single-
factor model (i.e., with all indicators loaded onto one factor) fit the data [98]. As
expected, the single-factor model did not fit the data (*(189)=3,118.569, p <0.001;
TLI=0.453; CFI=0.508; RMSEA =0.203). Finally, using a common latent factor
(CLF) approach [98], we constrained all indicators’ paths to the CLF to be equal and
the CLF’s variance to be 1 [68]. The results showed that the variance explained by
the CLF (i.e., the squared unstandardized loading of items linked to the CLF) was
44.89%, which was below the threshold of 50% [68]. Considering those results, we
concluded that CMBs were not problematic in our study.

4.2 Measurement model
As shown in Table 2, because Cronbach’s alphas and composite reliabilities of all

constructs exceeded the threshold of 0.70 [6], they all demonstrated internal consist-
ency reliability. Next, because all factor loadings exceeded 0.65 [93] and all values
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Table 3 Correlation matrices UM HM SP EC U
and discriminant validity
(n=377) Utilitarian motivation (UM) 0.789
Hedonic motivation (HM) 0.532 0.790
Social presence (SP) 0.339 0.706 0.850
Fear of COVID-19 (FC) 0.158 0.440 0.376 0.863
Intention to use (IU) 0.523 0.731 0.589 0.239 0.827
Mean 3.880 3.370 3.285 4.257 3.635
SD 0.759 1.004 1.086 1.689 0.918

Values in bold italics are the square root of average variance
extracted

Table 4 Result of heterotrait-
monotrait (HTMT) ratio
analysis (N=377)

UM HM SP FC U

Utilitarian motivation (UM)
Hedonic motivation (HM) 0.536

Social presence (SP) 0.349 0.689
Fear of COVID-19 (FC) 0.160 0.465 0.394
Intention to use (IU) 0.530 0.746 0.590 0.272

of average variance extracted (AVE) exceeded 0.50 [81], our convergent validity
was established.

Next, we adopted two criteria to examine discriminant validity [117]. First, we
used the Fornell-Larcker criterion [36], which holds that the square root of AVE has
to exceed the inter-construct correlations to obtain support for discriminant validity.
Our results in Table 3 indicate that such requirement was satisfied.

Second, we conducted the heterotrait-monotrait (HTMT) test [47] to check the
“ratio of the average correlations between constructs to the geometric mean of the
average correlations within items of the same constructs” [117] (p. 124). We cal-
culated the HTMT ratio using a plugin in Amos [40]. According to the result in
Table 4, we obtained support for discriminant validity because the HTMT ratios of
all inter-constructs were below 0.85 [47].

4.3 Structural model

We used Amos 24.0 to run structural equation modeling. Because both hedonic and
utilitarian motivations point to the same consumer motivation, a covariance was
drawn between the two constructs. Also, demographic profiles (i.e., age, gender,
level of education, and household income) were treated as control variables [53].
According to Hu and Bentler [51], all indices indicated that our data fit relatively
well with the model (;*(143)=340.042, p<0.001, GFI=0.916, AGFI=0.888,
NFI=0913, IFI=0.948, TLI=0.937, CFI=0.947, RMSEA=0.061, and
SRMR =0.068). Figure 2 shows the results of the structural analysis.
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Hedonic
Motivation

0.532°*

Intention
to Use

Social
Presence

-0.052ns._ —~

0.180"

Utilitarian
Motivation

Fig.2 Structural model (N=377). Note: All values are standardized coefficients; n.s. = non-significant. "
p<0.05." p<0.01." p<0.001.

None of the control variables significantly influenced intention to use: age
(#=0.033, t=0.829, p>0.05), gender (f = —0.020, r=-0.487, p>0.05), level
of education ($=0.023, r=0.579, p>0.05), and household income (f=0.045,
t=1.105, p>0.05). This suggests that the overall pattern of the results does not
depend on the presence or absence of the control variables.

