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Abstract
The paper presents a rigorous analysis of the singularities of elastic fields near a disloca-
tion loop in a body of arbitrary material symmetry that extends over the entire three-space.
Explicit asymptotic formulas are given for the stress, strain and the incompatible distortion
near the curved dislocation. These formulas are used to analyze the main object of the pa-
per, the renormalized energy. The core-cutoff method is used to introduce that notion: first,
a core in the form of a curved tube along the dislocation loop is removed; then, the energy
of the complement is determined (= the core-cutoff energy). As in the case of a straight dis-
location, the core-cutoff energy has a singularity that is proportional to the logarithm of the
core radius. The renormalized energy is the limit, as the radius tends to 0, of the core-cutoff
energy minus the singular logarithmic part. The main result of the paper are novel formulas
for the coefficient of logarithmic singularity (the ‘prelogarithmic energy factor’) and for the
renormalized energy.

Keywords Dislocations · Incompatible distortion field · Regularized energy ·
Prelogarithmic energy factor · Rigorous asymptotic analysis

Mathematics Subject Classification (2020) 35J50 · 35Q74 · 74G70

1 Introduction

A dislocation is an imperfection in the lattice structure of the crystal. At the macroscopic
level, a dislocation is modeled as a defective, incompatible deformation in a continuous
body. The paper deals with a linearly elastic body of arbitrary symmetry that contains a
dislocation loop. The body occupies the whole three-dimensional space R3 and is free from
external forces. The goal of the paper is to analyze rigorously the asymptotics of deformation
and energy near the dislocation.
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The dislocation loop is represented by a closed non-intersecting curve C ⊂ R3 (see
Sect. 3) and by the Burgers vector b ∈ R3 (see Sect. 4). It is assumed that C has a twice
continuously differentiable arc-length parametrization. We give C one of the two orienta-
tions and denote by τ(x) the unit tangent vector to C at x ∈ C . A defective deformation is
described by an incompatible distortion field H : R3 \ C → Ten2 i.e., H is not the gradient
of a globally defined deformation u : R3 → R3. This distinguishes the elastic dislocation
theory from the classical elasticity, where H coincides with the displacement gradient ∇u

of a globally defined deformation u : R3 → R3. In the elastic dislocation theory H is a
‘primitive’ to be determined from the balance and constitutive equations.

Conventions on tensors We denote by Tenl the space of tensors of order l on R3 (for
any nonnegative integer l). Only orders from 0 to 4 are needed in the succeeding treatment.
The spaces Ten0 and Ten1 have the standard representations. The space Ten2 is identified
with the space of linear transformations from R3 into itself. Ten2

sym ⊂ Ten2 is the subspace

of symmetric second-order tensors. The space Ten3 is identified with the space of linear
transformations T from R3 into Ten2; the value of T on a vector b ∈ R3 is denoted by T[b].
The space Ten4 is identified with the space of linear transformations C from Ten2 into itself;
we again use square brackets to denote the linear argument of C, i.e., C[A] is the value of C
on A ∈ Ten2.

The material is characterized by the fourth-order elasticity tensor C which has the major
symmetry

C[H1] · H2 = H1 · C[H2]
for every H1, H2 ∈ Ten2

sym, the minor symmetries

C[H ] = C[H ]T, C[H ] = C[H T], (1)

for every H ∈ Ten2, and is positive definite on symmetric tensors

C[E] · E > 0

for every nonzero E ∈ Ten2
sym. For notational convenience we allow non-symmetric argu-

ments of C, but Equation (1)2 shows that C[H ] depends only on the symmetric part of H .
The strain E, stress T , and the stored energy W corresponding to an incompatible dis-

tortion H are given by

E = 1

2
(H + H T), T = C[H ], (2)

and

W(H) = 1

2
C[H ] · H.

Given a dislocation loop C with the Burgers vector b ∈ R3, we seek to determine the
distortion tensor field H ∈ L1

loc(R
3,Ten2) satisfying the system

curlH = −b ⊗ τ δC in R3,

div C[H ] = 0 in R3,

H(x) → 0 as |x| → ∞.

⎫
⎪⎬

⎪⎭
(3)
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Here the curl and divergence are interpreted in the sense of distributions (see Sect. 2), τ

is the unit tangent to the curve C , δC is the length measure restricted to C (i.e., the ‘line
analog’ of Dirac’s delta function, see Sect. 4).

Theorem 1.1 The system (3) has a unique solution H ∈ L1
loc(R

3,Ten2), given by

H(x) =
∫

C

K(x − y)
[
b ⊗ τ(y)

]

|x − y|2 dl(y) (4)

x ∈ R3 \ C , where K : R3 \ {0} → Ten4 is an infinitely differentiable degree 0 homogeneous
function.

Here dl is the length element along C and y ∈ C is the integration variable. The function
K is said to be degree 0 homogeneous if K(λr) = K(r) for every non-zero r ∈ R3 and every
λ > 0 (i.e., K(r) depends on r only through r/|r|). Theorem 1.1 is a particular case of [6,
Theorem 4.1], which proves the existence and uniqueness of the system (3) with a general
divergence-free measure μ in place of the measure −b⊗τ δC . Nevertheless, we give a proof
in Sect. 5, based on the Fourier transformation that is similar to that of [6, Theorem 4.1].

The function K in Theorem 1.1 is determined completely by the tensor of elastic constants
C, i.e., K is independent of the shape of C . In the construction of the solution in (4), a use
will be made of the well-known line integral of the ‘Biot–Savart type’ (see (36)).

In view of the linear relations (2), the strain and stress are given by equations qualitatively
similar to (4), with degree 0 homogeneous functions easily derivable from K.

The form of the right-hand side of (4) shows that H has a singularity at the points of C ,
i.e., |H(x)| → ∞ as x approaches C .

Sets with positive reach We now describe the singularity of H quantitatively. If 0 < δ ≤
∞, the tubular δ-neighborhood of a subset M of Rn is defined by

U(M,δ) = {
x ∈ Rn : dist(x,M) < δ

}

where

dist(x,M) := inf
{|x − y| : y ∈ M

}

is the distance of the point x ∈ Rn from M . Following Federer [8], we say that M is a set
with positive reach if there exists δ ∈ (0,∞] with the property that for each x ∈ U(M,δ)

there exists a unique closest point x∗ on M , i.e., a unique point x∗ ∈ M such that

|x − x∗| ≤ |x − y| for all y ∈ M.

The supremum of all δ with the just described uniqueness property is referred to as the reach
of M and denoted by reach(M). The map x 
→ x∗, defined on U

(
M, reach(M)

)
, is called the

metric projection onto M . Every compact embedded manifold of class C2 in Rn is a set with
positive reach [8, p. 432]; thus C is a set with positive reach. The metric projection x 
→ x∗,
defined for any x ∈ U

(
C , reach(C )

)
, plays a central role in the subsequent considerations.

Let L : dom L → Ten3 be a function defined on the set

dom L = {
(ρ,σ ) ∈ R3 × R3 : ρ �= 0, |σ | = 1, ρ · σ = 0

}
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by

L(ρ,σ )[b]
|ρ| =

∫

R

K(ρ + tσ )[b ⊗ σ ]
|ρ + tσ |2 dt (5)

for every (ρ,σ ) ∈ dom L and every b ∈ R3. Since K is bounded and |ρ + tσ |2 = |ρ|2 + t2 for
every (ρ,σ ) ∈ dom L, the integral in (5) converges; moreover, the function L(·, σ ) is degree
0 homogeneous for each σ ∈ S2, as a simple scaling of the variable t in (5) shows.

Note The definition (5) shows that the function L(ρ,σ )/|ρ| is the one-dimensional
Radon transform of the function K(r)/|r|2 (also termed X-ray transform in [11, Chapter
I, § 6]).

