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Abstract
An elastic map T associates stress with strain in some material. A symmetry of T is a
rotation of the material that leaves T unchanged, and the symmetry group of T consists of
all such rotations. The symmetry class of T describes the symmetry group but without the
orientation information. With an eye toward geophysical applications, Browaeys & Chevrot
developed a theory which, for any elastic map T and for each of six symmetry classes �,
computes the “�-percentage” of T. The theory also finds a “hexagonal approximation”—an
approximation to T whose symmetry class is at least transverse isotropic. We reexamine
their theory and recommend that the �-percentages be abandoned. We also recommend that
the hexagonal approximations to T be replaced with the closest transverse isotropic maps
to T.

Keywords Elastic symmetry · Elasticity · Theoretical seismology · Geophysics

Mathematics Subject Classification 74B05 · 86A15 · 86-04

1 Introduction

An elastic map T expresses the constitutive relations or generalized Hooke’s law for a mate-
rial; it associates stress with strain at a point p in the material. A symmetry of T is a rotation
of the material about p that leaves T unchanged, and the symmetry group of T consists of
all such rotations. The symmetry class of T, intuitively, is its symmetry group but stripped
of the orientation information.

For any elastic map of arbitrary symmetry, Browaeys & Chevrot [9] wanted to be able
to approximate it by an elastic map having “hexagonal” symmetry. They also wanted to
express the percentages—in some sense still not clear to us—of certain symmetry classes in
the map. They introduced a distinctive decomposition of elastic maps that was supposed to
be the basis for getting the hexagonal approximation and the percentages.
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We have reformulated the material on decompositions, hexagonal approximation, and
percentages. The exposition of Browaeys & Chevrot [9] is sparse in places, and we have
sometimes had to rely more on Walker & Wookey [57–59] than on Browaeys & Chevrot [9]
themselves.

Three advances since the time of the Browaeys and Chevrot paper suggest that the paper
indeed deserves another look. First, we now have visualization tools that were not available
earlier [19]. Second, we understand better the structure of the space of elastic maps. Third,
we can now find more easily the symmetry group of any given elastic map [8, 20, 54]. (In
Browaeys and Chevrot [9], the problem of finding the symmetry group was supposed to be
tackled using the methods of Cowin & Mehrabadi [15].)

In the end, we recommend abandoning the percentages. We also recommend abandoning
the hexagonal approximation, except in the special case where it coincides with the closest
transverse isotropic map of Dellinger [18] or Diner et al. [19]. The decomposition itself turns
out to be nearly irrelevant.

The elastic maps used in our examples are not meant to be physically realistic, except
that all are positive definite.

A substantial number of authors have relied on Browaeys & Chevrot [9]; see our Sect. 14.

2 Orthogonal Projection

We recall the key features of orthogonal projection: In an inner product space T , the orthog-
onal projection P(T,V) of T ∈ T onto a subspace V of T is characterized by

T1 = P(T,V) ⇐⇒
{

T1 ∈ V, (1a)

T − T1 ∈ V⊥. (1b)

The orthogonal complement V⊥ of V consists of the members of T that are orthogonal to
all the members of V .

The distance from T to the subspace V is

d(T,V) = ‖T − P(T,V)‖. (2)

Since T · T1 = ((T − T1) + T1) · T1 = ‖T1‖2, the angle between T and T1 is

∠(T,T1) = cos−1 T · T1

‖T‖‖T1‖ = cos−1 ‖T1‖
‖T‖ . (3)

The angle ∠(tT, P(tT,V)) is independent of t ∈ R, t �= 0, since the projection function
T → P(T,V) is linear.

For subspaces V1 and V2 of T , it follows from Eqs. (1a) and (1b) that

V1 ⊂ V2 =⇒ P
(

P(T,V2),V1

)
= P(T,V1). (4)

3 The Elastic Symmetry Groups

Let U be the group of all 3×3 rotation matrices, and let V ∈U. If an elastic map T describes
the elasticity in a certain material at a point p, then V ◦ T ◦ V

∗
does the same after the
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Table 1 Notation pertaining to elastic maps

M Inner product space of all 3 × 3 symmetric matrices (strains or stresses).

T : M→ M An elastic map, that is, a self-adjoint linear transformation from M to M.

T Inner product space of all elastic maps.

� One of the labels ISO, XISO, TET, ORTH, MONO, TRIV, CUBE, TRIG.

�T Symmetry class of T.

U Group of all 3 × 3 rotation matrices.

ST ⊂ U Symmetry group of T, consisting of all symmetries of T.

U� ⊂U Reference group (Table 2).

Z2(ST) Set of 2-fold points of ST.

T� ⊂ T Set of elastic maps having symmetry at least �. Equation (14).

V�(U) ⊂T� Eq. (15).

P(T,V�(U)) Orthogonal projection of the elastic map T to the subspace V�(U).

X(T,U) XISO-approximation to T determined by U . Equation (43).

A(T,U) Eq. (24b).

U : M→ M Conjugation by U ∈U. That is, U(E) = UE U�, E ∈ M.

U
∗

Adjoint of U . It is conjugation by U�.

d(T1,T2) Distance between elastic maps T1 and T2.

d(T,T ′) Distance between T and a subset T ′ of T .

B The basis for M in Eq. (80).

[T]BB Matrix representation of T with respect to B.

material has been rotated about p by V . (See Table 1 for V and V
∗
. The symbol “◦” denotes

composition of functions.) Thus V is said to be a symmetry of T if

V ◦ T ◦ V
∗ = T. (5)

All such V make up the symmetry group ST of T. For U ∈U we find from Eq. (5) that

SU ◦T◦U
∗ = USTU�. (6)

A subgroup V of U is an elastic symmetry group if V = ST for some elastic map T. The
eight reference groups U� in Table 2 are elastic symmetry groups, as are their conjugates
UU�U�. Conversely, as shown by Forte and Vianello [24], if V is an elastic symmetry group,
then

V= UU�U� (7)

for some U ∈U and for one of the reference groups U� .
For any group of rotation matrices, its 2-fold points are the points where the axes of its

2-fold rotations intersect the unit sphere S
2. The 2-fold points of UMONO, for example, are

the north and south poles of S2. The 2-fold points of UXISO are the north and south poles
together with all points on the equator. For any group W ⊂ U we let Z2(W) denote the set
of its 2-fold points. Then

Z2(VWV �) = V (Z2(W)) (V ∈U). (8)
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Table 2 The eight reference groups U� for elastic symmetry. The first six groups are those appearing along
the red path in Fig. 2a. Each of the six contains the group below it as a subgroup. The matrices in UXISO are
the rotations about the z-axis together with the 2-fold rotations about axes in the xy-plane. The matrix I is
the 3 × 3 identity matrix. The matrices Xξ , Yξ , Zξ are the rotations through angle ξ about the x, y, z-axes,
respectively. The matrix 1 1̄ 02 is the 2-fold rotation about the axis (1,−1,0), and 0 0 14 is the 4-fold rotation
about (0,0,1). ISO = isotropic, XISO = transverse isotropic, TET = tetragonal, ORTH = orthorhombic, MONO

= monoclinic, TRIV = trivial, CUBE = cubic, TRIG = trigonal.

Group Members

UISO =U All rotations

UXISO All rotations U such that Uk = ±k (k = (0,0,1))

UTET I , Xπ , Yπ , Zπ , 1 1 02, 1 1̄ 02, 0 0 14, 0 0 1̄4

UORTH I, Xπ , Yπ , Zπ

UMONO I , Zπ

UTRIV I

UCUBE The 24 rotational symmetries of the cube with vertices (±1,±1,±1)

UTRIG I ,
√

3 1 02, Yπ ,
√

3 1̄ 02, 0 0 13, 0 0 1̄3

From Table 2 and Eq. (7), each elastic symmetry group is generated by its own 2-fold rota-
tions. Hence if V1 and V2 are elastic symmetry groups, then

Z2(V1) = Z2(V2) ⇐⇒ V1 =V2. (9)

A picture of the 2-fold points of ST therefore gives a picture of ST; see Fig. 1 of [54]. We
also refer to the 2-fold points of ST as the 2-fold points of T itself.

We let G� be the group of rotations that permute the 2-fold points of U� :

V ∈G� ⇐⇒ V
(
Z2(U�)

) = Z2(U�). (10)

Then

V ∈G� ⇐⇒ Z2(VU�V �) = Z2(U�) (from Eqs. (10) and (8)), (11a)

V ∈G� ⇐⇒ VU�V � =U� (from Eq. (9)). (11b)

The groups G� are

GISO = GTRIV =U, GTET =D8 (see [54]),

GXISO = GMONO =UXISO, GTRIG =D6 (see [54]),

GORTH =GCUBE =UCUBE. (12)

To verify Eq. (12) for GORTH, for example: The 2-fold points of UORTH are the face centers of
the unit cube. The rotations that permute them are the rotations of the unit cube; they make
up UCUBE.
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3.1 Regular Angles, Regular Axes

An angle ξ , 0 ≤ ξ ≤ π , is said to be regular if ξ �= 0, π/2, 2π/3, π . If V is a symmetry
of an elastic map T and if the rotation angle1 of V is regular, then any rotation about the
rotation axis of V is also a symmetry of T (Table 2 and Eq. (7)). The axis of V is then said
to be a regular axis of T (or of ST), and the two intersections of the axis with the unit sphere
are regular points of T.

Theorem 1 says that no elastic symmetry group can properly contain a conjugate of itself.

