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Abstract
Through suitable changes of variables for a typical problem in hyper-elasticity, either in the
reference or deformed configurations, one can setup and analyze versions of the same prob-
lem in terms of inner or outer maps or variations. Though such kind of transformations are
part of the classical background in the Calculus of Variations, we explore under what sets of
hypotheses such versions can be shown to have minimizers and be equivalent to the standard
form of the problem. Such sets of hypotheses lead naturally to some distinct poly-convex
energy densities for hyper-elasticity. Likewise we explore optimality in either of the two
forms through a special way to generate one-parameter families of feasible deformations,
feasibility including injectivity and non-interpenetration of matter.
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1 Introduction

We would like to look at the central problem in hyper-elasticity, that of minimizing an inter-
nal energy functional of the integral form

E(u) =
∫

�

W(∇u(x)) dx,

from the viewpoint of inner- and/or outer-deformations. Here � is a Lipschitz, bounded
domain in R

N , the density

W(F) :RN×N
+ → R, det F > 0,

is a continuous density taking the value +∞ when det F ≤ 0, and mappings

u(x) : � →R
N

belong to a suitable class of feasible Sobolev deformations in H 1(�;RN). The energy den-
sity W should comply with some further conditions that we will overlook for the time be-
ing. In addition, inhomogeneity, i.e. some explicit dependence W(x,F) on x ∈ �, might be
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treated as well. Additional terms accounting for bulk and surface forces can be added in a
standard form. The boundary ∂� is a Lipschitz (N − 1)-hyper-surface that is divided, as
usual, in three parts: �0, where a displacement boundary condition is imposed; �t , where
the usual natural-boundary, applied traction-free condition is assumed; and a possible addi-
tional negligible (with respect to the N − 1-Hausdorff measure in ∂�) set N. In this way,
we have

∂� = �0 ∪ �t ∪N. (1.1)

For definiteness, we will take N = 3, though most of our results can be appropriately ex-
tended for other cases as well. In addition, to facilitate our discussion, we will stick to a
global condition of place in which

� ≡ �0 ≡ ∂�, �t = N= ∅.

For future reference, we adopt the following definition.

Definition 1.1 A continuous density

W(F) :R3×3 →R∪ {+∞},
such that

{W < +∞} =R
3×3
+ ≡ {F ∈ R

3×3 : det F > 0}, (1.2)

and

W(R F) = W(F), F ∈ R
3×3
+ ,R ∈ SO(3), (1.3)

is called a density for hyper-elasticity.

Condition (1.3) is the usual frame indifference to ensure the mechanical meaning of our
internal energy density W . We have not placed other demands on such densities to stress the
fact that from the point of view of Analysis, the main trouble is related to how such densities
take on the value +∞. Note that such an integrand cannot admit a global polynomial upper
bound. This is part of the principal difficulty of hyper-elasticity.

Suppose u◦ is a bi-Lipschitz mapping between two Lipschitz, bounded domains

�, �◦ = u◦(�),

in such a way that

u◦ ∈ W 1,∞(�;�◦), u−1
◦ ∈ W 1,∞(�◦;�). (1.4)

This mapping u◦ will be used to setup boundary conditions on �. Though this is an important
restriction, it can, on the other hand, cover many situations of interest, so it enjoys a certain
degree of generality. The map u◦ with these properties is fixed once and for all.

We would like to look at the central problem in hyper-elasticity in the form

I (�,�) =
∫

�

W(∇U�,�(x)) dx, U�,�(x) = �(u◦(�−1(x))),
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Fig. 1 Mappings � and �

where mappings �(x) ∈ H 1(�;R3) are such that (see Fig. 1)

�(x) = x on �, (1.5)

while �(y) ∈ H 1(�◦;R3) should comply with

�(y) = y on �◦ ≡ u◦(�) = ∂�◦. (1.6)

In fact, the simultaneously use of � and � is redundant, given that u◦ and its inverse u−1◦
are well-defined, Lipschitz maps between � and �◦.

Remark 1.1 Conditions (1.5) and/or (1.6) can be relaxed to deal eventually with pure traction
or mixed problems. See Remark 4.4 below.

We will consider the three intimately related variational problems

Minimize in u ∈ A+ : E(u) =
∫

�

W(∇u(x)) dx, (1.7)

Minimize in � ∈ I+ : I (�) =
∫

�

W(∇(u◦ ◦ �−1)(x)) dx, (1.8)

Minimize in � ∈ O+ : O(�) =
∫

�

W(∇(� ◦ u◦)(x)) dx, (1.9)
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where the respective feasible classes of mappings are

A+ = {u ∈ H 1(�;R3) : u = u◦ on �,u is one-to-one a.e. in �, (1.10)

det∇u > 0 a.e. in �}
I+ = {� ∈ H 1(�;R3) : � = id on �,� is one-to-one a.e. in �, (1.11)

det∇� > 0 a.e. in �}
O+ = {� ∈ H 1(�◦;R3) : � = id on �◦,� is one-to-one a.e. in �◦, (1.12)

det∇� > 0 a.e. in �◦}.
It is easy to realize that problems (1.8)-(1.11) and (1.9)-(1.12) are subproblems of
(1.7)-(1.10) because, at least formally, maps of the form u◦ ◦ �−1 and � ◦ u◦ belong to
A+; but suspect that under suitable assumptions all three ought to be equivalent. Our goal is
to see to what extent we can learn something from looking at the initial problem in hyper-
elasticity in either of these two forms. Specifically, we seek to:

(1) establish hypotheses under which problems (1.8)-(1.11) and (1.9)-(1.12) admit mini-
mizers;

(2) refine those sets of conditions to ensure that all three problems are equivalent with the
natural rules to pass among minimizers;

(3) explore optimality conditions for the inner and outer versions based on one-parameter
families of deformations belonging entirely to either I+ or O+.