Theorem 1.2 Let H ∗ : U(
C , reach(C )

) \ C → Ten2 be given by

H ∗(x) = L
(
x − x∗, τ (x∗)

)[b]
|x − x∗| (6)

x ∈ U
(
C , reach(C )

) \ C . Then there exist c > 0 and δ ∈ (
0, reach(C )

]
such that

∣
∣H(x) − H ∗(x)

∣
∣ ≤ c log

1

|x − x∗| l (7)

for every x ∈ U(C , δ) \ C .

Remarks (i) Equation (6) shows that the qualitative growth of H ∗ near C is

|H ∗(x)| ∼ 1

|x − x∗| as dist(x,C ) → 0;

the field H has the same qualitative growth (by Inequality (7)).
(ii) The logarithm on the right-hand side of (7) is not essential (in contrast to the logarithm

in (15), below). The following weaker estimate suffices for the proof of Theorem 1.3:
∣
∣H(x) − H ∗(x)

∣
∣ ≤ f (x)

for every x ∈ U(C , δ) \ C , where f ∈ L2
(
U(C , δ)

)
.

The asymptotics of H implies that H is not square integrable; thus the total energy of a
dislocation loop is infinite,

∫

R3
W(H)dv = ∞, (8)

as is well known. Here dv is the volume element in R3. The infinite contribution to the
integral in (8) comes from the singularity of H at C : one has

∫

U

W(H)dv = ∞ (9)

for any neighborhood U of C . On the other hand, the energy of the complement of U is
finite

∫

R3\U
W(H)dv < ∞. (10)
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In view (8)–(10), we apply the finite-core regularization of the energy functional.
Namely, one removes a tubular core U(C , r) (0 < r < δ) along the dislocation loop and
determines the energy of the complement R2 \ U(C , r). That energy is finite, but has a sin-
gularity that is proportional to the log(1/r). The regularized energy is the limit, as r → 0,
of the core-cutoff energy minus the singular logarithmic part. The following theorem gives
formulas for the coefficient of logarithmic singularity (the ‘prelogarithmic energy factor’)
and for the regularized energy.

To this end, we define the normal space of C at y ∈ C by

Nor(C , y) := {
ρ ∈ R3 : ρ · τ(y) = 0

}

and the circle of radius r > 0 in the normal space by

Circ(C , y, r) := {
σ ∈ Nor(C , y) : |σ | = r

}
. (11)

Furthermore, we denote by κ(y) the curvature vector of C at the point y ∈ C , i.e., the
second derivative of the position on C with respect to arc-length parameter (see Sect. 3),
and introduce the function J : U(

C , reach(C )
) → R by

J (x) = (
1 − κ(x∗) · (x − x∗)

)−1
(12)

for every x ∈ U
(
C , reach(C )

)
. It will be shown in Sect. 3 that the denominator in (12) is

positive for all indicated x. It will be also shown that J is the jacobian of the map x 
→ x∗.
Let δ be as in Theorem 1.2.

Theorem 1.3 (i) The nested integrals in the formula

Θ =
∫

C

∫

Circ(C ,y,1)

W
(
L
(
σ, τ(y)

))
dl(σ ) dl(y) (13)

absolutely converge; for any r ∈ (0, δ) the integrals in the formula

Φ =
∫

U(C ,r)

(
W(H) − JW(H ∗)

)
dv +

∫

R3\U(C ,r)

W(H)dv − Θ log
1

r
(14)

absolutely converge and the value of the right-hand side of (14) is independent of the choice
of r .

(ii) We have
∫

R3\U(C ,ε)

W(H)dv = Θ log
1

ε
+ Φ + ϕ(ε) (15)

for every 0 < ε ≤ δ, where ϕ : (0, δ) → R satisfies

ϕ(ε) → 0 as ε → 0. (16)

The quantity Φ is the renormalized energy and Θ is the prelogarithmic energy factor.
Both Φ and Θ are functions of the Burgers vector and the shape of the curve C .

Future papers will treat dislocations in bounded domains, the variation of Φ under vari-
ations of the shape of C , the Peach–Köhler force, and the particular case of isotropic mate-
rials.



360 M. Šilhavý

This research was motivated by the paper [4] by Cermelli and Leoni and the subsequent
paper [3] by Blass and Morandotti. The authors consider point dislocations in a bounded
region in the two-dimensional space. The region is interpreted as the cross section of a
cylindrical region in R3 containing straight dislocations. The cited papers prove, among
other things, the existence of the renormalized energy and show that the derivative of the
regularized energy with respect to the position of the dislocation can be identified with the
Peach–Köhler force.

After the research of the present paper was completed, a recent paper by Fonseca, Ginster
and Wojtowytsch [10] came to my attention. The paper deals with motion of dislocations in a
simplified elasticity, where the elastic energy depends quadratically on the full displacement
gradient rather than its symmetrized version. Thus the elasticity tensor is given by C[H ] =
H for all H ∈ Ten2 (and the minor symmetry requirement (1) is dropped). In [10, Theorem
4.5] the authors determine the prelogarithmic factor for their choice of C, and it can be
shown that the above formula (13) yields this result of Fonseca, Ginster and Wojtowytsch in
the particular case of their choice of C. (There is no counterpart in [10] of the formula (14)
for the renormalized energy.)

This article is organized as follows. Section 2 collects some preliminaries, such as some
notations and the distributional versions of divergence and curl. Section 3 describes ba-
sic geometric properties of the closed curve C . First, a formula is given for the gradient
of the metric projection onto C . Further, the coarea formula is used to prove an equation
that replaces the volume integration over U

(
C , reach(C )

)
by the area integration over the

cross sections of U
(
C , reach(C )

)
followed by the length integration along C . Finally, it is

proved that the arc-length distance is majorized by a multiple of the euclidean length of
the secant. Section 4 introduces the Burgers vector of the dislocation loop via the proper-
ties of normal currents [9]. Further, it is proved that the distortion tensor is the sum of a
divergence-free term and the gradient of a globally defined displacement. Section 5 solves
the equilibrium equations by the Fourier transformation. Section 6 proves the asymptotic
form of the distortion field near the dislocation. Sect. 7 describes the summability properties
of the equilibrium distortion field. Section 8 proves the above theorem on renormalization
of the energy. Finally, Appendix summarizes some properties of the Fourier transformation
used in the proofs.

Throughout the proofs in the succeeding sections, c denotes a “generic” constant that
may change from line to line.

2 Distributional Gradient, Divergence and Curl

2.1 Vector Product

The vector product of u, and v ∈ R3 is denoted by w = u× v; in components wi = εijkuj vk ,
where εijk is the alternating tensor and ui , vi and wi are the components of u, v and w. The
suffixes i, j , k, . . . range from 1 to 3 and the summation convention is used. The vector
product of a second-order tensor A with a vector u is a second-order tensor B = u × A ∈
Ten2 with the components Bij = εjklAiluk . Note the identity

u × (v × A) = (Au) ⊗ v − (u · v)A, (17)

which is an analog of u × (v × w) = v(u · w) − w(u · v).
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2.2 Gradient, Divergence and Curl for Smooth Functions

If R3 is an open subset of R3 and u a continuously differentiable function on R3 with values
in R3, we define the divergence, curl, and gradient of u as functions on R3 with values in R,
R3 and Ten2, respectively, given by

divu = ui,i ,

(curlu)i = εijkuk,j

(∇u)ij = ui,j .

If A is a continuously differentiable function on R3 with values in Ten2, we define the
divergence and curl of A as functions on R3 with values in R3 and Ten2, respectively, given
by

(divA)i = Aij,j ,

(curlA)ij = εjklAil,k.

