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Abstract
A multi-scale framework is constructed for the computation of the stiffness tensors of an
elastic strain-gradient continuum endowed with an anisotropic microstructure of arbitrarily-
shaped particles. The influence of microstructural features on the macroscopic stiffness ten-
sors is demonstrated by comparing the fourth-order, fifth-order and sixth-order stiffness ten-
sors obtained from macro-scale symmetry considerations to the stiffness tensors deduced
from homogenizing the elastic response of the granular microstructure. Special attention
is paid to systematically relating the particle properties to the probability density func-
tion describing their directional distribution, which allows to explicitly connect the level of
anisotropy of the particle assembly to local variations in particle stiffness and morphology.
The applicability of the multi-scale framework is exemplified by computing the stiffness ten-
sors for various anisotropic granular media composed of equal-sized spheres. The number
of independent coefficients of the homogenized stiffness tensors appears to be determined
by the number of independent microstructural parameters, which is equal to, or less than,
the number of independent stiffness coefficients following from macro-scale symmetry con-
siderations. Since the modelling framework has a general character, it can be applied to
different higher-order granular continua and arbitrary types of material anisotropy.

Keywords Enhanced continuum model · Anisotropic material · Homogenization · Granular
micromechanics approach · Heterogeneous deformation

Mathematics Subject Classification 00A69 · 74E05 · 74E10

1 Introduction

In a classical Boltzmann continuum the deformation is considered to be homogeneous, as
described by the symmetric part of the first-order gradient of the displacement field, i.e.,
the macroscopic strain. In order to account for heterogeneous deformations characterized
by strong time and/or spatial variations, such as those induced during high-frequency wave
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propagation or localized failure (i.e., shear bands, localized damage), or deformations char-
acterizing size effects and surface tension phenomena, the kinematic description of the con-
tinuum needs to be enhanced by (gradients of) micro-deformation, and/or higher gradients
of macroscopic deformation. Along this way, various types of elastic and inelastic enhanced
continuum models – commonly referred to as higher-order continuum models – have been
developed and applied, such as i) micro-polar models (or Cosserat models), whereby at
constitutive level the kinematic description is enhanced by incorporating a micro-rotational
degree of freedom and its first gradient [12, 15, 19, 21, 23, 25, 48, 55, 59–61], ii) strain-
gradient models, in which at constitutive level the kinematic description is extended by
including first/second-order gradients of macroscopic strain [1, 2, 4, 11, 13, 22, 26, 27, 37,
41, 44, 46, 49, 56, 58–60, 62, 63, 65] and also fourth-order gradients of macroscopic strain
[3, 4, 37, 46, 58], and iii) general higher-gradient models, in which the constitutive expres-
sions include both (gradients of) micro-deformation and higher gradients of macroscopic
deformation [5, 9, 14, 40, 42, 47, 53, 58, 62, 63].

Although most of the higher-order continuum models presented in the literature refer
to isotropic materials, see the references above, several studies on anisotropic higher-order
models have been presented. In [45, 64], a third-order shear deformable plate theory is de-
rived from the three-dimensional anisotropic elastic strain-gradient continuum theory. The
model is applied for the analysis of centrosymmetric anisotropic plate structures, whereby
various levels of anisotropy are considered and the influence of internal length scales on the
deformation characteristics and buckling behaviour is assessed. It is further demonstrated
that the model is able to adequately capture size effects. In [32], the three-dimensional Green
tensor is derived for an anisotropic gradient elastic continuum model of the Helmholtz type,
which is used to study the Kelvin problem. It is shown that the Green tensor provides a
physically-based regularization of the classical anisotropic Green tensor. An anisotropic
Cosserat continuum model for cancellous bone is elaborated in [28] from asymptotic ho-
mogenization of the microstructure. The effective elastic moduli of periodic bone cell struc-
tures are computed for different bone densities, and a study of cracked bone samples reveals
the regularizing effect of the Cosserat continuum model in comparison to a classical contin-
uum model. In [50], an orthotropic elastic second-gradient continuum model is developed
that is representative of a pantographic structure composed of identical orthogonal fibers.
The macro-scale constitutive parameters are derived in terms of geometrical and mechan-
ical properties of the pantographic microstructure, and the model is validated by solving
basic analytical boundary value problems that consider various loading modes, as well as a
more sophisticated numerical boundary value problem that includes a boundary layer effect.
In [6, 7], the anisotropy of a strain-gradient elastic continuum is explored at the macro-scale
by performing a classification of all possible symmetry classes of the macroscopic stiffness
tensors. The matrix representations of the fourth-order, fifth-order and sixth-order stiffness
tensors are established in a compact and structured fashion, illustrating the versatility and
complexity of the constitutive formulation.

In the present contribution, a multi-scale framework is constructed that connects the
macro-scale stiffness tensors of an anisotropic elastic strain-gradient continuum to the char-
acteristics of a granular microstructure of arbitrarily-shaped particles. At the macro-scale,
the strain and micro-deformation gradient of the strain-gradient model are energetically-
conjugated to, respectively, the Cauchy stress and double stress, in correspondence with a
reduced form of the well-established higher-order continuum model developed by Mindlin
[40]. Considering different levels of material anisotropy, the macro-scale stiffness tensors
of the strain-gradient model are developed in single-matrix format from elastic symmetry
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considerations. In order to reveal the influence of microstructural features on the level of
elastic anisotropy, the fourth-order, fifth-order and sixth-order macro-scale stiffness tensors
are compared to the stiffness tensors deduced from homogenizing the elastic response of the
granular microstructure. The applied homogenization method is the Granular Micromechan-
ics Approach (GMA), which has been used by various investigators to derive the isotropic
stiffness tensors for classical granular continua [10, 24, 33, 54, 66] and higher-order gran-
ular continua [11–15, 42, 53, 58, 62, 63]. The application of GMA homogenization for the
derivation of the constitutive response of anisotropic granular media has been limited to
classical continuum formulations [16, 17, 43, 51, 57]. In elaborating the GMA formula-
tion for the anisotropic elastic strain-gradient continuum considered in this work, special
attention is paid to systematically relating the particle properties to the probability density
function describing their directional distribution, which allows to explicitly connect the level
of anisotropy of the particle assembly to local variations in particle stiffness and morphol-
ogy. With the constructed GMA framework, the coefficients are computed for the stiffness
tensors of various anisotropic granular media composed of equal-sized spheres, whereby it
is exemplified how, and up to which extent, the microstructural features reduce the number
of independent elastic coefficients identified from symmetry considerations at the macro-
scale. Since the modelling framework has a general character, it can be applied to different
higher-order granular continua and arbitrary types of anisotropy.

The paper is organized as follows. In Sect. 2 the macro-scale formulation of the elastic
strain-gradient model is reviewed. The constitutive relations are formulated, and the ma-
jor and minor symmetries of the fourth-order, fifth-order and sixth-order elastic tensors are
specified. In Sect. 3 the stiffness tensors of the strain-gradient model are elaborated for dif-
ferent types of anisotropy, by imposing the corresponding degree of elastic symmetry and
identifying the nonzero stiffness components. In Sect. 4 the anisotropic strain-gradient con-
tinuum is endowed with a granular microstructure. The GMA-based homogenization frame-
work is constructed, resulting in expressions for the elastic stiffness tensors in terms of the
granular, microstructural properties. The particle properties are systematically related to the
probability density function describing their directional distribution, after which the result-
ing modelling framework is used to compute the coefficients for the elastic stiffness tensors
of various anisotropic granular media composed of equal-sized spheres. The structures of the
stiffness tensors are compared to those derived from macro-scale symmetry considerations,
in order to identify and assess differences in the numbers of independent elastic coefficients.
Section 5 presents some concluding remarks.

2 Review of Elastic Strain-Gradient Model

The formulation of the elastic strain-gradient model considered in this study is a reduced
form of the well-established higher-order continuum model developed by Mindlin [40]. In
this section, the macroscopic constitutive relations of the strain-gradient model are reviewed,
for which the major and minor symmetries of the elastic stiffness tensors are specified from
the symmetries of the deformation measures and the energetically-conjugated stresses. The
constitutive relations are subsequently converted into a basic matrix-vector format, which
helps to clarify the analysis of various levels of anisotropy of granular materials, as presented
further in this paper.
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2.1 Governing Equations

Within a framework of small deformations, a material point in a classical Boltzmann con-
tinuum is characterized by a potential energy density W (per unit volume) of the form

W = 1

2
Cijklε

e
ij ε

e
kl , (1)

where Cijkl reflects the components of the fourth-order elasticity tensor C, and εe
ij are the

components of the infinitesimal, macroscopic elastic strain tensor εe . Here and in the fol-
lowing, Einstein’s summation convention is applied on repeated tensor indices, unless stated
otherwise. In the landmark paper of Mindlin [40], the potential energy density, Eq. (1), is
extended by including, in addition to the macroscopic strain ε (whereby the superscript “e”
denoting that the strain is “elastic” henceforth will be omitted for notational convenience),
two deformation measures, namely the relative deformation γ and the micro-deformation
gradient κ . In component form, these three deformation measures are defined by [40]1

εij = 1
2

(
ui,j + uj,i

)
,

γij = uj,i − ψij ,

κkji = ψjk,i ,

(2)

with ψij reflecting the components of the micro-deformation ψ . In the present work, the
microscopic and macroscopic deformations are assumed to be equal, ψij = uj,i , as a result
of which the relative deformation γ given by Eq. (2)2 vanishes, and the micro-deformation
gradient κ in Eq. (2)3 becomes

κkji = uk,ji . (3)

With the deformation measures given by Eqs. (2)1 and (3), the kinematic formulation of the
higher-order continuum model only depends on first-order and second-order gradients of the
macroscopic displacement u. The potential energy density of this so-called strain-gradient
model can be formulated as

W = 1

2
Cijklεij εkl + Fijklmκijkεlm + 1

2
Aijklmnκijkκlmn , (4)

where Fijklm and Aijklmn represent the components of the fifth-order and sixth-order elas-
ticity tensors F and A, respectively. The energetically-conjugated stress measures of the
deformations ε and κ respectively are the Cauchy stress τ and double stress μ, as defined
by [40]

τij = ∂W

∂εij

,

μijk = ∂W

∂κijk

.