Theorem 1 Let V be an elastic symmetry group. Then

UVU�⊂V =⇒ UVU�= V (U ∈U). (13)

Proof We can assume V=U� .
If � �= XISO, then, from Table 2, V= UISO or V is finite, and Eq. (13) is correct.
If � = XISO then V = UXISO. If also UVU�⊂ V, then the regular axes of UVU�and V

coincide, since V has only one regular axis (Table 2). Then UVU�=V. �

4 The Structure of the Space T of Elastic Maps

We let T be the space of all elastic maps, and for each � as in Table 1 we let T� ⊂ T be
the set of elastic maps T whose symmetry class is at least �. More precisely,

T� = {
T ∈ T : ST ⊃ UU�U� for some U ∈U

}
. (14)

For each U ∈ U and for each � we define a subspace V�(U) of T by

V�(U) = {
T ∈ T : ST ⊃ U U� U�}

. (15)

From Eqs. (14) and (15),

T� =
⋃
U∈U

V�(U). (16)

Figure 1 is a (woefully) low-dimensional depiction of T � .

Theorem 2

V�(U1) = V�(U2) ⇐⇒ U2 = U1G for some G ∈ G�. (17)

Proof Suppose V�(U1) = V�(U2). Since U1U�U�
1 is an elastic symmetry group, there is

T ∈ T such that ST = U1U�U�
1 . Then T ∈ V�(U1) = V�(U2) and so

U1U�U�
1 = ST ⊃ U2U�U�

2 .

Then U1U�U�
1 = U2U�U�

2 from Theorem 1. Then U�
1 U2 ∈ G� from Eq. (11b), and so

U2 = U1G for some G ∈ G� .
The converse is from Eqs. (15) and (11b). �

1The rotation angle ξ of V is characterized by cos ξ = −1 + tr(V )

2
, 0 ≤ ξ ≤ π .
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Fig. 1 (Left) Rudimentary depiction of the set T� (orange) of elastic maps having symmetry at least �

(Eq. 14). The diagram is so idealized that it should not be taken too seriously, but it reminds us that although
for � �= ISO, TRIV, the set T� is not itself a subspace of T , it is the union of the subspaces V�(U), U ∈ U.
Here each subspace V�(U) is shown as a line through the origin. (Right) The orthogonal projection P of
an elastic map T to V�(U). Although P is the closest point to T in V�(U), it is not the closest point
to T in T� ; that point is P0. The dimensions in the diagrams are unrealistically low. For � = ORTH, for
example, the dimension of each subspace V�(U) would be 9 and the dimension of T� would be 12. Both
diagrams are misleading when � = ISO or � = TRIV, since V ISO(U) =T ISO is a two-dimensional subspace,
independent of U , and VTRIV(U) = T TRIV = T , again independent of U . The subspaces V�(U) are not so
nearly disjoint as the diagram suggests; from Eq. (15) the subspace T ISO is common to all of them.

From Eq. (15) we find V ISO(I ) ⊂ V�(U) (any �, any U ∈U). Hence from Eq. (4),

P
(

P
(
T,V�(U)

)
,V ISO(I )

)
= P (T, V ISO(I )) . (18)

Equation (18) becomes more transparent if we define PISO to be the projection mapping onto
V ISO(I ). Then

PISO

(
P
(
T,V�(U)

)
= PISO(T) (U ∈U, any �). (19)

From Eqs. (15) and (6),

V�(U) = U ◦V�(I) ◦ U
∗
, (20)

where the subspace on the right consists of all elastic maps of the form U ◦ T ◦ U
∗
,

T ∈ V�(I).

4.1 The Functions αT
MONO and αT

XISO

From Eq. (15) the subspace VMONO(U) consists of the elastic maps that have v = Uk as a
2-fold point, and VXISO(U) consists of the elastic maps that have v = Uk as a regular point.
We can therefore consider VMONO(U) and VXISO(U) as functions of points v ∈ S

2 rather than
as functions of matrices U ∈U. We thus abuse the notation a bit and let

VMONO(v) = VMONO(ZθYφ), (21a)

VXISO(v) = VXISO(ZθYφ), (21b)

where (θ,φ) are the spherical coordinates of v. (Thus ZθYφk = v.) For an elastic map T, its
“monoclinic angle” at v is then defined to be

αT
MONO(v) = ∠ (T, P(T,VMONO(v))) = cos−1 ‖P(T,VMONO(v))‖

‖T‖ , (22a)
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the second equality being from Eq. (3). The number αT
MONO(v) is a measure of how far T is

from having a 2-fold point at v. In particular, αT
MONO(v) = 0 if and only if v is a 2-fold point

of T. The function αT
MONO is closely related to the monoclinic distance function [19, 54], but

αT
MONO differs by being independent of ‖T‖.

In later figures we will depict elastic maps as contour plots of their monoclinic angle
functions on S

2. The plot of αT
MONO will have all the symmetries of T [54, Theorem 2].

We conjectured in [54] that the converse would be true as well, that is, that the (rotational)
symmetries of αT

MONO would also be symmetries of T. There turn out to be elastic maps,
however, for which this fails.2 It is a reminder that the zero contour of αT

MONO, rather than the
symmetries of αT

MONO, has the final say in determining the symmetry group of T.
Since 2-fold points come in antipodal pairs, then VMONO(v) = VMONO(−v). Hence the

antipodal map v → −v is a (non-rotational) symmetry of αT
MONO.

Similarly to Eq. (22a), the XISO angle of T at v is defined by

αT
XISO(v) =∠ (T, P(T,VXISO(v))) . (22b)

It measures how far T is from having a regular point at v.
For a given v ∈ S

2 the condition Uk = v is satisfied by any rotation matrix U whose third
column is v. Of these, the one that swaps k and v, is, if v �= ±k,

Uv = 1

1 + z

⎛
⎝−y2 − z(1 + z) xy x(1 + z)

xy −x2 − z(1 + z) y(1 + z)

x(1 + z) y(1 + z) z(1 + z)

⎞
⎠ (

v = (x, y, z) ∈ S
2
)
.

(23)

5 Calculating the Projection to V�(U)

In Appendix C.1 we use Eq. (20) to show that for any subspace V of T and for U ∈U,

P
(
T, U ◦V ◦ U

∗) = U ◦ P
(
A,V

) ◦ U
∗
, (24a)

where

A = A(T,U) = U
∗◦ T ◦ U. (24b)

Taking V = V�(I) in Eq. (24a) gives

P
(
T,V�(U)

) = U ◦ P
(
A,V�(I)

) ◦ U
∗
. (25)

The inner product of n × n matrices M = (mij ) and N = (nij ) is defined by

M · N =
n∑

i, j =1

mij nij . (26)

(Juxtaposition of matrices, with no dot, signifies matrix multiplication.) For any elastic map
T, we let [T] = [T]BB be the matrix (representation) of T with respect to the orthonormal

2If the non-zero entries of [T]BB = T = (tij ) are 1, 2, 3, 4, 5, 6 down the main diagonal, together with

t36 = t63 = 1, then V = I,Xπ ,Yπ ,Zπ are symmetries of αT
MONO. That is, αT

MONO(V v) = αT
MONO(v) for all

v ∈ S
2. The only symmetries of T, however, are I and Zπ .
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basis B given in Eq. (80). The inner product of elastic maps T1 and T2 is then defined3 via
their matrices:

T1 · T2 = [T1] · [T2] . (27)

We define T to consist of the matrices of all elastic maps. We likewise define V B

� (U) to
consist of the matrices, with respect to B, of elastic maps in V�(U):

T = {[T] : T ∈ T }, (28)

V B

� (U) = {[T] : T ∈ V�(U)} . (29)

We let P (T ,V B

� (U)) be the orthogonal projection of T ∈ T to V B

� (U). Then from
Appendix C.2,

[
P
(
T,V�(U)

)] = P (T ,V B

� (U)) (T = [T]). (30)

That is, the matrix of the projection is the projection of the matrix. Equations (25) and (30)
then give

[
P
(
T,V�(U)

)] = [U ]P (
A,V B

� (I)
) [U ]�, (31a)

A = A(T ,U) = [U ]�T [U ]. (31b)

The matrix
[
U

]
is [53, Eq. 59b]

[
U

] = [
U

]
BB

=
⎛
⎜⎝

(UB1U
�) · B1 . . . (UB6 U�) · B1

...
...

(UB1U
�) · B6 . . . (UB6 U�) · B6

⎞
⎟⎠ , (32)

The matrix of P
(
T,V�(U)

)
is then calculated from Eqs. (31a), (31b), (32), (84a)–(84h).

The distance from T to P(T,V�(U)) is

d(T,V�(U)) =
∥∥∥T − P

(
T,V�(U)

)∥∥∥
= ∥∥[U ]A [U ]� − [U ]P (

A,V B

� (I)
) [U ]�∥∥ (from Eq. (31a) and (31b))

= ∥∥A − P
(
A,V B

� (I)
)
)
∥∥ . (33)

3Any orthonormal basis B′ can replace B in the definition, since

[T1]B′B′ · [T2]B′B′ = [T1]BB · [T2]BB.
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Fig. 2 (Left) Inclusion relations among the reference groups for elastic symmetry. A solid arrow from one
group to another indicates that the first group is a subgroup of the second. A dashed arrow only means that a
conjugate of the first group is a subgroup of the second. The subgroup relations follow from Table 2. (Right)
Inclusion relations among the � subspaces V�(U) of T . Again the solid arrows indicate true inclusions. The
inclusions follow from Eq. (15). The red path is the path chosen by Browaeys & Chevrot [9] (our Eqs. (34a)
and (34b)).

