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Abstract
A hyperelasticity modelling approach is employed for capturing various and complex me-
chanical behaviours exhibited by macroscopically isotropic polydomain liquid crystal elas-
tomers (LCEs). These include the highly non-linear behaviour of nematic-genesis polydo-
main LCEs, and the soft elasticity plateau in isotropic-genesis polydomain LCEs, under fi-
nite multimodal deformations (uniaxial and pure shear) using in-house synthesised acrylate-
based LCE samples. Examples of application to capturing continuous softening (i.e., in the
primary loading path), discontinuous softening (i.e., in the unloading path) and auxetic be-
haviours are also demonstrated on using extant datasets. It is shown that our comparatively
simple model, which breaks away from the neo-classical theory of liquid crystal elastomers,
captures the foregoing behaviours favourably, simply as states of hyperelasticity. Improved
modelling results obtained by our approach compared with the existing models are also
discussed. Given the success of the considered model in application to these datasets and
deformations, the simplicity of its functional form (and thereby its implementation), and
comparatively low(er) number of parameters, the presented isotropic hyperelastic strain en-
ergy function here is suggested for: (i) modelling the general mechanical behaviour of LCEs,
(ii) the backbone in the neo-classical theory, and/or (iii) the basic hyperelastic model in other
frameworks where the incorporation of the director, anisotropy, viscoelasticity, temperature,
softening etc parameters may be required.

Keywords Polydomain liquid crystal elastomers · Hyperelasticity · Finite elasticity · Soft
elasticity · Constitutive modelling

Mathematics Subject Classification 74-10 · 74A20 · 74B20

1 Introduction

Liquid crystal elastomers (LCEs) are soft active materials made of liquid crystal molecules
cross-linked with rubber-like polymer networks. In a typical LCE, the rod-like liquid crystal
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mesogens are linked with chains of a stretchable amorphous polymer network. At room tem-
peratures, these mesogens form a nematic phase with an orientational order, but transform
into an isotropic phase (i.e., no orientational order) above a nematic–isotropic transition
temperature (e.g., around 60 °C) [1]. The low-temperature nematic phase can be either mon-
odomain with a uniform mesogen orientation or polydomain with many coexisting domains
of different mesogen orientations.

While the literature may sometimes broadly refer to these materials under the generic
title of LCEs, it is important to distinguish the foregoing different phases and domain forma-
tions, as they portend significantly different mechanical behaviours and stress – deformation
responses. Following Biggins et al. [2] and Wei et al. [3], we cast the following brief and
precise categories of LCEs: (i) Isotropic-genesis polydomain LCEs, where an LCE sample is
cross-linked in the isotropic phase of its mesogens; (ii) Nematic-genesis polydomain LCEs,
where an LCE sample is cross-linked in the nematic phase of mesogens; and (iii) Nematic
monodomain LCEs, where an LCE sample has a uniform mesogen alignment (i.e., director)
throughout the entire material in the nematic phase of mesogens. We note similar classi-
fications (with various categories) of LCEs in the works of Tokumoto et al. [4] and Lee
and Bhattacharya [5]. The first two category of LCEs exhibit a macroscopically isotropic
mechanical behaviour, while nematic monodomain LCEs have an anisotropic mechanical
response due to the uniform mesogen order. The focus of the current work is on macroscop-
ically isotropic polydomain LCEs, which at the ideal limit, are considered incompressible
hyperelastic soft solids [4, 5].

The foregoing classes of polydomain LCEs evince interesting but complex mechanical
behaviours. Of particular note, in addition to the highly non-linear stress–deformation re-
sponse exhibited by both nematic- and isotropic-genesis polydomain LCEs, is a pronounced
mode of ‘soft elasticity’ demonstrated by the latter type, characterised by a plateau in the
uniaxial stress–stretch curves of these materials (e.g., see the experimental work of Urayama
et al. [6] and the theoretical approach of Biggins et al. [7]). We note as well the recent works
of Gleeson and co-workers that report on a ‘semi-soft’ behaviour in their acrylate-based
monodomain LCE samples (e.g., [8, 9]), which at a macro stress–deformation level appears
similar to that in the stress–strain curves of nematic-genesis polydomain LCEs. The soft
elasticity plateau in strain–deformation curves is indicative of very low elastic energy, i.e.,
a small stress, required to induce large deformations, and is attributed to the director rota-
tion from a randomly oriented to a uniformly aligned domain structure [6]. Other examples
of the complex mechanical responses of LCEs include the auxetic behaviour by which the
overall volume of the sample is preserved while the sample dimension in one direction (say
thickness) increases with the increase in the applied deformation (see, e.g., [10]). Discontin-
uous softening, i.e., softening in the unloading path akin to the Mullins effect in rubber-like
materials, is another feature in the mechanical behaviour of LCEs (see, e.g., [11]), which
further exacerbates the complexity of modelling the holistic mechanical behaviour of these
materials.

The prevailing modelling approach to the finite deformation of LCEs is perhaps the neo-
classical theory [12–15]. The stored energy function in this framework, following the Gaus-
sian molecular network assumption of rubber elasticity, is the neo-Hookean strain energy
function, augmented by a ‘step-length’ tensor denoted by L, and an ‘anisotropy parameter’
typically represented by r . Tensor L effectively describes the spontaneous deformation of
the subject LCE via the anisotropy parameter r , which solely depends on the order param-
eter of the LC mesogens, i.e., the degree of directional alignment of these molecules along
the director. While being the pioneering theory in modelling the soft elasticity phenomenon
in LCEs and accounting for the rotation of director, the neo-classical modelling approach
suffers from the following well-understood shortcomings.
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First, as described by DeSimone and co-workers [16, 17], the neo-classical theory is not
well-suited for capturing the behaviour of LCEs at larger deformations. This is due to the
inherent limitation of the neo-Hookean model, which similar to its classical applications in
rubber elasticity, cannot provide a good fit to the data at larger levels of deformation. We
note the attempts for considering other strain energies within the neo-classical framework
such as Mooney-Rivlin [5] and Ogden-type [17] models etc. However, the former model too
has well-documented shortcomings in capturing various behaviours of rubber-like materi-
als, while the latter model has been shown susceptible to ill-posed effects when applied to
soft(er) solids [18–20]. Therefore, a strain energy function with a more comprehensive func-
tional form that can better capture the deformation of LCE specimens across their full-range
of deformation, and remain free from ill-posed modelling results, would be more desirable.

Second, the application of the neo-classical theory (irrespective of the choice of the em-
bedded strain energy) has mostly been limited to a single mode of deformation, most often
uniaxial deformation. The capability of this theory for simultaneous modelling of various
deformation modes therefore remains largely unexplored. A notable and rare study where
uniaxial, pure shear and biaxial deformations of polydomain LCEs are considered is that of
Tokumoto et al. [4], in which, interestingly, a more complex model had to be presented.

