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Abstract
The analysis of plane stress problems has long been a topic of interest in linear elasticity.
The corresponding problem for non-linearly elastic materials is considered here within the
context of homogeneous incompressible isotropic elasticity. It is shown that when the prob-
lem is posed in terms of the Cauchy stress, a semi-inverse approach must be employed to
obtain the displacement of a typical particle. If however the general plane stress problem
is formulated in terms of the Piola-Kirchhoff stress, the deformation of a particle requires
the solution of a non-linear partial differential equation for both simple tension and sim-
ple shear, the trivial solution of which yields a homogeneous deformation. It is also shown
that the general plane stress problem can be solved for the special case of the neo-Hookean
material.

Keywords Plane stress · Piola-Kirchhoff stress · Incompressible isotropic hyperelastic
materials · Simple tension and shear · Neo-Hookean material

Mathematics Subject Classification 74B20 · 74G55

1 Motivation

Classical non-linear incompressible homogeneous isotropic hyperelasticity as formulated
by Rivlin (see, for example Rivlin [1]) assumes that the Cauchy stress T can be determined
as a function of the left Cauchy-Green deformation tensor B so that

T = f (B), (1.1)

where, using the so-called semi-inverse approach, B is determined from a given displace-
ment field. This is precisely what is needed if accurate and reliable predictions of the stress
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in a deformed body are needed as displacement, but not stress, can be measured experimen-
tally. There is the dual problem however, that has been largely ignored in the literature, of
inverting (1.1) to determine B from a known stress distribution, with the expectation that this
might be most useful in experiments where the stress can be assumed to be homogeneous
and is specified on the boundary of the deformed body. There are two significant impedi-
ments to a satisfactory solution to this dual problem: first, the stress-strain relation (1.1) is
not in general invertible. Secondly, even if invertibility can be achieved, the existence and
uniqueness of a regular deformation generating a pre-assigned left strain-tensor field B is an
open problem (Blume [2]). Blume [2] has shown, however, that if a regular deformation re-
sults in a constant B , then the deformation is homogeneous. This is obviously a very useful
result when determining the existence of a deformation if a given Cauchy stress is assumed
homogeneous.

Batra’s ostensibly simple theorem (Batra [3]) yields insight into this inverse problem
for perhaps the simplest problem that can be posed in this context, i.e., what can be de-
duced about the nature of the deformation for simple tension if the Cauchy stress T has the
form

T = T ex ⊗ ex, (1.2)

where T is a positive constant? Here the standard notation is used to denote unit vec-
tors for a Cartesian co-ordinate system in the deformed configuration. Batra showed
that, if the Empirical Inequalities hold, the left Cauchy-Green tensor B must have the
form

B = diag(λ2, λ−1, λ−1), constant, positive λ, (1.3)

for the incompressible materials of interest here. The issue of determining a corresponding
deformation was not considered by Batra. Trivially one such homogeneous deformation,
and the deformation must be homogeneous (Blume [2]), has the form

x = λX, y = λ− 1
2 Y, z = λ− 1

2 Z, (1.4)

denoting the Cartesian coordinates of a typical particle before and after deformation
by (X,Y,Z) and (x, y, z) respectively, thus resolving the issue of existence. How-
ever the issue of uniqueness remains unresolved, even in this, the simplest of prob-
lems.

The corresponding problem for simple shear was first considered by Moon and Truesdell
[4] who investigated the consequences of assuming a Cauchy stress of the form

T = τ(ex ⊗ ey + ey ⊗ ex), constant τ. (1.5)

This study and subsequent work by, amongst others, Mihai and Goriely [5], Destrade et al.
[6] and Thiel et al. [7] shows that the left Cauchy-Green deformation tensor for incompress-
ible materials must have the form

(B)ij =
⎡
⎢⎣

Bxx Bxy 0
Bxy Bxx 0
0 0 1

B2
xx−B2

xy

⎤
⎥⎦ . (1.6)



Plane Stress Problems for Isotropic Incompressible Hyperelastic Materials

Again, as for simple tension, the deformation field cannot be derived from knowledge of B

but rather it can be simply shown that (1.6) is compatible with a simple shear superposed on
a triaxial stretch so that, for example,

x = λ1X + λ2

√
1 − λ−1

1 λ−1
2 Y, y = λ2Y, z = λ−1

1 λ−1
2 Z, (1.7)

with the uniqueness issue again remaining unresolved.
It should be pointed out that the general issue of constitutive modeling for hyperelas-

tic materials using the inverse approach of considering B = g(T ) has been the subject of
several studies in the literature (see, e.g., [8, 9] and references cited therein). The point of
view proposed in these works is that such an approach is more realistic physically since one
expects deformation to be the result of applied forces rather than the converse. The results to
be presented below may be viewed as specific explicit illustrations of this new approach in
the context of plane stress. In addition to this issue for the Cauchy stress, we also consider
its counterpart for the first Piola-Kirchhoff stress. See also [10] for a recent treatment of
simple shear resulting from applied Piola-Kirchhoff stress.