2.3 Gradient, Divergence and Curl for Distributions

We now introduce the scalar- vector- and tensor-valued distributions and the corresponding
gradient, divergence and curl in the sense of distributions. To unify the treatment, we in-
troduce distributions with values in a finite dimensional real inner product space Y . To this
end, we define the Schwartz testfunction space D(R3, Y ) as the set of all infinitely differen-
tiable functions f : R3 → Y with compact support. We denote by D ′(R3, Y ) the set of all
real linear functionals on D(R3, Y ) which are continuous under the Schwartz topology in
D(R3, Y ). The elements T of D ′(R3, Y ) are called Y -valued distributions on R3. We denote
the value of T on f ∈ D(R3, Y ) by

〈
T ,f

〉
.

Two particular cases of Y -valued distributions to be used below are the distribution Tg

corresponding to a locally integrable function g : R3 → Y and the distribution Tμ corre-
sponding to an Y -valued measure μ on R3. These are given by

〈
Tg,f

〉 =
∫

R3
f (x) · g(x) dv(x),

〈
Tμ,f

〉 =
∫

R3
f (x) · dμ(x),

f ∈ D(R3, Y ). We denote by L1
loc(R

3, Y ) the set of all locally integrable Y -valued functions
on R3 and by M (R3, Y ) the set of all (finite) Y -valued measures on R3.

We define the distributional versions of differential operators ∇ , div and curl by formal
integration by parts. Let v ∈ D ′(R3,R3) and B ∈ D ′(R3,Ten2) be vector- and tensor-valued
distributions. We define the gradient of v as a distribution ∇v ∈ D ′(R3,Ten2) by

〈∇v,A
〉 = −〈

v,divA
〉
,

for any A ∈ D(R3,Ten2). Similarly, we define the divergence of B as a distribution divB ∈
D ′(R3,R3) by

〈
divB,u

〉 = −〈
B,∇u

〉
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for any u ∈ D(R3,R3), as above. Finally, we define the curls of v and B as distributions
curlv ∈ D ′(R3,R3) and curlB ∈ D ′(R3,Ten2) by

〈
curlv,u

〉 = 〈
v, curlu

〉
,

〈
curlB,A

〉 = 〈
B, curlA

〉

for any u and A as above.
Throughout the rest of the paper, the operators ∇ , div and curl are interpreted in the

distributional sense (unless stated otherwise).

3 Geometry of Closed Curves

The purpose of this section is to summarize some properties of closed curves that will be
used in the proof in the subsequent sections. Proposition 3.1 determines the gradient ∇P

of the metric projection P onto C . Proposition 3.2 determines the formula for the replace-
ment of the volume integration over a tube U(C , ε) by a successive integration over the
perpendicular cross-sections of U(C , ε) followed by a line integration along C . The for-
mula involves the jacobian which is equal to |∇P |. Proposition 3.3 estimates the arc-length
distance along segments on S3 and on C by a multiple of the euclidean distance of the end-
points of the segment. This will be used in Sect. 6 to estimate the difference of the function
H ∗(x) at two points by integrating its gradient along a curve that avoids the singularity at
the origin (rather than along the segment connecting these points).

By a loop we mean the range C of a twice continuously differentiable map γ : [a, b] →
R3 (−∞ < a < b < ∞) which satisfies

(i) γ (a) = γ (b), γ̇ (a) = γ̇ (b) and γ̈ (a) = γ̈ (b);
(ii) |γ̇ (t)| = 1 for every t ∈ [a, b];
(iii) the restriction of γ to [a, b) is injective (i.e., if t , s ∈ [a, b) satisfy γ (t) = γ (s) then

t = s).

Any map γ with these properties is called a parametrization of C . The tangent and curvature
vectors are maps τ : C → R3 and κ : C → R3 given by

τ
(
γ (t)

) = γ̇ (t), κ
(
γ (t)

) = γ̈ (t), t ∈ [a, b];
clearly,

τ · κ = 0 everywhere on C .

Recall that C is a set with finite reach and that the metric projection associates with
any point x in the tubular neighborhood U

(
C , reach(C )

)
its projection x∗ ∈ C , which we

alternatively denote by P (x).

Proposition 3.1 The metric projection P is continuously differentiable on U
(
C , reach(C )

)
;

for every x ∈ U
(
C , reach(C )

)
we have

1 − κ(x∗) · (x − x∗) > 0 (18)

and

∇P (x) = [
1 − κ(x∗) · (x − x∗)

]−1
τ(x∗) ⊗ τ(x∗). (19)
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Proof Let x ∈ U
(
C , reach(C )

)
. Then

|x − x∗|2 ≤ |x − y|2 for all y ∈ C .

Let x∗ = γ (t0) where t0 ∈ (a, b) and let ϕ : (a, b) → R be given by ϕ(t) := |x − γ (t)|2,
t ∈ (a, b). The function ϕ has a minimum at t0. We have

ϕ̇(t) = −2(x − γ (t)) · γ̇ (t),

ϕ̈(t) = 2|γ̇ (t)|2 − 2(x − γ (t)) · γ̈ (t) = 2(1 − (x − x∗) · γ̈ (t)).

The conditions ϕ̇(t0) = 0, ϕ̈(t0) ≥ 0 yield

τ(x∗) · (x − x∗) = 0, 1 − κ(x∗) · (x − x∗) ≥ 0. (20)

Let us show that we have the strict inequality sign in (20)2 for every point x ∈ U
(
C ,

reach(C )
)
. Assume, to the contrary that

1 − κ(x∗
0 ) · (x0 − x∗

0 ) = 0 (21)

for some x0 ∈ U
(
C , reach(C )

)
. Let x ∈ U

(
C , reach(C )

)
be such that x∗ = x∗

0 . Then (21)
gives

1 − κ(x∗) · (x − x∗) = −κ(x∗
0 ) · (x − x0)

and as (21) requires κ(x∗
0 ) �= 0, we see that there are points x in the vicinity of x0 for

which the left-hand side of (20)2 is negative. This contradiction shows that we have the
strict inequality sign in (20)2 for every point x ∈ U

(
C , reach(C )

)
. This also completes the

proof of (18).
We now proceed to the proof of (19). By [7, Theorem 4.1 and Corollary 4.5], P is con-

tinuously differentiable. Formula (19) is a particular case of the derivative of the metric pro-
jection onto a C2 manifold M ⊂ Rn given in a coordinate form in [1, Theorem 4.1] and in
the coordinate-free form from [16, Theorem 2.3.4(ii)]. However, we give a direct derivation
here. Let x ∈ U

(
C , reach(C )

)
. Since the function is constant on the set x∗ + Nor(C , x∗),

we see that the kernel of ∇P (x) contains Nor(C , x∗). Further, since the values of the map
P are constrained to belong to C , the range of ∇P (x) is contained in the tangent space
Tan(C , x∗). The described properties of the kernel and range of ∇P (x) imply that ∇P (x)

is of the form

∇P (x) = m(x)τ(x∗) ⊗ τ(x∗) (22)

where m is a scalar-valued function on U
(
C , reach(C )

)
. We rewrite (20)1 as

τ(P (x)) · (x − P (x)) = 0

and differentiate in the direction a ∈ R3 to obtain

mκ · (x − x∗)(τ · a) + τ · (a − m(τ · a)τ) = 0,

where we write κ and τ for κ(x∗) and τ(x∗). As a is arbitrary, this simplifies to
(
κ · (x − x∗) − 1

)
m + 1 = 0,

i.e., m = (
1 − κ · (x − x∗)

)−1
and (22) gives (19). �
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For any numbers r , s satisfying 0 ≤ r < s ≤ reach(C ) and any y ∈ C we put

U(C , r, s) = {
x ∈ R3 : r ≤ dist(x,C ) < s

}
, (23)

Ann(y, r, s) = {
ρ ∈ Nor(C , y) : r ≤ |ρ| < s

}
. (24)

Finally, define the function J : U(
C , reach(C )

) → R by (12), where we recall (18).