Third, even within uniaxial deformation, the neo-classical theory postulates a threshold
stretch, almost as a switch, below which the theory emulates the occurrence of soft elasticity.
However, in addition to the difficulty of measuring an exact value for this threshold stretch
experimentally, mathematical/computational implementation of such models will entail non-
smoothness at the point of transition (i.e., threshold deformation). It is more advantageous
to have a model that captures soft elasticity and the proceeding rubber-like behaviour with
a continuous function.

Fourth, augmentation of the basic hyperelastic function to include an ‘anisotropy param-
eter’ r for application to macroscopically isotropic nematic- and isotropic-genesis polydo-
main LCEs would seem unnecessary. Similarly, incorporating a ‘step-length’ tensor L for
capturing soft elasticity, where it has been shown that the postulated director rotations are
not necessary for this phenomenon (see, e.g., the work of Fried and Sellers [21]), appears
superfluous. It would therefore seem more appropriate to work with a model that captures
the mechanical behaviours of interest in LCEs without the unnecessary additions that are
brought about by the neo-classical theory.

Fifth, and finally, if other mechanical features of LCEs such as discontinuous soften-
ing (in the unloading path) and auxetic behaviours etc are also to be considered, the neo-
classical theory with the aforementioned extra parameters already added to the basic strain
energy function makes it more difficult to incorporate further/additional variables and iden-
tify meaningful parameter values through a process of fitting and minimisation. We note
here recent alternative models by Mihai and co-workers on using modified neo-Hookean
and Ogden models [22, 23]. However, those modelling approaches still incorporate elabo-
rate mathematical models with a relatively high number of terms and parameters, including
auxiliary functions, which in an attempt to keep them as simple as possible “their approxi-
mation of the observed phenomena are not the best” [23]. In this spirit, a simpler modelling
approach that is more amenable to capturing these behaviours with a more reduced set of
model parameters/variables may prove more practical.

In an attempt towards alleviating these five shortcomings recounted in the foregoing, here
we wish to put forward a simple isotropic incompressible hyperelastic strain energy func-
tion for application to the finite deformation of nematic- and isotropic-genesis polydomain
LCEs. To this end, we undertake to model the uniaxial and pure shear deformations of our
in-house synthesised acrylate-based LCEs, simply as states of hyperelasticity, without in-
corporating the concept of director rotation and/or step-length parameters etc. The model
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is simultaneously fitted to the datasets, and is shown to favourably capture the highly non-
linear deformation and soft elasticity modes exhibited by the samples. To further showcase
the capability of the model, we also present its application to capturing continuous soft-
ening (in the primary loading path), discontinuous softening (in unloading path) and the
auxetic behaviour of LCE samples using extant experimental data. By considering this wide
range of datasets and behaviours, our intention is to demonstrate the capability and merit
of our model over the currently existing neo-Hookean, Mooney-Rivlin, and Ogden type
models, for capturing the mechanical behaviour of LCEs. For applications where the use
of neo-classical theory and/or incorporation of anisotropy, temperature, and rate-effects is
necessary, the presented model here may serve as a hyperelastic backbone in the required
augmented modelling frameworks and theories.

In §2 a brief summary of the hyperelastic strain energy function of interest will be pre-
sented. The experimental methodology, including sample synthesis and preparation, as well
as the mechanical testing setup will be described in §3. The application of the model to
experimental data will be demonstrated in §4. Accordingly, the model is fitted simultane-
ously to uniaxial and pure shear datasets of our in-house synthesised nematic- and isotropic-
genesis polydomain LCE specimens. In addition, we will also consider the application of
the model to capturing the continuous softening, i.e., the gradual softening in the primary
loading path which eventually leads to failure, of the explicit type discussed in [24], in a
nematic LCE sample under uniaxial deforamtion due to He et al. [25]. Next, discontinuous
softening behaviour (in the unloading path) of a nematic-genesis polydomain LCE originally
due to Merkel et al. [11], also exhibiting a permanent set in the load-free configuration, will
be modelled. For this purpose, we will employ the recently proposed extension to the clas-
sical pseudo-elasticity theory of Ogden and Roxburgh [26], by Anssari-Benam et al. [27].
Finally in this section we will consider the application of the model to the uniaxial defor-
mation of a monodomain LCE sample reported in Raistrick et al. [10], exhibiting an auxetic
behaviour. The hyperelastic model will be directly applied to this dataset, without any ad-
ditional complexities that arise from considering director order tensors and/or Landau-de
Gennes expansions etc considered in previous studies to capture such auxetic behaviours
(e.g., in [23]). The improved modelling results will be presented and highlighted. Conclud-
ing remarks will be conferred in §5. Given these promising early modelling results provided
by the considered strain energy function here, the application of this hyperelastic function
to modelling the general mechanical behaviour of LCEs either as a stand-alone model or as
the backbone in the neo-classical theory, or indeed as the basic hyperelastic model in other
augmented frameworks and theories, is proposed.

2 The Hyperelastic Strain Energy Function

The hyperelastic model of interest here is of binomial form; i.e., W (I1, I2) = f (I1)+g (I2),
first introduced in [28], as the following function:

W (I1, I2) =
∑

j=1

3
(
nj − 1

)

2nj

μjNj

⎡

⎣ 1

3Nj

(
nj − 1

) (I1 − 3)βj − ln

(
I1 − 3Nj

3 − 3Nj

)βj

⎤

⎦

+
∑

k=1

Ck

[(
I2

3

)εk

− 1

]
,

(1)
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where:
{

nj ,μj ,Nj ,Ck ∈R
+ ,

βj , εk ∈ R ,
(2)

are model parameters, and I1 and I2 are the first and second principal invariants of B(=
FFT), respectively. The infinitesimal shear modulus μ0 for this model is:

μ0 =
∑

j=1

μjβjNj

(
1 − nj

)

nj

(
1 − Nj

) +
∑

k=1

2εk

3
Ck . (3)

The generalised neo-Hookean part of the model; i.e.,

f (I1) =
∑

j=1

3
(
nj − 1

)

2nj

μjNj

⎡

⎣ 1

3Nj

(
nj − 1

) (I1 − 3)βj − ln

(
I1 − 3Nj

3 − 3Nj

)βj

⎤

⎦ , (4)

is a generalisation obtained from the response function first introduced in [29], from a ratio-
nal approximant in I1 of [1/1] order to a [β/1] order (see [28]). The I2-term; i.e.,

g (I2) =
∑

k=1

Ck

[(
I2

3

)εk

− 1

]
, (5)

is a generalisation of the basic
√

I2 function presented by Carroll [30].

Remark 1 In the original presentation [28], it was stipulated that N has to be single valued;
i.e., cannot be subscripted, unlike the other model parameters. However, we note here, when
using the multi-term expansion of the model, that in any case the value of the limiting
extensibility will be a priori determined by the minimum value of Nj . Therefore, there is
no need for the overtly prescriptive restriction in [28], to limit N to only a single value. This
notion is further underlined in cases where N < 1, which implies no limiting extensibility in
the first place. This nuance distinction is made here with respect to the original presentation
in [28].