There is a rich tradition of exploring the consequences of assuming plane stress con-
ditions in linear elasticity (see, for example, Timoshenko and Goodier [11]). However the
corresponding problem for nonlinear elasticity is rarely considered, complicated as it is by
the two difficulties mentioned previously for general dual problems. This is the main con-
cern in this paper. If the plane stress problem is formulated in terms of the Cauchy stress,
then

Txz = Tyz = Tzz = 0, (1.8)

using an obvious notation for the Cartesian components of the stress tensor. It will also
be assumed that the remaining in-plane stresses are homogeneous so that the equations of
equilibrium are satisfied identically. Trivially then the dual problem for plane stress includes
the dual problems of simple tension considered by Batra [3] and simple shear considered
by Moon and Truesdell [4] and their approach based on the classical constitutive law of
expressing the Cauchy stress in terms of the left Cauchy-Green tensor and its invariants
will first be adopted, where the problems of invertibility and existence become immediately
apparent. This is described in Sect. 2.

The problem of compatibility is significantly reduced however by assuming plane stress
conditions in terms of the Piola-Kirchhoff stress P , so that

PxZ = PyZ = PzX = PzY = PzZ = 0. (1.9)

It is shown in Sects. 3 and 4 that the corresponding deformation field must be a plane de-
formation accompanied by a constant out-of-plane stretch for all incompressible isotropic
hyperelastic materials for which the Empirical Inequalities hold. These results are made
more explicit for the case of simple shear in Sect. 5. It is shown that the deformation for
simple shear requires the solution of a non-linear partial differential equation, a particular
solution of which yields a homogeneous deformation. In Sect. 6, it is shown that the general
plane stress problem can be solved explicitly for the neo-Hookean material. The problem of
simple tension is considered in Sect. 7. It is shown that in addition to the non-linear partial
differential equation required for simple shear, the deformation also must satisfy Laplace’s
equation. A particular solution involving a homogeneous deformation is obtained.
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2 Plane Cauchy Stress Problems

The mechanical response of a homogeneous isotropic incompressible hyperelastic solid for
which I3 = detB = detC ≡ 1 is completely determined by specification of the strain energy
per unit undeformed volume W = W(I1, I2) where

I1 = trB, I2 = trB−1. (2.1)

Here B ≡ FF T , C ≡ F T F are the left and right deformation tensors respectively and F is
the deformation gradient tensor. The constitutive law in terms of the Cauchy stress is given
by

T = −pI + 2
∂W

∂I1
B − 2

∂W

∂I2
B−1, (2.2)

where p is an arbitrary scalar field. The Empirical Inequalities

∂W

∂I1
> 0,

∂W

∂I2
≥ 0, (2.3)

will be assumed to hold throughout. The universal relation

T B = BT , (2.4)

follows immediately from (2.2). For the Cauchy plane stress conditions (1.8) this universal
relation yields

Bxy(Txx − Tyy) = Txy(Bxx − Byy), (2.5)

and

BxzTxx + ByzTxy = 0, BxzTxy + ByzTyy = 0. (2.6)

The first of these has an immediate interpretation in terms of simple shear. For exam-
ple, Rivlin’s formulation of plane stress simple shear (Rivlin [1]) specifies Bxx = 1 + K2,
Byy = 1, Bxy = K , where K is the amount of shear. Equation (2.5) then yields the classical
universal relation

Txx − Tyy = KTxy. (2.7)

Murphy et al. [12] observed that an inverted form of Rivlin’s universal relation (2.7) can be
obtained by assuming a stress boundary problem for which Txy �= 0 so that

Bxx − Byy = Txx − Tyy

Txy

Bxy. (2.8)

This result also follows directly from (2.5).
Now consider the second set of universal relations (2.6). It follows that there are two

categories of plane stress boundary value problems. The first is the set of problems for
which

TxxTyy − T 2
xy �= 0, (2.9)
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exemplified by simple shear for which Txx = Tyy = 0, Txy = T �= 0. The second category is
the set which satisfy the singular condition

TxxTyy − T 2
xy = 0,

exemplified by simple tension for which Txx = T �= 0, Tyy = Txy = 0. Counterintuitively
then, simple shear could therefore be considered to be a more regular stress boundary value
than simple tension, at least within the context of plane Cauchy stress.