6 The Decomposition

As in Fig. 2,

T ISO = V�1(U) ⊂ · · · ⊂ V�6(U) = T , (34a)

where

�1 = ISO, �2 = XISO, �3 = TET, �4 = ORTH, �5 = MONO, �6 = TRIV. (34b)

Equation (35), next, is based on Walker & Wookey [58], which is meant to implement
Browaeys & Chevrot [9]. For a given elastic map T and a given rotation matrix U , we define
what will be the kth summand of T by

Q�k
(T,U) = P

(
T, V�k

(U)
) − P

(
T, V�k−1(U)

)
, (35)

where �k is as in Eq. (34b). Although �0 itself has no meaning, we agree to define

V�0(U) = {0} ⊂ T , (36)

so that Eq. (35) makes sense for k = 1, as well as for k = 2, . . . ,6.

Theorem 3 (The decomposition) Let T be an elastic map and U ∈U. Then

T =
6∑

k=1

Q�k
(T,U), (37a)

Q�k
(T,U) ∈ V�k

(U) ∩ (
V�k−1(U)

)⊥
. (37b)
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Proof For purposes of the proof, we abbreviate Q�k
(T,U) and V�k

(U) to Qk and Vk . From
Eq. (35),

k∑
j=1

Qj = P (T, Vk) . (38)

T ∈ Vk ⇐⇒ T = P(T,Vk) (from Eq. (1a)), (39a)

T ∈ Vk ⇐⇒ T =
k∑

j=1

Qj (from Eq. (38)). (39b)

Since T ∈ T = VTRIV(U) = V6, regardless of U , this proves Eq. (37a).
From Eq. (35) and then from Eq. (1a),

Qk = P (T, Vk)︸ ︷︷ ︸
∈Vk

−P (T, Vk−1)︸ ︷︷ ︸
∈Vk−1

∈ Vk. (40a)

Similarly, from Eq. (35) and then from Eq. (1b),

Qk = − (
T − P(T, Vk)

)
︸ ︷︷ ︸

∈V⊥
k

+T − P(T, Vk−1)︸ ︷︷ ︸
∈V ⊥

k−1

∈ V ⊥
k−1. (40b)

Together, Eqs. (40a) and (40b) prove Eq. (37b). �

If T ∈ V�k
(U) and j ≥ k, then T ∈ V�j

(U) and so P(T,V�j
(U)) = T. Hence

Q�j
(T,U) = 0 for j > k, so that the decomposition for T and U essentially terminates

at the kth summand. If, for example, T ∈ VTET(U), then

T = QISO(T,U) + QXISO(T,U) + QTET(T,U). (41)

In Appendix C.3 we show that for any elastic maps Q1, . . . ,Q6,

T =
6∑

k=1
Qk

Qk ∈ V�k
(U) ∩ (

V�k−1(U)
)⊥

⎫⎪⎬
⎪⎭ =⇒ Qk = Q�k

(T,U). (42)

Equation (42) is thus the converse to Theorem 3. It guarantees that for a given T and U the
hypotheses of Eq. (42) determine the decomposition uniquely. In the literature the decom-

position is sometimes described as satisfying T =
6∑

k=1
Qk , Qk ∈ V�k

(U), and Qj · Qk = 0

for j �= k. That is true, but those three conditions do not determine the decomposition.

7 Hexagonal Approximation of T

In our terms, hexagonal approximation is transverse isotropic approximation, abbreviated
XISO-approximation.
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Fig. 3 A poor XISO-approximation T′ for the given elastic map T. Each of the elastic maps T, T′ , A, A′ is
represented by the contour plot of its monoclinic angle function (Eq. 22a). The plots for A and A′ differ from
those for T and T′ by U�, which is a rotation of 37◦ about the axis seen protruding from each sphere. (From
this perspective the rotation is clockwise.) The calculation of T′ from T follows the path T → A → A′ → T′
(Eq. (24a) and (24b)). The dissimilarity of the plots for T and T′ confirms that T′ = X(T,U) is a poor
approximation for T. The failure of the approximation is due to a poor choice of the rotation matrix U .

In their Sect. 4.5, Hexagonal Approximation, Browaeys & Chevrot [9] talk about the
“optimum equivalent hexagonal medium” for an elastic map, but they do not say what they
mean.

For a given elastic map T, Browaeys and Chevrot conceivably meant the XISO-
approximation to be QXISO(T,U). The elastic map QXISO(T,U), however, is never physically
permissible (our Sect. 12.3).

They might also have meant the XISO-approximation to be QISO(T,U) + QXISO(T,U);
this is what Becker et al [3, Eq. 2] use. We follow them and, using Eq. (38), we define the
XISO-approximation X(T,U) by

X(T,U) = P (T, VXISO(U)) . (43)

Then X(T,U) is in VXISO(U) and hence has Uk as a regular axis.
Figure 3, to be discussed next, shows an instance where X(T,U) fails badly as an XISO-

approximation to T.
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We depict each elastic map R as the contour plot on S
2 of its monoclinic angle function

αR
MONO (Eq. (22a)). Recall from Sect. 4.1 that the zero contour of αR

MONO consists of the 2-fold
points of R. If the symmetry class of R is transverse isotropic, the contours of αR

MONO are
circles covering S

2, all with poles at the two regular points of R. The great circle, together
with its two poles, make up the zero-contour of αR

MONO.
Figure 3 is Eq. (24a) in pictures. The top path T → T′ in the figure is the left side of the

equation, and the path is the right side. With T and U as in Appendix D, the four

elastic maps are

T (given), T′ = X(T,U),

A = A(T,U), A′ = X(A, I ), (44)

where A(T,U) is from Eq. (24b). Thus T′ is the XISO-approximation to T. Note that the
arrow from A to A′ in Fig. 3 is projection to VXISO(I ) rather than to VXISO(U), so A′ is easily
calculated from A using Eq. (84b).

The plot for A (i.e., the plot of αA
MONO) differs from that for T by the rotation U�, which

is a rotation of 37◦ about the axis seen protruding from the sphere. The plots for A and
A′ are related as follows. The subspace VXISO(I ) consists of all elastic maps whose matrix
representations are XISO reference matrices T B

XISO(a, c, e, f, k) (Eq. (82)). Their regular axes
are vertical, so the contours of αA′

MONO must be horizontal circles. In finding A′ from A, the
projection gives the values of a, c, e, f , k that minimize the distance from A = [A]BB to
T B

XISO(a, c, e, f, k); this determines the values on the circles.
In this example the plot for T (Fig. 3, upper left), with its prominent bluish band together

with the bluish patch 90◦ from it (αT
MONO is small on both), resembles a distorted plot of an

XISO-map. We would thus expect the XISO-approximation to resemble T, but that would
have required that the bluish band in the plot for A be more or less horizontal. It is not, and
so T B

XISO(a, c, e, f, k) cannot be made close to A. As a result, the plot for A′ looks nothing
like that for A. The plot for the XISO-approximation T′, which differs from that for A′ by
the rotation U , then looks nothing like that for T.

The fault thus lies with the rotation matrix U . Since Uk in the plot for T gets mapped to
k in the plot for A, the point Uk would need to have been in the small bluish patch (or its
antipodal patch) in order to get a good XISO-approximation to T.

8 Closest �-Map to T

Since the set T � of elastic maps with symmetry at least � is the union of the subspaces
V�(U), U ∈U, then the distance from an elastic map T to T � is

d(T,T �) = min
U∈U

d(T,V�(U)). (45)

If U is a rotation matrix where the minimum is realized, then U is said to be a �-minimizer
for T:

U is a �-minimizer for T ⇐⇒ d (T,V�(U)) = min
V ∈U

d(T,V�(V )). (46)

Hence U is a �-minimizer for T if and only if

d
(
T, P(T,V�(U))

) = d(T,T �). (47)
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Fig. 4 Same as Fig. 3 but with a better choice of the rotation matrix U . Here in fact U is the XISO-minimizer
in Eq. (95); it makes T′ = P(T,VXISO(U)) the closest XISO-map to T. Compare the similarity of the plots
for T and T′ here with the dissimilarity in Fig. 3. The key feature in the present figure is that Uk in the plot
for T is in the small bluish patch, which is a pseudo-pole for the bluish band. Since U� maps Uk to k, the
bluish band in the plot for A ends up horizontal. The matrices for T and T′ are given in Eqs. (93) and (96)
and can be seen to be close.

In that case P (T,V�(U)) is a closest elastic map in T � to T. In Fig. 1, the rotation matrix
U0 would be a �-minimizer for T, and the point P0 would represent the closest elastic map
in T � to T.

Figure 4 is like Fig. 3 but with the rotation matrix in Fig. 4 being an XISO-minimizer
for T, so that T′ is now a closest XISO-map to T. The plot for T′ in Fig. 4 indeed resembles
the plot for T.

8.1 Finding a �-Minimizer

To perform the minimization in Eq. (46), we first parameterize U using the function

(θ, σ,φ) → Û(θ, σ,φ) = ZθYφZσ . (48)

We then minimize

d
(
T,V�(Û(θ,σ,φ))

)
, 0 ≤ θ ≤ 2π, |σ | ≤ π, 0 ≤ φ ≤ π, (49)
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where d
(
T,V�(U)

)
is given by Eq. (33). (Smaller domains are possible, due to Eq. (17)).