Remark 2 The conditions in Eq. (2) are those originally proposed in [28]. For the empirical
relationship W2 ≥ 0 to hold true, one would require Ck ≥ 0 and εk ≥ 0, or alternatively
Ck ≤ 0 and εk ≤ 0. However, as also considered by Mihai and Goriely [31], the prediction
of some mechanical behaviours such as the reverse Poynting effect will lead to the violation
of that empirical inequality. As such, the condition in Eq. (2)2 was considered instead in [28]
for εk . In the same spirit, the restriction on Ck may also be relaxed to Ck ∈ R. In particular,
note that when both Ck ≤ 0 and εk ≤ 0, the empirical relationship W2 ≥ 0 remains intact.

The favourable application of this model to a wide range of soft materials including
natural unfilled and filled rubbers, hydrogels, and biomaterials under various deformation
modes was demonstrated in [28]. In addition, it is noteworthy that the generalised neo-
Hookean part of the model f (I1) is parent to many of the existing models in the literature,
from the neo-Hookean [32] to limiting chain extensibility model of Gent [33], and those of
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Anssari-Benam and Horgan [34] and Anssari-Benam and Bucchi [35, 36]; vide infra. It can
be verified that using the one-term expansion with β = 1, we have, respectively,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lim
N→∞

f (I1) = lim
n→1

f (I1) = 1

2
μ(I1 − 3) ,

lim
n→∞f (I1) = −3

2
μ0 (N − 1) ln

(
− I1 − 3N

3N − 3

)
= −1

2
Jm μ0 ln

(
1 − I1 − 3

Jm

)
,

f (I1) = 3 (n − 1)

2n
μN

[
1

3N (n − 1)
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]
,

f (I1)
n=3== μN

[
1

6N
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]
.

(6)

Therefore, the model in Eq. (1) appears to be a broad representation of the mechanical
behaviour of isotropic incompressible soft materials, and of hyperelastic models.

3 Samples Preparation and Experiments

For the purpose of synthesising our in-house specimens, 4-Bis-[4-(3-acryloyloxypropypro-
pyloxy) benzoyloxy]-2-methylbenzene (RM257, LC mesogen) was acquired from Daken
Chemical, and Pentaerythritol tetra(3-mercaptopropionate) (PETMP, crosslinker), 2,2-
(ethylenedioxy)diethane-thiol (EDDET, spacer), 2,6-di-tert-butyl-4-methylphenol (BHT,
antioxidant), dipropylamine (DPA, catalyst), and toluene (solvent) were purchased from
Sigma-Aldrich. All materials were used in their as-received condition without further pu-
rification.

3.1 Synthesis of Isotropic- and Nematic-Genesis Liquid Crystal Elastomers

All our LCE samples were synthesised following the well-established thiol-acrylate Michael
addition reaction described in [37, 38]. To synthesise an isotropic-genesis LCE, 8 g of
RM257, 0.16 g of BHT, and 3.2 g of toluene (40 wt% of RM257) were mixed and heated
to 85 °C to form a homogeneous solution. The solution was cooled to room temperature,
and 0.434 g of PETMP and 1.83 g of EDDET were subsequently added. The solution was
then mixed and vacuumed by a FlackTek SpeedMixer for 1.5 minutes to reach homogeneity.
Finally, a separate solution of catalyst of 1.136 g (with a weight ratio of DPA and toluene
at 1:50) was added, and the solution was mixed and vacuumed for another 1.5 minutes to
reach homogeneity. The final solution was poured into acrylic molds of 5×1×0.1 cm3 or
14×10×0.1 cm3 for complete polymerization. After 12 hours, the samples were taken out
from the mould and placed into a vacuum oven at 80 °C and 508 mmHg for 24 hours to
evaporate the toluene. During the polymerization, BHT absorbs the extra free radicals in the
mixture. This, together with the solvent toluene, yields an isotropic-genesis LCE [38]. To
synthesise a nematic-genesis LCE, the same process was followed but without the addition
of BHT in the solution.

3.2 Uniaxial and Pure Shear Tests

Uniaxial and pure shear tests were conducted on the synthesised LCE samples using an
Instron tensile tester (Instron 34TM-5). For uniaxial tensile tests (Fig. 1a), samples of 0.09-
0.12 cm thickness were cut into long rectangular strips of 0.8 cm width and mounted into
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Fig. 1 Uniaxial tensile and pure shear deformation test of the in-house nematic-genesis polydomain LCE
specimens: (a) reference and (b) deformed states of a uniaxial sample; (c) reference and (d) deformed states
of a pure shear sample. The inset schematics illustrate the molecular structures of the polydomain LCE before
and after the deformation. The scale bar represents 1 cm in all figures

the tensile tester to form a gauge length of 4.5 cm. For pure shear tests (Fig. 1c), samples of
the same thickness range were cut into wide rectangular sheets of 5 cm width, glued to two
pairs of acrylic grips, and mounted into the tensile tester to form a gauge length of 1 cm.
The samples were then stretched by the tensile tester (e.g., Figs. 1b and 1c for uniaxial and
pure shear deformations, respectively) until catastrophic fracture at room temperature of 20-
22 °C, with the force and displacement recorded by the machine. Both experiments were
performed under quasi-static conditions, with the deformation rate set at 0.01 s−1.

4 Modelling Results

In this section we proceed with applying the model in Eq. (1) to a wide range of experimental
data and deformations. The considered datasets encompass multimodal deformations (i.e.,
uniaxial and pure shear) of our in-house nematic- and isotropic-genesis polydomain LCE
specimens, and extant datasets including continuous softening (in the primary loading path)
of a nematic LCE sample under uniaxial loading, discontinuous softening behaviour (in
the unloading path) under uniaxial deformation of a nematic-genesis polydomain LCE also
exhibiting permanent set, and uniaxial deformation of a monodomain LCE sample with
auxetic behaviour.

For each deformation, we derive and present the related (engineering) stress – deforma-
tion relationships and fit those relationships to the data, by minimising the residual sum

of squares (RSS) function defined as: RSS =
∑

i

(
P model − P experiment

)2

i
, where i is the

number of data points and P is the engineering stress (or alternatively T as the Cauchy
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stress, depending on the source data). The minimisation is performed via an in-house de-
veloped code in MATLAB®, using the genetic algorithm (GA) function. The coefficient of
determination R2 values are reported as a measure of the goodness of the obtained fits.