The Dirichlet boundary condition �(x) = x on � ≡ ∂� preserves the global condition
of place that is to be respected through the given mapping u◦. Since the class of maps �

that we would like to consider are to be one-to-one and onto, they are legitimate changes of
variables, and then it is elementary to rewrite the internal energy functional to be minimized
in the form

∫
�

W(∇u0(x)∇�(x)−1)det∇�(x) dx.

We thus have two intimately-connected energy functionals

E(u) =
∫

�

W(∇u(x)) dx, (1.13)

I (�) =
∫

�

W(∇u0(x)∇�(x)−1)det∇�(x) dx, (1.14)

where competing maps for the first are

u(x) : � →R
3, u = u◦ on ∂�,

whereas for the second they are

�(x) : � → R
3, � = id on ∂�.

Roughly, as indicated above, the former class of maps u is larger than that of mappings of
the form u◦ ◦�−1 for � belonging to the latter. Existence results for the first are well-known.
Our intention is then three-fold:



Inner and Outer Versions of Hyper-Elasticity

• we would like to prove some standard existence results for the second (1.14)-(1.11);
• examine hypotheses under which the two problems are equivalent in the sense that the

rule

u �→ u◦ ◦ �−1

can be used to go from minimizers for the first to minimizers of the second, and viceversa;
• explore necessary conditions of optimality.

The natural idea is to enforce the usual hypotheses on the integrand

W(x,X) = W(∇u0(x)X−1)det X (1.15)

to guarantee the existence of minimizers in appropriate functional spaces, and see how these
conditions are translated into the original integrand W . Optimality condition for the corre-
sponding variational problem with integrand W will also be explored.

As a matter of fact, the transformation (after replacing ∇u◦(x) by the identity to avoid
inhomogeneity),

W(X) �→ TW(X) ≡ det XW(X−1), (1.16)

is an involution in the class of densities for hyper-elasticity. It is indeed the rule that is
leading our analysis in the following sense:

(1) Poly-convexity turns out to be stable under this transformation.
(2) Coercivity is formulated through suitable lower bounds that are also stable under the

same transformation. Indeed, every time that we have a suitable lower bound of the
form

W(X) ≥ Cw(X), w ≥ 0,C > 0,

the function

C(w(X) +Tw(X)) (1.17)

becomes a valid lower bound both for W and for TW , possibly for a different positive
constant C > 0, if more matrices are involved as in (1.15).

Our goal is to treat all of these informal ideas in a rigorous way focusing on the main issues
associated with any family of variational problems:

(1) existence:
(a) polyconvexity;
(b) coercivity;

(2) equivalence of standard, inner and outer versions;
(3) optimality.

We will handle these points in detail for the inner version (1.8)-(1.11), and since the outer
version is simpler if anything, we will afterwards indicate the changes for (1.9)-(1.12). Note
that the use of inner and outer variations is a classic technique in the Calculus of Variations
(see for instance the treatise [11], or [13], [14]). In the context of hyper-elasticity, they were
indicated, at the level of optimality, in [5] without the injectivity and the interpenetration-
of-matter conditions. See also [4].
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2 Existence

We focus on the inner version of the original problem in the form

Minimize in � ∈ I+ : I (�) =
∫

�

W(∇(u◦ ◦ �−1)(x)) dx, (2.1)

where I+ is defined by

I+ = {� ∈ H 1(�;R3) : � = id on �,� is one-to-one a.e. in �. (2.2)

det∇� > 0 a.e. in �}.
As discussed earlier, this is the inner-version of the standard problem in hyper-elasticity that
consists in

Minimize in u ∈ A+ : E(u) =
∫

�

W(∇u(x)) dx, (2.3)

over the class

A+ = {u ∈ H 1(�;R3) : u = u◦ on �,u is one-to-one a.e. in �, (2.4)

det∇u > 0 a.e. in �}.
We assume that the integrand W is a valid density for hyper-elasticity in the sense of Defini-
tion 1.1. As briefly indicated earlier the change of variables x = �(y), formally transforms
the functional I (�) in (2.1) into

I (�) =
∫

�

W(∇u◦(x)∇�(x)−1)det∇�(x) dx,

and hence, we would like to study the variational problem

Minimize in � ∈ I+ : I (�) =
∫

�

W(∇u◦(x)∇�(x)−1)det∇�(x) dx (2.5)

where

I+ = {� ∈ H 1(�;R3) : � = id on �,det∇� > 0 a.e. in �}. (2.6)

Note, due to results cited below about invertibility, that feasible maps in I+ are one-to-one.
It is by now a well-established fact that there are two fundamental ingredients to showing

the existence of global minimizers in the context of hyper-elasticity: poly-convexity, and ap-
propriate coercivity. The statement below (Theorem 2.1) is a classical global existence result
in hyper-elasticity ([7]) that we have chosen for definiteness, and because this is the form
in which transformation (1.16) becomes more transparent and symmetric. It is a particular
case of a more general theorem as a result of fundamental facts mainly in [2] and [15]. See
also [10].