The minimization will normally require numerical rather than analytic treatment. We use
the Mathematica routine NMinimize, supplemented with various independent checks. Our
Mathematica code is as per the Code Availability section.

9 �T-Minimizers for T

We let �T denote the symmetry class of T. That is, the symmetry group ST is VU�TV � for
some V ∈U. Then T ∈ T �T .

If U is a �T-minimizer for T, then

0 = d(T,T �T) = d(T,V�T(U)) (Eq. (46)),

T ∈ V�T(U),

ST ⊃ UU�TU� (Eq. (15)),

ST = UU�TU� (Theorem 1). (50)

The reasoning also reverses, so

U is a �T-minimizer for T ⇐⇒ ST = UU�TU� (51a)

⇐⇒ SA(T,U) = U�T , (51b)

the second step being from Eqs. (6) and (24b).
Then from Eqs. (15), (83a), and Theorem 1,

U is a �T-minimizer for T ⇐⇒ A(T,U) ∈ V�T(I ), (52a)

⇐⇒ [A(T,U)]BB is a �T reference matrix. (52b)

Equation (52b) will eventually tie the notion of �T-minimizer to Browaeys & Chevrot [9].
To make �T-minimizers more concrete, note, for example, that if U is a �T-minimizer

for T and if �T = ORTH, then, from Eq. (51a) and Table 2, the vectors U i, U j, Uk—the
columns of U—are the 2-fold axes of T. Similarly, if U is a �T-minimizer for T and if
�T = TRIG, then the third column of U is the 3-fold axis of T, and the second column is
one of the 2-fold axes. And so forth.

9.1 To Find �T-Minimizers

From Eq. (11b),

VU�V �= UU�U� ⇐⇒ U�V ∈G� (U,V ∈U). (53)

To find a �T-minimizer for a given T: Theorem 3 of [54] gives the symmetry group ST

in the form ST = UU�U�, so � = �T and U is one �T-minimizer for T. (See also [8] and
[20].) Then from Eqs. (51a) and (53), the set of �T-minimizers for T is

UG�T = {UG : G ∈G�T}. (54)
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Table 3 The high symmetry axes of the groups UU�U�. See also Table 2.

Group High symmetry axes

U UTRIV U�= {I } All v ∈ S
2 (the 1-fold axes)

U UMONO U� ±Uk (the 2-fold axis)

U UORTH U� ±U i, ±U j, ±Uk (the 2-fold axes)

U UTRIG U� ±Uk (the 3-fold axis)

U UTET U� ±Uk (the 4-fold axis)

U UCUBE U� ±U i, ±U j, ±Uk (the 4-fold axes)

U UXISO U� ±Uk (the regular axis)

U UISO U�=U All v ∈ S
2 (the regular axes)

9.2 The XISO-Approximation X(T,U) when U Is a �T-Minimizer

Table 3 gives the high symmetry axes for each elastic symmetry group. They are “high” with
respect to the ordering 1-fold, 2-fold, 3-fold, 4-fold, regular.

From Eq. (12), Table 3 can be compactly stated

v ∈ S
2 is a high symmetry axis of UU�U� ⇐⇒ v = (UG)k for some G ∈ G�. (55)

Theorem 4 Let U be a �T-minimizer for T. Equivalently, ST = UU�TU�. Then

(i) The regular axis Uk of the XISO-approximation X(T,U) is a high symmetry axis of T.
(ii) If the regular axis V k of X(T,V ) is a high symmetry axis of T, then V = U ′G for some

�T-minimizer U ′ and some G ∈UXISO.

Proof From Table 3, Uk is a high symmetry axis of T (i.e., of ST). This proves (i).
Conversely, suppose that the regular axis V k of X(T,V ) is a high symmetry axis of T.

From Eq. (55), V k = (UG′)k for some G′ ∈ G�T . Then (UG′)�V k = k, so (UG′)�V ∈
UXISO, from Table 2. Then V = (UG′)G for some G ∈ UXISO. Since UG′ is a �T-minimizer
for T, this proves (ii). �

Figure 5 shows XISO-approximations to T whose regular axes coincide with high sym-
metry axes of T.

Unless T is isotropic, the symmetry of X(T,U) will normally be XISO, in which case the
regular axis of X(T,U) is unique. It is possible, however, for the symmetry of X(T,U) to
be ISO even if T is not ISO. Then every direction is a regular axis. An example. with U = I ,
is the elastic map T in Sect. 10.5.

10 Examples of XISO-Approximations

For each point v ∈ S
2, we imagine the XISO subspace VXISO(v) as being attached to S

2 at v.
The subspace consists of all elastic maps having v as a regular axis; see Fig. 6. For v = Uk,
the XISO-approximation X(T,U) is in VXISO(v) and thus can be regarded as attached to S

2

at v.
Each subspace VXISO(v) in principle appears twice on the sphere—at the antipodal points

v and −v. The same is true for any XISO-approximation X(T,U). In Figs. 5–12, however,
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Fig. 5 The XISO-approximations (small spheres) whose regular axis coincides with a high symmetry axis
of T. A diagram is shown for each symmetry class � �= ISO, TRIV. Symmetry axis locations are shown in
green. Only ghost spheres are shown, since T is not known specifically.

Fig. 6 The set T XISO, which
consists of the elastic maps
having a regular axis. To each
point v ∈ S

2 we imagine
attaching all elastic maps that
have a regular axis through ±v;
those maps make up the subspace
VXISO(v). The figure shows only
two of the infinitely many elastic
maps in VXISO(v), and it does so
only for v1 and v2 rather than for
all v ∈ S

2. The
XISO-approximation X(T,U) to
an elastic map T is the projection
of T onto VXISO(v), where
v = Uk. The closest XISO map to
T is then the closest to T of all
the X(T,U), v = Uk, v ∈ S

2.
Here the white sphere is not
meant to depict any elastic map;
it is just the unit sphere S

2.

we show each X(T,U) only once, at whichever of v and −v that is more convenient for
depiction.

Figure 6 gives the impression that the subspaces VXISO(v) are disjoint. But in fact,

v1 �= ±v2 =⇒ VXISO(v1) ∩VXISO(v2) = V ISO(I ) = T ISO. (56)
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Fig. 7 The monoclinic map T of
Eq. (57) together with two
XISO-approximations B and K
to T. The elastic map B is the
XISO-approximation whose
regular axis coincides with the
2-fold axis k of T. The elastic
map K is the closest XISO map
to T. The indicated values
αT

XISO(k) = 19.3◦ and
αT

XISO(v) = 13◦ show that K is a
better approximation to T than
is B. This is also seen in the
contour plots, though not
conspicuously. The color code is
the same for all three spheres.

In Sects. 10.1–10.6 we consider various XISO-approximations X(T,U). For those labeled
with “B” or “Bi” in Figs. 7–12, the rotation U is a �T-minimizer for T and, consistent with
Theorem 4 and Fig. 5, the regular axis of X(T,U) coincides with a high symmetry axis
of T. For the XISO-approximations labeled with “K” or “Ki”, the rotation U is an XISO-
minimizer and so X(T,U) is a closest XISO map to T. The elastic maps T that we chose are
not typical, but they are not impossibly rare either.

10.1 A Monoclinic Example

Let T be given by

T = [T]BB =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2

3 2 1
2 4
1 5

6

⎞
⎟⎟⎟⎟⎟⎟⎠

. (57)

(Blank entries are understood to be zero.)
Since T is a MONO reference matrix, we can shortcut the process of finding ST that was

mentioned in Sect. 9.1. Since T is a MONO reference matrix, then ST ⊃UMONO, by Eq. (82).
But in fact ST = UMONO, since the plot of αT

MONO (Fig. 7) shows that T has only two 2-fold
points—at ±k. Thus �T = MONO.

Since ST = UMONO, then U = I is a �T-minimizer for T, from Eq. (51a). From Eq. (84b)
the matrix of the corresponding XISO-approximation B = X(T, I ) is diagonal with entries
3/2, 3/2, 7/2, 7/2, 5, 6. Consistent with Theorem 4, the regular axis of B, namely Ik = k,
is also a 2-fold axis of T.
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Fig. 8 The monoclinic map T of Eq. (59) and five XISO-approximations to it. The elastic map B is the XISO-
approximation whose regular axis is the 2-fold axis k of T. The elastic maps K1 and K2 are the closest XISO

maps to T. See Eq. (61) for M1 and M2. The values of αT
XISO show that K1 and K2 are somewhat better

approximations to T than is B, and that they are much better approximations than are M1 and M2. This is
also seen in the contour plots.

An XISO-minimizer for T can be calculated from Eq. (46). One such is

U =
⎛
⎝ 0 −0.940 0.342

0 0.342 0.940
−1 0 0

⎞
⎠ , (58)

but any rotation matrix whose third column is plus or minus the third column of U is
also an XISO-minimizer. The closest XISO map K = X(T,U) to T is then calculated from
Eqs. (31a), (31b) and (84b). Its regular axis is v = Uk = (0.342, 0.940, 0).

The main points here are that B and K are not the same, and that B—the XISO-
approximation whose regular axis coincides with the 2-fold axis of T—is not the best
approximation to T.