4.1 Uniaxial and Pure Shear Deformations

We start by modelling the multimodal (uniaxial and pure shear) deformations of our
nematic- and isotropic-genesis polydomain LCE samples. For doing so, we first derive and
present the (engineering) stress – stretch (λ) relationships. Accordingly, we employ the rep-
resentation formula for the Cauchy stress as:

T = −p I + 2W1 B − 2W2B−1 , (7)

where B is the left Cauchy-Green deformation tensor and B−1 is its inverse, p is the arbitrary
Lagrange multiplier enforcing the condition of incompressibility, and I is the identity tensor.
Note that W1 and W2 are the partial derivatives of the strain energy function W in Eq. (1)
with respect to I1 and I2, where I1 = λ2

1 + λ2
2 + λ3

3 and I2 = λ−2
1 + λ−2

2 + λ−2
3 are the first

and second principal invariants of B, respectively, and I3 = 1 due to incompressibility.
In uniaxial deformation we have λ1 = λ and λ2 = λ3 = λ−0.5. Subject to the assumption

of plane stress (T33 = 0), we find from Eqs. (1) and (7):

Tuni =
∑

j=1

μjβj

nj

I1 (I1 − 3)βj −1 + 3Nj

[
1 − (I1 − 3)βj −1

] − 3njNj

I1 − 3Nj

(
λ2 − 1

λ

)

+
∑

k=1

2Ckεk

3εk
I

εk−1
2

(
λ − 1

λ2

)
.

(8)

The resultant engineering stress P components may be obtained from T on using T =
F P, where F is the deformation gradient tensor. It follows:

Puni =
∑

j=1

μjβj

nj

I1 (I1 − 3)βj −1 + 3Nj

[
1 − (I1 − 3)βj −1

] − 3njNj

I1 − 3Nj

(
λ − 1

λ2

)

+
∑

k=1

2Ckεk

3εk
I

εk−1
2

(
1 − 1

λ3

)
.

(9)

Note that here I1 = λ2 + 2λ−1 and I2 = 2λ + λ−2.
Similarly, for pure shear deformation we have that λ1 = λ, λ2 = 1 and λ3 = λ−1, which

yields:

Tps =

⎧
⎪⎨

⎪⎩

∑

j=1

μjβj

nj

I1 (I1 − 3)βj −1 + 3Nj

[
1 − (I1 − 3)βj −1

] − 3njNj

I1 − 3Nj

+
∑

k=1

2Ckεk

3εk
I

εk−1
2

⎫
⎬

⎭

(
λ2 − 1

λ2

)
,

(10)
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Table 1 Obtained model parameter values identified by fitting the one-term expansion of the model to the
mutimodal deformation data of our nematic-genesis polydomain LCE specimen. Note that R2

uni
= 0.998 and

R2
ps = 0.994, for uniaxial and pure shear deformations, respectively

μ [MPa] N [-] n [-] β [-] C2 [MPa] ε [-]

0.02 0.965 0.85 2.39 2.87 0.28

Fig. 2 Modelling results for the multimodal deformation dataset of our in-house nematic-genesis polydo-
main LCE specimens using the one-term expansion of the model in Eq. (1): (a) uniaxial; and (b) pure shear
deformations

or, equivalently:

Pps =

⎧
⎪⎨

⎪⎩

∑

j=1

μjβj

nj

I1 (I1 − 3)βj −1 + 3Nj

[
1 − (I1 − 3)βj −1

] − 3njNj

I1 − 3Nj

+
∑

k=1

2Ckεk

3εk
I

εk−1
2

⎫
⎬

⎭

(
λ − 1

λ3

)
,

(11)

with I1 = I2 = λ2 + 1 + λ−2.
Equations (9) and (11) are subsequently fitted, simultaneously, to the datasets obtained

under uniaxial and pure shear deformations, using the procedure described earlier in the
prelude to this section. In the sequel we present the modelling results.

For the nematic-genesis polydomain LCE samples, we employ the one-term expansion
of the model; i.e., j = k = 1, and fit the ensuing Puni − λ and Pps − λ relationships simulta-
neously to the data. The plots in Fig. 2 present the modelling results for a typical specimen,
and Table 1 summarises the identified model parameter values. The tabulated numerical dat-
apoints of this dataset have been presented in Appendix A, Table 7. It is observed that the
one-term expansion of the model captures the multimodal deformations favourably, with
R2 values in excess of 0.99. For the interested reader, another modelling example from this
batch of samples has been presented in Appendix B, Fig. 8.

For the isotropic-genesis polydomain LCE specimens, we utilise the two-term expansion
of the model; i.e., j = k = 2, as it was empirically observed that the two-term expansion
was the minimal expansion required to obtain favourable fits. The ensuing (engineering)
stress – stretch relationships for uniaxial and pure shear deformations were simultaneously
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Table 2 The identified model parameter values for our isotropic-genesis polydomain sample on using the
two-term expansion of the model. Note that R2

uni
= 0.996 and R2

ps = 0.995, for uniaxial and pure shear
deformations, respectively

μ1 [MPa] N1 [-] n1 [-] β1 [-] C1 [MPa] ε1 [-]

2.77 ×10−6 0.76 0.99 3.52 -7.29 -0.14

μ2 [MPa] N2 [-] n2 [-] β2 [-] C2 [MPa] ε2 [-]

0.004 0.82 0.14 1.00 3.94 -0.285

Fig. 3 Modelling results for the multimodal deformation dataset of our in-house isotropic-genesis polydo-
main LCE specimens using the two-term expansion of the model in Eq. (1): (a) uniaxial; and (b) pure shear
deformations

fitted to the data. The fitting results for a typical specimen are presented in Fig. 3. The
obtained model parameter values are given in Table 2. The tabulated numerical datapoints
pertaining to this dataset have been provided in Table 8 of Appendix A. The performance of
the two-term model appears exemplary, with R2 values in excess of 0.99. The model captures
the challenging behaviour of soft elasticity favourably, as purely a state of hyperelasticity
without the need for incorporation of the so-called ‘step-length’ tensor or the ‘anisotropy
parameter’. For the interested reader, another modelling example from our pool of samples
has been presented in Appendix B, Fig. 9.

It may be informative at this juncture to also consider the uniaxial and pure shear de-
formations of the isotropic-genesis polydomain specimens due to Tokumoto et al. [4]. The
multiaxial mechanical behaviour of those specimens proved very complex, and an elaborate
modelling scheme was proposed therein to capture those intricate behaviours [4]. Indeed, we
observed that a three-term expansion of the model in Eq. (1) was required; i.e., j = k = 3, to
properly capture the reported uniaxial and pure shear deformations of the specimens. Upon
simultaneously fitting the ensuing Tuni −λ and Tps −λ relationships to the data, the plots in
Fig. 4 illustrate the modelling results. The identified model parameter values have been listed
in Table 3. The tabulated numerical datapoints collated from [4] are given in Appendix A,
Table 9. Not only the model is seen to capture well the soft elasticity mode in the uniaxial
deformation, but also the challenging behaviour in pure shear is modelled favourably too.
The R2 values for the fits are in excess of 0.99.
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Fig. 4 Modelling results for the isotropic-genesis polydomain specimens due to Tokumoto et al. [4], using
the three-term expansion: (a) uniaxial; and (b) pure shear deformations. Note that the stresses here are the
Cauchy (T ) stress