The singular simple tension problem was considered in [13] and attention will be focused
here instead on the problem of simple shear. It follows immediately from (2.6) than

Bxz = Byz = 0. (2.10)

Solving for the pressure term using the remaining plane stress condition Tzz = 0 and substi-
tution into the constitutive law (2.2) yields the following in-plane stresses:

Txx = 2
∂W

∂I1
(Bxx − Bzz) + 2

∂W

∂I2

(
1

Bzz

− BzzByy

)
,

Tyy = 2
∂W

∂I1

(
Byy − Bzz

) + 2
∂W

∂I2

(
1

Bzz

− BzzBxx

)
,

Txy = 2Bxy

(
∂W

∂I1
+ Bzz

∂W

∂I2

)
. (2.11)

This set of equations and the incompressibility constraint detB = 1, which reduces to

Bzz = 1

BxxByy − B2
xy

, (2.12)

constitute a system of four equations in the four unknowns Bxx , Bxy , Byy , Bzz for stress
boundary value problems. However, inversion of (2.11) in order to obtain the components
of B in terms of the in-plane stresses is challenging, even for the simplest of materials. For
example, for the neo-Hookean material

W = μ

2
(I1 − 3) , (2.13)

where μ is the infinitesimal shear modulus, invertibility requires the solving of a cubic
equation since substitution of (2.13) into (2.11) yields

Bxy = T̂xy, Byy = Bxx + T̂yy − T̂xx,

B3
xx + B2

xx(T̂yy − 2T̂xx) + Bxx(T̂
2
xx − T̂ 2

xy − T̂xx T̂yy) + T̂xx T̂
2
xy − 1 = 0, (2.14)

where the hat notation denotes non-dimensionalisation with respect to μ.
The compatability problems follow immediately from (2.10). In terms of the components

of the deformation gradient tensor F , these equations have the form

FxXFzX + FxY FzY + FxZFzZ = 0, FyXFzX + FyY FzY + FyZFzZ = 0. (2.15)

Noting that FiJ ≡ ∂xi

∂XJ
, where (X,Y,Z), (x, y, z) are the Cartesian coordinates of a typical

particle before and after deformation respectively, it is easily seen that (2.15) constitute an
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underdetermined system of non-linear coupled partial differential equations in (x, y, z). A
semi-inverse approach is typically adopted (Moon and Truesdell [4], Mihai and Goriely [5],
Destrade et al. [6]) to solve this system in which it is assumed that

x = x(X,Y ), y = y(X,Y ), z = z(Z). (2.16)

The incompressibility constraint then yields

z = λZ,
∂x

∂X

∂y

∂Y
− ∂x

∂Y

∂y

∂X
= 1

λ
. (2.17)

Trivially then

FzX = FzY = FxZ = FyZ = 0, (2.18)

and the equations (2.15) are identically satisfied.
Assume now that the constitutive law is invertible. For deformations of the form (2.16),

the non-identically zero components of B can be expressed in terms of the components of
the deformation gradient tensor as follows:

Bxx = F 2
xX + F 2

xY , Byy = F 2
yY + F 2

yX, Bxy = FxXFyX + FyY FxY , Bzz = λ2. (2.19)

Classically the ultimate goal in the analysis of plane stress boundary value problems is the
determination of the displacement field of a typical particle. Therefore (2.19)1,2,3 constitute
an over-determined system of non-linear partial differential equations for the in-plane coor-
dinates (x, y) of a typical particle in the deformed configuration. When the applied stress
field is homogeneous, and therefore B is homogeneous, another semi-inverse approach is
usually adopted with deformation tensors of the form (2.19) being interpreted as describing
a simple shear superposed on a triaxial stretch (Moon and Truesdell [4], Mihai and Goriely
[5], Destrade et al. [6]) so that the deformation gradient tensor is assumed to be of the form

(F)ij =
⎡
⎢⎣

λ1 λ2

√
1 − λ2

1λ
−2
2 0

0 λ2 0
0 0 1

λ1λ2

⎤
⎥⎦ . (2.20)

In contrast, it is shown later that for Piola-Kirchhoff plane stress problems a semi-inverse
approach leading to (2.16) is not required and the non-uniqueness in the determination of
the deformation gradient tensor can be more prescribed. This might suggest that the Piola-
Kirchhoff formulation of plane stress is a more natural choice.