(5)

1The notation for the micro-deformation gradient, Eq. (2)3, slightly differs from the notation κijk = ψjk,i

used in [40], and warrants that the order of the sub-indices in the left- and right-hand sides of Eq. (3) is
the same. This similarity is needed for adequately constructing the homogenization formulation presented in
Sect. 4.
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Inserting Eq. (4) into Eq. (5) results into the following constitutive relationships:

τij = C(ij) (kl)εkl + Fk(lm)(ij)κklm ,

μijk = Fi(jk)(lm)εlm + Ai(jk) l(mn)κlmn .
(6)

Here, the notations ... and (..) used for the tensor indices respectively designate the major
and minor symmetries of the tensors. The major symmetries result from the existence of a
potential energy density function, while the minor symmetries originate from symmetries
of the deformation measures Eqs. (2)1 and (3), and the energetically-conjugated stress mea-
sures, Eq. (5)1,2. Specifically, the minor symmetries are in accordance with the symmetry of
the macroscopic strain, εij = εji , and, through Eq. (5)1, with the symmetry of the associated
Cauchy stress, τij = τji , and further with the symmetry of the higher-order deformation,
κijk = κikj , and the associated double stress, μijk = μikj . Note that the latter symmetry fol-
lows from Eqs. (3) and (5)2, considering the reversibility in the order of differentiation,
ui,jk = ui,kj . Without these major and minor symmetries, the numbers of independent com-
ponents of the elasticity tensors, C, F, and A, are equal to 81, 243, and 729, respectively.
The major and minor symmetries indicated in Eq. (6) reduce these numbers to 21, 108, and
171, respectively. Note that this reduction is independent of the reduction in components
following from specific planes or axes of elastic symmetry. Correspondingly, a solid that
possesses onefold symmetry that is equal to no symmetry at all – as representative of the
most disordered material structure – is referred to as triclinic, and contains fully occupied C,
F, and A elastic stiffness tensors with 21, 108, and 171 independent, nonzero components,
respectively.

With Eqs. (4) and (6), the variation of the potential energy for a volume V can be devel-
oped as

∫

V

δWdV = −
∫

V

(
τij,j − μijk,jk

)
δui dV +

∫

S

(
τij − μijk,k

)
nj δui dS

+
∫

S

μijknj δui,k dS , (7)

whereby the divergence theorem has been applied to obtain the resulting expression. Here,
n designates the normal direction and S represents the boundary of volume V . From the
variational principle for Eq. (7), the volume integral in the right-hand side results in the
following equilibrium equation:

τij,j − μijk,jk = 0 , (8)

where body forces are assumed to be absent. Equation (7) can also be found in [40], in which
it follows from a reduction of the general model formulation through the application of the
kinematic constraint, Eq. (3). As pointed out in [40], the term δui,k appearing in the last
integral in the right-hand side of Eq. (7) is not independent of δui on the boundary S, since
if δui is known, so is the surface-gradient of δui . In other words, only the normal compo-
nent δui,knk can be varied independently. The strategy to correctly extract the independent
boundary conditions in a variational principle based on Eq. (7) is given in [40].

2.2 Matrix Representation of the Constitutive Relation

As shown in [6, 7], Eq. (6) can be conveniently reformulated using matrix notation, whereby
the stress and deformation measures are written in vector form and the stiffness tensors are
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Table 1 Two-to-one index relations for conversion from tensor to matrix notation

indices ij used in tensor notation 11 22 33 23 13 12

index α used in matrix notation 1 2 3 4 5 6

Table 2 Three-to-one index relations for conversion from tensor to matrix notation

indices ijk used in tensor notation 111 122 133 123 113 112

index α used in matrix notation 01 02 03 04 05 06

indices ijk used in tensor notation 211 222 233 223 213 212

index α used in matrix notation 07 08 09 10 11 12

indices ijk used in tensor notation 311 322 333 323 313 312

index α used in matrix notation 13 14 15 16 17 18

expressed in matrix form, with their components related as:

τα = Cαβεβ + Fαγ κγ , α : 1 to 6, β : 1 to 6, γ : 1 to 18 ,

μα = Fβαεβ + Aαγ κγ , α : 1 to 18, β : 1 to 6, γ : 1 to 18 .
(9)

Here, τ and ε are 6 × 1 vectors containing the components of the Cauchy stress and macro-
scopic strain, respectively, and μ and κ are 18 × 1 vectors representing the components of
the double stress and higher-order deformation components, respectively. Additionally, C,
F, and A respectively are 6 × 6, 6 × 18, and 18 × 18 matrices containing the corresponding
elasticity parameters. Note that the tensor indices ij , kl, and klm in Eq. (6)1 are respectively
replaced by the matrix indices α, β , and γ in Eq. (9)1. Further, the tensor indices ijk, lm,
and lmn in Eq. (6)2 are converted to the matrix/vector indices α, β , and γ in Eq. (9)2, re-
spectively. Similar as in [6, 7], the two-to-one and three-to-one index relations that define
this conversion can be orderly summarized in a table, see Tables 1 and 2. In accordance
with these conversions and the symmetries indicated in Eq. (6), the equivalences between
the specific tensor symbols and matrix/vector symbols are

τα ≡ τij ,

μα ≡ μijk ,

εβ ≡
{

εlm if l = m,

2εlm if l �= m,

κγ ≡
{

κlmn if m = n ,

2κlmn if m �= n ,

Cαβ ≡ Cijkl + Cjikl + Cijlk + Cjilk

4
,

Fαβ ≡ Fijklm + Fikjlm + Fijkml + Fikjml

4
,

Aαγ ≡ Aijklmn + Aikjlmn + Aijklnm + Aikjlnm

4
.

(10)
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3 Various Degrees of Elastic Symmetry

Most materials possess some form of elastic symmetry, which may originate from crys-
tallographic symmetry, i.e., symmetries of single crystals as determined by the chemical
constituents of the material, or textural symmetry, i.e., symmetries determined by the mi-
crostructural organization (or texture) of the material. Examples of materials with textural
symmetry are geomaterials, plant and animal tissues, and almost all manufactured materials
[20]. The increase in elastic symmetry results in a reduction of the number of independent
elastic parameters required to uniquely characterize the elastic material behaviour. Differ-
ent degrees of symmetry can be explored by subjecting the stiffness tensors of the strain-
gradient model in the three-dimensional Euclidian space to an orthogonal transformation
Q, with Q−1 = QT , under which the components of the stiffness tensor should remain un-
changed. For a given tensor T of arbitrary order, this mathematical operation can be formally
expressed as

T ′
op...qr = QioQjp...QkqQlrTij...kl , (11)

whereby T ′
op...qr and Tij...kl respectively represent the components of tensor T in the new (x′)

and reference (x) Cartesian coordinate systems. Note that these two coordinate systems are
related as x′ = Qx. Accordingly, the orthogonal transformations of the fourth-order, fifth-
order and sixth-order elasticity tensors C, F and A defining the constitutive expressions,
Eq. (6), read

C ′
opqr = QioQjpQkqQlrCijkl ,

F ′
opqrs = QioQjpQkqQlrQmsFijklm ,

A′
opqrst = QioQjpQkqQlrQmsQntAijklmn ,

(12)

where C ′
opqr , F ′

opqrs and A′
opqrst respectively are the components of fourth-order, fifth-order

and sixth-order elasticity tensors in the new Cartesian coordinate system. In case of elas-
tic symmetry, it is required that the components of the elastic tensors meet the following
conditions

C ′
opqr = Copqr ,

F ′
opqrs = Fopqrs ,

A′
opqrst = Aopqrst ,

(13)

whereby Q in Eq. (12) represents an orthogonal transformation in the materials’ symmetry
group. In the subsections below, for the strain-gradient continuum model, Eq. (6), various
degrees of elastic symmetry are elaborated, whereby the identified nonzero components and
their mutual relations define the structures of the elastic stiffness tensors.

3.1 One Plane of Elastic Symmetry: Monoclinic

A solid characterized by one plane of elastic symmetry is referred to as a monoclinic mate-
rial. In a Cartesian coordinate system x = (x1, x2, x3), elastic symmetry with respect to the
x3-plane is specified by a reflection in this plane, as defined by the orthogonal transforma-
tion:

Q =
⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦ . (14)
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Note that the reflection has the common characteristic that det Q = −1. Combining Eq. (14)
with Eqs. (12) and (13) results in the following conditions for the stiffness components:

Cijkl, Fijklm, Aijklmn =
{

nonzero if tensor index 3 appears an even number of times,

zero if tensor index 3 appears an odd number of times.
(15)

With the conversions presented in Tables 1 and 2, from Eq. (15) the stiffness matrices for C,
F and A follow as

C =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

C11 C12 C13 0 0 C16

C22 C23 0 0 C26

C33 0 0 C36

symm. C44 C45 0
C55 0

C66

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, (16)

and

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F0101 F0102 F0103 0 0 F0106 F0107 F0108 F0109 0 0 F0112 0 0 0 F0116 F0117 0
F0201 F0202 F0203 0 0 F0206 F0207 F0208 F0209 0 0 F0212 0 0 0 F0216 F0217 0
F0301 F0302 F0303 0 0 F0306 F0307 F0308 F0309 0 0 F0312 0 0 0 F0316 F0317 0

0 0 0 F0404 F0405 0 0 0 0 F0410 F0411 0 F0413 F0414 F0415 0 0 F0418

0 0 0 F0504 F0505 0 0 0 0 F0510 F0511 0 F0513 F0514 F0515 0 0 F0518

F0601 F0602 F0603 0 0 F0606 F0607 F0608 F0609 0 0 F0612 0 0 0 F0616 F0617 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(17)
and

A =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

A0101 A0102 A0103 0 0 A0106 A0107 A0108 A0109 0 0 A0112 0 0 0 A0116 A0117 0
A0202 A0203 0 0 A0206 A0207 A0208 A0209 0 0 A0212 0 0 0 A0216 A0217 0

A0303 0 0 A0306 A0307 A0308 A0309 0 0 A0312 0 0 0 A0316 A0317 0
A0404 A0405 0 0 0 0 A0410 A0411 0 A0413 A0414 A0415 0 0 A0418

A0505 0 0 0 0 A0510 A0511 0 A0513 A0514 A0515 0 0 A0518

A0606 A0607 A0608 A0609 0 0 A0612 0 0 0 A0616 A0617 0
A0707 A0708 A0709 0 0 A0712 0 0 0 A0716 A0717 0

A0808 A0809 0 0 A0812 0 0 0 A0816 A0817 0
A0909 0 0 A0912 0 0 0 A0916 A0917 0

A1010 A1011 0 A1013 A1014 A1015 0 0 A1018

A1111 0 A1113 A1114 A1115 0 0 A1118

symm. A1212 0 0 0 A1216 A1217 0
A1313 A1314 A1315 0 0 A1318

A1414 A1415 0 0 A1418

A1515 0 0 A1518

A1616 A1617 0
A1717 0

A1818

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

(18)
in which the denotation “symm.” refers to the symmetry of the matrix. Observe from
Eqs. (16), (17) and (18) that the formulation of the monoclinic stiffness tensors C, F and
A requires the definition of 13, 56 and 91 independent coefficients, respectively. The ex-
pression for the fourth-order elastic stiffness tensor C in Eq. (16) is in agreement with the
formulation presented in reference works on continuum mechanics theory, e.g., [36]. Ob-
viously, the above expressions for elastic symmetry in the x3-direction are similar if the
symmetry plane is taken in the x1- or x2-direction: this only leads to a shift of nonzero stiff-
ness coefficients in the three stiffness matrices, as follows from replacing the tensor index
‘3’ in Eq. (15) by respectively ‘1’ or ‘2’.