Regarding our hypotheses, both hedonic motivation (f#=0.532, t=9.470,
p<0.001) and utilitarian motivation (=0.180, r=3.198, p<0.010) significantly
influenced intention to use. Additionally, we conducted another test by excluding
social presence in our model to obtain the total effect between the two motivations
and intention to use. The significant impact of hedonic motivation (5,4 ofrec: =0.642,
1=9.806, p<0.001) and utilitarian motivation (B e =0.170, 1=2.992,
p<0.010) on intention to use remained the same. Altogether, both Hla and H1b
were supported.

Furthermore, hedonic motivation positively influenced social presence (f=0.734,
t=10.502, p <0.001) whereas utilitarian motivation did not (f = —0.052, r=—-0.910,
p>0.05), supporting H2.

Last, social presence had a significant positive impact on intention to use
(#=0.151,¢t=2.279, p <0.05), supporting H3.

4.4 Moderation analysis

To test the moderating effect of fear on the relationship between social presence and
intention to use (H4), we used Model 1 of the PROCESS macro for SPSS [46] with
a 10,000-bootstrapping method and a 95% confidence interval (CI). We maintained
the aforementioned control variables; however, none were significant, suggesting
that the overall results do not depend on these control variables. Our results show
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Fig. 3 Johnson-Neyman plot for the moderating effect of COVID-19 fear on the relationship between
social presence and intention to use

that the overall model was significant (F (7, 369)=23.149, p<0.001) and explained
30.5% of the variance. More importantly, as expected, the interaction term was sig-
nificant and positive (f=0.052, t=2.520, p<0.05, 95% CI = [0.011, 0.092]), sup-
porting H4.

Moreover, we plotted the above moderation results using the Johnson-Neyman
technique [58] in RStudio [73]. As shown in Fig. 3, the impact of social presence on
intention to use chatbot was significant and positive at all levels of COVID-19 fear.

4.5 Moderated moderation analysis

We conducted a moderated moderation analysis using Model 3 in PROCESS macro
[46] to examine how the three-way interaction between social presence, fear, and
generational cohort impacts intention to use (HS). This analysis was performed
using a 10,000-bootstrapping method with a 95% CI [46]. First, we divided our sam-
ple into three generational cohorts': young generation (Generation Y and Generation
Z, born 1980-2010, n=220), middle generation (Generation X, born 1960-1979,
n=132), and senior generation (baby boomers, born 1940-1959, n=25). Second,
we coded generational cohort as a ternary variable (1 =senior generation, 2 =mid-
dle generation, and 3=young generation). Thus, the obtained results relevant to
generational cohort would be interpreted in relation to the senior generation. Next,

! The generational cohort was divided following McKinsey & Company’s segmentation method [38].
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we specified generational cohort as a multicategorical variable with three catego-
ries in the PROCESS macro. In addition, we maintained the aforementioned control
variables (except age), but none were significant. The overall model was significant
(F(14, 362)=13.056, p <0.001) and explained 33.6% of the variance.

Our results (part I of Appendix C) revealed that the three-way interaction between
social presence, fear, and generational cohort was significant for the middle genera-
tion (f=0.158, p<0.05, 95% CI = [0.018, 0.298]) when compared with the senior
generation. Also, the three-way interaction was significant for the young genera-
tion (f=0.185, p<0.01, 95% CI = [0.046, 0.324]) when compared with the senior
generation.

In addition, our results were interpreted from another angle by recoding the gen-
eration cohort variable to change our reference group (i.e., 1 =middle generation,
2=young generation, and 3 =senior generation). Repeating the above procedures,
the obtained results relevant to generational cohort would be interpreted in relation
to the middle generation, which is reported in part II of Appendix C. Specifically,
the three-way interaction was insignificant for the young generation ($=0.026,
p>0.05,95% CI = [-0.058, 0.111]) when compared with the middle generation.

