
Journal of Elasticity
https://doi.org/10.1007/s10659-024-10066-9

R E S E A R C H

Mid-Surface Scaling Invariance of Some Bending
Strain Measures

Amit Acharya1

Received: 15 February 2024 / Accepted: 21 March 2024
© The Author(s) 2024

Abstract
The mid-surface scaling invariance of bending strain measures proposed in (Int. J.
Solids Struct. 37(39):5517–5528, 2000) is discussed in light of the work of (J. Elast.
146(1):83–141, 2021).
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1 Introduction

This brief note discusses the mid-surface scaling invariance of three nonlinear measures of
pure bending strain, as introduced in [1] and physically motivated therein more than 20 years
ago, in light of the recent work of [3] where the said invariance is introduced.

It is shown that one of the strain measures introduced in [1] possesses scaling invariance,
and the other two are easily modified to have the invariance as well. There has been a recent
surge of interest in such matters, as can be seen from the works of [3, 5, 6].

We use the notation of [1]: a shell mid-surface is thought of as a 2D surface in ambient
3D space (the qualification ‘mid-surface’ will not be used in all instances; it is hoped that
the meaning will be clear from the context). Both the reference and deformed shells are
parametrized by the same coordinate system ((ξα),α = 1,2) (convected coordinates). Points
on the reference geometry are denoted generically by X and on the deformed geometry by x.
The reference unit normal is denoted by N and the unit normal on the deformed geometry
by n. A subscript comma refers to partial differentiation, e.g. ∂()

∂ξα = (),α . Summation over
repeated indices will be assumed. The convected coordinate basis vectors in the reference
geometry will be referred to by the symbols (Eα) and those in the deformed geometry by
(eα), α = 1,2, with corresponding dual bases (Eα), (eα), respectively. A suitable number of
dots placed between two tensors represent the operation of contraction, while the symbol ⊗
will represent a tensor product. The deformation gradient will be denoted by f = eα ⊗ Eα

and admits the right polar decomposition f = r · U , where U(X) : TX → TX and r(X) :
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TX → Tx , where Tc represents the tangent space of the shell at the point c. The curvature
tensor on the deformed shell is denoted as b = n,β ⊗ eβ and that on the undeformed shell as
B = N ,β ⊗ Eβ .

2 Some Measures of Pure Bending and Their Invariance Under
Mid-Surface Scaling

In [1] three measures of bending strain were proposed, given by

˜K = (

Eα · U · rT · n,β − Eα · U · N ,β

)

Eα ⊗ Eβ = f T · b · f − U · B, (1a)

Ǩ =
(

Eα · U · rT · n,β − 1

2

(

Eα · U · N ,β + Eβ · U · N ,α

)

)

Eα ⊗ Eβ

= f T · b · f − (U · B)sym, (1b)

K = (

Eα · rT · n,β − Eα · N ,β

)

Eα ⊗ Eβ = rT · b · f − B. (1c)

Equation (1c) was unnumbered in that work, as the main emphasis was to obtain a non-
linear generalization of the Koiter-Sanders-Budiansky bending strain measure [2, 4]; ˜K is
introduced as Equation (8) and Ǩ as Equation (10) in [1].

In [3] a physically natural requirement of invariance of bending strain measure under
simple scalings of the form

x → ax, 0 < a ∈ R

is introduced (for plates, but the requirement is natural for shells as well) and it is shown that
the measures ˜K , Ǩ are not invariant under such a scaling. The measure K is not discussed
in [3].

It is straightforward to see that under the said scaling, the deformation gradient scales as

∂x

∂X
= r · U = f → af = r · (aU) = a

∂x

∂X
,

resulting in the bending measures scaling as

˜K → a˜K; Ǩ → aǨ; K → K.

Thus, the bending strain measure K from [1], not discussed by [3], is actually invariant un-
der scaling deformations of the deformed shell mid-surface. Furthermore, the simple modi-
fications of the measures ˜K , Ǩ to

˜Kmod = 1

|U |
(

Eα · U · rT · n,β − Eα · U · N ,β

)

Eα ⊗ Eβ (2a)

= (

tr
(

f T f
))− 1

2
(

x,α · n,β − Eα · U · N ,β

)

Eα ⊗ Eβ,

Ǩmod = 1

|U |
(

Eα · U · rT · n,β − 1

2

(

Eα · U · N ,β + Eβ · U · N ,α

)

)

Eα ⊗ Eβ (2b)

= (

tr
(

f T f
))− 1

2

(

x,α · n,β − 1

2

(

Eα · U · N ,β + Eβ · U · N ,α

)

)

Eα ⊗ Eβ,



Mid-Surface Scaling Invariance of Some Bending Strain Measures

where

|U | = √
U : U =

√

tr
(

f T f
)

,

make them mid-surface scaling invariant.
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