3.2 Two Perpendicular Planes of Elastic Symmetry

In order to determine the specific forms of the stiffness tensors C, F and A for the case of two
mutually perpendicular planes of elastic symmetry, the x2- and x3-planes are considered as
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symmetry planes. The determination of the stiffness tensors then follows from assuming an
orthogonal transformation that represents symmetry in the x3- direction, Eq. (14), followed
by an orthogonal transformation defining symmetry in the x2-direction:

Q =
⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦ . (19)

It is emphasized that the resulting stiffness tensors are independent of the order of appli-
cation of these two transformations. Combining Eqs. (14) and (19) with Eqs. (12) and (13)
leads to the following conditions for the stiffness components:

Cijkl, Fijklm, Aijklmn

=
{

nonzero if tensor indices 2 and 3 appear an even number of times,

zero if tensor index 2 or 3 appears an odd number of times.
(20)

Using the conversions listed in Tables 1 and 2, from Eq. (20) the stiffness matrices C, F and
A can be derived as

C =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

C11 C12 C13 0 0 0
C22 C23 0 0 0

C33 0 0 0
symm. C44 0 0

C55 0
C66

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

, (21)

and

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

F0101 F0102 F0103 0 0 0 0 0 0 0 0 F0112 0 0 0 0 F0117 0
F0201 F0202 F0203 0 0 0 0 0 0 0 0 F0212 0 0 0 0 F0217 0
F0301 F0302 F0303 0 0 0 0 0 0 0 0 F0312 0 0 0 0 F0317 0

0 0 0 F0404 0 0 0 0 0 0 F0411 0 0 0 0 0 0 F0418

0 0 0 0 F0505 0 0 0 0 F0510 0 0 F0513 F0514 F0515 0 0 0
0 0 0 0 0 F0606 F0607 F0608 F0609 0 0 0 0 0 0 F0616 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(22)
and

A =

⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

A0101 A0102 A0103 0 0 0 0 0 0 0 0 A0112 0 0 0 0 A0117 0
A0202 A0203 0 0 0 0 0 0 0 0 A0212 0 0 0 0 A0217 0

A0303 0 0 0 0 0 0 0 0 A0312 0 0 0 0 A0317 0
A0404 0 0 0 0 0 0 A0411 0 0 0 0 0 0 A0418

A0505 0 0 0 0 A0510 0 0 A0513 A0514 A0515 0 0 0
A0606 A0607 A0608 A0609 0 0 0 0 0 0 A0616 0 0

A0707 A0708 A0709 0 0 0 0 0 0 A0716 0 0
A0808 A0809 0 0 0 0 0 0 A0816 0 0

A0909 0 0 0 0 0 0 A0916 0 0
A1010 0 0 A1013 A1014 A1015 0 0 0

A1111 0 0 0 0 0 0 A1118

symm. A1212 0 0 0 0 A1217 0
A1313 A1314 A1315 0 0 0

A1414 A1415 0 0 0
A1515 0 0 0

A1616 0 0
A1717 0

A1818

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

.

(23)
The three expressions above show that the number of independent coefficients of the C, F
and A stiffness tensors equals 9, 28 and 51, respectively, with Eq. (21) corresponding to the
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definition provided in standard reference works on continuum mechanics theory, e.g., [36].
Trivially, when considering elastic symmetry in the x1- and x2-directions, or in the x1- and
x3-directions, the tensor indices ‘2’ and ‘3’ defining Eq. (20) are replaced by ‘1’ and ‘2’, and
‘1’ and ‘3’, respectively. For the stiffness tensors C and A of even rank, two perpendicular
planes of elastic symmetry automatically impose an additional plane of elastic symmetry in
the third perpendicular direction, as a result of which these stiffness tensors are orthotropic.
Conversely, as will be demonstrated in the subsection below, for the stiffness tensor F of
odd rank the expression obtained under two perpendicular planes of symmetry, Eq. (22), is
different than under three perpendicular planes of symmetry.

3.3 Three Perpendicular Planes of Elastic Symmetry: Orthotropic

The stiffness tensors for an orthotropic solid with three perpendicular planes of elastic sym-
metry are obtained by subsequently applying the orthogonal transformations, Eqs. (14) and
(19), that reflect symmetries with respect to the x3- and x2-planes, followed by applying the
transformation representing symmetry with respect to the x1-plane:

Q =
⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦ . (24)

The successive application of Eqs. (14), (19) and (24) to Eqs. (12) and (13) results in the
following conditions for the stiffness components:

Cijkl, Fijklm, Aijklmn

=
{

nonzero if tensor indices 1 and 2 and 3 appear an even number of times,

zero if tensor index 1 or 2 or 3 appears an odd number of times.
(25)

With the conversions listed in Tables 1 and 2, from Eq. (25) it follows that the fourth-order
tensor C and the sixth-order tensor A indeed have the same form as for the case of two
orthogonal planes of elastic symmetry, see Eqs. (21) and (23). In fact, when for an even-
rank tensor the indices referring to two different perpendicular directions appear an even
number of times, the tensor index referring to the third perpendicular direction automatically
also appears an even number of times, by which the condition in Eq. (25)1 is satisfied. In
contrast, the fifth-order tensor F reduces to the null tensor F = 0, and thus differs from
Eq. (22) deduced for two orthogonal planes of symmetry. In fact, for any odd-rank stiffness
tensor all coefficients are equal to zero for an orthotropic material characterized by three
orthogonal planes of symmetry, since in that case all stiffness components contain an uneven
number of tensor indices related to one (or all three) symmetry direction(s), x1, x2 or x3, as
also discussed in [31].

The consecutive application of the three plane reflections, Eqs. (14), (19) and (24) to
Eqs. (12) and (13) thus leads to the orthotropic stiffness tensors; it is emphasized that this
result is different from that obtained after applying a single point reflection through the
origin of the x1-x2-x3 frame of reference, as defined by

Q =
⎡

⎣
−1 0 0
0 −1 0
0 0 −1

⎤

⎦ . (26)
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Specifically, stiffness tensors that remain unchanged after a point reflection are referred to as
centrosymmetric tensors, whereas those that do not are referred to as non-centrosymmetric
tensors. Since Eq. (26) essentially represents the negative of the second-order identity ten-
sor I, after substituting Eq. (26) into Eq. (12) it may be concluded that the even-rank tensors
C and A are centrosymmetric, and the odd-rank tensor F is non-centrosymmetric, see also
[6, 30]. Hence, for the class of (strain-gradient) models considered in the present work,
non-centrosymmetry only plays a role when F �= 0, which, as shown in the sections above,
is the case for no plane of elastic symmetry (triclinic materials), one plane of elastic sym-
metry (monoclinic materials), and two planes of elastic symmetry. Other examples of odd-
rank, non-centrosymmetric stiffness tensors may be found in the constitutive formulations
of micro-polar media [31] and chiral materials [30], where the relative deformation γ given
by Eq. (2)2 is accounted for in the model formulation [40]. In the case of granular mate-
rials, the relative deformation γ becomes non-zero when the effect of particle rotations is
incorporated in the description of the particle interactions, see [14, 58]. However, as stated
in Sect. 2.1, this class of materials falls beyond the scope of the present work.

It is further interesting to mention that the consecutive application of the three plane
reflections Eqs. (14), (19) and (24) to Eqs. (12) and (13) leads to the same result as the
consecutive application of two plane reflections, Eqs. (14) and (19) (or one of the other two
possible combinations), followed by a point reflection, Eq. (26). As a consequence of this
resemblance, it can be concluded that even-rank (centrosymmetric) stiffness tensors for a
material with two perpendicular planes of elastic symmetry automatically impose a third
mutually perpendicular plane of elastic symmetry, and thus are orthotropic, in accordance
with the discussion in Sect. 3.2 above. Furthermore, the point reflection, Eq. (26), thus repre-
sents an orthogonal transformation that is in the symmetry group of the orthotropic material,
which means that for this material the conditions given by Eq. (13) must hold under the ap-
plication of Eq. (26). Accordingly, the odd-rank tensor F vanishes under the point reflection
Eq. (26), F = 0, which indeed is in agreement with the computational result F = 0 presented
below Eq. (25). Clearly, for materials with a higher elastic symmetry than the orthotropic
material (i.e., transversely isotropic and isotropic materials), the point reflection is also in-
cluded in the materials’ symmetry group, thus leading to F = 0.

3.4 Three Perpendicular Planes of Elastic Symmetry and an Axis of Rotational
Symmetry: Transversely Isotropic

A material that has three mutually orthogonal planes of elastic symmetry and additionally
has an axis of rotational symmetry perpendicular to one of these planes is called transversely
isotropic. For the computation of the stiffness tensors, without loss of generality the x3-
axis is considered as the axis of rotational symmetry. Figure 1 shows the new Cartesian
coordinate system x′ after applying an arbitrary rotation α about the x3-axis of the reference
Cartesian coordinate system x. The transformation matrix defining an arbitrary rotation α

about the x3-axis is:

Q =
⎡

⎣
cosα sinα 0

− sinα cosα 0
0 0 1

⎤

⎦ . (27)

It can be confirmed that the rotation has the common characteristic that det Q = 1. Con-
sidering that the stiffness tensors C and A for a transversely isotropic material have the
same format as for an orthotropic material (i.e., there are no additional zero components,
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Fig. 1 New Cartesian coordinate
system x′ after a rotation α about
the x3-axis of the reference
Cartesian coordinate system x

see Eqs. (21) and (23)), and that the uneven, fifth-order tensor vanishes, F = 0, combining
Eq. (27) with Eqs. (12) and (13) results in the following symmetry relations for C:

C11 = C22 ,

C13 = C23 ,

C44 = C55 ,

C66 = 1

2
(C11 − C12) ,

(28)

and for A:

A0101 = A0808, A0102 = A0708, A0103 = A0809, A0112 = A0608,

A0117 = A0816, A0202 = A0707, A0203 = A0709, A0212 = A0607,

A0217 = A0716, A0303 = A0909, A0312 = A0609, A0317 = A0916,

A0404 = A1111, A0418 = A1118, A0505 = A1010, A0513 = A1014,

A0514 = A1013, A0515 = A1015, A0606 = A1212, A0616 = A1217,

A1313 = A1414, A1315 = A1415, A1616 = A1717,

A0212 = 1

2
(A0101 − A0202 − 2A0112),

A0312 = 1

2
(A0103 − A0203),

A0418 = 1

2
(A0513 − A0514),

A0510 = A0505 − A0404 − A0411,

A0606 = 1

4
(A0101 + A0202) − 1

2
A0102,

A0616 = 1

2
(A0117 − A0217),

A1818 = 1

2
(A1313 − A1314) .

(29)
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Using these relationships, the stiffness matrices C and A can be respectively represented as

C =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

C11 C12 C13 0 0 0
C11 C13 0 0 0

C33 0 0 0
symm. C44 0 0

C44 0
1
2 (C11 − C12)

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, (30)

and

A = [
A1 A2

]
, (31)

with the 18 × 9 submatrices A1 and A2 as

A1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A0101 A0102 A0103 0 0 0 0 0 0
A0202 A0203 0 0 0 0 0 0

A0303 0 0 0 0 0 0
A0404 0 0 0 0 0

A0505 0 0 0 0
1
4 (A0101 + A0202) − 1

2 A0102
1
2 (A0101 − A0202 − 2A0112) A0608

1
2 (A0103 − A0203)

A0202 A0102 A0203

A0101 A0103

A0303

symm.