To further examine the results, we looked at the conditional effect of social pres-
ence on intention to use at different levels of fear and generation (see part III of
Appendix C for more information). For the senior generation, social presence only
predicted behavioral intention for participants with a low level of fear, and the
strength of the association decreased as the level of fear increased (5, o0, =0.415,
P<0.05; Boderate fear="0-230, p>0.05; high fear: S, 1,=0.045, p>0.05). How-
ever, for the middle generation, social presence positively influenced behavioral
intention, and the strength of the association increased as the level of fear increased
Biow fear=0435, p<0.00L; Bserare foar=0-517, p<0.001; B0 fo0=0.600,
p<0.001). Similarly, for the young generation, social presence also positively influ-
enced behavioral intention, and the strength of the association also increased as
the level of fear increased (fy,,, o0, =0.302, p <0.05; B,pderate fear=0-429, p<0.001;
Phigh fear=0.556, p <0.001).

The overall moderated moderation results are summarized in Fig. 4 using the
Johnson-Neyman plot. Altogether, HS was partially supported because there was a
distinctive pattern with the senior generation while the other two generations shared
a similar pattern.

5 Conclusions
5.1 Summary and discussion
In summary, our study yielded the following findings. First, both hedonic and utili-

tarian motivation exerted positive impact on consumers’ intention to use the chatbot
service in question (i.e., on a mobile app). Second, hedonic motivation prompted a
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Table 5 Summary of the research results

Hypothesis Description p p-value 95% CI Conclusion

Hla HM — IU 0.532 <0.001 ---- Supported

H1b UM — IU 0.180 <0.01 ---- Supported

H2 HM — SC 0.734 <0.001 ---- Supported
UM — SC -0.052 >0.05 ----

H3 SC—1U 0.151 <0.05 --- Supported

H4 FCxSC — IU 0.052 <0.05 [0.011,0.092] Supported

HS GCXFCXSC — IU, such that: Partially support
For MG (vs. SG): FCxSC —-1IU 0.158 <0.05 [0.018, 0.298]
For YG (vs. SG): FCxSC —-1IU 0.185 <0.01 [0.046, 0.324]

For YG (vs. MG): FCxSC—-1U 0.026 >0.05 [-0.058,0.111]

CI=confidence interval, FC=fear of COVID-19, GC =generational cohort, HM =hedonic motivation,
IU =intention to use, MG =middle generation, SC =social presence, SG=senior generation, UM = utili-
tarian motivation, YG = young generation

higher expectation for the chatbot’s social presence whereas the impact of utilitarian
motivation was insignificant. Third, fear of COVID-19 strengthened the influence of
social presence on consumers’ intention to use the chatbot. Last, generational cohort
partially moderated the moderating effect of fear on the relationship between the
chatbot’s social presence and consumers’ intention to use it. These results are sum-
marized in Table 5.

Regarding HS, the result was partially supported. We account for this result due
to an indifference across the young generations (i.e., X, Y, and Z) compared to the
senior generation (i.e., baby boomers). Additionally, results from the post-hoc inde-
pendent #-tests showed no significant differences in the mean value of COVID-19
fear (Mo = 4.378, Miyiqaie = 4.198, 1(350)=0.977, p>0.05) between the young
and middle generations. This proves that these two generations are quite similar in
terms of feeling fear, resulting in no significant difference in its moderation effect
between social presence and intention to use the chatbot.

5.2 Theoretical contributions

First, prior studies have adopted different theoretical accounts to investigate how and
why consumers adopt chatbots (Table 1). For instance, using the theory of anthro-
pomorphism [31], Borau et al. [9] found that by imbuing chatbots with female (vs.
male) identity, people perceive chatbots as more human-like and thus are more
likely to favor and accept female (vs. male) chatbots. This is because female (vs.
male) humans are perceived to be more likely to recognize and consider the unique
needs of others in real life. However, most chatbot-related research that adopts
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anthropomorphism theory [9, 102], the similarity—attraction paradigm [56, 71], or
the computers—are—social—actors paradigm [4, 24] has often started from the design
side [4, 43, 55], rather than from the consumers’ state-of-mind side (e.g., motiva-
tions). Therefore, our research contributes to the literature by examining consumers’
inner psychological drivers based on SDT [26, 104].