Proposition 3.2 Let 0 ≤ r < s ≤ reach(C ), and let f : U(C , r, s) → R be a Lebesgue mea-
surable function satisfying

∫

U(C ,r,s)

|f |J dv < ∞.

Then
∫

U(C ,r,s)

f J dv =
∫

C

∫

Ann(y,r,s)

f (y + ρ)da(ρ)dl(y) (25)

da is the area element of the plane Nor(C , y).

Proof We use the coarea formula for maps with values in manifolds [9, Theorem 3.2.22] to
the map metric projection P from U

(
C , reach(C )

)
into the manifold C . The application to

the situation of the present proposition gives
∫

U(C ,r,s)

f J dv =
∫

C

∫

U(C ,r,s)∩P−1(y)

f (x) da(x) dl(y) (26)

where J is the jacobian of the map P . In the present case of the unidimensional target
manifold C we have J = |∇P | and hence (19) provides (12). Further, observing that

U(C , r, s) ∩ P −1(y) = U(C , r, s) ∩ (
y + Nor(C , y)

) = y + Ann(y, r, s),

we see that (26) reduces to
∫

U(C ,r,s)

f J dv =
∫

C

∫

y+Ann(y,r,s)

f (x) da(x) dl(y)

and the substitution x 
→ ρ = x − y in the inner integral yields (25). �

Recall that the arc-length distance d(p,q) of two points p and q on a compact manifold
M ⊂ Rn is the length of the shortest curve on M that connects p and q . Clearly, the euclidean
distance of p and q in Rn is majorized by the arc-length distance:

|p − q| ≤ d(p,q).

We now show that for a sphere in Rn and for C conversely the arc-length distance is ma-
jorized by a constant multiple of the euclidean distance in R3.

Proposition 3.3 (i) Let M be a sphere in Rn, n ≥ 2. Then the arc-length distance d0 on M

satisfies

d0(p, q) ≤ 1

2
π |p − q| (27)
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for any p, q ∈ M .
(ii) There exists c > 0 such that the arc-length distance dC on C satisfies

dC (y, z) ≤ c|y − z| (28)

for any y, z ∈ C .

Proof (i): Since (27) is invariant under scaling and translation, it suffices to consider M =
Sn−1. Let c be the shortest arc on M that connects p and q , let Π ⊂ Rn be the plane in Rn

that contains p, q and 0, and let Σ := M ∩ Π (i.e., Σ is the great circle containing p and
q). It is well-known that c is the shorter of the two segments on Σ with endpoints p and
q . We identify Π with R2, Σ with the unit circle in R2, and the points with p = (1,0) and
q = (cosϕ, sinϕ), where ϕ ∈ [0,π ]. Then d0(p, q) = ϕ; further, denoting l := |p − q|, we
have

l2 = (cosϕ − 1)2 + sin2 ϕ = 2 − 2 cosϕ,

i.e.,

l = 2

√
1 − cosϕ

2
= 2 sin(ϕ/2).

Consider l as a function of ϕ on the interval (0,π ] and put f (ϕ) := l/ϕ. We have

f ′(ϕ) = ϕ cos(ϕ/2) − 2 sin(ϕ/2)

ϕ2
.

The numerator on the right-hand side is non-positive: indeed, a differentiation shows that
the numerator is a decreasing function of ϕ on [0,π ] and its value at 0 is 0. Thus f ′ ≤ 0 and
hence f is a decreasing function. Its minimum value is f (π) = 2/π since l(π) = 2. Hence
f (ϕ) ≥ 2/π , i.e., (27) holds.

(ii): The length of C is L = b − a. Let M be the circle in R2 with the center at the
origin and of the circumference L, and denote the arc-length distance on M by d0. It will be
shown below that there exists a continuously differentiable map G : R3 → R2 with bounded
gradient that maps C isometrically onto the circle M (under the arc-length distances on C

and M), i.e., G(C ) = M and

dC (y, z) = d0(G(y),G(z)) (29)

for all y, z ∈ C . By (27),

d0(G(y),G(z)) ≤ 1

2
π |G(y) − G(z)|; (30)

note also that

|G(y) − G(z)| ≤ k|y − z| (31)

for every y, z ∈ R3, where k = max{|∇G(x)| : x ∈ R3}. Relations (29), (30), and (31) give
(28) with c = πk/2.
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The proof is now concluded with the construction of the map G. Let ω : C → M be given
by

ω
(
γ (t)

) = (L/2π)(cos t, sin t), t ∈ [a, b).

Then ω is an isometry under the arc-length distances on C and M . Let further θ : R → [0,1]
be a continuously differentiable function such that θ = 1 on

( − ∞, reach(C )/2
]

and θ = 0
on

[
reach(C ),∞)

. Finally, let G : R3 → R2 be given by

G(x) =
{

θ
(

distC (x,C )
)
ω

(
P (x)

)
if x ∈ U

(
C , reach(C )

)
,

0 ∈ R2 if x ∈ R3 \ U
(
C , reach(C )

)
.

One finds that G is continuously differentiable on U
(
C , reach(C )

)
and its derivative is

bounded and that G vanishes on U
(
C , reach(C )

) \ U
(
C , reach(C )/2

)
. Thus the extension

by 0 outside U
(
C , reach(C )

)
results in a continuously differentiable function on R3 with

bounded derivative. Finally, since P reduces to the identity map on C , we have G(x) = ω(x)

for all x ∈ C . As ω is an isometry under the arc-length distances on C and M , we have (29).
Thus G has all the required properties. �

4 Dislocation Density Tensor. Burgers Vector

In the present approach to dislocations, a deformation with defects is described by a distor-
tion tensor field H ∈ L1

loc(R
3,Ten2) such that the dislocation density tensor

α = curlH

is a measure in M (R3,Ten2). The definition gives that α is divergence-free:

divα = 0.

The distortion tensor field H is said to be defect-free if there exists a function u ∈
W

1,1
loc (R3,R3), called the displacement, such that

H = ∇u.

We now analyze defective deformations for which the dislocation density is a measure
that is supported on a loop C in R3. We denote by δC ∈ M (R3,R) the length l measure (=
the 1-dimensional Hausdorff measure) restricted to C . Thus δC is defined as to satisfy

∫

R3
f dδC =

∫ b

a

f
(
γ (t)

)
dt

for any continuous scalar-valued function f on R3, where γ : [a, b] → R3 is a parametriza-
tion of C .

Proposition 4.1 If α ∈ M (R3,Ten2) is a measure supported on a loop C ⊂ R3 then

divα = 0 (32)

if and only if there exists a (constant) vector b ∈ R3 such that

α = −b ⊗ τ δC . (33)
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The vector b in (33) is the Burgers vector corresponding to the dislocation density α.
The form of α in equation (33) is traditionally postulated; here it will be shown to be a
consequence of the tangentiality of Federer–Fleming’s normal currents [9]. The reader is
referred to [5], [6] and [13], [14] for earlier usages of currents in the theories of dislocations.