Concerning invertibility of Sobolev functions, recent results, particularly in [12] and [15],
permit to extend the existence of minimizers from the class

A = {u ∈ W 1,1(�;R3) : E(u) < +∞,u = u◦ on �}
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to the fundamental subclass for hyper-elasticity

A+ = {u ∈ H 1(�;R3) : u = u◦ on �,u is one-to-one a.e. in �,det∇u > 0 a.e. in �}.
These results generalize earlier classic theorems in [3, 7, 19]. As a matter of fact, these are
sufficient in our setting, once the regularity properties assumed on the mapping u◦ in (1.4)
are considered, to prove that the two classes A and A+ are the same set of mappings

A = A+ = {u ∈ H 1(�;R3) : u = u◦ on �,det∇u > 0 a.e. in �}. (2.7)

Note that A+ is non-empty because u◦ ∈ A+, and E(u◦) < +∞.

Theorem 2.1 Suppose the integrand

W(x,X) : � ×R
3×3 → R

is a Carathéodory integrand for which:

(1) for a.e. x ∈ �, the function W(x, ·) is a polyconvex density for hyperelasticity;
(2) there is a positive constant C, and a exponent r > 1, such that for a.e. x ∈ �,

W(x,X) ≥ C(|X|2 + | adj X|2 + det Xr );
and the mapping u◦ is as indicated before (1.4). Then there is a global minimizer u in the
class A+ in (2.7) for the functional

E(u) =
∫

�

W(x,∇u(x)) dx.

This theorem ensures that there are global minimizers u ∈ A+ for problem (2.3).
The point is that we would like to apply this general result to the special integrand

W(x,X) = det XW(∇u◦(x)X−1),

coming from functional (2.5). In particular, we want to understand how the poly-convexity
and the coercivity with respect to X of such integrand W(x,X) translate into suitable prop-
erties for W itself.

2.1 Polyconvexity

The poly-convexity condition motivates the following definition. At the level of quasicon-
vexity, it was introduced and considered in [18].

Definition 2.1 A density for hyperelasticity is declared as inner-poly-convex if for every
fixed matrix F ∈R

3×3
+ , the function

WF(X) = det XW(FX−1) (2.8)

is poly-convex in X.

It turns out that the class of inner-poly-convex functions under (1.2) is the same as the
class of poly-convex integrands. Said differently, the class of poly-convex integrands under
(1.2), is stable under the transformation (2.8).
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Proposition 2.2 The classes of poly-convex integrands under (1.2) and inner-poly-convex
integrands under (1.2) are exactly the same.

The key to the proof of this proposition is the following elementary lemma.

Lemma 2.3 The function

w(A,B, t) :R3×3 ×R
3×3 ×R+ →R, R+ = {t ∈R : t > 0},

is convex if and only if the family of functions

wF,G,s (A,B, t) = t w

(
1

t
FB,

1

t
AG,

s

t

)
(2.9)

are convex for every fixed triplet

(F,G, s) ∈R
3×3 ×R

3×3 ×R+.

Proof Since the map

(A,B) ∈R
3×3 ×R

3×3 ×R+ �→ (FB,AG, s)

is linear for fixed matrices F,G, and positive number s, it suffices to check that the operation

(x, t) ∈R
N ×R+ �→ t ω

(
1

t
(x,1)

)
, w : RN ×R+ → R,

remains convex if the function ω is. This is elementary since the combination

(αt1 + (1 − α)t0)ω

(
1

αt1 + (1 − α)t0
(αx1 + (1 − α)x0,1)

)

for α ∈ [0,1], t0, t1 > 0, and x0,x1 ∈ R
N , can be rewritten as

(αt1 + (1 − α)t0)ω

(
αt1

αt1 + (1 − α)t0
(

1

t1
x1,

1

t1
) + (1 − α)t0

αt1 + (1 − α)t0
(

1

t0
x0,

1

t0
)

)
,

and the convexity of ω leads directly to the larger quantity (because (αt1 + (1 − α)t0) > 0),

αt1ω

(
1

t1
(x1,1)

)
+ (1 − α)t0ω

(
1

t0
(x0,1)

)
.

This is the claimed convexity of the family of functions in (2.9).
Conversely, suppose that all functions in (2.9) are convex. In particular, for the choice

F = G = id, s = 1, (2.10)

the function

γ (B,A, t) = t w

(
1

t
A,

1

t
B,

1

t

)
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is convex. By what we have just shown above, the function

(A,B, t) �→ t γ

(
1

t
B,

1

t
A,

1

t

)
= w(A,B, t)

must be convex. �

Proof of Proposition 2.2 A density W(X) is polyconvex if there is a convex function

w(A,B, t) :R3×3 ×R
3×3 ×R+ → R

with

W(X) = w(X, adj X,det X).