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(32)
and

A2 =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢
⎣

0 0 A0112 0 0 0 0 A0117 0
0 0 1

2 (A0101 − A0202 − 2A0112) 0 0 0 0 A0217 0
0 0 1

2 (A0103 − A0203) 0 0 0 0 A0317 0
0 A0411 0 0 0 0 0 0 1

2 (A0513 − A0514)

A0505 − A0404 − A0411 0 0 A0513 A0514 A0515 0 0 0
0 0 0 0 0 0 1

2 (A0117 − A0217) 0 0
0 0 0 0 0 0 A0217 0 0
0 0 0 0 0 0 A0117 0 0
0 0 0 0 0 0 A0317 0 0

A0505 0 0 A0514 A0513 A0515 0 0 0
A0404 0 0 0 0 0 0 1

2 (A0513 − A0514)
1
4 (A0101 + A0202) − 1

2 A0102 0 0 0 0 1
2 (A0117 − A0217) 0

A1313 A1314 A1315 0 0 0
A1313 A1315 0 0 0

A1515 0 0 0
symm. A1616 0 0

A1616 0
1
2 (A1313 − A1314)

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥
⎦

,

(33)
whereby it is emphasized that the denotation “symm.” refers to the symmetry of the complete
18 × 18 square matrix A, Eq. (31).

As a result of the 4 symmetry relations for C and the 30 symmetry relations for A as given
by Eqs. (28) and (29), the corresponding numbers of 9 and 51 independent coefficients for an
orthotropic elastic material in Eqs. (21) and (23) reduce to 5 and 21 independent coefficients
for a transversely isotropic material, see Eqs. (30), (32) and (33). Note that the classical
stiffness matrix given by Eq. (30) is in correspondence with the common form presented in
continuum mechanics textbooks, see, e.g., [36].
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3.5 Arbitrary Planes of Elastic Symmetry and Axes of Rotational Symmetry:
Isotropic

The elastic stiffness tensors of an isotropic material are symmetric with respect to any plane
of symmetry and any rotational axis. In other words, this symmetry group contains the
full set of orthogonal transformations (i.e., rotations and reflections), as a result of which
the elastic tensors are invariant in both right-handed and left-handed orthogonal coordinate
systems.2 As demonstrated in [56], the components of isotropic tensors of arbitrary order
can be systematically derived from Weyl’s theory on formal orthogonal invariant polynomial
functions [67], leading for C and A to:

Cijkl = c1δij δkl + c2δikδjl + c3δilδjk , (34)

and

Aijklmn = a1δij δklδmn + a2δij δkmδln + a3δij δknδlm

+ a4δikδjlδmn + a5δikδjmδln + a6δikδjnδlm

+ a7δilδjkδmn + a8δilδjmδkn + a9δilδjnδkm

+ a10δimδjkδln + a11δimδjlδkn + a12δimδjnδkl

+ a13δinδjkδlm + a14δinδjlδkm + a15δinδjmδkl . (35)

Imposing the minor symmetries discussed in Sect. 2.1 on Eq. (34) leads to an equality for
the coefficients c2 and c3 of the fourth-order elastic tensor C:

c2 = c3. (36)

Further, imposing both major and minor symmetries on Eq. (35) results in the following
equalities between coefficients of the sixth-order elastic tensor A:

a1 = a4 = a10 = a13 ,

a2 = a3 = a5 = a6 ,

a8 = a9 ,

a11 = a12 = a14 = a15 .

(37)

With Eqs. (36) and (37) the fourth-order elastic tensor C, Eq. (34), and the sixth-order elastic
tensor A, Eq. (35), are defined by 2 and 5 independent components, respectively, in accor-
dance with:

Cijkl = c1δij δkl + c2

(
δikδjl + δilδjk

)
, (38)

and

Aijklmn = a1(δij δklδmn + δikδjlδmn + δimδjkδln + δinδjkδlm)

+ a2(δij δkmδln + δij δknδlm + δikδjmδln + δikδjnδlm)

+ a7(δilδjkδmn)

+ a8(δilδjmδkn + δilδjnδkm)

+ a11(δimδjlδkn + δimδjnδkl + δinδjlδkm + δinδjmδkl) . (39)

2In the literature, tensors occasionally are considered to be isotropic when they remain invariant under a
proper orthogonal transformation, in accordance with a symmetry group that excludes reflections and only
includes rotations, thereby constraining the definition of isotropy to either a right-handed, or a left-handed
coordinate system. With this relaxed definition, odd-rank tensors can also be isotropic, e.g., the third-order
isotropic tensor then equals the permutation symbol, and the components of any higher-order, odd-rank
isotropic tensor are then expressed as products of permutation symbols and Kronecker delta symbols, see
[56] for more details.
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Correspondingly, using Tables 1 and 2, the above tensorial forms of the stiffness tensors for
an isotropic material can be represented in matrix form as

C =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

c1 + 2c2 c1 c1 0 0 0
c1 + 2c2 c1 0 0 0

c1 + 2c2 0 0 0
symm. c2 0 0

c2 0
c2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, (40)

and

A = [
A1 A2

]
, (41)

with the 18 × 9 submatrices A1 and A2 given by

A1 =

⎡

⎢⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎢⎢
⎢
⎢⎢
⎣

4a1 + 4a2 + a7 + 2a8 + 4a11 2a1 + a7 2a1 + a7 0 0 0 0 0 0
a7 + 2a8 a7 0 0 0 0 0 0

a7 + 2a8 0 0 0 0 0 0
a8 0 0 0 0 0

a2 + a8 + a11 0 0 0 0
a2 + a8 + a11 a1 + 2a11 a1 + 2a2 a1

a7 + 2a8 2a1 + a7 a7

4a1 + 4a2 + a7 + 2a8 + 4a11 2a1 + a7

a7 + 2a8

symm.

⎤

⎥⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎥⎥
⎥
⎥⎥
⎦

,

(42)
and

A2 =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 a1 + 2a2 0 0 0 0 a1 + 2a2 0
0 0 a1 + 2a11 0 0 0 0 a1 0
0 0 a1 0 0 0 0 a1 + 2a11 0
0 a11 0 0 0 0 0 0 a11

a2 0 0 a1 + 2a11 a1 a1 + 2a2 0 0 0
0 0 0 0 0 0 a2 0 0
0 0 0 0 0 0 a1 0 0
0 0 0 0 0 0 a1 + 2a2 0 0
0 0 0 0 0 0 a1 + 2a11 0 0

a2 + a8 + a11 0 0 a1 a1 + 2a11 a1 + 2a2 0 0 0
a8 0 0 0 0 0 0 a11

a2 + a8 + a11 0 0 0 0 a2 0
a7 + 2a8 a7 2a1 + a7 0 0 0

a7 + 2a8 2a1 + a7 0 0 0
4a1 + 4a2 + a7 + 2a8 + 4a11 0 0 0

symm. a2 + a8 + a11 0 0
a2 + a8 + a11 0

a8

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(43)
Note that the coefficients c1 and c2 defining the classic elastic stiffness matrix in Eq. (40)
respectively are equal to the Lamé constants λ and μ. For the different degrees of elastic
symmetry considered in this section, Table 3 summarizes the number of independent co-
efficients Ni required for fully characterizing the elastic behaviour of the strain-gradient
continuum model. The values of Ni listed for the fourth-order elastic tensor C and sixth-
order elastic tensor A are in agreement with those presented in [20] and [6], respectively.
The values listed for the fifth-order elastic tensor F are also reported in [7], however, within
the definitions of an alternative, more detailed classification scheme for crystal systems.
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Table 3 Overview of the number of independent elastic coefficients Ni for the fourth- fifth- and sixth-order
elasticity tensors C, F and A of the strain-gradient continuum model for various degrees of elastic symmetry

Degree of elastic symmetry Ni

C F A

No plane of elastic symmetry (triclinic) 21 108 171

One plane of elastic symmetry (monoclinic) 13 56 91

Two planes of elastic symmetry 9 28 51

Three planes of elastic symmetry (orthotropic) 9 0 51

Three planes and one axis of elastic symmetry (transversely isotropic) 5 0 21

Infinite number of planes and axes of elastic symmetry (isotropic) 2 0 5

4 Anisotropic Strain-Gradient Continuum with a Granular
Microstructure

In this section the anisotropic strain-gradient continuum is endowed with a granular mi-
crostructure. The GMA-based homogenization framework is presented, which connects the
micro-scale particle properties to the mechanical characteristics at the macro-scale. The par-
ticle properties are systematically related to the probability density function describing their
directional distribution, after which the resulting modelling framework is used to deduce the
stiffness tensors for various anisotropic granular media composed of equal-sized spheres.
The structures of the corresponding elastic tensors are compared to those derived in Sect. 3
from macro-scale symmetry considerations, in order to identify and assess differences in the
numbers of independent elastic coefficients.

4.1 GMA-Based Homogenization Framework

Consider two neighbouring grains p and q in a representative granular microstructure that
characterizes the macroscopic response of the strain-gradient continuum, Eq. (6). Denoting
the displacement field in a Cartesian coordinate system as u = (u1, u2, u3), a displacement
component u

q

i at grain q, with i ∈ {1,2,3}, may be expressed as a Taylor expansion of the
displacement field evaluated at the neigbouring grain p:

u
q

i = u
p

i +u
p

i,j

(
x

q

j −x
p

j

)+ 1

2
u

p

i,jk

(
x

q

j −x
p

j

)(
x

q

k −x
p

k

)+O

⎛

⎜
⎝

⎛

⎝

√√√
√

3∑

i=1

(
x

q

i − x
p

i

)2

⎞

⎠

3⎞

⎟
⎠ , (44)

in which the vectors xp and xq designate the centroidal positions of the neigbouring grains
p and q , respectively, and the Landau symbol O(.) denotes the order of magnitude of the
corresponding term. In accordance with the definition of the kinematic variables in Eqs. (2)
and (3), in Eq. (44) the terms of the order three and higher are neglected. The next step is to
use Eq. (44) for defining the potential energy at the particle contact level. The antisymmetric
part of the displacement gradient reflects the rigid body rotation of the material point, which
does not contribute to the potential energy density. Hence, the term u

p

i,j in the right-hand
side of Eq. (44) may be replaced by the symmetric part of the displacement gradient, which
equals the strain ε

p

ij , see Eq. (2)1. Further, in accordance with Eq. (3), the term u
p

i,jk is
replaced by the micro-deformation gradient κ

p

ijk , by which the relative displacement δα
i at
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the contact α between the two neighbouring particles p and q follows from Eq. (44) as

δα
i = δ

pq

i = u
q

i − u
p

i ≈ ε
p

ij

(
x

q

j − x
p

j

) + 1

2
κ

p

ijk

(
x

q

j − x
p

j

)(
x

q

k − x
p

k

) = ε
p

ij l
α
j + 1

2
κ

p

ijkl
α
j lαk , (45)

where in the final expression lαj = x
q

j − x
p

j is the branch vector that connects the centres of
the two neighbouring particles. In accordance with the so-called kinematic hypothesis, the
strain ε

p

ij and micro-deformation gradient κ
p

ijk defined at the particle level are replaced by
their mean values εij and κijk over the volume V of the particle assembly. This approxima-
tion of the micro-scale kinematic field induces a constraint that will cause the homogenized
material response to be somewhat stiffer than the true macroscopic response [8, 12, 33], i.e.,
it leads to an overestimation of the true macroscopic response. The kinematic hypothesis has
been regularly applied in homogenization procedures for granular media, both for the deriva-
tion of classical continua [10, 24, 66] and higher-order continua [11, 14, 15, 47, 58, 62].
Applying the kinematic hypothesis to Eq. (45) leads to

δα
i = δαs

i + δαm
i = εij l

α
j + 1

2
κijkl

α
j lαk , (46)

whereby the displacement δαs
i is related to the strain εij and the displacement δαm

i is related
to the micro-deformation gradient κijk , as designated by the superscripts s and m, respec-
tively. With Eq. (46), the potential energy stored at each grain contact can be formulated as

Wα = 1

2
Kα

ikδ
αs
i δαs

k + Kα
ikδ

αs
i δαm

k + 1

2
Kα

ilδ
αm
i δαm

l . (47)

in which Kα
ij is the particle contact stiffness, which will be specified further in this section.