Proof We prove preliminarily the following assertion about a vector-valued measures: if
μ ∈ M (R3,R3) is a measure supported on a loop C ⊂ R3 then

divμ = 0 (34)

if and only if there exists a constant c ∈ R such that

μ = −cτ δC . (35)

The necessity of (35): Assume that μ satisfies (34). In the language of the geometric measure
theory μ is a normal 1-dimensional current [9, Chapter Four] with the support contained in
C . We first note that μ represents a 1-dimensional flat chain and invoke [15, Proposition 4.1]
to learn that μ is absolutely continuous with respect to l and the corresponding the density a

is parallel with τ , i.e., a = gτ , where g : C → R. In terms of the parametrization, Equation
(34) reads

∫ b

a

g
(
γ (t)

)
γ̇ (t) · ∇f

(
γ (t)

)
dt = 0

for every f ∈ D(R3,R). This is rewritten as

∫ b

a

g
(
γ (t)

) d

dt
f

(
γ (t)

)
dt = 0,

and the Du Bois–Reymond lemma implies that g is constant. The sufficiency of (35) fol-
lows by reversing the last few steps of the preceding part. This completes the proof of the
preliminary assertion.

To complete the proof of Proposition 4.1, we apply the preliminary assertion to the mea-
sures μi = αTei , i = 1, 2, 3, where {ei : i = 1, 2, 3} is the standard basis in R3. If α satisfies
(32), then each μi satisfies (34) and thus μi = −ciτi δC with some constants ci ∈ R. Then,
if we define b = (c1, c2, c3), the measure α satisfies (33). This completes the proof of the
direct implication in Proposition 4.1. The converse implication follows from the converse
implication in the preliminary assertion. �

The following proposition determines the distortion field H corresponding to the dislo-
cation density tensor α of the form (33). It will be apparent from the proof that the result can
be generalized to the dislocation density represented by any divergence-free tensor-valued
measure α.

Proposition 4.2 Let M : R3 \ C → Ten2 be given by

M(x) = 1

4π

∫

C

b ⊗ (
(x − y) × τ(y)

)

|x − y|3 dl(y) (36)

for each x ∈ R3 \ C . Then M is locally integrable and

curlM = −b ⊗ τ δC . (37)
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A field H ∈ L1
loc(R

3,Ten2) is a solution of the equation

curlH = −b ⊗ τ δC (38)

if and only if

H = M + ∇v

where v is some function in W
1,1
loc (R3,R3).

Proof To prove the local integrability of M , it suffices to prove the local integrability of the
function m, given by

m(x) =
∫

C

(x − y) × τ(y)

|x − y|3 dl(y),

x ∈ R3 \ C . Then

|m(x)| ≤
∫

C

1

|x − y|2 dl(y),

and hence the integration over the ball B(x0, r) of center x0 ∈ R3 and radius r > 0 gives
∫

B(x0,r)

|m(x)|dv(x) ≤
∫

C

∫

B(x0,r)

1

|x − y|2 dv(x) dl(y). (39)

We now choose and fix an arbitrary value of the radius r > 0 (e.g., r = 1) and prove that
there exists a c < ∞ such that

∫

B(x0,r)

1

|x − y|2 dv(x) ≤ c (40)

for all x0 and y in R3. This can be proved elementarily, but it also follows by using an
estimate for the Riesz potentials. Indeed, the integrand in (40) is the Riesz potential I1(x−y)

(up to the Riesz normalization constant, which is not essential here). Inequality (40) then
follows from [2, Proposition 3.1.2(a)] with α = p = 1 and f = the characteristic function of
B(x0, r). (The constant c then turns to be equal to c1r where c1 is independent of r , which
is not needed here.) Inequalities (39) and (40) then give

∫

B(x0,r)

|m(x)|dv(x) ≤ cl(C ),

i.e., m (and hence M) is locally integrable.
Thus the theory of Fourier transformations of tempered distributions can be used to prove

(37). Appendix summarizes the properties of the Fourier transformation that will be needed
in the proof. We first determine the Fourier transform M̂ of M . To this end, we rewrite (36)
in the form

M(x) =
∫

R3
g(x − y) × dC(y) (41)

where g is the function

g(r) = (4π)−1r/|r|3, 0 �= r ∈ R3
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and C is the measure

C = b ⊗ τ δC .

The right-hand side of (41) is the convolution of g with C. By Property 3 in Appendix, M̂

is the product of the Fourier transforms ĝ and Ĉ of g and C, i.e.,

M̂ = ĝ × Ĉ. (42)

To determine ĝ, we note that g = ∇f , where f (r) = −(4π)−1|r|−1 is Newton’s potential.
The Fourier transform f̂ of f is given by f̂ (ξ) = −|ξ |−2. This follows, e.g., from the general
formula [12, Equation (25.25)]. Here and below we assume that ξ �= 0. Thus

ĝ(ξ) = iξ/|ξ |2

by (81). The Fourier transform of C is represented by a bounded continuous Ten2-valued
function. Then (42) gives that M̂ is represented by a locally integrable function

M̂(ξ) = iξ × Ĉ(ξ)/|ξ |2. (43)

By (85) and (17),

(curlM)ˆ = ξ × (
ξ × Ĉ(ξ)

)
/|ξ |2 = (

Ĉ(ξ)ξ
) ⊗ ξ/|ξ |2 − Ĉ(ξ).

By Proposition 4.1 we have divC = 0 and hence Ĉ(ξ)ξ = 0 by (84). Thus

(curlM)ˆ = −Ĉ(ξ)

and the inverse Fourier transformation yields (37).
To complete the proof of Proposition 4.2, we note that S is a solution of Equation (38) if

and only if

curl(S − M) = 0

and the last equation is satisfied if and only if

S − M = ∇v

for some distribution v ∈ D ′(R3,R3); the requirement S ∈ L1
loc(R

3,Ten2) gives that ∇v is
represented by a locally integrable function; hence v ∈ W

1,1
loc (R3,R3). �

5 The Solution of Equilibrium Equations (Proof of Theorem 1.1)

We first assume that the system has a solution H and prove that then H is given by (4)
with K having the properties described in Theorem 1.1. This will prove the uniqueness. The
existence will follow by showing that (4) with the just constructed function K gives the
solution.

By Proposition 4.2, any solution of (3)1 is given by

H = M + ∇v (44)
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where M is given by (36) and v is some function in W
1,1
loc (R3,R3). Thus the goal is to

determine v. If we insert H from (44) into (3)1, we obtain the equation

div C[∇v] = −div C[M]. (45)

We employ the Fourier transformation of tempered distributions to describe the solution
v of (45). In the notation of the proof of Proposition 4.2, the Fourier transform M̂ is given
by (43) and consequently, the Fourier transform of C[M] is

iC[ξ × Ĉ(ξ)]/|ξ |2.
By (84), −div C[M] is transformed into

−C[ξ × Ĉ(ξ)]ξ/|ξ |2. (46)

Let A be the acoustic tensor of the material, i.e., the function A : R3 → Ten2 defined
uniquely by the equation

A(ξ)a · b = C[a ⊗ ξ, b ⊗ ξ ]
for every ξ , a, b ∈ R3. The tensor A(ξ) is symmetric and positive semidefinite for all ξ ∈ R3

and positive definite if ξ �= 0. If ξ �= 0, we denote by B(ξ) the inverse of A(ξ). Since A(·)
is 2-homogeneous, its inverse B(·) is degree −2 homogeneous and infinitely differentiable
function on R3 \ {0}.