3 Piola-Kirchhoff Plane Stress Problems

Let P denote the first Piola-Kirchhoff stress tensor so that in general

T = PF T , (3.1)

noting that for the incompressible materials of interest here J ≡ detF ≡ 1. The symmetry
of the Cauchy stress tensor follows from conservation of angular momentum and therefore

PF T = FP T . (3.2)
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If the Piola-Kirchhoff plane stress conditions (1.9) are assumed then (3.2) yields

FxXPyX + FxY PyY = FyXPxX + FyY PxY , (3.3)

and

FzXPxX + FzY PxY = 0, FzXPyX + FzY PyY = 0, (3.4)

which could be viewed as the Piola-Kirchhoff equivalents of the Cauchy stress universal
relations (2.5), (2.6). Note however that the Piola-Kirchhoff relations hold for all deformable
solids, whereas the Cauchy relations (2.4) are only valid for isotropic materials.

As for plane Cauchy stress problems, there are therefore two classes of plane stress prob-
lems for deformable solids when Piola-Kirchhoff stress is being considered. The first is that
class for which

PxXPyY − PxY PyX �= 0, (3.5)

exemplified by the problem of simple shear for which

PxX = PyY = 0, PxY �= 0,PyX �= 0. (3.6)

The second is the seemingly singular class for which

PxXPyY − PxY PyX = 0. (3.7)

This class can be considered to describe simple tension since trivially classical simple ten-
sion

PxX = P �= 0, PyY = PxY = PyX = 0, (3.8)

satisfies (3.7) as does the stress distribution

PxX = PyY = PxY = PyX ≡ P �= 0, (3.9)

which describes the experiment in which equal and opposite forces are applied to opposing
vertices of a cuboid specimen (Murphy [13]).

First consider the class of simple shear plane stress problems characterised by (3.5), with
the simple tension class defined by (3.7) considered later. It follows from (3.4) that

FzX = FzY = 0, (3.10)

and therefore

FzZ = FzZ(Z) ⇐⇒ z = z(Z). (3.11)

The deformation gradient tensor therefore has the form

(F)iJ =
⎡
⎣

FxX FxY FxZ

FyX FyY FyZ

0 0 FzZ(Z)

⎤
⎦ , (3.12)
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and therefore for incompressible materials

detF = (FxXFyY − FxY FyX)FzZ = 1. (3.13)

It follows from (3.12) that

(F−T )iJ =
⎡
⎣

FyY FzZ −FyXFzZ 0
−FxY FzZ FxXFzZ 0

FxY FyZ − FyY FxZ FyXFxZ − FxXFyZ
1

FzZ

⎤
⎦ , (3.14)

(C)IJ =
⎡
⎣

F 2
xX + F 2

yX FxY FxX + FyXFyY FxZFxX + FyZFyX

FxY FxX + FyXFyY F 2
xY + F 2

yY FxZFxY + FyZFyY

FxZFxX + FyZFyX FxZFxY + FyZFyY F 2
xZ + F 2

yZ + F 2
zZ

⎤
⎦ , (3.15)

(B)ij =
⎡
⎣

F 2
xX + F 2

xY + F 2
xZ FyXFxX + FxY FyY + FxZFyZ FxZFzZ

FyXFxX + FxY FyY + FxZFyZ F 2
yX + F 2

yY + F 2
yZ FyZFzZ

FxZFzZ FyZFzZ F 2
zZ

⎤
⎦ ,

(3.16)
and

I1 = tr (C) = tr (B) = F 2
xX + F 2

yY + F 2
zZ + F 2

yX + F 2
xY + F 2

xZ + F 2
yZ.