With Eq. (47), the potential energy density in a macroscopic material point can be expressed
as the volume average of the potential energies at all grain contacts, i.e.,

W = 1

V

Nc∑

α=1

Wα = 1

2V

Nc∑

α=1

(
Kα

ikδ
αs
i δαs

k + 2Kα
ikδ

αs
i δαm

k + Kα
ilδ

αm
i δαm

l

)
, (48)

where Nc and V respectively are the total number of inter-particle contacts and the volume
characterizing the granular microstructure represented in the macroscopic material point.
In correspondence with the so-called Hill-Mandel micro-heterogeneity condition [29], the
volume average of the variational (or virtual) work applied at the boundaries of the repre-
sentative micro-scale particle volume needs to be equal to the local variational work per unit
volume at the macro-scale, see also [34, 35, 38, 39, 52]. For a conservative, elastic material
(which does not dissipate energy into heat), the variational work per unit volume directly
follows from the variation of the potential energy density δW , which, by using Eq. (4), may
be formally expressed as

δW = ∂W

∂εij

δεij + ∂W

∂κijk

δκijk . (49)

For a macroscopic material point, Eq. (49) can be further developed by inserting Eqs. (5)
and (6). In addition, the volume average of the variation of the potential energy in the rep-
resentative granular microstructure is obtained by inserting Eq. (46) into Eq. (48), followed
by substituting the resulting expression into Eq. (49). With these two expressions for δW ,
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Fig. 2 Two grains in contact and
the local and global coordinate
systems

the Hill-Mandel micro-heterogeneity condition becomes

δW = Cijklεklδεij + Fklmij κklmδεij + Fijklmεlmδκijk + Aijklmnκlmnδκijk

= 1

V

Nc∑

α=1

(
Kα

ikl
α
j lαl εklδεij + 1

2
Kα

ikl
α
j lαl lαmκklmδεij + 1

2
Kα

li l
α
j lαk lαmεlmδκijk

+ 1

4
Kα

il l
α
j lαk lαmlαn κlmnδκijk

)
. (50)

Equation (50) holds for arbitrary deformations εij and κijk and arbitrary deformation vari-
ations δεij and δκijk , and leads to the following expressions for the macroscopic stiffness
tensors in terms of the particle contact stiffness Kα

ij and branch vector lαj at particle contact α:

Cijkl = 1

V

Nc∑

α=1

Kα
ikl

α
j lαl ,

Fijklm = 1

2V

Nc∑

α=1

Kα
il l

α
j lαk lαm ,

Aijklmn = 1

4V

Nc∑

α=1

Kα
il l

α
j lαk lαmlαn .

(51)

Here, the elastic contact stiffness tensor Kα
ij has the usual expression

Kα
ij = kα

n nα
i n

α
j + kα

s sα
i sα

j + kα
t tαi tαj , (52)

where kα
n is the contact stiffness in the direction normal to the contact plane, and kα

s and kα
t

are the contact stiffnesses in two perpendicular directions tangential to the contact plane.
Note from Eq. (52) that the contact stiffness is symmetric, Kα

ij = Kα
ji . Further, nα represents

the orthonormal base vector normal to the contact plane, and sα and tα are the orthonormal
base vectors tangential to the contact plane. In accordance with the schematization in Fig. 2,
the orthonormal base vectors (nα , sα , tα) defining the local particle contact plane are re-
lated to the orthonormal base vectors (e1, e2, e3) of the global Cartesian coordinate system
x = (x1, x2, x3) via

nα = sin θα cosφα e1 + sin θα sinφα e2 + cos θα e3 ,

sα = cos θα cosφα e1 + cos θα sinφα e2 − sin θα e3 ,

tα = nα × sα = −sinφα e1 + cosφα e2 ,

(53)
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in which the coordinates θ ∈ [0,π ] and φ ∈ [0,2π ] of the spherical coordinate system
(ρ, θ,φ) are the polar angle and the azimuthal angle, respectively, and ρ is the radial coor-
dinate. With the elastic contact stiffness, Eq. (52), the contact displacement, Eq. (46), can
be related to the contact force f α

i as

f α
i = Kα

ij δα
j , (54)

which, after inserting Eq. (46), turns into

f α
i = Kα

ikl
α
l εkl + 1

2
Kα

ikl
α
l lαmκklm . (55)

Substituting the expressions for the stiffness tensors, Eq. (51), into the macroscopic consti-
tutive relations, Eq. (6), and comparing the result with Eq. (55), it follows that the Cauchy
stress τij and double stress μijk can be expressed in terms of the contact force f α

i and branch
vector lαj as

τij = 1

V

Nc∑

α=1

f α
i lαj ,

μijk = 1

2V

Nc∑

α=1

f α
i lαj lαk ,

(56)

which obey the symmetry conditions τij = τji and μijk = μikj discussed in Sect. 2.1. The ex-
pression for the Cauchy stress, Eq. (56)1, is well-known, and has been presented previously
in other works on homogenization of granular media, see, e.g., [8, 10, 14, 15, 18, 54, 58, 62].
The expression for the double stress, Eq. (56)2, is far less familiar, but can be found in [14],
together with the corresponding expressions for the homogenized stiffness tensors Eq. (51).
It should be mentioned, however, that the expressions derived in [14] were obtained by
applying an alternative, more elaborative derivation procedure based on equilibrium consid-
erations of the local contact forces in the granular microstructure.

In order to relate macro-scale anisotropy to the particle properties at the microstructural
scale, the stiffness tensors in Eq. (51) are further developed for the general case of a packing
composed of arbitrarily-shaped particles. As pointed out in [43], in Eq. (51) the summation
over the particle contacts α in the granular volume V can be reformulated into particle con-
tact summations over the three spherical coordinates (φ, θ, ρ) illustrated in Fig. 2. Hence,
writing the branch vector as lα = lαnα , whereby lα is the magnitude of the branch vector,
and invoking Eq. (52), Eq. (51) becomes

Cijkl = 1

V

∑

φ∗
p

∑

θ∗
q

[( ∑

α=αρ∗
pq

kα
n lαlα

)
ninknjnl +

( ∑

α=αρ∗
pq

kα
s lαlα

)
sisknjnl

+
( ∑

α=αρ∗
pq

kα
t lαlα

)
ti tknjnl

]
,

Fijklm = 1

2V

∑

φ∗
p

∑

θ∗
q

[( ∑

α=αρ∗
pq

kα
n lαlαlα

)
ninlnjnknm +

( ∑

α=αρ∗
pq

kα
s lαlαlα

)
sislnjnknm

+
( ∑

α=αρ∗
pq

kα
t lαlαlα

)
ti tlnjnknm

]
,
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Aijklmn = 1

4V

∑

φ∗
p

∑

θ∗
q

[( ∑

α=αρ∗
pq

kα
n lαlαlαlα

)
ninlnjnknmnn

+
( ∑

α=αρ∗
pq

kα
s lαlαlαlα

)
sislnjnknmnn +

( ∑

α=αρ∗
pq

kα
t lαlαlαlα

)
ti tlnjnknmnn

]
,

(57)
where αρ∗

pq
denotes a particle contact along the radial ρ∗

pq -direction that is set by the discrete
spherical polar coordinates φ∗

p and θ∗
q , see also Fig. 2. Note that in Eq. (57) the superscript α

for the orthonormal base vectors n, s and t given by Eq. (53) has vanished, as these vectors
now are evaluated at discrete spherical polar coordinates instead of at the particle contacts,
i.e., n = n(φ∗

p, θ∗
q ), s = s(φ∗

p, θ∗
q ) and t = t(φ∗

p, θ∗
q ). The discrete spherical polar coordinates

φ∗
p and θ∗

q should have representative values within the small, finite interval considered,
φ∗

p ∈ [φp−1, φp] ∧ θ∗
q ∈ [θq−1, θq ], whereby all particle contacts αρ∗

pq
within this interval are

identified and accounted for. The incremental solid angle related to this interval then follows
as

��pq = sin θ∗
q �θq �φp with p,q ∈ [1,2, . . .∞>, (58)

where the incremental spherical polar coordinates are given by �φp = φp −φp−1 and �θq =
θq − θq−1. Accordingly, the probability P n

��pq
that the “combined contact parameter” kα

n lαlα

appearing in Eq. (57) lies within the finite interval ��pq can be expressed as

P n
��pq

=
∑

α=αρ∗
pq

kα
n lαlα

∑Nc

α=1 kα
n lαlα

. (59)

Similarly, the probabilities P s
��pq

and P t
��pq

related to the combined contact parameters
kα

s lαlα and kα
t lαlα appearing in Eq. (57) read

P s
��pq

=
∑

α=αρ∗
pq

kα
s lαlα

∑Nc

α=1 kα
s lαlα

,

P t
��pq

=
∑

α=αρ∗
pq

kα
t lαlα

∑Nc

α=1 kα
t lαlα

.

(60)

For simplicity, it is assumed that the three probabilities in Eqs. (59) and (60) are equal, and
thus are represented by one and the same probability P��pq , i.e.,

P��pq = P n
��pq

= P s
��pq

= P t
��pq

, (61)

which can be expressed in terms of a probability density ξ = ξ(θ∗
q , φ∗

p) as

P��pq = ξ(θ∗
q , φ∗

p)��pq

= ξ(θ∗
q , φ∗

p) sin θ∗
q �θq �φp , (62)

whereby Eq. (58) has been substituted to obtain the final expression. Note that the sum of
all discrete probabilities needs to be equal to unity, i.e.,

∞∑

p=1

∞∑

q=1

P��pq = 1 . (63)
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Analogous to Eq. (59), P�pq is further supposed to reflect the probabilities regarding the
“higher-order combined contact parameters” in normal particle contact direction, kα

n lαlαlα

and kα
n lαlαlαlα , that appear in Eq. (57):

P��pq =
∑

α=αρ∗
pq

kα
n lαlαlα

∑Nc

α=1 kα
n lαlαlα

=
∑

α=αρ∗
pq

kα
n lαlαlαlα

∑Nc

α=1 kα
n lαlαlαlα

, (64)

and, similar to Eq. (60), the probabilities with respect to higher-order combined contact
parameters in the two tangential particle contact directions:

P��pq =
∑

α=αρ∗
pq

kα
s lαlαlα

∑Nc

α=1 kα
s lαlαlα

=
∑

α=αρ∗
pq

kα
s lαlαlαlα

∑Nc

α=1 kα
s lαlαlαlα

,

P��pq =
∑

α=αρ∗
pq

kα
t lαlαlα

∑Nc

α=1 kα
t lαlαlα

=
∑

α=αρ∗
pq

kα
t lαlαlαlα

∑Nc

α=1 kα
t lαlαlαlα

.