10.2 Another Monoclinic Example

The elastic map T is defined by

[T]BB =

⎛
⎜⎜⎜⎜⎜⎜⎝

28 −2
−2 61

71 −4 6 8
−4 68 10
6 10 62 −3
8 −3 59

⎞
⎟⎟⎟⎟⎟⎟⎠

. (59)

As in Sect. 10.1, the symmetry group ST of T is found to be UMONO, and U = I is then a
�T-minimizer for T. The corresponding XISO-approximation B = X(T, I ) is found imme-
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diately from Eq. (84b). Consistent with Theorem 4, its regular axis Ik = k is a 2-fold axis
of T.

From Eq. (46), an XISO-minimizer U1 for T is

U1 =
⎛
⎝ 0.118 −0.986 0.114

0.708 0.164 0.687
−0.697 0 0.718

⎞
⎠ . (60)

The matrix of the corresponding closest map K1 = X(T,U1) to T is found from Eqs. (31a),
(31b), and (84b). Its regular axis—the third column of U1—is v1 = (0.11,0.69,0.72). Since
K1 does not have Zπ as a symmetry, another closest XISO map K2 is inevitable, with regular
axis v2 = Zπ v1.

Figure 8 shows B, K1, K2, as well as the XISO-approximations M1 = X(T,M1) and
M2 = X(T,M2), where

M1 =
⎛
⎝ 0.658 0 0.753

−0.753 0 0.658
0 −1 0

⎞
⎠ , M2 =

⎛
⎝−0.707 0 −0.707

−0.707 0 0.707
0 1 0

⎞
⎠ . (61)

We calculated M1 and M2 using the routine MS_axes.m [57], which is supposed to
implement Browaeys & Chevrot [9]. The rotation M2 was calculated with their X3_stiff
option, M1 without it.

In each of Figs. 7–12, the αT
XISO values are consistent with the contour plot for T. Here

in Fig. 8, for example, we imagine a band consisting of points on the large sphere that are
within, say, 5◦ of the great circle with poles at ±v1. The colors on that band—mostly yellow
or cooler—are cooler than the colors on the comparable band at the equator (blue = cold,
red = hot). Thus T looks more like an elastic map with regular axis v1 than an elastic map
with regular axis k.

10.3 An Orthorhombic Example

The elastic map T is defined by

T = [T]BB =

⎛
⎜⎜⎜⎜⎜⎜⎝

86
51

32
46 −20 13

−20 45 −2
13 −2 87

⎞
⎟⎟⎟⎟⎟⎟⎠

. (62)

Since T is an ORTH reference matrix then ST ⊃ UORTH, by Eq. (82). But in fact ST =UORTH,
since T has six distinct eigenvalues—too many for it to be tetragonal. Hence �T = ORTH.

Since ST = UORTH, the identity rotation I is one �T-minimizer for T, from Eq. (51a).
From Eq. (54), two others are then Ui and Uj. (Uv is defined in Eq. (23).) The correspond-
ing XISO-approximations B3 = X(T, I ), B1 = X(T,Ui), B2 = X(T,Uj) are calculated from
Eqs. (84b), (31a) and (31b). Consistent with Theorem 4, their regular axes are 2-fold axes
of T; see Fig. 9.
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Fig. 9 The orthorhombic elastic map T of Eq. (62) and five XISO-approximations to it. The elastic maps B1,
B2, B3 are the XISO-approximations whose regular axis is a 2-fold axis of T, and K1 and K2 are the closest
XISO maps to T. The values of αT

XISO in the figure show that K1 and K2 are better approximation to T than
are B1, B2, or B3. This is also seen in the contour plots

From Eq. (46), an XISO-minimizer U1 for T is

U1 =
⎛
⎝ 0 −1 0

0.7041 0 0.7101
−0.7101 0 0.7041

⎞
⎠ . (63)

The matrix of the corresponding closest XISO map K1 to T is then, from Eqs. (31a), (31b),
and (84b),

[K1] = [X(T,U1)] =

⎛
⎜⎜⎜⎜⎜⎜⎝

73.95 9.53 −5.11 5.34
45.04 −10.28

−10.28 44.86
9.53 54.85 −11.55 2.69

−5.11 −11.55 41.30 −1.50
5.34 2.69 −1.50 87.00

⎞
⎟⎟⎟⎟⎟⎟⎠

, (64)

Its regular axis—the third column of U1—is v1 = (0, 0.7101, 0.7041). The other closest
XISO map K2 then has regular axis v2 = Zπ v1.
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Fig. 10 The tetragonal elastic map T of Eq. (65) and three XISO-approximations to it. The elastic map B is
the XISO-approximation whose regular axis is the 4-fold axis of T, and K1 and K2 are the closest XISO maps
to T. The values of αT

XISO show that K1 and K2 are better approximation to T than is B. This is also seen in
the contour plots

10.4 A Tetragonal Example

The elastic map T is defined by

T = [T]BB =

⎛
⎜⎜⎜⎜⎜⎜⎝

60
60

15
71

58 6
6 15

⎞
⎟⎟⎟⎟⎟⎟⎠

. (65)

Since T is a TET reference matrix then ST ⊃ UTET. But since T has five distinct
eigenvalues—too many for it to be cubic or transverse isotropic, then in fact ST = UTET.
(Or if the plot for T is available, as in Fig. 10, just note that the plot does not have CUBE or
XISO symmetry.) Hence �T = TET.

Since ST = UTET, the rotation U = I is a �T-minimizer for T. The corresponding XISO-
approximation B = X(T, I ) is easily calculated from Eq. (84b). Consistent with Theorem 4,
its regular axis is the 4-fold axis k of T.

From Eq. (46), an XISO-minimizer U1 for T is

U1 = 1√
2

⎛
⎝ 0 −1 1

0 1 1
−√

2 0 0

⎞
⎠ . (66)

The matrix of the corresponding closest XISO map K1 to T is found from Eqs. (31a), (31b),
and (84b). Its regular axis is v1 = U1k = 1 1 0. The other closest XISO map K2 then has
regular axis v2 = Zπ/2v1.
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Fig. 11 (Left) The tetragonal elastic map T of Eq. (67) and five XISO-approximations to it, all depicted as
contour plots of their MONO angle functions as usual. The elastic map B is the XISO-approximation with a
regular axis coinciding with the 4-fold axis of T, and K1, K2, K3, K4 are closest XISO maps to T. The values
of αT

XISO show that K1, K2, K3, K4 are much better approximations to T than is B. (Right) Contour plot of
αT

XISO. The minima of αT
XISO (green points) are at the regular axes of K1, K2, K3, K4

10.5 Another Tetragonal Example

The elastic map T is defined by

T = [T]BB =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
2

3
1

2
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (67)

Since T is a TET reference matrix then ST ⊃ UTET. But since the plot for T in Fig. 11 does
not have CUBE or XISO symmetry, then in fact ST = UTET. Hence �T = TET.

Since ST = UTET, the rotation U = I is a �T-minimizer for T. From Eq. (84b) the matrix
of the corresponding XISO-approximation B = X(T, I ) is diagonal with diagonal entries 2,
2, 2, 2, 2, 1—it is isotropic.

Here the elastic map T is simple enough that its XISO-minimizers can be found analyt-
ically, without resorting to the numerical algorithm mentioned in Sect. 8.1. The function g

to be minimized is, from Eqs. (49), (48), (33),

g(θ, σ,φ) = d
(
T,VXISO(Û(θ, σ,φ))

)
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Fig. 12 The same elastic map T
and XISO-approximations from
Figs. 3 and 4. The elastic map K
is T′ from Fig. 4 and is the
closest XISO map to T, and M is
T′ from Fig. 3 and is the
XISO-approximation to T
computed using [57]. The values
of αT

XISO show that K is a better
approximation to T than is M.
This is also seen in the contour
plots

= 1

64

√
a1 + a2 cos 2φ − a3 cos 4φ + a4 cos 6φ − a5 cos 8φ − a6 cos 8θ sin8 φ,

a1 = 15159

2
, a2 = 980, a3 = 490, a4 = 140, a5 = 35

2
, a6 = 2240, (68)

independent of σ , as expected from Theorem 2. The global minima of g are at (θ, σ,φ) =
(nπ/4, σ, π/2) with value g = √

29/32. The XISO-minimizers for T are therefore, for any σ

and any integral n,

Û(nπ/4, σ,π/2) =
⎛
⎝− sin t sinσ − sin t cosσ cos t

cos t sinσ cos t cosσ sin t

− cosσ sinσ 0

⎞
⎠ (t = nπ/4). (69)

Although there are infinitely many XISO-minimizers, they have only eight distinct third
columns. They give the regular axes of the closest XISO-maps to T (the green points in
Fig. 11). The closest XISO-maps themselves are

Kn = X
(
T, Û(nπ/4, σ,π/2)

)
(n = 1,2,3,4). (70)

They are computed from Eqs. (43), (31a), (31b), (84b).
The elastic map T, like the map mentioned in footnote (2), has the peculiar property

that αT
MONO has more symmetry than does T itself. Here αT

MONO has all the elements of D8

as symmetries. To show this analytically, one need only verify that Zπ/4 is a symmetry of
αT

MONO. Since Xπ is a symmetry of T and hence is a symmetry of αT
MONO, and since Zπ/4 and

Xπ generate D8, then indeed all 16 members of D8 are symmetries of αT
MONO.

10.6 The Trivial Elastic Map T from Figs. 3 and 4

Figure 12 shows T and the two XISO-approximations to it from Figs. 3 and 4. As before,
T is from Eq. (93). From the contour plot of αT

MONO in Fig. 12, whose coolest color is light
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blue, T has no 2-fold points. Hence �T = TRIV. (Or one can compute from Eq. (45) that
d(T,T MONO) > 0.)