If we now examine the functions WF(X) given in (2.8), we see that

WF(X) = det XW(FX−1) = det Xw
(
FX−1, adj(FX−1),det(FX−1)

)
.

This can also be recast in the form, using elementary formulae in Linear Algebra,

WF(X) = det Xw

(
1

det X
F adj X,

1

det X
X adj F,

1

det X
det F

)
.

Formally

WF(X) = wF,adj F,det F(X, adj X,det X).

By Lemma 2.3, the convexity of w(A,B, t) is equivalent to the convexity of the functions

wF,adj F,det F(A,B, t).

Notice that for F = id, we have adj F = id and det F = 1 as required in (2.10). �

2.2 Coercivity

The other fundamental ingredient is coercivity that according to Theorem 2.1 can be as-
sumed in the form

W(F) ≥ C(|F|2 + | adj F|2 + det Fr ), C > 0, r > 1,F ∈R
3×3. (2.11)

Note how this lower bound is compatible with (1.2), but it does not enforce the infinity value
when det F ≤ 0 because this lower bound is polynomial. Similar, appropriate lower bounds
can be assumed in general dimension N for suitable exponents.

A few scratch computations show that the suitable coercivity for the integrand in func-
tional I in (2.5) ought to be

W(X) ≥ C

(
1

det X
|X|2 + 1

det X
| adj X|2 + 1

det Xr−1

)
, (2.12)

for some positive constant C > 0.
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Lemma 2.4 Let u◦(x) : � → u◦(�) be a Lipschitz homeomorphism. If W(X) is a valid den-
sity for hyper-elasticity for which (2.12) holds, then there is a positive constant C̃ (depending
on u◦ and C in (2.12)) and exponent r > 1 such that

det XW(∇u◦(x)X−1) ≥ C̃(|X|2 + | adj X|2 + det Xr ),

for a.e. x ∈ �.

Proof The proof is elementary. Put

H= {∇u◦(x) : x ∈ �},

a compact set in R
3×3
+ . Suppose F ∈ H is fixed. Then it is clear from (2.12) that

W(Y) ≥ C

(
1

det Y
|Y|2 + 1

det Y
| adj Y|2 + 1

det Yr−1

)
, Y = FX−1,

and we immediately find that

W(Y)
det F
det Y

≥C det F

(∣∣∣∣ 1

det Y
Y

∣∣∣∣
2

+
∣∣∣∣ 1

det Y
adj YT

∣∣∣∣
2

+ 1

det Yr

)

=C det F
(| adj(Y−1)|2 + |Y−1|2 + det(Y−1)r

)
.

On the other hand, from the identities

adj(Y−1) = (adj F)−1 adj X, Y−1 = XF−1,

and the property

|AB1| ≥ |A| |B|−1,

valid for square matrices A, B, it is elementary to arrive at

W(Y)
det F
det Y

≥ C det F
(| adj F|−2| adj X|2 + |F|−2|X|2 + det F−r det Xr

)
.

If F is allowed to move on compact set H, we can definitely find a new positive constant
C̃ > 0 (depending on C and H) such that

W(Y)
det F
det Y

≥ C̃
(| adj X|2 + |X|2 + det Xr

)
,

that is to say

det XW(∇u0(x)X−1) ≥ C̃(|X|2 + | adj X|2 + det Xr ),

for a.e. x ∈ �, as desired. �
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2.3 Main Result

As a straightforward outcome of our analysis of poly-convexity and coercivity, the proof of
the following theorem is straightforward after Theorem 2.1.

Theorem 2.5 Let u◦(x) : � → u◦(�) be a Lipschitz homeomorphism. If W(X) is a valid
density for hyper-elasticity for which we know that

(1) W is polyconvex;
(2) there is a positive constant C > 0 and exponent r > 1 such that

W(X) ≥ C

(
1

det X
|X|2 + 1

det X
| adj X|2 + 1

det Xr−1

)
, X ∈R

3×3
+ ;

then variational problem (2.5)-(2.6) admits minimizers.

3 Equivalence of Both Versions

We have stated above basic existence theorems for minimizers of functional E in (2.3) over
the class A+ in (2.7), and for functional I in (2.5) over the set I+ in (2.6), under suitable sets
of assumptions. One would expect that, under hypotheses enabling so, one could go from
minimizers of the first to minimizers of the second, and viceversa under the formal rules

u = u◦ ◦ �−1, � = u−1 ◦ u◦, (3.1)

We explore one such natural set of assumptions in this section.
Since the passage from a mapping u ∈ A+ to a mapping � ∈ I+, and viceversa involves

the inverses of u and � through rule (3.1), we need to face some standard conditions guar-
anteeing that such inverses are Sobolev mappings. This is not a difficult issue under suitable
hypotheses. They are reminiscent of conditions in [3].

Lemma 3.1 Let v ∈ W 1,p(�;RN) be a one-to-one mapping a.e. in � with det∇v > 0 a.e. in
�, where � ⊂ R

N is a Lipschitz, bounded domain, 1 ≤ p < ∞, and v(�) ⊂ R
N is another

Lipschitz, bounded domain. Suppose

v : ∂� → v(∂�) = ∂v(�)

is also one-to-one. If

∫
�

|∇v(x)−1|p det∇v(x) dx < ∞,

then v−1 ∈ W 1,p(v(�);RN).