(65)

Hence, in accordance with Eqs. (59), (60), (61), (64) and (65), all combined contact param-
eters for simplicity reasons are assumed to be related to one common probability P��pq . In
addition, for the combined contact parameters appearing in the denominators of Eqs. (59),
(60), (64) and (65), the average values across the particle volume V can be calculated as

knll = 1

Nc

Nc∑

α=1

kα
n lαlα , knlll = 1

Nc

Nc∑

α=1

kα
n lαlαlα , knllll = 1

Nc

Nc∑

α=1

kα
n lαlαlαlα ,

ksll = 1

Nc

Nc∑

α=1

kα
s lαlα , kslll = 1

Nc

Nc∑

α=1

kα
s lαlαlα , ksllll = 1

Nc

Nc∑

α=1

kα
s lαlαlαlα ,

ktll = 1

Nc

Nc∑

α=1

kα
t lαlα , ktlll = 1

Nc

Nc∑

α=1

kα
t lαlαlα , ktllll = 1

Nc

Nc∑

α=1

kα
t lαlαlαlα ,

(66)

with the superimposed bar indicating the average of the corresponding parameter. Substitut-
ing Eqs. (59) to (66) into Eq. (57) leads to

Cijkl = Nc

V

∑

φ∗
p

∑

θ∗
q

(
knll nink + ksll sisk + ktll ti tk

)
njnl ξ(θ∗

q , φ∗
p) sin θ∗

q �θq �φp ,

Fijklm = Nc

2V

∑

φ∗
p

∑

θ∗
q

(
knlll ninl + kslll sisl + ktlll ti tl

)
njnknm ξ(θ∗

q , φ∗
p) sin θ∗

q �θq �φp ,

Aijklmn = Nc

4V

∑

φ∗
p

∑

θ∗
q

(
knllll ninl + ksllll sisl + ktllll ti tl

)
njnknmnn ξ(θ∗

q ,φ∗
p) sin θ∗

q �θq �φp .

(67)
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In the limit of the intervals �φp and �θq approaching to zero, the finite sums defining the
elastic stiffness tensors in Eq. (67) turn into corresponding integral expressions:

Cijkl = Nc

V

∫ 2π

φ=0

∫ π

θ=0

(
knll nink + ksll sisk + ktll ti tk

)
njnl ξ(θ,φ) sin θ dθ dφ ,

Fijklm = Nc

2V

∫ 2π

φ=0

∫ π

θ=0

(
knlll ninl + kslll sisl + ktlll ti tl

)
njnknm ξ(θ,φ) sin θ dθ dφ ,

Aijklmn = Nc

4V

∫ 2π

φ=0

∫ π

θ=0

(
knllll ninl + ksllll sisl + ktllll ti tl

)
njnknmnn ξ(θ,φ) sin θ dθ dφ .

(68)
The above equations are valid for packings composed of arbitrarily-shaped particles,
whereby, as can be concluded from the discretized expressions Eqs. (62) and (63), the prob-
ability density function ξ needs to satisfy the condition

∫ 2π

φ=0

∫ π

θ=0
ξ(θ,φ) sin θ dθ dφ = 1 . (69)

Observe from Eqs. (59) to (65) that the probability density function is determined by a com-
bined directional distribution of i) the particle contact stiffnesses, ii) the branch vectors (i.e.,
the local particle geometries), and iii) the number of particle contacts and, in this way, effec-
tively characterizes the anisotropic properties of the particle packing. Note that the current,
microstructural definition for the probability density function ξ allows for a more complete
interpretation of anisotropy compared to the interpretation commonly used in other works, in
which anisotropy is phenomenologically ascribed to spatial variations in the “density of par-
ticle contacts”, see e.g., [16, 17]. Although anisotropy aspects can be studied for packings of
arbitrarily-shaped particles by applying Eq. (68), from hereon a monodisperse packing com-
posed of spheres will be considered. This specific choice will not affect the nature and main
features of the modelling results, and has the advantage that the closed-form expressions
calculated for the elastic coefficients remain relatively simple.

For a monodisperse packing composed of spheres made of one and the same elastic
material, the linear elastic contact stiffnesses may be assumed to be uniform across the
granular volume V , i.e., kα

n = kn, kα
s = ks and kα

t = kt, ∀α, and the branch vector between
the particles is expressed by l = 2rn, with r the particle radius. In addition, the contact
area between two particles has a circular shape, so that the two shear stiffnesses defining
the contact stiffness tensor, Eq. (52), can be assumed identical, i.e., ks = kt. Furthermore,
the averages of the combined contact parameters presented in Eq. (66) may be replaced
by products of the associated, individual contact parameters, as in knll = knl

2, by which
Eq. (68) specifies to

Cijkl = ρc l2
∫ 2π

φ=0

∫ π

θ=0
(kn nink + ks (sisk + ti tk)) njnl ξ sin θ dθ dφ ,

Fijklm = ρc l3

2

∫ 2π

φ=0

∫ π

θ=0
(kn ninl + ks (sisl + ti tl)) njnknm ξ sin θ dθ dφ ,

Aijklmn = ρc l4

4

∫ 2π

φ=0

∫ π

θ=0
(kn ninl + ks (sisl + ti tl)) njnknmnn ξ sin θ dθ dφ ,

(70)
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with ρc = Nc/V the volume number density of the particle contacts. For reasons of brevity,
the dependencies of n, s, t and ξ on the spherical polar coordinates θ and φ have been
omitted in Eq. (70).

Through Eq. (70), the probability density function ξ = ξ(θ,φ) effectively incorporates
the anisotropic characteristics of the monodisperse particle structure in the macrocopic stiff-
ness tensors characterizing the strain-gradient continuum. Since the particle contacts stiff-
ness and particle geometry are uniform across a monodisperse packing of spheres, the prob-
ability density function is solely characterized by the directional distribution of the number
of particle contacts. In the subsections below, micromechanics-based stiffness tensors for the
strain-gradient continuum are derived by including in Eq. (70) functional forms for ξ(θ,φ)

that reflect various degrees of elastic symmetry, as considered in Sect. 3.

4.2 Directional Distribution of Particle Contact Properties

Following the pioneering work of Chang and Misra [16], the directional distribution of par-
ticle contacts properties ξ = ξ(θ,φ) that appears in Eq. (70) is expressed by means of a
spherical harmonics expansion:

ξ(θ,φ) = 1

4π

[

1 +
∞∑

k=2

′
[

a′
k0Pk(cos θ) +

k∑

m=1

P m
k (cos θ)

[
a′

km cosmφ + b′
km sinmφ

]
]]

,

(71)
where a′

k0, a′
km, and b′

km denote fabric parameters that represent the directional dependence
of the contact properties between particles, Pk(cos θ) is the Legendre polynomial of degree
k with respect to cos θ , and P m

k (cos θ) is its associated Legendre function of degree m. The
special summation symbol �′ indicates that the summation is performed only with respect
to even integers k. Note that the upper limit of the second summation in Eq. (71) has been
set to k instead of infinity, as for m > k the associated Legendre function is equal to zero,
P m

k (cos θ) = 0. Defining the probability density function in terms of Legendre polynomials
and associated Legendre functions guarantees that (i) the directional distribution of particle
contacts is described by a series of orthonormal functions whose integral over the surface of
a sphere is always equal to unity, in accordance with Eq. (69), and (ii) allows for a systematic
inclusion of the effects of reflection and rotation symmetries that characterise the planes and
axes of elastic symmetry. Accordingly, the elastic stiffness tensors of isotropic, transversely
isotropic, orthotropic, monoclinic and triclinic granular materials are respectively studied in
Sects. 4.3, 4.4, 4.5, 4.6 and 4.7, by defining a proper density distribution function for these
materials based on the general expression, Eq. (71).

4.3 Elastic Stiffness Components for an Isotropic Granular Material

An isotropic granular material is represented by a uniform directional distribution of particle
contact characteristics. Hence, the contributions of the fabric parameters a′

k0, a′
km, and b′

km

to the probability density function, Eq. (71), vanish, and only the first, constant term in the
right-hand side of the expression is preserved:

ξ = 1

4π
. (72)

By substituting Eq. (72) into Eq. (70), closed-form expressions can be derived for the stiff-
ness tensors of the isotropic elastic granular material. Accordingly, the fourth-order and
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sixth-order stiffness tensors C and A given by Eqs. (40) to (43) are respectively character-
ized by the nonzero components

c1 = ρc l2

15
(kn − ks) ,

c2 = ρc l2

30
(2kn + 3ks) ,

(73)

and

a1 = a2 = a11 = ρc l4

420
(kn − ks) ,

a7 = a8 = ρc l4

420
(kn + 6ks) ,

(74)

while the components of the fifth-order stiffness tensor vanish, F = 0. The above expres-
sions for the elastic coefficients ci of the fourth-order stiffness tensor C are in agreement
with those computed for other isotropic GMA-based models [11, 15, 16, 58, 62]. Further-
more, the components ci and ai in Eqs. (73) and (74) satisfy the equalities in Eqs. (36) and
(37) regarding the other nonzero components, and the result F = 0 is in agreement with the
macro-scale outcome presented in Table 3. Nevertheless, from the GMA homogenization
procedure the number of independent coefficients ai of the sixth-order tensor A is equal
to two, see Eq. (74), while from symmetry considerations at the macro-scale it comes out
as 5, see Eq. (39). It may thus be concluded that the specific granular microstructure of
equal-sized spheres considered in the GMA approach imposes additional constraints on the
coefficients of the sixth-order elastic tensor A. Indeed, Eqs. (73) and (74) show that at the
microstructural level the higher-order continuum model is characterized by only three in-
dependent parameters in total, which are the parameters ρcl

2kn and ρcl
2ks related to the

normal and shear contact stiffnesses, and the magnitude of the branch vector l(= 2r). The
latter parameter induces a length scale dependency l2 in the coefficients ai of the sixth-order
stiffness tensor A, as can be concluded from the difference in dimension of the coefficients
ai and ci , see Eqs. (73) and (74).