Table 3 Model parameter values for the isotropic-genesis polydomain specimens due to Tokumoto et al.
[4], using the three-term expansion. Note that R2

uni
= 0.997 and R2

ps = 0.998, for uniaxial and pure shear
deformations, respectively

μ1 [kPa] N1 [-] n1 [-] β1 [-] C1 [kPa] ε1 [-]

19.54 0.95 0.84 1.39 500.00 -0.24

μ2 [kPa] N2 [-] n2 [-] β2 [-] C2 [kPa] ε2 [-]

-6.78 0.50 0.17 1.14 205.25 -1.85

μ3 [kPa] N3 [-] n3 [-] β3 [-] C3 [kPa] ε3 [-]

12.77 27.31 0.09 1.04 -499.98 -1.14

4.2 Continuous Softening Under Uniaxial Loading in the Primary Loading Path

Modelling the continuous softening observed in the loading paths of soft solids (up to the
onset of failure) using only a hyperelastic model, and hyperelastic constitutive parameters,
was recently devised and discussed in [24]. We employ the same concept here to capture
the softening behaviour observed in the uniaxial deformation of nematic LCE specimens of
He et al. [25]. This dataset, in addition to the foregoing softening behaviour, also exhibits
a soft elasticity mode that is distinct from those considered in the previous section, in that
the soft elasticity behaviour here occurs right from the beginning of the deformation, as
opposed to an initial hardening phase observed previously in the plots of Figs. 2 to 4. This
experimental data is illustrated in Fig. 5. For modelling this behaviour, we employ the two-
term expansion of the model in Eq. (1), and fit the ensuing Puni − λ relationship (Eq. (9))
to this dataset. The tabulated numerical datapoints associated with this set are provided in
Table 10 of Appendix A. The results in Fig. 5 indicate a close correlation between the model
and the data, with favourable predictions of both the soft elasticity phase and the softening
behaviour. The value of R2 for this fit is in excess of 0.99. The obtained model parameter
values have been presented in Table 4. For the interested reader, the fitting results on using
the one-term expansion of the model have also been presented in Fig. 10 of Appendix B.
While the one-term expansion form still provides a good fit to the data, the judicious choice
of the two-term expansion as the preferred option is clear by comparing the two fits.
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Fig. 5 Modelling results for the
nematic LCE specimens of He et
al. [25] under uniaxial
deformation on using the
two-term expansion of the model

Table 4 Model parameter values for the nematic LCE specimens of He et al. [25] using the two-term expan-
sion of the model. Note that R2 = 0.996

μ1 [MPa] N1 [-] n1 [-] β1 [-] C1 [MPa] ε1 [-]

0.06 6.195 0.17 1.00 1.46 0.008

μ2 [MPa] N2 [-] n2 [-] β2 [-] C2 [MPa] ε2 [-]

0.007 4.05 0.92 2.61 0.15 0.06

4.3 Loading/Unloading, Discontinuous Softening and Permanent Set

The softening observed in the mechanical behaviour of rubber-like materials, and in partic-
ular filled rubbers, in the unloading path is generally known as the Mullins effect and is a
well-studied phenomenon. The seminal theory of pseudo-elasticity by Ogden and Roxburgh
[26] provides a versatile framework for modelling this behaviour in rubbers. Here we refer
to this softening phenomenon as ‘discontinuous’ softening, to distinguish between this be-
haviour and the continuous and progressive softening in the primary loading path of the type
discussed in [24], considered in the previous section.

In a recent study, Merkel et al. [11] demonstrated such discontinuous softening behaviour
in nematic-genesis polydomain LCEs too, investigated under uniaxial loading and unloading
at various temperatures. It was demonstrated that the samples, in addition to softening in
the unloading path, also exhibit permanent set; i.e., a residual strain upon returning to the
stress-free state. While the shape of the curves and the amount of the permanent set varied
with temperature [11], Mihai and Goriely [22] developed a novel ‘pseudo-anelastic’ model
to capture the temperature-independent behaviour based on the classical pseudo-elasticity
theory devised by Dorfmann and Ogden [39] which also accounts for the permanent set.
The model was then successfully applied to each stress – deformation curves of Merkel et
al. [11], separately at each temperature [22].

The model by Mihai and Goriely [22], however, was developed within the neo-classical
theory of LCEs, and as such accommodated the usual concepts of ‘step-length’ tensor and
the ‘anisotropy parameter’. In addition, it was deemed necessary to consider a four-term Og-
den model for the basic hyperelastic function, and to account for the permanent set based on
the theory of Dorfmann and Ogden [39] an additional ‘auxiliary’ function was also required



Modelling the Deformation of Polydomain Liquid Crystal Elastomers. . .

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

[22]. To incorporate the softening in the unloading path, of course, a damage parameter
and function had to be considered as well. The combination of these add-ons renders the
developed model rather intricate.

Here, to model the aforementioned discontinuous softening and permanent set at each
temperature, we use the (one-term) hyperelastic model of Eq. (1), within the extended
pseudo-elasticity framework recently developed by Anssari-Benam et al. [27], which cap-
tures both the softening and permanent set phenomena without the need for an auxiliary
function etc. This, in combination with the lack of need to incorporate the ‘step-length’ ten-
sor and the ‘anisotropy parameter’, results in a much simpler model to capture the Mullins
effect in LCEs, and as will be shown in the sequel, with a favourable modelling outcome.

First, however, we present the theoretical underpinnings of the pseudo-elastic model. We
briefly recall from [27] that the components of the Cauchy stress (T ) are derived from a
pseudo strain energy function W̃ as:

Ti = ��i

∂W̃

∂�i

− p , i = 1,2,3, (12)

where:

W̃ ≡ W (λi,�i) , i = 1,2,3, (13)

with W being the basic hyperelastic strain energy function, λi being the principal stretches,
and �i being a directional damage parameter, which was cast as a specific sigmoid-type
function [27]:

�i = a − 1

b + exp
[−c

(
λmax

i − λi

) (
λmax

i − 1
)] , (14)

where:

a , b , c ∈ R
+ , (15)

i.e., are positive real-valued model parameters. It is important to note that in the undeformed
configuration there is no damage, i.e., �i = 1, and thus it is required:

1 = a − 1

b + 1
=⇒ a = b + 2

b + 1
. (16)

Therefore, �i in Eq. (14) has only two parameters; b and c. The total damage parameter �

is then defined as the average sum of �i as:

� = 1

3

∑

i=1

�i , i = 1,2,3 . (17)

Thus � too has only two parameters; b and c. Finally, the dependence of W̃ on λi and �i

was considered to be [27]:

�i = �κ
i λi , i = 1,2,3 , (18)

where κ is a real-valued constant; i.e., κ ∈ R, and may be considered as a modulating factor
in converting the amount of damage into the amount of residual stretch. Hence, W̃ = W (�i),
with i = 1,2,3.
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The foregoing formulations were presented in [27] on using the principal stretches λi ,
since the basic hyperelastic function used therein was the non-separable principal stretches-
based comprehensive model of [40]. Here, instead, we wish to utilise the principal invariants-
based model of Eq. (1), and thus the foregoing derivations need to be reformulated in terms
of the principal invariants. Accordingly, on using the definition of �i in Eq. (18), we define
the pseudo-invariants Ĩi as:

{
Ĩ1 = �2

1 + �2
2 + �2

3 = �2κ
1 λ2

1 + �2κ
2 λ2

2 + �2κ
3 λ2

3 ,

Ĩ2 = �−2
1 + �−2

2 + �−2
3 = �−2κ

1 λ−2
1 + �−2κ

2 λ−2
2 + �−2κ

3 λ−2
3 .