Proof Since

v−1(y) : v(�) → �, v−1 : ∂v(�) → ∂�,
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are well-defined, it suffices to check that its distributional derivatives belong to Lp(v(�)).
Indeed, by the same change of variables that we have been using several times so far y =
v(x),

∫
v(�)

|∇v−1(y)|p dy =
∫

�

|∇v−1(v(x))|p det∇v(x) dx.

This is precisely the integral in the statement, because

∇v−1(v(x)) = ∇v(x)−1. �

The invertibility of Sobolev functions is a quite delicate issue as remarked earlier. In
addition to the already mentioned works [3, 12, 15], see also [6, 9], and references therein.

We are now ready to show the following. We take u◦ as a bi-Lipschitz mapping between
two Lipschitz, bounded domains

�, �◦ = u◦(�),

in such a way that

u◦ ∈ W 1,∞(�;�◦), u−1
◦ ∈ W 1,∞(�◦;�).

Theorem 3.2 Suppose that the density for hyper-elasticity W(X) : R3×3
+ → R is poly-convex,

and

W(X) ≥ C

(
1

det X
|X|2 + 1

det X
| adj X|2 + 1

det Xr−1
+ |X|2 + | adj X|2 + det Xr

)
,

for some positive constant C > 0, exponent r > 1, and that boundary data are provided by a
mapping u◦ as just indicated. The two variational problems (2.3)-(2.4), and (2.5)-(2.6) admit
minimizers, and are equivalent in the sense that rule (3.1) permits to pass from minimizers
of one to minimizers of the other.

Proof By Theorems 2.1 and 2.5, problems (2.3) and (2.5) admit minimizers, given that hy-
potheses in the statement guarantee assumptions in those respective results.

(1) Suppose u ∈ A+ for E in (2.3). Since

W(X) ≥ C
1

det X
| adj X|2 = C det X|X−1|2,

we can conclude that
∫

�

det∇u(x)|∇u(x)−1|2 dx ≤ 1

C

∫
�

W(∇u(x)) dx < ∞.

By Lemma 3.1, we see that u−1 ∈ H 1(u(�);R3), and, then, the mapping � = u−1 ◦ u◦
given in (3.1) belongs to I+ with I (�) = E(u).

(2) Conversely, let � ∈ I+ and I given in (2.5). As before, put H for the compact set of
matrices in R

3×3
+ given by

H = {∇u◦(x) : x ∈ �}.
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Since all matrices involved, ∇u◦(x) and ∇�(x), have positive determinant, there is a
constant C̃ > 0 (depending on C and H) such that

W(FX) ≥ C|FX|2 ≥ C̃|X|2.
Note that again our lower bound on W ensures trivially that

W(Y) ≥ C|Y|2.
Hence, the integral

∫
�

|∇�(x)−1|2 det∇�(x) dx ≤ 1

C̃

∫
�

W(∇u◦(x)∇�(x)−1)det∇�(x) dx

is finite, and by Lemma 3.1, �−1 ∈ H 1(�;R3). Again (3.1) ensures that

u = u◦ ◦ �−1 ∈ A+ and E(u) = I (�).

Because of the arbitrariness of u ∈ A+ and � ∈ I+, this discussion finishes the proof. �

From now on, we will take for granted that densities W(X) for hyperelasticity comply
with the two fundamental hypotheses in this theorem.

4 Optimality

The derivation of optimality conditions in hyper-elasticity is exposed to important difficul-
ties as has been stressed in the Introduction, and it is well-known in the field. The use of the
standard form of making additive variations

u(x) + εU(x), U(x) = 0 on ∂�, (4.1)

stumbles with the fundamental issue of ensuring that the maps in this family are one-to-one
for small ε. It is not even clear how to enforce

det∇(u + εU) > 0

without asking for the uniform positivity of the jacobian for the minimizer u. Said differ-
ently, variations of the form (4.1) can hardly be shown to belong to either A+ or I+ even for
small ε.

We thus face the issue of producing one-parameter, smooth families uε(x) of maps be-
longing to either A+ or I+ for every small (in absolute value) ε with u0 (uε for ε = 0) being
the minimizer of E, or representing, through (3.1), the minimizer for I in I+, respectively.
To this end, we concentrate on I+ as this is one of the main motivations to explore the inner
version.

Our proposal is to use the flow associated with test infinitesimal generators � to produce
feasible, continuous families of maps belonging to I+. This was already indicated in [18].
Namely, take a smooth

�(z) : � →R
3, �(z) = 0 for z ∈ ∂�, (4.2)
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and let

�(t;x) :R× � → �

be the flow associated with � , i.e.

�′(t;x) = �(�(t;x)), (t,x) ∈R× �, �(0;x) = x. (4.3)

Proposition 4.1 For every smooth � as in (4.2), its flow �(t;x) is smooth (in all its vari-
ables) and such that �(t; ·) ∈ I+ (recall (2.2)). If u ∈ A+, then u(�(t; ·)) ∈ A+ for all real
t ∈ R.