The fact that the characteristics of the granular microstructure can reduce the number of
independent coefficients of the macroscopic stiffness tensors has also been reported for other
GMA-based higher-order continuum models [56, 58]. In specific, a reduction of the number
of independent coefficients caused by the granular microstructure narrows the conditions
that the elastic constants need to satisfy from macro-scale elastic stability considerations.
As a basic example: if the monodisperse packing is assumed to consist of perfectly smooth
spheres for which the shear stiffness is zero, ks = 0, it follows from Eq. (73) that the two
elastic coefficients defining the fourth-order stiffness tensor C become equal, c1 (= λ) =
c2 (= μ) = ρcl

2kn/15; the characterization of C by only one independent elastic coefficient
corresponds to an isotropic elastic material with a specific Poisson’s ratio of ν = 0.25, which
is a clear restriction of the common range of possible values −1 < ν < 0.5 that follows
from elastic stability requirements. Furthermore, in the general case of 0 ≤ ks < ∞, the two
coefficients given by Eq. (73) correspond to a range of Poisson’s ratios of −1 < ν ≤ 0.25;
despite that the number of two independent coefficients for C equals the number following
from symmetry considerations at the macro-scale, see Table 3, this range of Poisson’s ratios
still is somewhat smaller than that determined from elastic stability requirements, which is
due to the constraining effect caused by the kinematic hypothesis Eq. (46), see also [12].
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4.4 Elastic Stiffness Components for a Transversely Isotropic Granular Material

A transversely isotropic elastic material is characterized by three orthogonal planes of elastic
symmetry and one axis of rotational symmetry. Without loss of generality, in Sect. 3.4 the
normal directions of the planes of elastic symmetry are taken in accordance with the x1-,
x2- and x3-directions illustrated in Fig. 2, and the axis of rotational symmetry is assumed
to correspond with the x3-direction. The x3-plane thus represents the plane of isotropy, so
that the directional distribution of the elastic properties is independent of the (in-plane)
azimuthal angle φ in Fig. 2, and only depends on the polar angle θ . Correspondingly, the
fabric parameters a′

km and b′
km in the probability distribution function Eq. (71) vanish, by

which the expression reduces to

ξ(θ) = 1

4π

[

1 +
∞∑

k=2

′a′
k0Pk (cos θ)

]

. (75)

After inserting Eq. (75) into Eq. (70) and carrying out the integration procedure, the macro-
scopically independent components of the stiffness tensors C and A in Eqs. (30) to (33) are
obtained as

C11 = ρc l2

420

(
4(21 − 6a′

20 + a′
40)kn + (56 − 4a′

20 − 4a′
40)ks

)
,

C12 = ρc l2

315
(21 − 6a′

20 + a′
40)(kn − ks),

C13 = ρc l2

315
(21 + 3a′

20 − 4a′
40)(kn − ks),

C33 = ρc l2

315

(
63 + 36a′

20 + 8a′
40)kn + 2(21 + 3a′

20 − 4a′
40)ks

)
,

C44 = ρc l2

1260

(
4(21 + 3a′

20 − 4a′
40)kn + (126 + 9a′

20 + 16a′
40)ks

)
,

(76)

and

A0101 = ρc l4

60060

(
5(429 − 143a′

20 + 39a′
40 − 5a′

60)kn + (858 − 143a′
20 − 52a′

40 + 25a′
60)ks

)
,

A0102 = ρc l4

180180

(
3(429 − 143a′

20 + 39a′
40 − 5a′

60)kn + (1716 − 429a′
20 + 26a′

40 + 15a′
60)ks

)
,

A0103 = ρc l4

180180

(
3(429 − 91a′

40 + 30a′
60)kn + (1716 + 429a′

20 − 299a′
40 − 90a′

60)ks

)
,

A0112 = ρc l4

60060
(429 − 143a′

20 + 39a′
40 − 5a′

60)(kn − ks),

A0117 = ρc l4

60060
(429 − 91a′

40 + 30a′
60)(kn − ks),

A0202 = ρc l4

60060

(
(429 − 143a′

20 + 39a′
40 − 5a′

60)kn + (2574 − 715a′
20 + 104a′

40 + 5a′
60)ks

)
,

A0203 = ρc l4

180180

(
(429 − 91a′

40 + 30a′
60)kn + (2574 + 429a′

20 − 481a′
40 − 30a′

60)ks
)
,
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A0217 = ρc l4

180180
(429 − 91a′

40 + 30a′
60)(kn − ks),

A0303 = ρc l4

180180

(
(1287 + 429a′

20 − 208a′
40 − 120a′

60)kn + (7722 + 4719a′
20 + 1352a′

40 + 120a′
60)ks

)
,

A0317 = ρc l4

180180
(1287 + 429a′

20 − 208a′
40 − 120a′

60)(kn − ks),

A0404 = ρc l4

180180

(
(429 − 91a′

40 + 30a′
60)kn + (2574 + 429a′

20 − 481a′
40 − 30a′

60)ks

)
,

A0411 = ρc l4

180180
(429 − 91a′

40 + 30a′
60)(kn − ks),

A0505 = ρc l4

180180

(
3(429 − 91a′

40 + 30a′
60)kn + (1716 + 429a′

20 − 299a′
40 − 90a′

60)ks

)
,

A0513 = ρc l4

60060
(429 − 91a′

40 + 30a′
60)(kn − ks),

A0514 = ρc l4

180180
(429 − 91a′

40 + 30a′
60)(kn − ks),

A0515 = ρc l4

180180
(1287 + 429a′

20 − 208a′
40 − 120a′

60)(kn − ks),

A1313 = ρc l4

60060

(
(429 − 91a′

40 + 30a′
60)kn + 6(429 − 143a′

20 + 39a′
40 − 5a′

60)ks

)
,

A1314 = ρc l4

180180

(
(429 − 91a′

40 + 30a′
60)kn + 6(429 − 143a′

20 + 39a′
40 − 5a′

60)ks
)
,

A1315 = ρc l4

180180

(
(1287 + 429a′

20 − 208a′
40 − 120a′

60)kn + 4(429 − 91a′
40 + 30a′

60)ks

)
,

A1515 = ρc l4

180180

(
15(429 + 286a′

20 + 104a′
40 + 16a′

60)kn + 2(1287 + 429a′
20 − 208a′

40 − 120a′
60)ks

)
,

A1616 = ρc l4

180180

(
(1287 + 429a′

20 − 208a′
40 − 120a′

60)kn + 4(429 − 91a′
40 + 30a′

60)ks

)
.

(77)
As for the isotropic material, the components of the fifth-order stiffness tensor are zero,
F = 0, which is consistent with the macro-scale result reported in Table 3. It has been fur-
ther confirmed that the nonzero coefficients in Eqs. (76) and (77) satisfy the equalities given
by Eqs. (28) and (29) regarding the other nonzero coefficients. Observe from Eqs. (76) and
(77) that the transversely isotropic material is characterized by 6 independent micro-scale
parameters in total, which are the contact stiffness-related parameters ρcl

2kn and ρcl
2ks

and the length scale parameter l (which were also identified for the isotropic material in
Sect. 4.3), and the fabric parameters a′

20, a′
40 and a′

60. Essentially, the higher-order fabric
parameters a′

80, a
′
100, a

′
120, . . . etc. vanish after carrying out the integration in Eq. (70), and

thus have no influence on the properties of the transversely isotropic elastic material. Out
of the 6 independent micro-scale parameters, the fourth-order stiffness tensor C is defined
by 4 independent parameters, i.e., the two contact stiffness-related parameters ρcl

2kn and
ρcl

2ks and the two fabric parameters a′
20 and a′

40, see Eq. (76), while the sixth-order stiffness
tensor A is characterized by 5 independent parameters, i.e., two contact stiffness-related pa-
rameters ρcl

4kn and ρcl
4ks, and the three fabric parameters a′

20, a′
40 and a′

60, see Eq. (77).
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Conversely, from macro-scale symmetry considerations, the stiffnesses C and A of the trans-
versely isotropic material are respectively defined by 5 and 21 independent coefficients, see
Table 3 and Eqs. (76) and (77). Hence, in contrast to the isotropic elastic material, the num-
ber of independent coefficients of both C and A are reduced by the constraints imposed by
the microstructure of equal-sized spheres.

4.5 Elastic Stiffness Components for an Orthotropic Granular Material

For the modelling of an orthotropic granular material, the probability density function,
Eq. (71), needs to represent the materials’ elastic symmetry with respect to three mutu-
ally orthogonal (x1-, x2- and x3) planes. In accordance with Fig. 2, these three reflections
lead to the following conditions for the probability density function:

ξ(θ,φ) = ξ(π − θ,φ) reflection with respect to the x3-plane,
ξ(θ,φ) = ξ(θ,−φ) reflection with respect to the x2-plane,
ξ(θ,φ) = ξ(θ,π − φ) reflection with respect to the x1-plane.

(78)

In correspondence with Eq. (78), in Eq. (71) the fabric parameters a′
km related to uneven

values of m and the fabric parameters b′
km must vanish, by which the probability density

function becomes

ξ(θ,φ) = 1

4π

[

1 +
∞∑

k=2

′
[

a′
k0Pk (cos θ) +

k∑

m=2

′P m
k (cos θ)

[
a′

km cosmφ
]
]]

. (79)

Here, the summations over k and m are both performed with respect to even indices, as
designated by the special summation symbol �′. Inserting the above probability density
function into Eq. (70), the components of fourth-, fifth-, and sixth-order elasticity tensors of
the orthotropic material can be calculated. Similar to the transversely isotropic material, for
the fabric parameter a′

k0 the first three components a′
20, a′

40 and a′
60 survive the integration

in Eq. (70), and the rest of the components vanishes. Additionally, for the fabric parameter
a′

km only the first 6 components a′
22, a′

42, a′
44, a′

62, a′
64 and a′

66 survive the integration. To-
gether with the 6 independent micro-scale parameters identified for the transversely isotropic
material, these 6 fabric parameters lead to a total of 12 independent parameters for the or-
thotropic material. Out of these 12 parameters, the fourth-order orthotropic elastic tensor C
is defined by 7 independent micro-scale parameters, i.e., the two contact stiffness-related
parameters ρcl

2kn and ρcl
2ks, and the 5 fabric parameters a′

20, a′
40, a′

22, a′
42, a′

44. Further,
the sixth-order tensor A is defined by 11 independent micro-scale parameters, namely the
two contact stiffness-related parameters ρcl

4kn and ρcl
4ks, and the three fabric parameters

a′
ko and 6 fabric parameters a′

km mentioned above. Note that the 12-th independent micro-
scale parameter is the mico-structural length scale l that is responsible for the difference in
dimension between the stiffness tensors C and A. It has been confirmed that the non-zero
and zero components of C and A are in a agreement with the stiffness matrices given by
Eqs. (21) and (23). The number of independent coefficients as obtained from macro-scale
symmetry considerations is equal to 9 for C and 51 for A, see Table 3, illustrating that the
independent components of both C and A are reduced by the granular microstructure of
equal-sized spheres. Finally, from Eq. (70)2 the components of fifth-order stiffness tensor F
appear to be equal to zero, F = 0, which is in agreement with the result from macro-scale
symmetry considerations.
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The total number of 60 macroscopically independent stiffness components of the or-
thotropic elastic strain-gradient material is too large for presenting the closed-form expres-
sions of the components, as obtained from solving Eq. (70). Instead, the stiffness response
is plotted for a relatively simple orthotropic elastic material, for which the probability den-
sity function, Eq. (79), is defined by a single fabric parameter a′

