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Abstract
In the constrained Cosserat theory of a rod with a rigid cross-section, the balance of angular
momentum is satisfied by a restriction on the constitutive equations that requires a second
order tensor to be symmetric. The kinematics of the rod are determined by satisfying the bal-
ances of linear and director momentum and kinematic constraints. In contrast, the Antman
model for a special Cosserat theory of rods proposes constitutive equations directly for the
force and mechanical moment applied to the rod and the kinematics are determined by the
balances of linear and angular momentum. These two models differ by their treatment of
angular momentum. This note poses and answers the question: Are the solutions of these
two models identical for the same strain energy?
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1 Introduction

General nonlinear theories of rods can be found in [1–7]. Two models of a nonlinear hyper-
elastic rod with a rigid cross-section admitting bending, tangential shear deformation and
torsion are considered in this note. The kinematics and strain energies of both models are
identical but the treatment of angular momentum in the two models is different. One model
considers a constrained theory of a Cosserat rod. In this model the kinematics are deter-
mined by the balances of linear and director momentum as well as the kinematic constraints.
The kinetic quantities are determined by hyperelastic constitutive equations and constraint
responses that ensure the kinematic constraints are satisfied. Also, the balance of angular
momentum is satisfied by restricting a second order tensor to be symmetric in a similar
manner to the symmetry of the Cauchy stress in the three-dimensional theory. The second
model is the special Cosserat theory of rods developed in ([2], Ch. XIII) and is denoted as
the Antman model. In the Antman model the kinematics are determined by satisfying the
balances of linear and angular momentum and constitutive equations are specified directly
for the force and mechanical moment applied to the rod.
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Fig. 1 Sketch of the rigid
cross-section of a rod showing
the Cosserat director d3, which is
tangent to the centroidal curve,
and the director d̃3 of the
Antman model, which is normal
to the cross-section

It was shown in [8] that if the restriction due to the balance of angular momentum is
satisfied in the constrained Cosserat model, then the kinematics can be determined by the
balances of linear and angular momentum, as in the Antman model. This note poses and
answers the question:

Are the solutions of these two models identical for the same strain energy?

2 A Constrained Cosserat Rod with a Rigid Cross-Section

This section summarizes relevant results in [8]. Greek indices take the range (α = 1,2),
Latin indices take the range (1,2,3) and the usual summation convention is used for re-
peated indices. The notation in this note is the same as in [7, 8] where details can be found.

In its current configuration at time t , the position of a material point x on the rod’s
centroidal curve and the director vectors di are expressed in the forms

x = x(S, t) , di = di (S, t) , d3 = d3(S, t) = ∂x
∂S

,

d1/2 = d1 × d2 · d3 > 0 ,

d1 = d−1/2d2 × d3 , d2 = d−1/2d3 × d1 , d3 = d−1/2d1 × d2 ,

(1)

where dα describe the orientation of the rod’s cross-section, d3 is tangent to the centroidal
curve and di are the reciprocal vectors (see Fig. 1). Without loss in generality, the values Di ,
Di of di , di in a zero-stress reference configuration can be specified as a rotating orthonormal
triad

Di (S) = Di (S) , Di · Dj = δij , D1 × D2 · D3 = 1 , (2)

where δij is the Kronecker delta. This specification ensures that S is the arclength coordinate
of the rod’s centroidal curve in its reference configuration.

From [8] it is recalled that the balance of linear momentum and the two balances of
director momentum depend on the force t3, the intrinsic director couples tα and the director
couples mα . Moreover, the balance of angular moment depends on the mechanical moment
m defined by

m = dα × mα . (3)
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As, in the three-dimensional theory, these balance laws are used to write the balance of
angular moment as a restriction that requires the second order tensor T to be symmetric

λT = di ⊗ ti + ∂dα

∂S
⊗ mα = λTT , (4)

where a ⊗ b is the tensor product of two vectors a, b and λ is the stretch of the rod’s
centroidal curve. In the general theory, a strain energy � per unit mass is proposed and
hyperelastic constitutive equations are developed for T, mα , which satisfy the restriction
(4), Then, ti are determined by

ti =
(
λT − ∂dα

∂S
⊗ mα

)
di . (5)

For a rigid cross-section the directors dα satisfy the kinematic constraints

dα · dβ = δαβ , (6)

where δij is the Kronecker delta. From [8], the current tangential stretch λ of the rod’s
centroidal curve, the shear strains γα , the bending strains βα and the torsional strain β3 are
defined by

λ = |d3| , γα = dα · d3 , βα = d3 · ∂dα

∂S
− D3 · ∂Dα

∂S
,

β3 = 1

2

(
d2 · ∂d1

∂S
− d1 · ∂d2

∂S

)
− 1

2

(
D2 · ∂D1

∂S
− D1 · ∂D2

∂S

)
.