Proof The proof is standard. Each individual

�(t; ·) : � → �

is a feasible map for our variational problem because �(−t; ·) is its inverse due to the
semigroup property; �(t;x) = x for all t ∈ R and x ∈ ∂�; and the dependence of �(t; ·)
on x is smooth due to the dependence of solutions of ODEs with respect to initial conditions
and parameters. �

By Theorem 3.2, minimizers for I and for E are related through (3.1), and so we can use
feasible variations in Proposition 4.1 to derive optimality conditions for both E and I . The
manipulations that follow are inspired by the similar ones in [5] which were performed in
the context of standard variations (4.1).

Suppose u is a minimizer for E in A+. By Proposition 4.1, we should formally have

d

dt

∣∣∣∣
t=0

∫
�

W(∇(u ◦ �(−t;x))) dx = 0, (4.4)

given that �(0;x)) = x in �. Unless we assume either that the minimizer u is Lipschitz or
the uniform positivity of the determinant det∇u in �, the passage of the previous differen-
tiation under the integral sign is hard to justify. Yet we claim that, under some convenient
additional assumptions, we should indeed have

∫
�

d

dt

∣∣∣∣
t=0

W(∇(u ◦ �(−t;x))) dx = 0, (4.5)

even if the function

t �→ g(t) ≡
∫

�

W(∇(u ◦ �(−t;x))) dx

does not admit derivative at t = 0.

Lemma 4.2 Suppose u is a minimizer for E in A+. If for smooth � as in (4.2), and corre-
sponding flow �(t;x), the function

t ∈ R �→ G(t;x) ≡ W(∇(u ◦ �(−t;x)))

is differentiable for a.e. x ∈ �, and there is a L1(�)-function W(x) such that
∣∣∣∣ d

dt
G(t;x)

∣∣∣∣ ≤ W(x) (4.6)
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in a vicinity of t = 0, then

∫
�

d

dt

∣∣∣∣
t=0

W(∇(u ◦ �(−t;x))) dx = 0.

Proof For a big, finite L > 0, put

gL(t) =
∫

�L

W(∇(u ◦ �(−t;x))) dx, �L = {x ∈ � : |∇u(x)| ≤ L}.

We claim that, because of (4.6):

(1) for each fixed L, gL(t) is differentiable because u is Lipschitz in �L and by dominated
convergence

g′
L(t) =

∫
�L

d

dt
W(∇(u ◦ �(−t;x))) dx;

(2) gL(t) → g(t) as L → ∞ for every t , by monotone convergence given that W ≥ 0.

Select t+ > 0, t− < 0 in the vicinity of t = 0 assumed in the statement, such that

g(t+) > g(0), g(t−) > g(0).

This is possible because g has a global minimum at t = 0, and g is non-constant in a neigh-
borhood of t = 0 (otherwise there would be nothing to be shown). For L sufficiently large,
by the convergence written above gL(t) → g(t),

gL(t+) > gL(0), gL(t−) > gL(0).

By Rolle’s theorem, since gL is differentiable, there is tL ∈ (t−, t+) such that g′
L(tL) = 0, i.e.

∫
�L

d

dt

∣∣∣∣
t=tL

W(∇(u ◦ �(−t;x))) dx = 0.

By the upper bound assumed in the statement and dominated convergence, we can pass to
the limit in L, and conclude that

∫
�

d

dt

∣∣∣∣
t=t∗

W(∇(u ◦ �(−t;x))) dx = 0,

for some t∗ ∈ (t−, t+). Since the interval (t−, t+) can be made arbitrarily small around t = 0,
the proof is finished. �

The technical condition in this statement essentially guarantees, after all, that even if the
function g is not differentiable, the function resulting in taking the t -derivative under the
integral sign is integrable so that the optimality condition is legitimate.

In computing the derivative of the auxiliary function G(t;x) with respect to t in (4.5),
we need to rely on the differentiability of the integrand W to utilize the chain rule in a usual
way. Formally, we would find

G′(t;x) = ∇W(∇(u ◦ �(−t;x)))∇ (∇u(�(−t;x))�(�(−t;x))) ,
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where we have taken into account (4.3); and (4.5) becomes, by letting t = 0 and bearing in
mind initial conditions in (4.3),

∫
�

∇W(∇u(x))∇[∇u(x)�(x)]dx = 0 (4.7)

for all such test fields � . This optimality condition on the minimizer u is the weak form
of the classic Noether conservation law corresponding to the appropriate invariance (see for
instance [11]). Under hypotheses permitting to interpret

�(x) = ∇u(x)�(x)

as a legitimate test field, we would have
∫

�

∇W(∇u(x))∇�(x) dx = 0.

Even further, if the class of test fields � of the previous form can cover all possible test
fields, or at least a dense subset of them, then we would recover the usual weak form of
the Euler-Lagrange system of optimality. That property would however require to put on
the minimizer u sufficient regularity for the inverse mapping u−1 to be defined and enjoy
regularity properties beyond the ones assumed in Theorem 3.2. Check [18] for one particular
result in this direction which is also stated in the framework (4.2)-(4.3).