4 Hyperelastic Incompressible Isotropic Solids

To make further progress in the analysis of Piola-Kirchhoff plane stress problems, the consti-
tutive law must be specified. The constitutive law for homogeneous isotropic incompressible
materials in terms of the Piola-Kirchhoff stress can be written in the form

P = −pF −T + 2
∂W

∂I1
F + 2

∂W

∂I2
(I1F − FC) , (4.1)

where p is the undetermined hydrostatic pressure. It follows from the results of the last
section that

PxZ = 2FxZ

(
∂W

∂I1
+ ∂W

∂I2
(F 2

yY + F 2
yX)

)
− 2FyZ

∂W

∂I2
(FxXFyX + FxY FyY ),

PyZ = 2FyZ

(
∂W

∂I1
+ ∂W

∂I2
(F 2

xX + F 2
xY )

)
− 2FxZ

∂W

∂I2
(FxXFyX + FxY FyY ). (4.2)

Since the determinant of the coefficients of the FxZ , FyZ terms

4

(
∂W

∂I1

)2

+ 4
∂W

∂I1

∂W

∂I2
(F 2

xX + F 2
yY + F 2

xY + F 2
yX) + 4

(
∂W

∂I2

)2

(FxXFyY − FxY FyX)2 > 0,

by virtue of the Empirical Inequalities (2.3), it follows that the plane stress conditions PxZ =
PyZ = 0 can be satisfied if and only if

FxZ = FyZ = 0 ⇐⇒ x = x(X,Y ), y = y(X,Y ). (4.3)
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It then follows from this and (3.11) that the incompressibility condition now yields

z = λZ, (4.4)

so that

FxXFyY − FxY FyX = 1

λ
. (4.5)

Thus if the plane shear stress conditions

PxZ = PyZ = PzX = PzY = 0, (4.6)

hold then the resulting deformation for all incompressible isotropic materials must be a plane
deformation (4.3) restricted by (4.5) accompanied by a uniform out-of-plane contraction
(λ < 1) or expansion (λ > 1).

The deformation tensors now have the following simplified forms:

(F)iJ =
⎡
⎣

FxX FxY 0
FyX FyY 0

0 0 λ

⎤
⎦ , (F−T )iJ =

⎡
⎣

λFyY −λFyX 0
−λFxY λFxX 0

0 0 1
λ

⎤
⎦ , (4.7)

(C)IJ =
⎡
⎣

F 2
xX + F 2

yX FxY FxX + FyXFyY 0
FxY FxX + FyXFyY F 2

xY + F 2
yY 0

0 0 λ2

⎤
⎦ , (4.8)

(C−1)IJ =
⎡
⎣

λ2(F 2
xY + F 2

yY ) −λ2(FxY FxX − FyXFyY ) 0
−λ2(FxY FxX + FyXFyY ) λ2(F 2

xX + F 2
yX) 0

0 0 1
λ2

⎤
⎦ . (4.9)

The corresponding invariants are therefore given by

I1 = F 2
xX + F 2

yY + F 2
yX + F 2

xY + λ2, I2 = λ2(F 2
xX + F 2

yY + F 2
yX + F 2

xY ) + 1

λ2
. (4.10)

It remains to satisfy the normal plane stress condition

PzZ = 0, (4.11)

which is satisfied if and only if

p = 2λ2

(
∂W

∂I1
+ ∂W

∂I2
(F 2

xX + F 2
yY + F 2

xY + F 2
yX)

)
. (4.12)

The in-plane stress components for plane stress conditions therefore have the form

PxX = 2
∂W

∂I1
(FxX − λ3FyY ) + 2

∂W

∂I2

(
λ2FxX + FyY

λ
− λ3FyY (F 2

xX + F 2
yY + F 2

xY + F 2
yX)

)
,

PyY = 2
∂W

∂I1
(FyY − λ3FxX) + 2

∂W

∂I2

(
λ2FyY + FxX

λ
− λ3FxX(F 2

xX + F 2
yY + F 2

xY + F 2
yX)

)
,

PxY = 2
∂W

∂I1
(FxY + λ3FyX) + 2

∂W

∂I2

(
λ2FxY − FyX

λ
+ λ3FyX(F 2

xX + F 2
yY + F 2

xY + F 2
yX)

)
,
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PyX = 2
∂W

∂I1
(FyX + λ3FxY )

+ 2
∂W

∂I2

(
λ2FyX − FxY

λ
+ λ3FxY (F 2

xX + F 2
yY + F 2

xY + F 2
yX)

)
. (4.13)

It is easy to check that the relation (3.3) is satisfied. Assume here and in what follows that

FxX > 0, FyY > 0. (4.14)

Two approaches will be adopted here to make further progress. The first is to consider
those problems for which two of the stresses are specified to be identically zero. In that
special case a universal relation valid for all materials can be obtained. The second, which
is considered in Sect. 6, is to specify the strain energy and for ease of exposition only the
neo-Hookean material will be considered.