(19)

It follows that:

∂Ĩ1

∂�i

= 2�i ,
∂Ĩ2

∂�i

= −2�−3
i . (20)

Using the chain rule, the representation formula for the Cauchy stress in Eq. (12) may be
rewritten as:

Ti = �

[
2�2

i

∂W̃

∂Ĩ1

− 2�−2
i

∂W̃

∂Ĩ2

]
− p , i = 1,2,3, (21)

where now W̃ ≡ W (Ii,�i) = W(Ĩi):

W̃ = W(Ĩi)

=
∑

j=1

3
(
nj − 1

)

2nj

μjNj

⎡

⎣ 1

3Nj

(
nj − 1

)
(
Ĩ1 − 3

)βj − ln

(
Ĩ1 − 3Nj

3 − 3Nj

)βj

⎤

⎦

+
∑

k=1

Ck

[(
Ĩ2

3

)εk

− 1

]
.

(22)

Under uniaxial tension where we have λ1 = λ ≥ 1 and λ2 = λ3 = λ−0.5 ≤ 1, it is clear
from the definition of �i in Eq. (14) that �2 = �3 = 1, since λmax

2 = λmax
3 = 1. Therefore,

from Eq. (19) we get that: Ĩ1 = �2κ
1 λ2 + 2λ−1 and Ĩ2 = �−2κ

1 λ−2 + 2λ. On the assumption
of plane stress (T33 = 0), we find from Eq. (21):

Ti = �

[
2
∂W̃

∂Ĩ1

(
�2

i − �2
3

) − 2
∂W̃

∂Ĩ2

(
�−2

3 − �−2
i

)
]

, i = 1,2,3, (23)

which leads to the following explicit Cauchy stress – deformation relationship:

Tuni = �

⎧
⎪⎨

⎪⎩

∑

j=1

μjβj

nj

Ĩ1

(
Ĩ1 − 3

)βj −1 + 3Nj

[
1 −

(
Ĩ1 − 3

)βj −1
]

− 3njNj

Ĩ1 − 3Nj

×
(

�2κ
1 λ2 − 1

λ

)
+
∑

k=1

2Ckεk

3εk
Ĩ

εk−1
2

(
λ − 1

�2κ
1 λ2

)⎫
⎪⎬

⎪⎭
,

(24)
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Table 5 Model parameter values for the discontinuous softening behaviour of nematic-genesis polydomain
LCE samples due to Merkel et al. [11], tested at 39 °C, using the one-term expansion of the model. Note that
R2

loading = 0.999 and R2
unloading = 0.998, for the loading and unloading paths, respectively

μ [kPa] N [-] n [-] β [-] C2 [kPa] ε [-] b [-] c [-] κ [-]

31.99 0.98 0.95 1.86 311.51 0.50 0.03 1.57 0.001

or equivalently,

Puni = �

⎧
⎪⎨

⎪⎩

∑

j=1

μjβj

nj

Ĩ1

(
Ĩ1 − 3

)βj −1 + 3Nj

[
1 −

(
Ĩ1 − 3

)βj −1
]

− 3njNj

Ĩ1 − 3Nj

×
(

�2κ
1 λ − 1

λ2

)
+
∑

k=1

2Ckεk

3εk
Ĩ

εk−1
2

(
1 − 1

�2κ
1 λ3

)⎫
⎪⎬

⎪⎭
,

(25)

in terms of the engineering stress.
The relationship in Eq. (25), upon using the one-term expansion, is now fitted to the

uniaxial loading – unloading data of Merkel et al. [11], tested at 39 °C. The numerical dat-
apoints pertaining to this dataset have been tabulated in Appendix A, Table 11. The fitting
results are given in Fig. 6, and the obtained model parameter values are listed in Table 5.
With a total of nine model parameters, i.e., μ, N , n, β , C2 and ε of the basic hyperelastic
function and b, c and κ for the pseudo-elastic behaviour, it is observed that the model cap-
tures the softening in the unloading path, as well as the permanent set, most favourably. The
R2 values are in excess of 0.99. The model also captures the reported stress – deformation
data for tests carried out at 19 °C, 62 °C and 89 °C in [11], with different model parameter
values. However, we refrain from replicating those results here, as they would only serve to
repeat the modelling results already showcased on using the data obtained at 39 °C. We note
here that temperature-dependency has not been considered and incorporated into our model.
One way of incorporating the temperature effects may be to consider the model parameters
to evolve with temperature; i.e., are a function of the temperature. A similar approach in
relation to incorporating the rate-effects has been devised and presented in [41], using the
model in [40] as the basic hyperelastic function.

4.4 The Uniaxial Behaviour of a Monodomain LCE Sample with Auxetic Behaviour

Auxetic behaviour in a specimen under deformation broadly refers to the expansion of that
specimen in at least one direction orthogonal to that along which it is being deformed. In a
classical incompressible material under uniaxial extension, say along λ1, one would have
that: λ2 = λ3 = λ−0.5

1 . However, in an auxetic incompressible solid, this relationship no
longer holds true, as at least one of the either λ2 or λ3 are expected to increase.

In a recent study by Raistrick et al. [10], they reported observations on the auxetic be-
haviour of their acrylate-based monodomain LCE specimens under uniaxial tension, where
the overall volume was preserved but the sample dimension increased in one direction,
namely the thickness (say λ3), beyond a threshold applied stretch. Before that threshold
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Fig. 6 Modelling results for the
uniaxial loading – unloading of a
nematic-genesis polydomain
LCE sample due to Merkel et al.
[11], tested at 39 °C. See the
on-line version for plots in colour

stretch is reached, the samples exhibited the classical behaviour; i.e., no auxetics. See the
plot in Fig. 7(c).

Based on their observation and results, Mihai et al. [23] developed a mathematical model
which was able to capture the uniaxial deformation of the said auxetic specimens. Therein
they use an Ogden-type function to describe the strain energy of the deformation, within
a framework augmented by the usual ‘spontaneous deformation’ tensor and the director
orientation etc, with a total of nine identifiable model parameters. We also note the appli-
cation of the Ogden model [42] to capturing auxetic behaviour in other soft solids such as
polyurethane foams (e.g., [43]).