Another possibility is to exploit again the passage from E to I in (4.4) before taking any
derivative. As before, we find that

∫
�

W(∇(u ◦ �(−t;x))) dx =
∫

�

W(∇u(x)∇�(t;x)−1)det∇�(t;x) dx.

To carry the derivative of the resulting function

t �→
∫

�

W(∇u(x)∇�(t;x)−1)det∇�(t;x) dx

into the integral sign looks easier to justify than in the previous case as the variable t does
not interfere with the minimizer u. However, as a matter of fact, one needs to use a simi-
lar argument as in the proof of Lemma 4.2: it should be required that the outcome of the
differentiation under the integral sign be integrable, namely the function G(t; ·) given by

W(∇u(·)∇�(t; ·)−1) adj∇�(t; ·)∇�(�(t; ·))− (4.8)

∇�(t; ·)−T ∇u(·)T ∇W(∇u(·)∇�(t; ·)−1)∇�(�(t; ·)) adj∇�(t; ·),
ought to be uniformly integrable in a neighborhood of t = 0. We provide next a set of
conditions ensuring this assumption. The tensor involved in this form of optimality is the
energy-momentum tensor, the multidimensional counterpart of the Du Bois Reymond of
Erdmann equations.

Theorem 4.3 Suppose that the integrand W for (2.3) is differentiable (whenever finite), and
for every compact set K ⊂ R

3×3
+ of matrices with positive determinant, there is a positive

constant C ≡ C(K) such that

|BT AT ∇W(AB)| ≤ C(1 + W(A)), |W(AB)| ≤ C(1 + W(A)),
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for A ∈R
3×3
+ and B ∈ K. Let u ∈ A+ be a minimizer for (2.3) in A+. Then, for every smooth

� as in (4.2), we should have
∫

�

[W(∇u(x))id − ∇u(x)T ∇W(∇u(x))]∇�(x) dx = 0.

Proof The proof has almost been indicated above. The new upper bounds assumed on W

for the compact set

K = {∇�(t;x)−1 : x ∈ �, |t | ≤ ε0}, ε0 > 0,

imply that the function G(t; ·) in (4.8) is bounded above by

C̃(1 + W(∇u(x)))

which is a fixed L1(�)-function. The constant C̃ here involves also a uniform constant for
the products

| adj∇�(t;x)| |∇�(�(t;x))|, x ∈ �, |t | ≤ ε0.

Note that the fields �(x) and �(t;x) are smooth, and hence uniformly bounded, in x and
(t,x), respectively. �

The upper bounds in this statement do not typically occur in existence theorems in hyper-
elasticity. They rather occur in relaxation facts ([8]), or in connection with optimality ([5]).

Remark 4.4 Note that condition (4.2) can be relaxed to

�(z) : � →R
3, �(z) · n(x) = 0,

either in all or part of the boundary ∂�, to deal with pure traction problems or mixed cases.
n is the outer, unit normal to ∂�.

5 The Outer Version

We focus now in problem (1.9) for a feasible set given in (1.12), namely

Minimize in � ∈ O+ : O(�) =
∫

�

W(∇(� ◦ u◦)(x)) dx

where O+ is defined by

O+ = {� ∈ H 1(�◦;R3) : � = id on �◦,� is one-to-one a.e. in �◦,det∇� > 0 a.e. in �◦}.
Recall that �◦ = u◦(�).

In this complementary setting, the roles of feasible �’s and fixed u◦ are interchanged
with respect to the inner version. Because of this reason the outer version is much less
informative. We can write, just as before,

O(�) =
∫

�◦
W(∇�(x)∇u−1

◦ (x)−1)det∇u−1
◦ (x) dx. (5.1)
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This formulation, formally equivalent to the initial one, does not provide more information
on W because u◦ is a fixed deformation. Check [16] for a similar situation in which a quite
involved optimal control problem in hyper-elasticity in the context of differential growth is
examined. Indeed, one can show existence of global minimizers for this outer version under
the usual assumptions on W . The following result is similar to Theorem 2.1. It is just the
typical framework in hyper-elasticity.

Proposition 5.1 Suppose that the function W(X) is a poly-convex density for hyper-elasticity
with

W(X) ≥ C(|X|2 + | adj X|2 + det Xr ), C > 0, r > 1,X ∈R
3×3
+ .

If u◦ is a bi-Lipschitz mapping from � to �◦ = u◦(�), then there are minimizers � for
functional O(�) in (5.1) over O+.

Proof The proof is standard. Let F stand for a generic matrix in the compact set

K = {∇u−1
◦ (x)−1 : x ∈ �◦}.

After the proof of Lemma 2.3, it is now elementary to check that the integrand W is poly-
convex if and only if the family of integrands in the variable X defined by

WF(X) = 1

det F
W(XF)

for fixed matrix F ∈K, are poly-convex. On the other hand, for every such F ∈K,

WF(X) ≥ C

det F
(|XF|2 + | adj(XF)|2 + det(XF)r ).

As we used earlier,

|XF| ≥ |F−1|−1|X|, | adj(XF)| ≥ | adj F−1|−1| adj X|.