Moreover, our theoretical framework is not grounded in one of the most popular
frameworks in this area, called uses and gratifications theory (UGT) [62, 63], for
the following reasons. First, UGT was originally developed to explain how using
mass media can satisfy our needs [62], making UGT medium-oriented. Second, the
categorization of media-related needs in UGT was the result of speculative searches
in the literature on mass media [63]. In contrast, the categorization of needs and
motivation in SDT resulted from logical deductions and systematic reviews of prior
need-related theories and empirical research in psychology [26, 104]. Third, UGT
considers media-related needs to originate from both external (e.g., politics, fam-
ily, religion) and internal sources [63]. However, SDT considers humans’ needs and
motivations to originate from within the self [26]. As the primary objective of this
research was to examine how consumers’ innate psychological motivations influ-
ence their perception and behavioral intention, our theoretical account is grounded
in SDT.

Our literature review identified two studies that examined seemingly simi-
lar antecedents as ours: Li & Mao [71] and McLean and Osei-Frimpong [83].
However, McLean and Osei-Frimpong [83] investigated hedonic, utilitarian,
social, and symbol benefits of chatbots using UGT. Also, their research exam-
ined usage-related antecedents whereas ours examined user-related antecedents
[74]. Similarly, although Li & Mao [71] investigated hedonic and utilitarian fac-
tors, those antecedents were also usage-related but not user-related [74]. Moreo-
ver, they did not explain why utilitarian factors failed to impact social presence.
Thus, our findings contribute to research on consumer—chatbot interaction by
explaining why consumers’ hedonic but not utilitarian motivations increase their
expectation of chatbots’ social presence based on social presence theory [8, 107]
and SDT [104].

Furthermore, our findings contribute to the literature on social presence and
social support. In particular, socially present chatbots may serve as surrogates
for human warmth and thus can be regarded as a means to gain social support
[21, 34]. Therefore, our findings suggest that people who feel fear during the
pandemic tend to use chatbots with a high level of social presence to cope with
such a crisis.

Moreover, our findings contribute to the literature on emotions. Relevant find-
ings indicate that negative emotions are likely to generate negative consumer
responses based on mood congruency effect [82]. For example, negative emo-
tions from COVID-19 adversely impact humans’ well-being due to a high level
of anxiety, depression, stress, loneliness, and/or insomnia [29, 109]. However,
our results show the positive role of COVID-19 fear as a driver that facilitates
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consumer—chatbot interaction. Thus, our findings contribute to the marketing lit-
erature on consumers’ emotions by showing that negative emotions can posi-
tively affect consumers’ adoption of chatbot services.

Our findings also contribute to the literature on young consumers (e.g., Gen-
eration Z). Although a few scholars have suggested generational differences [2,
13, 75], empirical validation has not been tested in consumer—chatbot interac-
tions during the global pandemic. Our findings fill this gap by comparing baby
boomers with younger generations (i.e., Generations X, Y, and Z). Our study
found that younger generations were more fearful of the pandemic, thus increas-
ing the impact of chatbots’ social presence on consumers’ intention to use the
chatbot. Conversely, the senior generation was found to be less fearful of the
pandemic due to higher psychological resilience against such external shocks
[50, 96]. To the best of our knowledge, our study provides initial evidence on
how different generational cohorts use a chatbot service.

Finally, although we examined consumers’ adoption of chatbots during the
pandemic, our findings may still be relevant in the post-pandemic era. Research
has shown that people are generally less happy and more depressed after (vs.
before) the COVID-19 pandemic [39, 92, 118]. In other words, the psychologi-
cal consequences of the pandemic may be long-lasting. Furthermore, consum-
ers’ technology use preferences formed during the pandemic could persist even
after it has ended [76, 84]. Therefore, to cope with the persisting consequences
of the pandemic [18, 20], consumers are likely to continue seeking psychologi-
cal resources through interacting with socially present chatbots.

5.3 Managerial implications

First, marketers can design motivation-matching features when they launch chat-
bot services to their consumers. For example, if individuals are prone to build
a human connection, then marketers should emphasize the hedonic rather than
utilitarian motivation of using a chatbot service to increase consumer intention to
use chatbots. Moreover, increased chatbot usage can translate into increased rev-
enue (e.g., from in-app purchases and advertisements), as well as more consumer
behavioral data.