Here, using the reported values of λ3 (i.e., deformation along the thickness) and the
uniaxial deformation data in [10], we model the said deformation behaviour with the one-
term expansion of the hyperelastic strain energy function in Eq. (1). We emphasise that
monodomain LCEs possess anisotropic mechanical properties, and thus their deformation
behaviour may not be simulated using an isotropic model. However, to the extent that only
the uniaxial mechanical behaviour/deformation is considered, and to merely showcase the
capability of our model to capture the auxetic behaviour, we proceed here with such mod-
elling application. For capturing the full anisotropic behaviour, our proposed model may be
considered as the basic hyperelastic function to incorporate the preferred direction(s) and
anisotropy etc.

In this spirit, for modelling this dataset we first note that λ1λ2λ3 = 1 due to incompress-
ibility. Accordingly, from the reported corresponding pair of λ1 and λ3 values in the data at
each point of deformation, the value of λ2 is determined, and we note that I1 = λ2

1 +λ2
2 +λ2

3

and I2 = λ−2
1 + λ−2

2 + λ−2
3 . The ensuing Tuni − λ1 relationship now is:

Tuni = μβ

n

I1 (I1 − 3)β−1 + 3N
[
1 − (I1 − 3)β−1

] − 3nN

I1 − 3N

(
λ2

1 − λ2
3

)

+ 2C2 ε

3ε
I ε−1

2

(
1

λ2
3

− 1

λ2
1

)
,

(26)
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Table 6 Obtained model parameter values for the auxetic behaviour of monodomain LCE specimens due to
Raistrick et al. [10] using the one-term expansion of the model. Note that R2 = 0.999

μ [MPa] N [-] n [-] β [-] C2 [MPa] ε [-]

0.17 48.70 8.575 3.07 3.26 0.41

Fig. 7 Modelling the auxetic behaviour of monodomain LCE specimens due to Raistrick et al. [10] using the
one-term expansion of the model: (a) fitting to the uniaxial deformation data; (b) the ensuing relative error;
and (c) the measured variation of λ3 versus the λ1, indicative of the auxetic behaviour

which renders:

Puni = μβ

n

I1 (I1 − 3)β−1 + 3N
[
1 − (I1 − 3)β−1

] − 3nN

I1 − 3N

(
λ1 − λ2

3

λ1

)

+ 2C2 ε

3ε
I ε−1

2

(
1

λ1λ
2
3

− 1

λ3
1

)
,

(27)

in terms of the engineering stress.
Equation (27) was fitted to the data from [10], and the modelling results are shown the

plots in Fig. 7. The identified model parameter values have been summarised in Table 6.
The tabulated numerical datapoints collated from [10] have been presented in Table 12 of
Appendix A. The favourability of the results is apparent, with R2 values in excess of 0.99.
Comparing the modelling results with that of [23], Fig. 4 therein, the improvement provided
by the model here is encouraging. This improvement is further reflected in the relative error
plot of Fig. 7(b), compared with that of Fig. 4 in [23].
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5 Concluding Remarks

Single- and multi-mode deformations of polydomain LCEs, including isotropic- and
nematic-genesis, and encompassing uniaxial and pure shear deformations, were modelled
in this work on using a hyperelastic strain energy function, presented in Eq. (1). The mod-
elling approach here departed from the neo-classical theory of liquid crystal elastomers,
and only utilised a strain energy function W . Complex phenomena such as the soft elas-
ticity behaviour were therefore captured and modelled as a state of hyperelasticity, without
incorporating a ‘step-length’ tensor or the ‘anisotropy parameter’ which are typical of neo-
classical LCE models. The considered model here was shown to capture the deformation of
the samples most favourably, on using one-, two-, or three-term expansions.

The model was then applied to capturing additional features such as the continuous (i.e.,
in the primary loading path) and discontinuous (i.e., in the unloading path) softening, as
well as the auxetic, behaviours of LCE samples. Except for the discontinuous softening
behaviour, where the addition of a usual scalar damage parameter was required, the consid-
ered behaviours were captured and modelled by the basic hyperelastic model (1), without
the need for further augmentation or extra model parameters. Features such as softening
in the unloading path and the permenant set were also captured by using minimal number
of model parameters; e.g., only the one-term expansion of the model and a single damage
parameter. The correlation between the model predictions and the experimental data was
shown to be of a close affinity.

The presented modelling results in this work appear to suggest that many complex me-
chanical features of (polydomain) LCEs may be regarded as (new) states of hyperelasticity,
capturable by an appropriate form of hyperplastic strain energy function. The W function in
Eq. (1) appears to be a suitable model in this regard. A hyperelastic modelling approach to
the deformation of LCEs would simplify the modelling efforts considerably, by doing away
with the complexities that arise as a result of incorporating a ‘step-length’ tensor or the
‘anisotropy parameter’, as well as ameliorating the shortcomings of the neo-classical theory
as outlined in §1. Given the success of the current model in this study, further exploration
of the application of this modelling approach to multiaxial deformation of LCEs and other
deformation modes such as inflation etc may be merited. Furthermore, in applications where
features such as anisotropy, rate- and/or temperature dependence, or more complex phenom-
ena are involved, the presented model here may be considered as a hyperplastic backbone in
the neo-classical theory or other modelling frameworks for more accurate modelling results.
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Appendix A: Tabulated Numerical Datapoints of the Datasets Used in
This Work

Table 7 Data for the multimodal
deforamtions carried out on our
nematic-genesis polydomain
LCE samples

Uniaxial Deformation Pure Shear Deformation

λ [-] Puni [MPa] λ [-] Pps [MPa]

1 0 1 0

1.05 0.12 1.02 0.04

1.10 0.21 1.03 0.07

1.15 0.28 1.04 0.09

1.20 0.325 1.05 0.11

1.30 0.37 1.07 0.16

1.40 0.39 1.08 0.18

1.50 0.40 1.09 0.21

1.55 0.41 1.10 0.23

1.60 0.43 1.11 0.25

1.70 0.46 1.125 0.27

1.75 0.48 1.14 0.29

1.80 0.505 1.155 0.32

1.85 0.53 1.17 0.34

1.90 0.56 1.185 0.36

2.00 0.63 1.20 0.37

2.10 0.70 1.215 0.39

2.15 0.74 1.225 0.41

2.20 0.79 1.24 0.42

2.25 0.84 1.26 0.45

2.30 0.89 1.275 0.46

2.35 0.955 1.30 0.48

2.40 1.02 1.32 0.50

2.45 1.10 1.34 0.515

2.50 1.18 1.36 0.53

2.55 1.27 1.375 0.54

2.60 1.37 1.40 0.55

2.65 1.47 1.42 0.56

2.70 1.59 1.44 0.575

2.75 1.71 1.46 0.59

2.85 2.00 1.48 0.60

2.90 2.15 1.50 0.61
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Table 8 Data for the multimodal
deforamtions carried out on our
isotropic-genesis polydomain
LCE specimens