By (82) and (84), div C[∇v] is transformed into −A(ξ)v̂ where v̂ is the Fourier transform
of v. Hence (45) transforms into

A(ξ)v̂ = C[ξ × Ĉ(ξ)]ξ/|ξ |2

by (46). Thus

v̂(ξ) = B(ξ)C[ξ × Ĉ(ξ)]ξ/|ξ |2.
By (82), the Fourier transform of the gradient of v is given by

(∇v)ˆ(ξ) = 1

i
B(ξ)C

[
ξ × Ĉ(ξ)

]
ξ ⊗ ξ/|ξ |2. (47)

Let D ∈ Ten2. The second-order tensor-valued function

Z(ξ,D) := 1

i
B(ξ)C

[
ξ × D

]
ξ ⊗ ξ/|ξ |2

is linear in D and degree −1 homogeneous in ξ (recall that B(·) is degree −2 homogeneous).
Hence there exists a function G1 : R3 \ {0} → Ten4 such that Z(ξ,D) = G1(ξ)[D] for all
ξ �= 0 and D ∈ Ten2; Equation (47) is then rewritten as

(∇v)ˆ(ξ) = G1(ξ)[Ĉ(ξ)]
for all ξ �= 0. Similarly, (43) can be rewritten as

M̂(ξ) = G2(ξ)[Ĉ(ξ)]
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where G2 : R3 \ {0} → Ten4 degree −1 homogeneous. Thus the Fourier transform Ĥ of H

is given by

Ĥ (ξ) = G(ξ)[Ĉ(ξ)] (48)

where G = G1 + G2.
The inverse Fourier transform Ǧ of the function G is therefore degree −2 homogeneous

by Property 2 in Appendix, and hence of the form

Ǧ(r) = K(r)

|r|2 , r �= 0,

where K : R3 \ {0} → Ten4 is an infinitely differentiable degree 0 homogeneous function.
The inverse Fourier transformation changes Equation (48) into Equation (4) by Property 3
in Appendix.

The proof is complete.

6 Asymptotics of the Solution Near C (Proof of Theorem 1.2)

We put

F(r) := K(r)

|r|2 , (49)

0 �= r ∈ R3, where K is as in Theorem 1.1. Since K is infinitely differentiable, |K| and |∇K|
have finite maxima on the unit sphere S2 in R3; since K is degree 0 homogeneous function,
the maximum of |K| on S2 is also the maximum of |K| on R3 \ {0}. Thus

m0 := max
{|K(r)| : r ∈ R3, r �= 0

}
and m1 := max

{|∇K(r)| : r ∈ S2
}

are finite numbers.

Lemma 6.1 There exists m > 0 such that

|F(r) − F(s)| ≤ mr−3
0 |r − s| (50)

for every nonzero r , s in R3, where

r0 = min{|r|, |s|}.
Proof We shall prove (50) with

m = 2m0 + 1

2
πm1. (51)

We put ρ := |r| and σ := |s| and assume, without loss in generality, that ρ ≤ σ . We write

F(r) − F(s) = A + B,

where

A =
[

1

ρ2
− 1

σ 2

]

K(r), B = K(r) − K(s)

σ 2
.
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We have

|A| ≤ m0

∣
∣
∣
∣

1

ρ2
− 1

σ 2

∣
∣
∣
∣.

We have
∣
∣
∣
∣

1

ρ2
− 1

σ 2

∣
∣
∣
∣ = 1

ρ2
− 1

σ 2
≤ 2

(
σ − ρ

)

ρ3
≤ 2|r − s|

ρ3

where the first inequality follows from ρ ≤ σ and the second from σ −ρ = |σ −ρ| ≤ |r −s|.
Thus

|A| ≤ 2m0r
−3
0 |r − s| (52)

since r0 = ρ by ρ ≤ σ .
The quantity B will be estimated by integrating ∇K along the shortest arc on S2 that

connects the projections of r , s onto S2. Thus let p := r/ρ and q := s/σ be the projections
of r and s onto S2, let c be the shortest arc on S2 that connects p with q (see Sect. 4) and let
d be the length of c. Let us show that

|p − q| ≤ |r − s|
ρ

. (53)

Splitting the difference r − s into the sum of r − ρs/σ and ρs/σ − s, we obtain

|r − s|2 = ∣
∣r − ρs/σ

∣
∣2 + ∣

∣ρs/σ − s
∣
∣2 + 2

(
r − ρs/σ

) · (ρs/σ − s
); (54)

using the identity
(
r − ρs/σ

) · (ρs/σ − s
) = ρ

(
1/σ − 1/ρ

)
(r · s − ρσ)

and the inequalities 1/σ − 1/ρ ≤ 0 and r · s − ρσ ≤ 0, we see that the third term on the
right-hand side of (54) is non-negative. Thus (54) provides

|r − s|2 ≥ ∣
∣r − ρs/σ

∣
∣2 = ρ2|p − q|2

which proves (53). Let ω : [0, d] → c be an arc-length parametrisation of c. By the homo-
geneity of degree 0 of K, we have K(r) − K(s) = K(p) − K(q). Then

|K(r) − K(s)| =
∣
∣
∣
∣

∫ d

0
∇K(ω)[ω̇]dt

∣
∣
∣
∣ ≤

∫ d

0
|∇K(ω)||ω̇|dt ≤ m1d

and Inequalities (27) and by (53) yield

|K(p) − K(s)| ≤ 1

2
πm1|p − q| ≤ 1

2
πm1

|r − s|
ρ

.

Thus

|B| ≤ 1

2
πm1

|r − s|
r3

. (55)

Inequalities (52) and (55) give (50) with m as in (51). �
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Proof of Theorem 1.2 Let H and H ∗ be as in Theorems 1.1 and 1.2. Let x ∈ U
(
C , reach(C )

)\
C be fixed. To simplify the notation, we temporarily translate the coordinate system to
achieve that x∗ = 0. Accordingly, it is possible to choose a parametrization such that
γ : [−a, a] → R3, γ (0) = 0, and |γ̇ (t)| = 1 for all t . Throughout the proof, t denotes
any element of [−a, a] and c denotes a positive constant that is independent of x and t , but
whose value changes from line to line. We also use the abbreviations

n(t) := (|x|2 + t2
)1/2

and γ ∗(t) := tτ ∗.

Since τ ∗ is a unit vector orthogonal to x (the latter being a consequence of the fact that 0 is
the closest point on C to x), we have

n(t) = |x − γ ∗(t)|. (56)

We rewrite (4) and (6) as

H(x) =
∫ a

−a

F
(
x − γ (t)

)[
b ⊗ γ̇ (t)

]
dt, H ∗(x) =

∫

R
F
(
x − γ ∗(t)

)[
b ⊗ τ ∗]dt,

where the second relation uses the definition of L in (5). Next we split the difference H(x)−
H ∗(x) into the sum A + B where

A =
∫ a

−a

(
F
(
x − γ (t)

)[
b ⊗ γ̇ (t)

] − F
(
x − γ ∗(t)

)[
b ⊗ τ ∗])dt, (57)

B = −
∫

|t |>a

F
(
x − γ ∗(t)

)[
b ⊗ τ ∗]dt.

We denote the integrand in (57) by I (t) and write

I (t) = I1(t) + I2(t)

where

I1(t) = F
(
x − γ (t)

)[
b ⊗ γ̇ (t)

] − F
(
x − γ ∗(t)

)[
b ⊗ γ̇ (t)

]
,

I2(t) = F
(
x − γ ∗(t)

)[
b ⊗ (γ̇ (t) − τ ∗)

]
.

We have

|I1(t)| ≤
∣
∣F

(
x − γ (t)

) − F
(
x − γ ∗(t)

)∣
∣|b|

since |b ⊗ γ̇ (t)| = |b|. By (50),
∣
∣F

(
x − γ (t)

) − F
(
x − γ ∗(t)

)∣
∣ ≤ AR−3

0 (t)|γ (t) − γ ∗(t)|
where

r0(t) = min
{|x − γ (t)|, |x − γ ∗(t)|}.

Further, since K is bounded by m0 and m0 ≤ m, the definition (49) of F gives

|I2(t)| ≤ m|b|∣∣γ̇ (t) − τ ∗∣∣/
∣
∣x − γ ∗(t)

∣
∣2 ≤ m|b|r−2

0

∣
∣γ̇ (t) − τ ∗∣∣.