Second, our results regarding fear of COVID-19 can be extended to other types
of global crises, including pandemics, wars, and natural disasters. Therefore, our
findings suggest that such fear-inducing events can be a good time for managers
to launch their chatbot services to facilitate awareness and promote wider con-
sumer adoption.

Third, our results suggest that different generations fear the pandemic to vary-
ing extents. This indicates that age matters in tailoring promotional messages as
part of a targeting strategy during pandemics. For example, when the promotional
messages for chatbot services target younger generations, firms should emphasize
social benefits such as emotional comfort (e.g., “using chatbots is like having a
friend by your side”).
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5.4 Limitations and directions for further research

First, this study analyzes cross-sectional survey data, which limits interpretations
by making them correlational. Thus, future research could build on the present
study by designing experiments that involve real human-chatbot interactions to
investigate causality, for example by having participants communicate with a real
chatbot.

Second, the sample size for the senior generation (i.e., baby boomers) was
relatively small, and the number of participants was not balanced among three
generational cohorts. It is true that the senior generation often constituted a small
proportion of the collected samples in prior research [2, 13, 75]. Still, it would be
beneficial for future research to use a systematic sampling approach to collect a
more balanced sample.

Third, we measured a general fear of COVID-19. Future research could decom-
pose such fear into different sources, such as fear related to economic state and
fear related to health concerns [30]. Perhaps older generations are more suscepti-
ble to feel fear from health and economic instability whereas young generations
might feel fear mainly because of economic reasons. Therefore, future research
could compare different sources of fear and examine how each is linked to chat-
bot adoption.

Fourth, individuals with social anxiety disorder tend to avoid interacting with
other people due to fear of being socially scrutinized [88, 125]. Since Al chat-
bots are becoming more human-like, one would expect that social phobia would
nullify the role of social presence. Yet research has found that because bots (vs.
humans) do not judge [49], talking to chatbots may help alleviate social anxiety
[95], in turn facilitating chatbot adoption [56]. Thus, we call for future research
to examine examine how individuals’ anxiety levels interact with social presence
and chatbot adoption.

Fifth, our research only examines consumers’ intention to use chatbot services.
However, intention does not always lead to actual behaviors [90]. The intention-
behavior gap is a fruitful avenue for future research to examine actual behaviors of
consumers in using chatbots. We suggest conducting a field experiment to increase
the external validity of our findings and to provide corroborating evidence by show-
ing actual behaviors. Moreover, it would be beneficial for future research to examine
how anxiety might delay actual behavior of using chatbots, even when intention to
use still exists [66, 111].

Lastly, individuals can form virtual connections using more immersive technolo-
gies such as augmented reality, virtual reality, or virtual influencers. Based on our
initial findings, we suggest that future scholars investigate how consumers’ need for
social connectedness can be satisfied through artificially induced human warmth
offered by those immersive technologies.
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Appendix A

lllustration and definition of “chatbot” provided to the participants
at the beginning of the survey

The following picture provides an example of a financial service on a wealth man-
agement app using a chatbot.

J —=—p

X%

A chatbot is a computer program that simulates human conversation through
voice commands, text chats, or both.
Appendix B
Measurement items used in our survey
Fear (of COVID-19)

“Faced with the Covid-19 situation, please rate how you feel according to the fol-
lowing adjectives.” (1 =not at all, 7= extremely much).

FC_1: Frightened.

FC_2: Tense.
FC_3: Nervous.
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FC_4: Anxious.
FC_5: Uncomfortable.
FC_6: Nauseous.

Social presence (of chatbots)

“To what extent do you agree with the following statements?” (1 = strongly disagree,
5 =strongly agree).

PH_1: Interacting with the chatbot service of a wealth management app provides
a sense of human contact.

PH_2: Interacting with the chatbot service offered by a wealth management app
provides the sense of a personal touch.

PH_3: Interacting with the chatbot service offered by a wealth management app
provides a sense of sociability.

PH_4: Interacting with the chatbot service of a wealth management app provides
a sense of human warmth.

Utilitarian motivation (in using a chatbot-powered mobile app)

“To what extent do you agree with the following statements?” (1 = strongly disagree,
5 =strongly agree).