The XISO-approximations M and K are T′ from Figs. 3 and 4 respectively. Again we see
that M fails as an approximation to T.

For any trivial elastic map T, every U ∈U is a �T-minimizer, since UUTRIVU� = UTRIV.
Thus, whereas restricting U to be a �T-minimizer in Fig. 9 resulted in the three XISO-
approximations B1, B2, B3, doing the same in Fig. 12 would give infinitely many XISO-
approximations. There would be a small sphere attached to every point of the large sphere.

10.7 A Sufficient Condition for Multiple Closest �-Maps

As in Sect. 8, an elastic map K is a closest �-map to an elastic map T when

K ∈ T �, d(T,K) = d(T,T �). (71)

As in Figs. 8–11, some elastic maps have more than one closest �-map. One way this can
happen is if K is a closest �-map to T and if V ∈U is a symmetry of T but not a symmetry
of K. Then

d(T,T �) = d(T,K)

= d(V ◦ T ◦ V
∗
, V ◦ K ◦ V

∗
)

= d(T, V ◦ K ◦ V
∗︸ ︷︷ ︸

�=K

). (72)

Thus V ◦ K ◦ V
∗

is another closest �-map to T.
The closest XISO-maps K1 and K2 to T in Fig. 8 fit the above paradigm. That is, K1 was

a closest XISO-map to T, and V = Zπ was a symmetry of T but not a symmetry of K1. And
K2 = V ◦ K ◦ V

∗
. Figures 9 and 10 are similar.

In Fig. 11 the closest XISO maps K1 and K3 fit the paradigm (with V = Zπ/2), as do K2

and K4, but K1 and K2, for example, do not fit. (The rotation Zπ/4 is not a symmetry of T.)
The 4-fold members of a cubic elastic symmetry group have their axes in three indepen-

dent directions. The only two 4-fold members of an XISO-group have a common axis—the
regular axis. Thus the cubic group cannot be a subgroup of the XISO-group. If K is a closest
XISO-map to a cubic map T, then there must be a symmetry V of T that is not a symmetry4

of K. Every cubic map therefore has multiple closest XISO-maps to it. In a thoughtful paper
in 2005, Dellinger [18] already anticipated this result with an example.

11 Lattice of Closest � Maps

For T as in Eq. (93), and for each � = ISO, . . . , TRIV, Fig. 13 shows the contour plot of
the monoclinic angle function of a closest �-map K� to T. The various K� give some
perspective on KXISO and indeed offer alternatives to KXISO. The number β� is the angle
between T and K� . The dashed lines in the figure indicate inclusions among the T � ; the
line from the TRIG node to the CUBE node, for example, means that T CUBE ⊂ T TRIG. As a
result, the angles β� increase (or are unchanged) going upwards along dashed lines.

4We are using the fact that a closest member of T XISO to an elastic map T cannot be isotropic unless T itself
is isotropic.
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Fig. 13 A closest �-map K� to T for each symmetry class �. The number β = β� is the angle between
T and K� . To make the 2-fold points of K� conspicuous, they are shown in green; if colored consistently
with the color code, they would have been dark blue, since their αMONO values are zero. No 2-fold points,
however, are shown on the isotropic sphere; had they been shown, the entire sphere would have been green.
The given elastic map T, at bottom, is the same as in Figs. 3 and 4.

12 The �-Percentages

For an elastic map T, the notion of the percentage of it with specified symmetry � is central
to Browaeys & Chevrot [9], but we do not find a definition of it in their paper. The closest
we come is their hint that [9, Sect. 4.1.1]
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The different elastic symmetry parts of the tensor are presented as percentages of the
norm of the elastic tensor in the histogram of Fig. 1 using the following convention:

100 per cent =
N−2(X)

[
N2(Xtric) + N2(Xmon) + N2(Xort) + N2(Xtet) + N2(Xhex) + N2(Xiso)

]
.

That suggests that they were defining the �-percentage of T to be

q�(T,U) = ‖Q�(T,U)‖2

‖T‖2
. (73)

That is what Beller & Chevrot [6] do; our Eq. (73), with U = I , will reproduce the six
�-percentages in their Appendix B. The equation does not, however, reproduce the percent-
ages given in Browaeys & Chevrot [9, Sections 4.1.1, 4.1.2]. Instead, they [9] seem to be
calculating the percentage as

p�k
(T,U) =

∥∥T − P
(
T, V�k−1(U)

) ∥∥ − ∥∥T − P
(
T, V�k

(U)
)∥∥∥∥T

∥∥ . (74a)

Equivalently,

p�k
(T,U) = d

(
T̂, V�k−1(U)

) − d
(
T̂, V�k

(U)
) (

T̂ = T/‖T‖). (74b)

Equation (74a) follows from [59] using our Eq. (38). And p�(T,U), with U = I , does
match the Browaeys and Chevrot percentages in their Sects. 4.1.1 and 4.1.2.

For a given T and U the six numbers q�k
(T,U) sum to 1, since the summands are

pairwise orthogonal (as follows from Eq. (37b)). The numbers p�k
(T,U) likewise sum to 1:

6∑
k=1

p�k
(T,U) = d

(
T̂,V�0(U)

) − d
(
T̂,V�6(U)

) = ∥∥T̂
∥∥ − 0 = 1. (75)

Equation (73), defining the �-percentage as q�(T,U), has the virtue that it is transparent.
Equations (74a) and (74b), defining the �-percentage as p�(T,U), are on the other hand
opaque (to us). In no way do they express an intuition for �-percentage, whatever that is.
Equation (73) has its own seemingly fatal flaw, in that the summands Q�(T,U), with the
exception of QISO(T,U), are never physically permissible (Sect. 12.3). Both q�(T,U) and
p�(T,U) have the additional complication that they depend on the rotation matrix U .

Although we think neither q�(T,U) nor p�(T,U) is a viable expression of �-
percentage, we consider p�(T,U) further in the next sections, mainly to clarify the role
(and difficulties) of U .

12.1 Calculating the Percentages

From Eqs. (74a) and (33),

p�k
(T,U) =

∥∥A − P
(
A, V B

�k−1
(I )

)∥∥ − ∥∥A − P
(
A, V B

�k
(I )

)∥∥∥∥A
∥∥ . (76)

The percentage p�(T,U) can now be calculated from Eqs. (76), (31b), (32), (84a)–(84h).
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12.2 Sample Calculation of Percentages p�(T,U)

We let T be the elastic map whose matrix with respect to B is

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2

5
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (77a)

T is orthorhombic, since T is an ORTH-reference matrix, and since the distance d(T,T TET)

is found to be non-zero, so that T is not tetragonal. For U we take I , Ui, Uj as examples.
From Eq. (23), they are

I =
⎛
⎝1

1
1

⎞
⎠ , Ui =

⎛
⎝ 1

−1
1

⎞
⎠ = 1 0 12, Uj =

⎛
⎝−1

1
1

⎞
⎠ = 0 1 12 (77b)

From Eq. (32),

[I ]BB = I6×6,

[Ui]BB = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

−2
2

−2
1

√
3√

3 −1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

[Uj]BB = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

2
−2

−2
1 −√

3
−√

3 −1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(77c)

Eqs. (77a) and (31b) then give A(T , I) = T and

A(T ,Ui) =

⎛
⎜⎜⎜⎜⎜⎜⎝

5
2

1
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, A(T ,Uj) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
5

2
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (77d)

The percentages p�(T,U) are then, from Eq. (76),

U pISO(T,U) pXISO(T,U) pTET(T,U) pORTH(T,U) pMONO(T,U) pTRIV(T,U)

I 0.4 0.10 0.38 0.12 0 0

Ui 0.4 0.23 0.00 0.37 0 0

Uj 0.4 0.10 0.02 0.49 0 0

(77e)
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12.3 The Summands and the Percentages q� Have No Physical Meaning

From Eqs. (35) and (87), the trace of the summand Q�k
(T,U) is zero unless k = 1:

tr
(
Q�k

(T,U)
) = tr

(
P

(
T, V�k

(U)
)) − tr

(
P

(
T, V�k−1(U)

))
= tr(T) − tr(T) = 0 (k = 2, . . . ,6). (78)

Hence the eigenvalues of Q�k
(T,U) cannot all be positive. Thus none of

Q�(T,U), � = XISO, TET, ORTH, MONO, TRIV, (79)

is physically permissible. The �-percentages q�(T,U) (Eq. (73)) are presumably imper-
missible as well.

13 The Symmetry Cartesian Coordinate System

On a first reading of Browaeys & Chevrot [9], their exposition seems to lack any counterpart
to our U ∈ U. Unlike our Q�(T,U), P(T,V�(U)), X(T,U), p�(T,U), and q�(T,U),
their summands, projections, hexagonal approximations, and percentages do not appear to
depend on U . The equivalent of U is there, however, implicit in their “symmetry cartesian
coordinate system” (SCCS) for 3-space.

The SCCS for an elastic map T is determined by a rotation matrix U ∈ U. The basis
vectors in the SCCS are Ue1, Ue2, Ue3; they are the columns of U . If the symmetry class
�T �= TRIV, MONO, the matrix U is supposed to be chosen so that the matrix for T in the
SCCS coordinates becomes, in our terminology, a �T reference matrix.5 From our Eq. (52b),
Browaeys & Chevrot are thus requiring U to be a �T-minimizer for T. Hence the regular
axes of their XISO-approximations are high symmetry axes of T, as is the case for B in our
Fig. 10, for example.