(7)

For the constrained theory, part of T is determined by a constraint response that does no
work and ensures that the constraints (6) are satisfied. The remainder of T, and mα are
determined by hyperelastic constitutive equations based on the strain energy function

� = �(λ,γα,βi) , (8)

with these constitutive equations satisfying the restriction (4). Specifically, it was shown in
[8] that the force t3 and mechanical moment m are determined by the constitutive equations

t3 = m
∂�

∂γσ

dσ + mλ−1 ∂�

∂λ
d3 −

(∂d1

∂S
· d3

)(1

2
m

∂�

∂β3
d2 + m

∂�

∂β1
d3

)

−
(∂d2

∂S
· d3

)(
− 1

2
m

∂�

∂β3
d1 + m

∂�

∂β2
d3

)
,

m = m
∂�

∂β2
(d2 × d3) + m

∂�

∂β1
(d1 × d3) + 1

2
m

∂�

∂β3
(d1 × d2 − d2 × d1) ,

(9)

where m(S) is the mass per unit arclength dS. Since dα define the plane of the rod’s cross-
section and d3 is normal to this cross-section, it follows that the terms in m associated with
∂�/∂βα are pure bending terms. Whereas the term associated with ∂�/∂β3 controls torsion
about the cross-section’s normal and includes bending components.
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3 Antman’s Special Cosserat Rod

Using the notational connections

r = x ,
∂r
∂S

= d3 , n = t3 , (10)

the Antman model [2] introduces an orthonormal triad d̃i defined by (see Fig. 1)

d̃α = dα , d̃3 = d1 × d2 . (11)

Also, the vectors u and v are defined by the equations

∂d̃k

∂S
= u × d̃k , uk = u · d̃k , v = d3 , vk = d3 · d̃k . (12)

Then, with the help of these definitions it can be shown that

d3 = vαdα + v3d̃3 , d̃3 = −vα

v3
dα + 1

v3
d3 ,

d1/2 = d1 × d2 · d3 = v3 > 0 ,

u =
(
u1 − u3v1

v3

)
d1 +

(
u2 − u3v2

v3

)
d2 + u3

v3
d3 ,

∂d1

∂S
= u2v1

v3
d1 +

(
u3 + u2v2

v3

)
d2 − u2

v3
d3 ,

∂d2

∂S
= −

(
u3 + u1v1

v3

)
d1 − u1v2

v3
d2 + u1

v3
d3 .

(13)

This Antman model limits attention to a rod which is straight in its zero-stress reference
configuration with Di being constant vectors. For this case, (7) and (13) can be used to
deduce that

λ =
√

v2
1 + v2

2 + v2
3 , γα = vα ,

β1 = −u2

v3
, β2 = u1

v3
, β3 = u3 + 1

2

(u1v1 + u2v2

v3

)
.

(14)

Then, from [2] [Ch, XIII, (7.16)] the constitutive equations for the force t̃3 and the mechan-
ical moment m̃ can be expressed in the forms

� = �̃(ui, vi) = �(λ,γα,βi) ,

t̃3 = m
∂�̃

∂vi

d̃i =
(
m

∂�̃

∂vα

− vα

v3
m

∂�̃

∂v3

)
dα + m

v3

∂�̃

∂v3
d3 ,

m̃ = m
∂�̃

∂ui

d̃i =
(
m

∂�̃

∂uα

− vα

v3
m

∂�̃

∂u3

)
dα + m

v3

∂�̃

∂u3
d3 ,

(15)

where a superposed ˜( ) is used to distinguish the values (t̃3, m̃) of the functional forms for
the Antman model from those (9) for (t3,m) in the constrained Cosserat model. These strain
energy functions will be identical when (λ, γα,βi) are specified by (14).
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4 Do the Two Models Yield the Same Solutions?

In [8] is was shown that the constrained Cosserat model and the Antman model yield the
same balances of linear and angular momentum. Consequently, these two models will yield
the same solutions if the constitutive equations (9) for t3, m are identical to (15) for t̃3, m̃
for all strain energy functions �.

From the above summary it is clear that constrained Cosserat approach requires consti-
tutive equations for T and mα with constraint responses to ensure that the constraints (6)
are satisfied. Moreover, the constitutive equations must satisfy the restriction (4) that T be a
symmetric tensor in order for the balance of angular momentum to be automatically satis-
fied. This procedure yields the constitutive equations (9) for t3, m. Also, the kinematics x,
dα are determined by the balance of linear momentum and the non-trivial balances of direc-
tor momentum. In contrast, the Antman model proposes constitutive equations (15) directly
for t̃3, m̃ and uses the balances of linear and angular momentum to determine the kinematics
x, dα .

From comparison of (9) and (15) it is not obvious that these expressions are identical.
However, by using (13), (14) and the chain rule of differentiation

∂�̃

∂uj

= ∂�

∂λ

∂λ

∂uj

+ ∂�

∂γα

∂γα

∂uj

+ ∂�

∂βi

∂βi

∂uj

,

∂�̃

∂vj

= ∂�

∂λ

∂λ

∂vj

+ ∂�

∂γα

∂γα

∂vj

+ ∂�

∂βi

∂βi

∂vj

,

(16)

it can be shown that (9) and (15) are identical. This result begs the question: Why? The
answer is that proper analysis of a strain energy function that is uninfluenced by superposed
rigid body motions will yield elastic constitutive equations that automatically satisfy the
reduced form of the balance of angular momentum. This means that the restriction (4) is
automatically satisfied so the reduced form of the balance of angular momentum can replace
the results of the nontrivial components of the balances of director momentum, which causes
the solutions of the constrained Cosserat model and the Antman model to be identical for
the same strain energy function.

Furthermore, it is noted that the constrained Cosserat model, based on the general kine-
matics (7), can be used for a rod that is curved and twisted in its zero-stress reference con-
figuration.
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