374 M. Šilhavý

Thus

|I (t)| ≤ m|b|r−3
0 (t)|γ (t) − γ ∗(t)| + m|b|r−2

0 (t)|γ̇ (t) − τ ∗| (58)

for any t . We estimate the right-hand side of (58). Prove first that

r0(t) ≥ cn(t) (59)

for any t and some c > 0. By [8, Theorem 4.8, Assertion (13)], the map Λ : U(C ,

reach(C )) → R3 × R3, given by

Λ(x) = (x∗, x − x∗), x ∈ U(C , reach(C )),

is lipschitzian on U(C , ε′) for every ε ′ < reach(C ). Thus there exists c = c(ε′) > 0 such
that

|Λ(x) − Λ(y)| ≤ c|x − y|
for any x, y ∈ U(C , ε′); in particular,

|x∗ − y| + |x − x∗| ≤ c|x − y| (60)

for any x ∈ U(C , ε ′) and y ∈ C . Using x∗ = 0, we see that Inequality (60) with y = γ (t)

provides

|x| + |γ (t)| ≤ c|x − γ (t)|. (61)

Next we apply Inequality (28) with y = γ (t) and z = 0 to obtain

dC (γ (t),0) ≤ c|γ (t)|;

noting that dC (γ (t),0) = |t |, this reduces to |t | ≤ c|γ (t)|. Hence (61) gives

n(t) ≤ |x| + |t | ≤ c|x − γ (t)|.

A combination with (56) establishes (59).
Finally, we estimate the differences |γ (t) − γ ∗(t)| and |γ̇ (t) − τ ∗| in (58). Since the

second derivative of the function δ(t) := γ (t) − γ ∗(t) is bounded on [−a, a] and δ(0) =
δ̇(0) = 0, we obtain by Taylor’s expansion that there exists a constant c such that

|γ (t) − γ ∗(t)| ≤ ct2, |γ̇ (t) − τ ∗| ≤ c|t |. (62)

By (59) and (62), the two terms on the right-hand side of (58) are estimated by

ct2n(t)−3 ≤ c|t |n(t)−2 and c|t |n(t)−2,

respectively. Here we have used the inequality |t |/n(t) ≤ 1, which is a direct consequence
of the definition of n(t). Hence

∣
∣I (t)

∣
∣ ≤ 2c|t |n(t)−2 and consequently

|A| ≤ 2
∫ a

0
|I (t)|dt ≤

∫ a

0
4ctn(t)−2 dt = 2c log

(
1 + a2/|x|2). (63)
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Since |K| is bounded, we obtain from (49) the estimate
∣
∣F

(
x − γ ∗(t)

)[
b ⊗ τ ∗]∣∣ ≤ c|b|n(t)−2

and hence

|B| = c

∫

|t |>a

n(t)−2 dt = 2c

∫ ∞

a

n(t)−2 dt ≤ 2c

∫ ∞

a

dt/t2 = 2c/a. (64)

Inequalities (63) and (64) provide

|H(x) − H ∗(x)| ≤ |A| + |B| ≤ 2c log
(
1 + a2/|x|2) + 2c/a. (65)

Elementary properties of logarithm yield that there exist c > 0 and δ ∈ (
0, reach(C )

]
(with c

possibly larger than the current value of c) such that the last expression in (65) is majorized
by c log 1/|x| for all |x| < δ. Thus (65) reduces to

|H(x) − H ∗(x)| ≤ c log
1

|x| .

This proves (7) in the particular case x∗ = 0. Returning to the original coordinate system
(with x∗ possibly �= 0), we obtain (7) in full generality. �

7 Summability Properties of the Solution

This section is devoted to establishing the convergence of various integrals occurring in
this paper. The following lemma will be used in Sect. 8 to establish the convergence of the
integrals in the definition (14) of the renormalized energy and to prove Proposition 7.2 on
the integrability properties of the distortion H .

Lemma 7.1 Let 0 < δ < reach(C ) and let f be a measurable function on U(C , δ) such that

|f (x)| ≤ g
(|x − x∗|) (66)

for all x ∈ U(C , δ) \ C , where the function g : (0, δ] → [0,∞) satisfies

∫ δ

0
tg(t) dt < ∞. (67)

Then
∫

U(C ,δ)

|f |dv < ∞. (68)

Proof We apply Proposition 3.2 with r = 0, s = δ and with f replaced by |f |. Formula (25)
then takes the form

∫

U(C ,δ)

|f |J dv =
∫

C

∫

Disc(y,δ)

|f (y + ρ)|da(ρ)dl(y),

where we put

Disc(C , y, r) := Ann(C , y,0, r) ≡ {
ρ ∈ Nor(C , y) : |ρ| < r

}
.
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Inequality (66) then reduces to |f (y + ρ)| ≤ g
(|ρ|); hence

∫

Disc(y,δ)

|f (y + ρ)|da(ρ) ≤
∫

Disc(y,δ)

g
(|ρ|)da(ρ).

By Fubini’s theorem the last integral is equal to 2π
∫ δ

0 tg(t) dt . Thus

∫

U(C ,δ)

|f |J dv < ∞. (69)

Since δ < reach(C ), Equation (12) shows that there exists a c > 0 such that c < J(x) < c−1

for all x ∈ U(C , δ). Thus (69) implies (68). �

Proposition 7.2 The solution H of the equilibrium equations (3) satisfies

H ∈

⎧
⎪⎪⎨

⎪⎪⎩

L
p

loc(R
3,Ten2) if 1 ≤ p < 2,

Lp(R3,Ten2) if 3/2 < p < 2,

L2
(
R3 \ U(C , ε),Ten2

)
for every ε > 0

(70)

and

H /∈ L2(R3,Ten2). (71)

Proof Let L and H ∗ be as in Theorem 1.2.
Inclusion (70)1: since H is bounded on each compact subset of R2 \ C , we have

H ∈ Lp(K,Ten2) for every p ∈ [1,∞] by continuity. We further prove that H ∈
Lp(U(C , δ),Ten2) for all p ∈ [1,2). Indeed, Inequality (7) can be rewritten as

H(x) = H ∗(x) + N(x)

for every x ∈ U(C , δ), where

|N(x)| ≤ c log
1

|x − x∗| . (72)

Since L is bounded, we have

|H ∗(x)| ≤ c

|x − x∗| .

Thus majorizing the right-hand side of (72) by c/|x − x∗|, we obtain

|H(x)|p ≤ c

|x − x∗|p .

Thus the function f (x) := |H(x)|p satisfies Inequality (66) with g(t) = c/tp and hence (67)
reduces to

∫ δ

0
t1−p dt < ∞,
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which holds if and only if p ∈ [1,2). Thus
∫

U(C ,δ)

|H(x)|p dv(x) < ∞ (73)

by Lemma 7.1. The proof of (70)1 is complete.
Inclusion (70)2: It follows from (4) that if B̄(0,R) is a closed ball of sufficiently large

radius R, there exists a constant c such that

|H(x)| ≤ c

|x|2 for all x ∈ R3 \ B̄(0,R).

Hence
∫

R3\B̄(0,R)

|H(x)|p dv(x) ≤ c

∫

R3\B̄(0,R)

|x|−2p dv(x)

and the last integral is finite if and only if p > 3/2. On the other hand,
∫

B̄(0,R)

|H(x)|p dv(x) < ∞

if 1 ≤ p < 2 by (70)1. The proof of (70)2 is complete.
Inclusion (70)3: If B̄(0,R) is as above then

∫

R3\B̄(0,R)

|H(x)|2 dv(x) < ∞

and
∫

B̄(0,R)\U(C ,ε)

|H(x)|p dv(x) < ∞

for every p ∈ [1,∞) and ε > 0 since H is bounded on B̄(0,R)\U(C , ε) by continuity. The
proof of (70)3 is complete.