Uniaxial Deformation Pure Shear Deformation

λ [-] Puni [MPa] λ [-] Pps [MPa]

1 0 1 0

1.15 0.03 1.05 0.01

1.275 0.051 1.10 0.016

1.40 0.052 1.15 0.021

1.60 0.053 1.20 0.025

1.75 0.054 1.25 0.029

1.90 0.058 1.30 0.03

2.00 0.06 1.40 0.035

2.21 0.07 1.50 0.04

2.51 0.09 1.60 0.043

2.81 0.105 1.70 0.05

3.11 0.11 1.75 0.052

3.41 0.135 1.80 0.06

3.55 0.145 1.90 0.064

3.72 0.16 2.00 0.07

4.02 0.18 2.05 0.075

4.20 0.20 2.10 0.08

4.32 0.21 2.20 0.087

4.62 0.26 2.30 0.09

4.92 0.29 2.40 0.10

5.23 0.34 2.50 0.11

5.53 0.40 2.60 0.115

5.83 0.49 2.70 0.12

5.95 0.54 2.80 0.13

6.13 0.61 2.90 0.135

6.30 0.70 3.00 0.14

6.43 0.79 3.01 0.142
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Table 9 Datapoints of the
uniaxial and pure shear
deformation tests due to
Tokumoto et al. [4] on their
isotropic-genesis polydomain
specimens

Uniaxial Deformation Pure Shear Deformation

λ [-] Tuni [kPa] λ [-] Tps [kPa]

1 0 1 0

1.20 17.78 1.20 22.35

1.405 21.48 1.40 31.77

1.595 22.22 1.60 40.00

1.80 22.96 1.80 51.77

2.00 26.67 2.00 63.53

2.19 35.555 2.20 74.12

2.39 54.815 2.40 85.88

2.58 85.93 2.60 97.65

2.78 115.555 2.80 111.77

2.99 142.22 3.00 129.41

3.18 171.85 3.20 148.235

3.38 201.48 3.40 168.235

3.58 232.59 3.60 190.59

3.78 266.67 3.80 214.12

Table 10 Datapoints of the
nematic LCE samples due to He
et al. [25] under uniaxial
deformation

λ [-] P [MPa]

1 0

1.19 0.001

1.36 0.002

1.58 0.003

1.83 0.004

1.98 0.006

2.16 0.02

2.27 0.04

2.39 0.07

2.46 0.09

2.56 0.12

2.65 0.15

2.81 0.20

2.96 0.24

3.07 0.27

3.19 0.30
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Table 11 Datapoints of the
uniaxial loading/unloading tests
performed on nematic-genesis
polydomain LCE samples due to
Merkel et al. [11], tested at 39 °C

Loading Unloading

λ [-] P [kPa] λ [-] P [kPa]

1 0 2.055 306.58

1.01 9.87 2.02 278.95

1.02 20.395 1.985 258.21

1.05 34.21 1.95 238.16

1.08 47.37 1.91 217.105

1.13 61.84 1.86 197.37

1.20 75.00 1.81 177.63

1.29 89.47 1.76 155.26

1.38 102.63 1.71 135.53

1.46 117.105 1.65 114.47

1.53 130.26 1.60 101.32

1.59 144.74 1.54 80.26

1.65 157.895 1.49 67.105

1.70 172.37 1.435 52.63

1.74 186.18 1.38 39.47

1.78 200.00 1.31 26.32

1.82 213.16 1.235 13.16

1.86 226.32 1.19 5.26

1.90 240.79

1.93 253.95

1.96 267.105

1.99 281.58

2.03 294.74

2.055 306.58
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Table 12 Numerical data for the
monodomain LCE specimen due
to Raistrick et al. [10] exhibiting
auxetic behaviour under uniaxial
deformation

λ1 [-] P [MPa] λ3 [-]

1 0 1

1.08 0.445 0.925

1.13 0.63 0.88

1.175 0.74 0.86

1.23 0.87 0.83

1.28 0.98 0.81

1.33 1.07 0.79

1.38 1.15 0.77

1.44 1.25 0.75

1.48 1.305 0.74

1.54 1.38 0.73

1.59 1.44 0.72

1.64 1.49 0.71

1.685 1.54 0.71

1.74 1.60 0.71

1.79 1.66 0.71

1.84 1.70 0.71

1.89 1.76 0.71

1.93 1.82 0.71

1.99 1.91 0.72

2.03 1.98 0.72

2.08 2.10 0.73

2.12 2.185 0.73

2.165 2.32 0.74

2.20 2.43 0.75

2.24 2.61 0.75

2.275 2.71 0.76

2.305 2.88 0.77

2.34 3.10 0.78

Appendix B: Further Modelling Results to Those Presented in the Main
Text on Using the Proposed Model

Table 13 Obtained model parameter values identified by fitting the one-term expansion of the model to the
mutimodal deformation dataset in the plots of Fig. 8, of our nematic-genesis polydomain LCE specimen.
Note that R2

uni
= 0.996 and R2

ps = 0.991, for uniaxial and pure shear deformations, respectively

μ [MPa] N [-] n [-] β [-] C2 [MPa] ε [-]

0.025 0.93 0.65 2.16 2.83 0.28
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Fig. 8 An additional modelling result for uniaxial and pure shear deformations from our in-house nematic-
genesis polydomain LCE specimens using the one-term expansion of the model in Eq. (1): (a) uniaxial; and
(b) pure shear deformations

Fig. 9 An additional modelling result for uniaxial and pure shear deformations from our in-house isotropic-
genesis polydomain LCE specimens using the two-term expansion of the model in Eq. (1): (a) uniaxial; and
(b) pure shear deformations

Table 14 The identified model parameter values using the dataset in the plots of Fig. 9, from our isotropic-
genesis polydomain samples. Note that R2

uni
= 0.998 and R2

ps = 0.986, for uniaxial and pure shear deforma-
tions, respectively

μ1 [MPa] N1 [-] n1 [-] β1 [-] C1 [MPa] ε1 [-]

0.003 0.895 0.78 1.80 3.88 0.15

μ2 [MPa] N2 [-] n2 [-] β2 [-] C2 [MPa] ε2 [-]

0.05 0.004 0.90 0.79 -3.73 0.17
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Fig. 10 Modelling results for the
nematic LCE specimens of He et
al. [25] under uniaxial
deformation on using the
one-term expansion of the model

Table 15 Model parameter values for the nematic LCE specimens of He et al. [25] under uniaxial deforma-
tion on using the one-term expansion of the model. Note that R2 = 0.991

μ [MPa] N [-] n [-] β [-] C2 [MPa] ε [-]

0.001 3.875 0.55 2.60 6.35 0.0009
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