If �T is TRIV or MONO, Browaeys & Chevrot [9, p 670] specify U by what we will refer
to as the Bisectrix Rule:

. . . the three SCCS directions are chosen as the bisectrix of each pair of one dij eigen-
vector and the corresponding closest vik eigenvector.

In (our) Fig. 9, where �T = ORTH, the requirement that U be a �T-minimizer for T gave
the XISO-approximations B1, B2, B3, but it cannot give the closest XISO maps K1 and K2

to T. The figure is consistent with the ORTH diagram in Fig. 5.
In Fig. 10, where �T = TET, the requirement that U be a �T-minimizer for T gave the

XISO-approximation B, but it cannot give the closest XISO maps K1 and K2 to T. The figure
is consistent with the TET diagram in Fig. 5.

In Fig. 11, where again �T = TET, the requirement that U be a �T-minimizer for T gave
the XISO-approximation B, but it cannot give the closest XISO maps K1, K2, K3, K4. The
map B turned out to be isotropic. The figure is consistent with the TET diagram in Fig. 5.

In Figs. 7, 8, and 12, where �T is MONO or TRIV, we relied on the code MS_axes.m [57]
to implement the Bisectrix Rule. (Our matrices [T]BB must be converted to Voigt matrices
for use in MS_axes. In the notation of MS_axes our U is (RR)�, but in X(T,U) the

5For Browaeys & Chevrot [9], matrix representations of elastic maps are Voigt matrices rather than represen-
tations with respect to our basis B, and their reference matrices would differ from those in our Eq. (81). To
go back and forth between the two representations, use [53, Eqs. S28 and S29].
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matrix U can always be replaced by UG, where G ∈ UXISO.) In none of those figures did the
Bisectrix Rule find a rotation matrix U that led to a closest XISO map to T.

Figures 7–12 are not typical, but they show that the SCCS cannot be relied on to find a
closest XISO map to a given T.

In Sect. 12.2, where we calculated �-percentages for an orthorhombic T, we chose U so
as to be consistent with the SCCS, though we see no conceptual justification for doing so. In
our terms, the rotations U = I,Ui,Uj were �T-minimizers for T. For those three rotations,
Eq. (77e) gave three distinct 6-tuples of �-percentages—an impossibility if the notion of
�-percentage were to have any meaning.

14 Literature Citing Browaeys and Chevrot (2004)

As of January 2024, the paper of Browaeys and Chevrot (BC) [9] had been cited by 136
journal articles. Here we focus on the subset of 62 studies where BC was more significant,
with the two main applications being to XISO-approximations and to �-percentages.

The three main software packages cited are D-Rex [33] (20 studies), MSAT [60] (12
studies), and MTEX [2] (8 studies), but there are also several modified or alternative versions
[25, 29, 32, 34, 35, 41, 42, 51].

The BC XISO-approximation is used in 27 of the 62 studies. These studies calculate
elastic properties of mantle and crustal Earth materials based on a combination of factors,
including mineralogical compositions, rheological models, geodynamical flow models, and
global models of plate configuration and plate motion. The calculated elastic properties
have symmetries ranging from trivial to orthorhombic, and the authors use the BC XISO-
approximation for purposes of interpretation and visualization. Among these 27 studies there
are 13 that cite D-Rex [3, 4, 14, 21–23, 31, 33, 40, 45, 46, 55, 56], four that cite a modified
version of D-Rex [32, 34, 35, 41], two that cite MTEX [27, 28], and eight that cite none
of the three codes [5, 17, 30, 44, 47, 48, 52, 62]. D-Rex [33], coauthored by Browaeys, is
meant to perform the XISO-approximation of [9].

The BC decomposition is performed in 27 of the 62 studies [1, 3, 6, 7, 10–13, 16, 26,
29–31, 36–39, 42, 43, 48–50, 52, 60, 61, 63, 64]. Among these 27 studies there are 18 that
calculate �-percentages. There are eight that use MSAT for the decomposition [16, 39, 63]
or for �-percentages [11–13, 26, 60]. There are 18 studies that have a figure or table based
on the BC decomposition.

A few authors express reservations about the BC theory. Lisboa et al. [38] mention that
the summands in the BC decomposition are not positive definite: “. . . the decomposed sym-
metries are fictitious materials that hold only the properties of a specific symmetry. They do
not represent any natural or synthetic materials.” Brownlee et al. [10] point out that the trigo-
nal symmetry class is not included in the BC decomposition. Regarding the �-percentages,
Bernard et al. [7] write that “. . . when we look at the decomposition results for a single
crystal of olivine, we see that even here the approach of [9] gives us a large hexagonal
component, even though olivine itself is an orthorhombic mineral.”

We mention the many computer codes above only to suggest that there may have been
undue reliance on codes. Our assessment of Browaeys and Chevrot [9] does not depend on
results from these codes.
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15 Conclusion

Except when � = ISO or � = TRIV, the set T � of elastic maps with symmetry class at
least � (orange surface in Fig. 1) is not a subspace of T , since the sum of two elastic maps
in T � need not be in T � . Orthogonal projection onto T � therefore makes no sense.

Authors who talk about projection onto T � are thus apt to be confused. They are prob-
ably projecting onto one of the subspaces V�(U) of T � . The rotation matrix U may well
be invisible in the exposition, but the XISO-approximations of an elastic map T and the �-
percentages p� and q� depend on the projection and hence can be expected to depend on U

(and T). The allowable matrices U need to be drastically restricted if the notions of XISO-
approximation and �-percentages are to be meaningful. The restriction should be consistent
with the intended meaning of the notions; it cannot be just ad hoc.

Given an elastic map T, we considered two competing rules for restricting U :
Rule 1: Require U to be an XISO-minimizer for T. This makes the XISO-approximation

X(T,U) a closest XISO map to T.
Rule 2: Require U to be a �T-minimizer for T. This makes a regular axis of X(T,U)

coincide with a high symmetry axis of T. If the symmetry class �T of T is TET, for example,
a regular axis of X(T,U) would also be the 4-fold axis of T, as for B in Fig. 10.

One might think that the two rules would be equivalent, and indeed for many T they are,
but not for all T, as shown in Figs. 7–11.

When it comes to XISO-approximations, we think “best” ought to be synonymous with
“closest.” Rule 1 is then the obvious choice. When �T �= TRIV, MONO, Browaeys & Chevrot
[9] use the equivalent of Rule 2. Our Figs. 9–11 show that in that case Browaeys & Chevrot
[9] cannot be depended on to find a closest XISO map to a given T.

When �T is TRIV or MONO, Browaeys & Chevrot [9] specify U according to their
Bisectrix Rule (our Sect. 13). (Rule 2 does nothing when �T = TRIV, since every U ∈ U is
then a �T-minimizer for T, by Eq. (51a).) Our Figs. 8 and 12 show that the Bisectrix Rule,
like Rule 2, cannot be depended on to find a closest XISO map to a given T.

Of all the symmetry classes, the trivial class is by far the most important in practice. If T
arises through measurement, with no assumptions made about its symmetry, its symmetry
will almost certainly be only trivial, due to uncertainties in the measurements. This makes
the Bisectrix Rule much more than just an afterthought.

Like the XISO-approximations, the �-percentages p� and q� depend on U . If the
percentages were to be meaningful, then U would have to be restricted somehow. But
whereas there were some conceptually plausible guidelines for doing so in the case of XISO-
approximations, we see nothing comparable for the �-percentages.

Regardless of how U is chosen, we think both p� and q� should be abandoned. We
find nothing in the definition of p�(T,U) (Eqs. (74a) and (74b)) that would justify refer-
ring to p�(T,U) as the percentage of the symmetry � in T. And although the definition
q�(T,U) = ‖Q�(T,U)‖2/‖T‖2 (Eq. (73)) clearly expresses q�(T,U) as the (square of
the) fraction of the �-summand in T, the summand has no physical meaning for � �= ISO

(Sect. 12.3).
In spite of the attention that we initially paid to the decomposition, and in spite of our

title, the decomposition is nearly irrelevant. We used it only to show that its summands, with
the possible exception of the ISO summand, are physically impermissible, and we used it in
the definition of the (discredited) percentage q�(T,U).

In conclusion, we recommend abandoning the �-percentages p� and q� , and we rec-
ommend abandoning the notion of XISO-approximation except when it coincides with the
notion of closest XISO map. Note that finding the closest XISO map to T (Sect. 8) does not
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require knowing the symmetry of T, and it does not require the apparatus of Browaeys &
Chevrot [9].

Appendix A: The Reference Matrices for the Basis B

The basis B for M consists of the six matrices

B1 = 1√
2

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , B2 = 1√

2

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , B3 = 1√

2

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ ,

B4 = 1√
2

⎛
⎝−1 0 0

0 1 0
0 0 0

⎞
⎠ , B5 = 1√

6

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ , B6 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ .

(80)

Using B simplifies the reference matrices and the projections. For the projections, compare
Eqs. (84a)–(84h) with Appendix A of Browaeys & Chevrot [9] or with Sect. 4.2 of Diner et
al. [19].