5 Simple Shear

Now consider the problem of pure simple shear (3.6). It follows from the Empirical Inequal-
ities (2.3) and (4.13)1,2 that (3.6)1,2 are satisfied if and only if

(
F 2

xX − F 2
yY

)(
1

λ
+ λ5 − λ3(F 2

xX + F 2
yY + F 2

xY + F 2
yX)

)
= 0. (5.1)

Consider first the solution for which FxX = FyY > 0 or alternatively that

∂x

∂X
= ∂y

∂Y
.

Assuming that x = x(X,Y ), y = y(X,Y ) are sufficiently regular, this condition is equivalent
to the existence of a deformation potential function ψ(X,Y ) such that

x = ∂ψ

∂Y
, y = ∂ψ

∂X
,

∂2ψ

∂X∂Y
> 0. (5.2)

Enforcing the incompressibility condition (4.5) yields the determining non-linear partial
differential equation for ψ ,

(
∂2ψ

∂X∂Y

)2

− ∂2ψ

∂X2

∂2ψ

∂Y 2
= 1

λ
. (5.3)

Only the consequences of the particular solution to (5.3),

∂2ψ

∂X∂Y
= c1 > 0,

∂2ψ

∂X2
= c2,

∂2ψ

∂Y 2
= c3, (5.4)

where ci are constants satisfying c2
1 − c2c3 > 0, are explored here. The consequences of

more general solutions to the nonlinear hyperbolic Monge-Ampère partial differential equa-
tion (5.3) will be examined elsewhere. Solving (5.4) and ignoring constant and translational
terms yields

ψ = c1XY + 1

2
c2X

2 + 1

2
c3Y

2. (5.5)
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The deformation of a typical particle then follows from (4.4) and (5.2) and is given by

x = c1X + c3Y, y = c1Y + c2X, z = λZ, (5.6)

where, to satisfy (5.3),

c2
1 − c2c3 = 1

λ
. (5.7)

The in-plane normal stress conditions PxX = PyY = 0 and (4.13)1,2 then yield

0 = c1

(
∂W

∂I1
(1 − λ3) + ∂W

∂I2

(
1

λ
− λ2 − λ3(c2 + c3)

2

))
, (5.8)

on using the incompressibility condition. Since c1 has been assumed positive, it therefore
follows that

∂W

∂I1
(1 − λ3) + ∂W

∂I2

(
1

λ
− λ2 − λ3(c2 + c3)

2

)
= 0, (5.9)

where now

I1 = λ2 + 2

λ
+ (c2 + c3)

2, I2 = 2λ + 1

λ2
+ λ2(c2 + c3)

2.

The universal relation (3.3) now yields

PyX = PxY .

Adding (4.13)3,4 then yields

PxY = PyX = (c2 + c3)

(
∂W

∂I1
(1 + λ3) + ∂W

∂I2
(3λ2 − 1

λ
+ λ3(c2 + c3)

2)

)
,

= 2(c2 + c3)

(
∂W

∂I1
+ λ2 ∂W

∂I2

)
, (5.10)

on using (5.9). To ensure a non-zero shear stress, it must be assumed that

c2 + c3 �= 0. (5.11)

The consequences of the second branch of the solution to (5.1) are now explored. Assume
then that

1

λ
+ λ5 = λ3(F 2

xX + F 2
yY + F 2

xY + F 2
yX). (5.12)

The in-plane normal stresses are then given by

0 = (FxX − λ3FyY )

(
∂W

∂I1
+ λ2 ∂W

∂I2

)
, 0 = (FyY − λ3FxX)

(
∂W

∂I1
+ λ2 ∂W

∂I2

)
, (5.13)

which, on using the Empirical Inequalities, yield

0 = FxX − λ3FyY = FyY − λ3FxX. (5.14)



C.O. Horgan, J.G. Murphy

If λ �= 1, then FxX = FyY = 0, contradicting the assumption (4.14). Assume then that λ = 1
and therefore that FxX = FyY , from (5.14). The governing equation (5.12) and the incom-
pressibility constraint (4.5) then take the respective forms

2 = 2F 2
xX + F 2

xY + F 2
yX, F 2

xX − FxY FyX = 1,

which yield

FxY = −FyX.

Given that the shear stresses are now identically zero, the conclusion is that (5.12) is not
a valid potential solution branch for (5.1) and therefore we have the unique solution that
FxX = FyY > 0.