22. The 9 components of
the fourth-order orthotropic stiffness tensor C and a selection of 9 components of the sixth-
order orthotropic stiffness tensor A are analyzed by varying this fabric parameter in the
range 0 ≤ a′

22 ≤ 0.2. In addition, a simple transversely isotropic material characterized by
a single fabric parameter a′

20 is considered for comparison, for which the above-mentioned
stiffness components are analyzed in a similar range of the fabric parameter, 0 ≤ a′

20 ≤ 0.2.
The influence of the fabric parameters a′

22 and a′
20 on the components of the fourth-

order elastic tensor C of, respectively, the orthotropic granular material and the transversely
isotropic granular material are shown in Figs. 3(a) and (b), while for selected components of
the sixth-order elastic tensor A the dependencies on a′

22 and a′
20 are displayed in Figs. 3(c)

and (d), respectively. Further, the probability density functions for the orthotropic and trans-
versely isotropic materials are respectively depicted at the minimum and maximum fabric
parameter values of 0.0 and 0.2, with the former case representing the isotropic limit for
which these probability density functions become spherical. For the generation of the com-
putational results, the shear contact stiffness has been set equal to one half of the normal
contact stiffness, ks = kn/2. The stiffness components in Fig. 3 are presented in dimension-
less form, whereby their subindices should be interpreted in accordance with the notation
summarized in Tables 1 and 2. At the isotropic limit, a′

22 = 0, a′
20 = 0, the stiffness compo-

nents of C and A of the granular material indeed satisfy the symmetry conditions given by
Eq. (40) and Eqs. (41) to (43), i.e.,

C11 = C22 = C33 ,

C12 = C13 = C23 ,

C44 = C55 = C66 = 1

2
(C11 − C12) ,

(80)

and

A0101 = A0808 = A1515 ,

A0112 = A0117 = A0608 ,

A0202 = A0303 = A0707 .

(81)

Observe that for nonzero values of the fabric parameters a′
22 and a′

20 the elastic symme-
try expressed by Eqs. (80) and (81) is released, whereby the granular material respectively
becomes increasingly orthotropic and transversely isotropic for a larger value of the corre-
sponding fabric parameter. It can be confirmed that for the transversely isotropic granular
material the stiffness components of C and A depicted in Figs. 3(b) and (d) meet the sym-
metry conditions given by Eq. (30) and Eqs. (31) to (33), i.e.,

C11 = C22 ,

C13 = C23 ,

C44 = C55 ,

C66 = 1

2
(C11 − C12) ,

(82)
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Fig. 3 Influence of the fabric parameters a′
22 and a′

20 on, respectively, the components of the fourth-order
elastic tensor C and selected components of the sixth-order elastic tensor A of orthotropic and transversely
isotropic materials. The probability density functions of these materials are depicted at the minimum and
maximum fabric parameter values of 0.0 and 0.2, respectively. (a) Components of the fourth-order stiffness
tensor C of an orthotropic material. (b) Components of the fourth-order stiffness tensor C of a transversely
isotropic material. (c) Selected components of the sixth-order stiffness tensor A of an orthotropic material.
(d) Selected components of the sixth-order stiffness tensor A of a transversely isotropic material

and

A0101 = A0808 ,

A0112 = A0608 ,

A0202 = A0707 .

(83)

Further, for the orthotropic granular material the stiffness components of C and A displayed
in Figs. 3(a) and (c) all have different values, in accordance with Eqs. (21) and (23).
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4.6 Elastic Stiffness Components for a Monoclinic Granular Material

For a monoclinic granular material, the probability density function, Eq. (71), should repre-
sent one plane of elastic symmetry. Assuming the x3-plane as the plane of elastic symmetry,
in accordance with Fig. 2 the probability density function needs to satisfy the condition

ξ(θ,φ) = ξ(π − θ,φ). (84)

Consequently, in Eq. (71) the fabric parameters a′
km and b′

km related to uneven values of m
vanish, by which the expression reduces to

ξ(θ,φ) = 1

4π

[

1 +
∞∑

k=2

′
[

a′
k0Pk (cos θ) +

k∑

m=2

′P m
k (cos θ)

[
a′

km cosmφ + b′
km sinmφ

]
]]

.

(85)
Inserting Eq. (85) into Eq. (70) shows that for the fabric parameter b′

km the first 6 components
b′

22, b′
42, b′

44, b′
62, b′

64 and b′
66 survive the integration, and the rest of the components van-

ishes. In addition to the 12 independent micro-scale parameters identified for the orthotropic
material, these 6 fabric parameters result in a total of 18 independent micro-scale parameters
for the monoclinic material. Out of these 18 parameters, the fourth-order elasticity tensor C
is characterized by 10 independent micro-scale parameters, namely the 7 independent pa-
rameters identified for the orthotropic material and the three fabric parameters b′

22, b′
42, b′

44.
The sixth-order elasticity tensor A is characterized by 17 independent micro-scale parame-
ters, which are the 11 independent parameters identified for the orthotropic material and the
6 fabric parameters b′

km mentioned above. The zero and non-zero components of C and A
agree with those of the macro-scale stiffness tensors given by Eqs. (16) and (18). Further,
from Eq. (70)2 the components of the fifth-order elasticity tensor appear to be zero, F = 0.
It may thus be concluded that the generation of non-zero stiffness components for F, as
dictated from macro-scale symmetry requirements for the monoclinic material, see Table 3,
requires a more extensive description of the directional distribution of the particle contact
characteristics than provided by the spherical harmonics expansion, Eq. (85).

4.7 Elastic Stiffness Components for a Triclinic Granular Material

For the modelling of a triclinic granular material, the complete form of the probability den-
sity function, Eq. (71), must be applied, which, after substitution into Eq. (70), shows that
for the fabric parameter a′

k0 the first three components, a′
20, a′

40 and a′
60, are preserved after

the integration, while for the fabric parameter a′
km, the first 12 components a′

21, a′
22, a′

41,
a′

42, a′
43, a′

44, a′
61, a′

62, a′
63, a′

64, a′
65 and a′

66 are preserved, and for the fabric parameter b′
km

also the first 12 components b′
21, b′

22, b′
41, b′

42, b′
43, b′

44, b′
61, b′

62, b′
63, b′

64, b′
65 and b′

66 are
preserved. Accordingly, the triclinic granular material is characterized by 30 independent
micro-scale parameters, which are the 27 fabric parameters mentioned above, the stiffness-
related parameters ρcl

2kn and ρcl
2ks, and the magnitude of the branch vector l. From these

30 parameters, the fourth-order elasticity tensor C is defined by 16 independent micro-scale
parameters, which are the two contact stiffness-related parameters ρcl

2kn and ρcl
2ks, and

the 14 fabric parameters a′
20, a′

40, a′
21, a′

22, a′
41, a′

42, a′
43, a′

44, b′
21, b′

22, b′
41, b′

42, b′
43, b′

44. In
addition, the sixth-order elasticity tensor A is defined by 29 independent micro-scale param-
eters, namely the two contact stiffness-related parameters ρcl

4kn and ρcl
4ks and the 27 fabric

parameters mentioned above. As for the monoclinic material, the components of the fifth-
order elasticity tensor of the triclinic material vanish, F = 0. Accordingly, irrespective of the
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Table 4 Overview of the number of independent elastic coefficients Ni for the fourth-order and sixth-order
elasticity tensors C and A, as obtained from GMA-based homogenization solution for a system of equal-sized
spheres with various degrees of elastic symmetry. For comparison, the corresponding number of independent
components following from macro-scale symmetry considerations are given between parentheses, as taken
from Table 3. The components of the GMA-based fifth-order elasticity tensor are zero for all degrees of
symmetry, F = 0

Degree of elastic symmetry Ni

C A

No plane of elastic symmetry - triclinic 16 (21) 29 (171)

One plane of elastic symmetry - monoclinic 10 (13) 17 (91)

Two planes of elastic symmetry 7 (9) 11 (51)

Three planes of elastic symmetry - orthotropic 7 (9) 11 (51)

Three planes and one axis of elastic symmetry - transversely isotropic 4 (5) 5 (21)

Infinite number of planes and axes of elastic symmetry - isotropic 2 (2) 2 (5)

level of anisotropy as defined via Eq. (71), for the granular system of equal-sized spheres
the interaction between the Cauchy stress σ and double stress μ disappears from the general
constitutive expressions, Eq. (6), and only takes place via the equilibrium condition, Eq. (8).

Table 4 summarizes the number of independent parameters Ni that define the fourth-
order and sixth-order elasticity tensors of granular materials with different degrees of elastic
symmetry, as following from the GMA-based homogenization procedure. For comparison,
the corresponding number of independent components following from macro-scale sym-
metry considerations are given between parentheses, as taken from Table 3. The overview
clearly shows that the discrepancy between the number of independent micro-scale and
macro-scale parameters for the sixth-order tensor A is larger than for the fourth-order tensor
C, and grows when the degree of elastic symmetry decreases.

The assessment of the effect of the granular microstructure on the stiffness tensors C, F
and A of relatively complicated anisotropic granular materials, as characterized by a more
advanced directional distribution of the particle contact characteristics than Eq. (71), can be
studied in a comparable fashion as shown above. Similarly, the framework can be extended
to alternative higher-order continua.

5 Concluding Remarks

A multi-scale framework is constructed for the computation of the stiffness tensors of an
elastic strain-gradient continuum endowed with an anisotropic microstructure of arbitrarily-
shaped particles. The influence of microstructural features on the macroscopic stiffness ten-
sors is demonstrated by comparing the fourth-order, fifth-order and sixth-order elastic stiff-
ness tensors obtained from macro-scale symmetry considerations to the stiffness tensors de-
duced from homogenizing the elastic response of the granular microstructure. The applied
homogenization procedure is the Granular Micromechanics Approach (GMA), in which the
effective behaviour of an assembly of arbitrarily-shaped particles is deduced from the lo-
cal interactions and properties at the particle level. In elaborating the GMA formulation,
special attention is paid to systematically relating the particle properties to the probability
density function describing their directional distribution, which allows to explicitly connect
the level of anisotropy of the particle assembly to local variations in particle stiffness and
morphology.
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The applicability of the multi-scale framework is exemplified by computing the stiffness
tensors for various anisotropic granular media composed of equal-sized spheres. Indepen-
dent of the degree of anisotropy, the locations of the nonzero and zero coefficients defining
the structure of the homogenized elastic stiffness tensors agree with those obtained from
macro-scale symmetry considerations. Further, the number of independent coefficients of
the homogenized stiffness tensors appears to be determined by the number of independent
microstructural parameters, which is equal to, or less than, the number of independent stiff-
ness coefficients following from macro-scale symmetry considerations. Since the modelling
framework has a general character, it can be applied to different higher-order granular con-
tinua and arbitrary types of material anisotropy.
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