Relation (71): it follows from the proof of (70)1 that (73) does not hold for p = 2. �

8 Renormalization of the Energy (Proof of Theorem 1.3)

Let δ be as in Theorem 1.2.

Proof of Theorem 1.3, Part (i) The convergence of the integrals in (13) is immediate since
both the inner and outer integrals involve continuous functions on compact sets.

The convergence of the integrals in (14). To prove the convergence of the first integral,
we let

f (x) = W(H) − JW(H ∗).

Using the major symmetry of C, this can be rearranged as

f (x) = W(H − H ∗) + H ∗ · C[H − H ∗] + (J − 1)W(H ∗).
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We estimate each term on the right-hand side separately. By Inequality (7),

|W(H − H ∗)| ≤ c log2 1

|x − x∗| . (74)

Further, as a direct consequence of (6) and the properties of L, we have

|H ∗| ≤ c

|x − x∗|
and hence

|H ∗ · C[H − H ∗]| ≤ c

|x − x∗| log
1

|x − x∗| . (75)

Finally, we have

J − 1 = − κ(x∗) · (x − x∗)
1 − κ(x∗) · (x − x∗)

;

and as the denominator is bounded by our choice of reach(C ) and as κ is bounded, we have

|J − 1| ≤ c|x − x∗|.
Consequently,

|(J − 1)W(H ∗)| ≤ c

|x − x∗| . (76)

Hence, by (74), (75) and (76),

|f (x)| ≤ g
(|x − x∗|),

where

g(t) = c

(

log2 1

t
+ 1

t
log

1

t
+ 1

t

)

.

Since g satisfies (67), Lemma 7.1 says that f is integrable, i.e., the first integral in (14)
converges.

The second integral in (14) converges by (70)3.
Finally, let us prove that the value of the right-hand side of (14) is independent of the

choice or r . Let r , s satisfy 0 < r < s and denote by �1 and �2 the values of the right-hand
side of (14) with r = r and r = s, respectively. Then

�2 − �1 =
∫

U(C ,r,s)

(
W(H) − JW(H ∗)

)
dv

−
∫

U(C ,r,s)

W(H)dv − Θ

(

log
1

r
− log

1

s

)

where U(C , r, s) is defined in (23). The first integral can be split into the difference
∫

U(C ,r,s)

W(H)dv −
∫

U(C ,r,s)

JW(H ∗) dv
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and a cancellation reduces the last equation to

�2 − �1 = −
∫

U(C ,r,s)

JW(H ∗) dv + Θ

(

log
1

r
− log

1

s

)

.

By Proposition 3.2,
∫

U(C ,r,s)

JW(H ∗) dv =
∫

C

∫

Ann(y,r,s)

W(H ∗) da(x) dl(y),

where Ann(y, r, s) is given by (24). By Fubini’s theorem and (6),
∫

U(C ,r,s)

JW(H ∗) dv =
∫

C

∫ s

r

1

t2

∫

Circ(C ,y,t)

W
(
L
(
ρ, τ(y)

))
dl(ρ) dt dl(y) (77)

where Circ(C , y, t) is given by (11). Since L is degree 0 homogeneous in the first variable,
the integrand in the inner integral in (77) is independent of t and thus the whole integral
scales only due to the change of the radius of the circle. Thus

∫

U(C ,r,s)

JW(H ∗) dv =
∫

C

∫ s

r

1

t

∫

Circ(C ,y,1)

W
(
L
(
ρ, τ(y)

))
dl(ρ) dt dl(y)

=
∫

Circ(C ,y,1)

W
(
L
(
ρ, τ(y)

))
dl(σ )

(

log
1

r
− log

1

s

)

= Θ

(

log
1

r
− log

1

s

)

,

i.e.,
∫

U(C ,r,s)

JW(H ∗) dv = Θ

(

log
1

r
− log

1

s

)

. (78)

Thus �1 = �2 and hence the value of the right-hand side of (14) is independent of the choice
or r .

This completes the proof of Part (i) of Theorem 1.3. �

Proof of Theorem 1.3, Part (ii) Let 0 < ε < δ and let r be any number satisfying ε < r < δ.
We write

∫

R3\U(C ,ε)

W(H)dv =
∫

U(C ,ε,r)

W(H)dv +
∫

R3\U(C ,r)

W(H)dv. (79)

A rearrangement gives
∫

U(C ,ε,r)

W(H)dv =
∫

U(C ,ε,r)

(
W(H) − JW(H ∗)

)
dv +

∫

U(C ,ε,r)

JW(H ∗) dv

=
∫

U(C ,ε,r)

(
W(H) − JW(H ∗)

)
dv + Θ

(

log
1

ε
− log

1

r

)

,

where we have used (78). Next, we split the integral
∫

U(C ,ε,r)

(
W(H) − JW(H ∗)

)
dv



380 M. Šilhavý

into the difference
∫

U(C ,r)

(
W(H) − JW(H ∗)

)
dv −

∫

U(C ,ε)

(
W(H) − JW(H ∗)

)
dv.

Thus
∫

U(C ,ε,r)

W(H)dv =
∫

U(C ,r)

(
W(H) − JW(H ∗)

)
dv − Θ log

1

r

−
∫

U(C ,ε)

(
W(H) − JW(H ∗)

)
dv + Θ log

1

ε
.

(80)

A combination of (79) and (80) and simple rearrangements provide (15) with

ϕ(ε) = −
∫

U(C ,ε)

(
W(H) − JW(H ∗)

)
dv.

Since the function W(H) − JW(H ∗) is integrable on U(C , r) by the preceding proof, we
have (16). This completes the proof of Part (ii) of Theorem 1.3. �

Appendix: Fourier Transformation

Generally, if f is a function defined on R3 \ {0} with values in a vector space and if z is a
complex number, f is said to be degree z homogeneous if f (λr) = λzf (r) for every r and
λ as in the preceding sentence.

If Y is a finite dimensional inner product space, S (R3, Y ) denotes the space of rapidly
decaying Y -valued testfunctions on R3 and S ′(R3, Y ) denotes the space of tempered Y -
valued distributions on R3. The Fourier transform of a function f ∈ S (R3, Y ) is the function
f̂ ∈ S (R3, Y ) defined by

f̂ (ξ) =
∫

R3
f (x)eix·ξ dx, ξ ∈ R3.

The Fourier transform of T ∈ S ′(R3, Y ) is T̂ ∈ S ′(R3, Y ) defined by
〈
T̂ , f

〉 = 〈
T , f̂

〉

for every f ∈ S (R3, Y ).

Property 1 Fourier transformation changes of the operator ∇ into multiplication by −iξ .
This implies transformations of linear differential operators with constant coefficients. The
following table reviews the transforms of gradients and divergences of scalar-, vector- and
tensor-valued distributions f ∈ S ′(R3,R), u ∈ S ′(R3,R3) and B ∈ S ′(R3,Ten2):

∇f → −iξ f̂ , (81)

∇u → −iû ⊗ ξ, (82)

divu → −iξ · û, (83)

divB → −iB̂ξ, (84)

curlB → −iξ × B̂. (85)
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Property 2 Fourier transformation of homogeneous distributions. If z > −3, any degree z

homogeneous function f on R3 \ {0} represents a tempered distribution T . If additionally
z ≤ 0, the Fourier transformation of T is represented by a −3 − z-homogeneous function
f̂ . Moreover, if f is infinitely differentiable, then f̂ is infinitely differentiable also; see [17,
Chap. 3, Proposition 8.1].

Property 3 Fourier transformation changes the convolution of distributions into the product
of their Fourier transforms.
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