6 The Neo-Hookean Material

Let P̂iA ≡ PiA

μ
. Then the in-plane stress equations (4.13) can be inverted for the neo-Hookean

material (2.13) to obtain

(1 − λ6)FxX = P̂xX + λ3P̂yY ,

(1 − λ6)FyY = P̂yY + λ3P̂xX,

(1 − λ6)FxY = P̂xY − λ3P̂yX,

(1 − λ6)FyX = P̂yX − λ3P̂xY . (6.1)

Substitution into the incompressibility relation (4.5) then yields

(P̂xXP̂yY − P̂xY P̂yX)λ6 + (P̂ 2
xX + P̂ 2

yY + P̂ 2
xY + P̂ 2

yX)λ3 + P̂xXP̂yY − P̂xY P̂yX = (1 − λ6)2

λ
.

(6.2)
Since it has been assumed that P̂xXP̂yY − P̂xY P̂yX �= 0, first assume that

P̂xXP̂yY − P̂xY P̂yX > 0, (6.3)

so that the normal stresses are dominant. Then there are two solutions to (6.2), one con-
tractile with λ < 1 and one extensile with λ > 1. Now assume that the shear stresses are
dominant with

P̂xXP̂yY − P̂xY P̂yX < 0. (6.4)

Again there are two solutions to (6.2), one contractile and one extensile, with the exception
of the unique solution λ = 1 when

P̂xX = −P̂yY ≡ T , P̂xY = P̂yX ≡ S. (6.5)

In this case it now follows from the plane stress constitutive law that

T = FxX − FyY , S = FxY + FyX. (6.6)
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There is therefore a non-uniqueness in both the normal and shear components of the defor-
mation gradient tensor for this class of plane stress boundary value problems.

It follows from (6.1) therefore that when λ �= 1 the general plane stress deformation has
the form

x = P̂xX + λ3P̂yY

1 − λ6
X + P̂xY − λ3P̂yX

1 − λ6
Y,

y = P̂yX − λ3P̂xY

1 − λ6
X + P̂yY + λ3P̂xX

1 − λ6
Y,

z = λZ, (6.7)

with λ determined from (6.2).

7 Simple Tension

Now consider the problem of determining the deformation for the class of plane stress simple
tension problems defined by the condition that

PxXPyY − PxY PyX = 0. (7.1)

The analysis of the general case is complicated by the fact the universal relations (3.3),
(3.4) do not allow the simplification of the deformation gradient tensor that was possible for
simple shear problems. Some progress can be made for some important special cases such
as simple and biaxial tension and the case of uniform in-plane stress for which

PxX = PyY = PxY = PyX. (7.2)

For illustrative purposes only simple tension is considered. Assume then that

PyY = PxY = PyX = 0, PxX �= 0, (7.3)

which corresponds to Piola-Kirchhoff simple tension in the X-direction. Then (7.1) is triv-
ially satisfied and the universal relations (3.3), (3.4) yield

FyX = FzX = 0. (7.4)

The deformation gradient tensor now has the form

(F)iJ =
⎡
⎣

FxX FxY FxZ

0 FyY FyZ

0 FzY FzZ

⎤
⎦ , (7.5)

and therefore for incompressible materials

detF = FxX(FyY FzZ − FyZFzY ) = 1. (7.6)

Denoting partial differentiation using the comma notation, it follows from (7.6) that FxX,X =
0 and therefore

x = A(Y,Z)X + B(Y,Z), arbitraryA,B. (7.7)
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This is therefore the unique form of the x-component of the deformation field for all de-
formable incompressible solids regardless of symmetry.

It follows from (7.5) that

(F−T )iJ =
⎡
⎣

1
FxX

0 0
FxZFzY − FxY FzZ FxXFzZ −FxXFzY

FxY FyZ − FyY FxZ −FxXFyZ FxXFyY

⎤
⎦ , (7.8)

(C)IJ =
⎡
⎣

F 2
xX FxY FxX FxZFxX

FxY FxX F 2
xY + F 2

yY + F 2
zY FxZFxY + FyZFyY + FzY FzZ

FxZFxX FxZFxY + FyZFyY + FzY FzZ F 2
xZ + F 2

yZ + F 2
zZ

⎤
⎦ .

(7.9)
The constitutive law (4.1) now yields

PxY = 2FxY

(
∂W

∂I1
+ ∂W

∂I2
(F 2

zZ + F 2
yZ)

)
− 2FxZ

∂W

∂I2
(FyY FyZ + FzZFzY ),

PxZ = 2FxZ

(
∂W

∂I1
+ ∂W

∂I2
(F 2

yY + F 2
zY )

)
− 2FxY

∂W

∂I2
(FyY FyZ + FzY FzZ). (7.10)

The Empirical Inequalities (2.3) then yield that PxY = PxZ = 0 if and only if

FxY = FxZ = 0.