Hence

WF(X) ≥ C

det F
(|F−1|−2|X|2 + | adj F−1|−2| adj X|2 + det Fr det Xr ).

There is some positive constant C̃ (depending on C and K) such that

WF(X) ≥ C̃(|X|2 + | adj X|2 + det Xr )

uniformly for F ∈ K. The existence of minimizers in O+ is a direct consequence of Theo-
rem 2.1 �

Optimality conditions can be analyzed in this outer framework much in the same way as
we did in the previous section. The conditions that can be derived are even more involved
(see [5]) though they can be rigorously deduced within the context of one-parameter families
belonging truly to O+ as in the last section.
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6 Augmented Hyper-Elastic Materials

In this final section, we would like to explore how the lower bound

W(X) ≥ C

(
1

det X
|X|2 + 1

det X
| adj X|2 + 1

det Xr−1
+ |X|2 + | adj X|2 + det Xr

)
,

in Theorem 3.2 can be the basis of explicit valid densities for some hyper-elastic materials.
In general, given a valid internal energy density W(X) : R3×3

+ → R to which Theorem 2.1
can be applied, Theorem 3.2 can be utilized for the “augmented” energy density

AW(X) = W(X) +TW(X) = W(X) + det XW(X−1), (6.1)

where T is given in (1.16), provided boundary data are suitably given. In particular, there
are minimizers for the internal energy functional∫

�

AW(∇u(x)) dx

in the appropriate class, complying with suitable boundary data. Equivalently, if further
regularity is known or imposed on mapping u◦, then such minimizers can be understood too
in the form of changes of variables (inner mappings).

Frame indifference and isotropy are easily handled.

Lemma 6.1 Suppose W is a valid energy density for hyper-elasticity, and let AW(X) be
given in (6.1).

(1) If W is frame-indifferent, and W(X) = W(XT ) for all X ∈ R
3×3
+ , then AW is frame-

indifferent.
(2) If W is isotropic, and W(X) = W(XT ) for all X ∈R

3×3
+ , then AW is isotropic.

(3) If W is frame-indifferent, and isotropic, then AW is frame-indifferent, and isotropic.

Proof The proofs of these statements are elementary. For the first, simply note that for a
rotation Q, QT Q = id, det Q = 1,

AW(QX) =W(QX) + det XW(X−1QT )

=W(X) + det XW(QX−T )

=W(X) + det XW(X−T )

=W(X) + det XW(X−1)

=AW(X).

We have used several times the frame-indifference of W and its symmetric invariance. The
second statement is similar. For the third one, go back to the first line of the previous chain
of equalities

AW(QX) = W(QX) + det XW(X−1QT )

and use frame-indifference and isotropy for W , respectively, in the two terms on the right-
hand side, to conclude that

AW(QX) = W(X) + det XW(X−1).

Argue in a similar way to show isotropy for AW . �
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The behavior as det X → 0+ is also elementary.

Lemma 6.2 Suppose W(X) :R3×3 →R is non-negative and such that

lim
det X→∞

W(X)

det X
= ∞.

Then AW(X) is a valid density for hyper-elasticity, i.e.

lim
det X→0+ AW(X) = ∞.

Proof The proof is straightforward under the change of variables

X �→ Y = X−1

in the first limit. �

As an explicit example of this process we consider the family of stored energy densities

W◦(X) = a

det X
|X|2 + b

det X
| adj X|2 + c

1

det Xr−1
+ d|X|2 + e| adj X|2 + f det Xr , (6.2)

defined for det X > 0, for positive constants a, b, c, d , e, f , and exponent r > 1. The fol-
lowing is a corollary of our previous discussions. Note that

W◦(X) → +∞ as det X → 0+.

This is in fact a consequence of Lemma 6.2. Ogden materials ([7, 17]) provide a more
complete family of energy densities to which this process can be applied. Some similar
examples of poly-convex functions were considered in [1].

Theorem 6.3 The energy density W◦ just defined is valid for hyper-elasticity, isotropic, and
poly-convex. The variational problem

Minimize in u ∈ A+ : E(u) =
∫

�

W◦(∇u(x)) dx

for

A+ = {u ∈ H 1(�;R3) : u = u◦ on �,u is one-to-one a.e. in �,det∇u > 0 a.e. in �}
for suitable u◦, admits global minimizers.

A more general family of energy densities for hyper-elasticity is that of Mooney-Rivlin
materials

W(X) = a|X|2 + b| adj X|2 + g(det X), a, b > 0. (6.3)

Contrary to the function g(t) = t r , with r > 1, the function g is usually assumed to have an
infinite limit as det X → 0+. One possibility here is to ask for the condition

lim
t→∞

g(t)

t
= ∞,
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and then replace g(det X) in (6.3) by

g(det X) + det Xg(det X−1)

to ensure the appropriate behavior as det X → 0+. Often, the function g(t) is chosen in the
form

g(t) = λ

2
(t − 1)2 − μ log t, λ,μ > 0.

In this case the term tg(1/t) becomes

λ

2

(t − 1)2

t
+ μt log t,

and the sum of the two terms becomes

λ

2
(t − 1)2 t + 1

t
+ μ(t − 1) log t,

which has a vanishing global minimum at t = 1 for every positive λ and μ.
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