The reference matrices T B

� for B are

T B

ISO T B

XISO T B

TET⎛
⎜⎜⎜⎜⎜⎜⎝

a

a

a

a

a

f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

a

a

c

c

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

a

a

c

d

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T B

ORTH T B

MONO T B

TRIV⎛
⎜⎜⎜⎜⎜⎜⎝

a

b

c

d j p

j e k

p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

a g

g b

c i o s

i d j p

o j e k

s p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

a g m q t v

g b h n r u

m h c i o s

q n i d j p

t r o j e k

v u s p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

T B

CUBE T B

TRIG⎛
⎜⎜⎜⎜⎜⎜⎝

a

a

a

d

d

f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎝

a 0 m 0
0 a 0 m

m 0 c 0
0 m 0 c

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(81)
The fundamental relation between the reference matrix T B

� and the reference group U� is
that the symmetry group ST of an elastic map T is at least U� if and only if the matrix
representation of T with respect to B has the form of the reference matrix T B

� :

ST ⊃U� ⇐⇒ [T]BB = T B

� (a, b, . . .) for some a, b, . . . (82)
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With computer help on the algebra, Eq. (82) is verified rather easily. For � = TET, for
example, the solution to the equation [Zπ/2]T B

ORTH [Zπ/2]�= T B

ORTH is found to be b = a,
j = p = 0, which then gives T B

TET from T B

ORTH. The only case that requires care is � = TRIG.
One first finds the matrix T B

MONOY for elastic maps having 2-fold axes in the y-direction.
Then one solves the equation [Z2π/3]T B

MONOY [Z2π/3]�= T B

MONOY. The solution gives T B

TRIG

from T B

MONOY.
From Eqs. (15), (29), (82), the form of the reference matrix T B

� characterizes membership
in the subspace V�(I):

VB

�(I) = {
T : T = T B

� (a, b, . . .) for some a, b, . . .
}
. (83a)

Then from Eq. (20),

VB

�(U) = {
T : T = [U ]BB T B

� (a, b, . . .) [U ]�
BB

for some a, b, . . .
}
. (83b)

Appendix B: The Projections to V B

� (I)

The subspace V B

� (I) consists of the 6 × 6 matrices that have the form of the reference
matrix T B

� . One verifies Eqs. (84a)–(84h) using Eqs. (1a) and (1b).
For T = T B

TRIV the projection of T to V B

� (I) is

P (T ,V B

ISO(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

a′
a′

a′
f

⎞
⎟⎟⎟⎟⎟⎟⎠

, a′ = a + b + c + d + e

5
, (84a)

P (T ,V B

XISO(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

c′
c′

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

a′ = a + b

2
,

c′ = c + d

2
,

(84b)

P (T ,V B

TET(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

c

d

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

, a′ = a + b

2
, (84c)

P (T ,V B

ORTH(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a

b

c

d j p

j e k

p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

, (84d)



A Reformulation of the Browaeys and Chevrot Decomposition. . .

P (T ,V B

MONO(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a g

g b

c i o s

i d j p

o j e k

s p k f

⎞
⎟⎟⎟⎟⎟⎟⎠

, (84e)

P (T ,V B

TRIV(I )) = T , (84f)

P (T ,V B

CUBE(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′
a′

a′
d ′

d ′
f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

a′ = a + b + c

3
,

d ′ = d + e

2
,

(84g)

P (T ,V B

TRIG(I )) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a′ 0 m′ 0
0 a′ 0 m′
m′ 0 c′ 0
0 m′ 0 c′

e k

k f

⎞
⎟⎟⎟⎟⎟⎟⎠

,

a′ = a + b

2
,

c′ = c + d

2
,

m′ = m + n

2
.

(84h)

Appendix A of Browaeys & Chevrot [9] is consistent with our Eqs. (84a)–(84e). In our
terms, Browaeys & Chevrot are projecting onto V B

� (I).
For any elastic map S, we let tr5(S) (the “five-trace” of S) be the sum of the first five

diagonal entries of [S]BB, and we let f (S) be the sixth diagonal entry. Then from Eqs. (19)
and (84a),

[
PISO

(
P
(
T,V�(U)

)]
BB

= [PISO(T)]BB,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5 tr5(P)

1
5 tr5(P)

1
5 tr5(P)

1
5 tr5(P)

1
5 tr5(P)

f (P)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5 tr5(T)

1
5 tr5(T)

1
5 tr5(T)

1
5 tr5(T)

1
5 tr5(T)

f (T)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (85)

where P = P
(
T,V�(U)

)
. Thus both tr5 and f are invariant under projection to V�(U):

tr5

(
P
(
T,V�(U)

)) = tr5(T) (U ∈ U, all �), (86a)

f
(

P
(
T,V�(U)

)) = f (T) (U ∈ U, all �). (86b)

The trace is then invariant as well:

tr
(

P
(
T,V�(U)

)) = tr(T). (87)
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Appendix C: Proofs of Eqs. (24a), (30), (42)

C.1 Proof of Eq. (24a)

P
(
T, U ◦V ◦ U

∗) = U ◦ P
(
A,V

) ◦ U
∗
. (24a)

Proof Let

T1 = P
(
A,V

)
. (88)

We want to show

U ◦ T1 ◦ U
∗ ∈ U ◦V ◦ U

∗
, (89a)

T − U ◦ T1 ◦ U
∗ ∈

(
U ◦V ◦ U

∗)⊥
. (89b)

From Eqs. (88), (1a), (20),

T1 ∈ V,

U ◦ T1 ◦ U
∗ ∈ U ◦V ◦ U

∗
.

This proves Eq. (89a).
From Eqs. (88), (1b), (24b), (20),

A − T1 ∈ V⊥,

U ◦ A ◦ U
∗ − U ◦ T1 ◦ U

∗ ∈ U ◦V⊥◦ U
∗
,

T − U ◦ T1 ◦ U
∗ ∈

(
U ◦V ◦ U

∗)⊥
.

This proves Eq. (89b).

C.2 Proof of Eq. (30)

[
P
(
T,V�(U)

)] = P (T ,V B

� (U)). (30)

Proof We abbreviate V�(U) and V B

� (U) to V and V , respectively. We let T1 = P(T,V) and
T1 = [T1]BB. Then, with the first line coming from Eqs. (1a) and (1b),

T1 ∈ V and T − T1 ∈ V⊥,

T1 ∈ V and [T − T1] ∈ V⊥,

T1 ∈ V and T − T1 ∈ V⊥,

T1 = P (T ,V),

[P(T,V)] = P (T ,V).
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C.3 Proof of Eq. (42)

T =
6∑

k=1
Qk

Qk ∈ V�k
(U) ∩ (

V�k−1(U)
)⊥

⎫⎪⎬
⎪⎭ =⇒ Qk = Q�k

(T,U). (42)

Proof Assume the hypotheses in Eq. (42). Again abbreviating V�k
(U) to Vk , we first show

P(Qi ,Vk) =
{

Qi i ≤ k, (90a)

0 i > k. (90b)

If i ≤ k then Qi ∈ V i ⊂ Vk , so P(Qi ,Vk) = Qi , which is Eq. (90a). If i > k then

Qi − P(Qi ,Vk) ∈ V⊥
k (from Eq. (1b)),

Qi ∈ V⊥
k (from given and Eq. (34a)),

P(Qi ,Vk) ∈ V⊥
k ,

P(Qi ,Vk) ∈ Vk (from Eq. (1a)),

P(Qi ,Vk) = 0, (91)

which is Eq. (90b).
Then

T = Q1 + · · · + Q6,

P(T,Vk) = P(Q1,Vk) + · · · + P(Q6,Vk),

= Q1 + · · · + Qk−1 + Qk,

P(T,Vk−1) = Q1 + · · · + Qk−1,

Qk = P(T,Vk) − P(T,Vk−1) = Q�k
(T,U). (92)

Appendix D: Matrices for Sects. 7 and 8

The matrix for T in Figs. 3 and 4 is

T = [T]BB =

⎛
⎜⎜⎜⎜⎜⎜⎝

206.2 −67.4 17.1 −15.9 166.6 −19.5
−67.4 352.9 32.2 3.3 61.6 −41.6
17.1 32.2 343.8 0.4 73.6 −4.2

−15.9 3.3 0.4 270.0 88.8 13.3
166.6 61.6 73.6 88.8 287.1 30.7
−19.5 −41.6 −4.2 13.3 30.7 74.0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (93)
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To get the rotation matrix U in Fig. 3 we first found the Voigt matrix of T using [53, Eq. S29].
From it, we used MS_axes [57] to get6

U =
⎛
⎝ 0.807 −0.295 0.512

0.228 0.955 0.192
−0.545 −0.038 0.838

⎞
⎠ (in Fig. 3). (94)

(We actually ran MS_axes twice—once with the option X3_stiff and once without—
and thus got two rotation matrices. We used the one that gave the better of the two XISO-
approximations.)

The matrix U in Fig. 4, from Eqs. (46), (33), (84b), is

U =
⎛
⎝ 0.893 0.423 0.153

−0.441 0.758 0.481
0.088 −0.497 0.864

⎞
⎠ (in Fig. 4). (95)

From Eqs. (31a), (31b), (93), (95), the matrix for T′ in Fig. 4 is

T ′ = [
T′]

BB
=

⎛
⎜⎜⎜⎜⎜⎜⎝

194.9 −62.0 −22.3 −0.9 162.5 −29.2
−62.0 370.6 43.1 −35.7 51.6 −9.3
−22.3 43.1 317.1 −10.0 45.8 −5.2
−0.9 −35.7 −10.0 310.0 64.9 −7.3
162.5 51.6 45.8 64.9 267.5 25.1
−29.2 −9.3 −5.2 −7.3 25.1 74.0

⎞
⎟⎟⎟⎟⎟⎟⎠

(in Fig. 4).

(96)
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