It follows from (7.7) that the x-component of the deformation field for incompressible,
isotropic hyperelastic materials in simple tension must have the form

x = λX, constantλ. (7.11)

The simple tension conditions PyY = PzZ = 0 now take the respective forms

0 = 2FyY

(
∂W

∂I1
+ λ2 ∂W

∂I2

)
+ FzZ

(
−pλ + 2

∂W

∂I2
(FyY FzZ − FyZFzY )

)
,

0 = 2FzZ

(
∂W

∂I1
+ λ2 ∂W

∂I2

)
+ FyY

(
−pλ + 2

∂W

∂I2
(FyY FzZ − FyZFzY )

)
. (7.12)

Multiplying the first of these by FyY , the second by FzZ and subtracting yields

FyY = ±FzZ,

on using the Empirical Inequalities (2.3). Assume then that FyY = FzZ �= 0. Then mirroring
the analysis for simple shear it follows that there exists a potential function � such that

y = ∂�

∂Z
, z = ∂�

∂Y
, (7.13)

assuming sufficient regularity of the displacement field, with the potential function again
satisfying the Monge-Ampére partial differential equation (5.3) with the appropriate changes
in independent variables. The analysis following (5.3) for simple shear is therefore also valid
for simple tension and will not be repeated here.
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To reflect the more singular nature of simple tension, a further restriction other than that
necessary for simple shear must also be imposed here. First note that it follows from (7.12)
that

pλ = 2
∂W

∂I1
+ 2

∂W

∂I2

(
λ2 + FyY FzZ − FyZFzY

)
. (7.14)

The remaining zero stress conditions PyZ = PzY = 0 then yield, on substitution from (7.14),

(
∂W

∂I1
+ λ2 ∂W

∂I2

)
(FzY + FyZ) = 0, (7.15)

so that

FzY = −FyZ. (7.16)

on employing the Empirical Inequalities (2.3). The potential representation (7.13) then
shows that � must therefore also satisfy the two-dimensional Laplace’s equation

∂2�

∂Y 2
+ ∂2�

∂Z2
= 0, (7.17)

in addition to the Monge-Ampére equation. Again only the trivial solution (5.5)

� = c1YZ + 1

2
c2Y

2 + 1

2
c3Z

2 (7.18)

to the Monge-Ampére equation will be considered. Substitution into Laplace’s Equation
then yields

c2 + c3 = 0,

in contrast to the condition (5.11) for simple shear. The displacement field is thus given by

x = λX, y = c1Y − c2Z, z = c1Z + c2Y. (7.19)

The incompressibility condition now simplifies to

c2
1 + c2

2 = 1

λ
. (7.20)

Finally, the simple tension stress condition PxX = P yields

P = 2
∂W

∂I1

(
λ − 1

λ2

)
+ 2λ

∂W

∂I2

(
λ + 1

λ2
+ F 2

yY + F 2
zZ + F 2

yZ + F 2
zY )

)
, (7.21)

where

I1 = λ2 + F 2
yY + F 2

zZ + F 2
zY + F 2

yZ, I2 = 1

λ2
+ λ2(F 2

yY + F 2
zZ + F 2

xY + F 2
zY + F 2

xZ + F 2
yZ).



C.O. Horgan, J.G. Murphy

8 Concluding Remarks

The objective of this work was to examine two different formulations of plane stress prob-
lems for incompressible isotropic hyperelastic materials. The first approach involves an ini-
tial prescription of a prescribed Cauchy stress field and an investigation of how much in-
formation can be deduced on the corresponding stretch tensor and deformation. Early work
on this issue for special cases was carried out by Batra [3] for simple tension and by Moon
and Truesdell [4] for simple shear. More recent work by other authors has been described
in the Introduction. The second approach is concerned with prescription of a plane stress
state in terms of the Piola-Kirchhoff stress and it is shown here that this formulation is more
tractable analytically. All these developments have been carried out for a general incom-
pressible isotropic hyperelastic material with strain-energy density expressed in terms of
the two classical principal invariants. For the special case of a neo-Hookean material, an
explicit representation for the general plane stress deformation in terms of the prescribed
Piola-Kirchhoff stresses was obtained.
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