UM_1: I often accomplish exactly what I want to when I engage with mobile
apps.

UM_2: I often feel that my use of mobile apps is successful.

UM_3: In general, using mobile apps is a good experience because the functions
work very quickly.

Hedonic motivation (in using a chatbot-powered mobile app)

“To what extent do you agree with the following statements?” (1 = strongly disagree,
5 =strongly agree).

HM_1: Compared to other things I could have been doing, time spent using
mobile apps is typically enjoyable for me.

HM_2: When I engage with mobile apps, I often feel the excitement of the hunt.
HM_3: Engagement with mobile apps truly feels like an escape from reality.
HM_4: I enjoy using mobile apps for their own sake, not just for the benefits I
might receive.

HM_5: While using mobile apps, I often feel a sense of adventure.

Intention to use (a chatbot-powered mobile financial app)

“To what extent do you agree with the following statements?” (1 = strongly disagree,
5 =strongly agree).
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BI_1: I will use a wealth management app on a regular basis in the future.

BI_2: I will frequently use a wealth management app in the future.

BI_3: I will recommend using a wealth management app to others.

The following picture provides an example of a financial service on a wealth
management app using a chatbot.

Appendix C

Results of the moderated moderation analysis

Fart I. Dependent variable: Intention to use (Senior generation serves as the reference group for results
relevant to generation cohort)

B SE t-value 95% CI

(Constant) 0.387 0.841 0.460 [-1.267, 2.040]
Social presence 0.695 0261  2.666™ [0.183, 1.208]
Fear 0.518 0222 2331 [0.081, 0.955]
Social presence X Fear -0.109 0.064 -1.700 [-0.236, 0.017]
Middle generation 1.448 0.934 1.551 [-0.389, 3.285]
Young generation 2.548 0.895 2.845™ [0.786, 4.309]
Social presence X Middle generation —-0.387 0.298 -1.298 [-0.972, 0.199]
Social presence X Young generation -0.586 0.292 -2.005" [-1.161, —0.011]
Fear x Middle generation -0.621 0.250 —2.490" [-1.112, = 0.131]
Fear X Young generation —0.784 0244 32097  [-1.264, —0.030]
Social presence X Fear X Middle generation 0.158 0.071 2.223" [0.018, 0.298]
Social presence X Fear X Young generation 0.185 0.071 26117 [0.046, 0.324]
Gender -0.010 0.084  -0.121 [-0.175, 0.154]
Education 0.063 0.060 1.038 [-0.056, 0.182]
Income 0.092 0.047 1.947 [-0.001, 0.185]

Part I1. Dependent variable: Intention to use (Middle generation serves as the reference group for
result relevant to generation cohort)

p SE t-value 95% CI
Social presence X Fear X Young generation 0.026 0.043 0.609 [-0.058, 0.111]

Part III. Conditional effect of social presence on intention to use at different values of fear and genera-
tion

Generation Fear p SE t-value 95% CI

Senior generation Low (Mean —1SD)  0.415 0.143  2.904™ [0.134, 0.695]
Senior generation Moderate (Mean) 0.230 0.137 1.677 [-0.040, 0.499]
Senior generation High (Mean+1SD)  0.045 0.202 0.224 [-0.352, 0.442]
Middle generation Low (Mean —1SD)  0.435 0.082 5287  [0.273,0.596]
Middle generation Moderate (Mean) 0.517 0.066  7.821""  [0.387,0.647]
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Part 1. Dependent variable: Intention to use (Senior generation serves as the reference group for results
relevant to generation cohort)

Middle generation High (Mean+1SD)  0.600 0.087  6.889™"  [0.429,0.771]
Young generation Low (Mean —1SD)  0.302 0.069 4361 [0.166, 0.439]
Young generation Moderate (Mean) 0.429 0.055  7.746™"  [0.320,0.538]

Young generation High (Mean+1SD)  0.556 0.080 6.975

okok

[0.400, 0.713]

Note. SE=standard error; Cl=confidence interval. "p<0.05. “p<0.01.
"p <0.001.
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