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Abstract
We consider the problem of producing a ruled Möbius band by subjecting an unstretchable,
homogeneous, isotropic, elastic material surface material surface in a circular helicoidal ref-
erence configuration to a deformation that is isometric and chirality preserving. We find that
such a Möbius band is completely determined by the unit binormal of the Frenet frame of its
midline, which must be a geodesic and must have uniform torsion inversely proportional to
the pitch of the helicoidal reference configuration. Granted that the energy density of the ma-
terial surface depends quadratically on the mean curvature of its deformed configuration, we
show that the total energy stored in producing a ruled Möbius band as described reduces, in
closed form and without approximation, to an integral over the midline of the Möbius band.
We formulate and numerically solve a constrained variational problem for finding relative
minima of the dimensionally reduced bending energy and construct corresponding stable
Möbius bands. The only input parameter entering our variational problem is the number ν

of turns in a helicoidal reference configuration. We only find solutions if ν exceeds a cer-
tain threshold, which we compute to machine precision. Above that threshold, an interplay
between the operative constraints leads to a multiplicity of coexisting stable solutions with
n ≥ 3 half twists. For each n ≥ 3, we construct an energetically optimal Möbius band which
exhibits n-fold rotational symmetry. All other energy minima yield Möbius bands which
lack symmetry. To our knowledge, this study contains the first examples of stable Möbius
bands produced by isometrically deforming reference configurations that are not flat.
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1 Introduction

Our primary goal in this work is to supply provisional guidelines for producing Möbius
bands from helicoidal templates. Candidates for such templates include coiled graphene
nanoribbons like those synthesized by Daigle et al. [1] and helicoidal metalo-polymers like
those synthesized by Fu et al. [2]. Helicoidal protein β-sheets described by Salemme [3]
could also serve the intended purpose. It might also be possible to create suitable templates
from DNA, prion proteins, collagen, chiral metal-organic frameworks, artificial proteins, or
plasmonic nanoparticles.

We consider an idealized situation in which a ruled Möbius band is produced by subject-
ing an unstretchable, homogeneous, isotropic, elastic material surface in a circular helicoidal
reference configuration to an isometric and chirality preserving deformation. We find that
such a Möbius band must be generated by the unit binormal of its midline,1 which must be
a closed geodesic and have uniform torsion. Granted that the energy, per unit area, stored in
bending a helicoidal reference configuration into a Möbius band depends quadratically on
the mean curvature of the Möbius band and considering that a circular helicoid is a minimal
surface and, thus, has zero mean curvature, we find that the total bending energy simplifies
to an integral over the midline of the Möbius band. The integrand of the dimensionally re-
duced representation of the total bending energy is proportional to the square of the normal
curvature of the midline of the Möbius band. Moreover, since the midline has uniform tor-
sion, its squared normal curvature depends linearly on the square of the second derivative,
with respect to arclength, of the unit binormal determining the Möbius band. The problem
of finding a ruled Möbius band produced as described accordingly simplifies to the problem
of determining the unit binormal of the corresponding midline.

After formulating a properly constrained variational problem for the unit binormal, we
derive the corresponding first and second variation conditions. With a scaling in which
lengths are measured relative to the length of the axis of a helicoidal reference configuration
and energies are measured relative to an effective bending modulus that emerges during the
derivation of the dimensionally reduced total bending energy, we find our problem has only
one free parameter: the number, ν, of times a helicoidal reference configuration turns about
its axis.

Using finite differences, we develop a second-order accurate scheme for constructing
numerical solutions that satisfy discretized counterparts of our first and second variation
conditions. Consistent with the intuitive expectation that it should not be possible to join the
ends of a circular helicoid to form a Möbius band if the helicoid has too few turns, we find
that a solution does not exist unless ν satisfies ν ≥ 1.29. The Möbius band determined by
the solution corresponding to ν = 1.29 is stable, has n = 3 half twists, and exhibits 3-fold
rotational symmetry.

Also, we find one stable solution for each considered value of ν satisfying 1.30 ≤ ν <

1.40 and two stable solutions for each considered value of ν satisfying ν ≥ 1.40. Each such
solution produces an unknotted Möbius band that is stable in the sense that it delivers a local
minimum of the bending energy. These Möbius bands typically lack symmetry. However, for
each natural number j ≥ 2, we discover particular values νj of ν which yield stable Möbius
bands with n = 2j + 1 half twists and (2j + 1)-fold rotational symmetry. Moreover, we find
that the stable Möbius band with n ≥ 3 half twists and n-fold rotational symmetry has lower
dimensionless bending energy than every other stable Möbius band with the same number
of half twists and is, thus, energetically optimal. Post-processing our numerical results for

1Such a surface is called a binormal scroll.
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j = 1, . . . ,13, we obtain heuristic approximations for the dimensionless bending energy
Fj of the optimal Möbius band with n = 2j + 1 half twists and for νj . We then use the
latter approximation in conjunction with the interval halving to compute machine precision
estimates of νj up to j = 100. In so doing, we find that said approximation holds with at
most 0.067% error.

Our numerical method does not rely on a priori symmetry assumptions of any kind.
The energetically optimal Möbius bands with n half twists and n-fold rotational symmetry
that we obtain arise naturally from our variational problem, which requires that bending
energy be minimized while ensuring that the operative constraints and junction conditions
are met. An alternative method designed to obtain only Möbius bands with n half twists
and n-fold rotational symmetry might be more efficient than ours. However, such a method
would not allow for the construction asymmetric competitors and, thus, would leave open
the question of whether Möbius bands with n half twists and n-fold rotational symmetry are
energetically optimal. Our numerical method also allows us to study the stability of solutions
for the entire class of kinematically admissible perturbations rather than for the restricted
subclass of perturbations that would otherwise be dictated within a method designed only
for obtained solutions with symmetry.

In Sect. 2, we introduce our basic kinematical ingredients, derive the consequences of
stipulating that the deformation from a circular helicoid to a ruled Möbius band be isometric
and chirality preserving, and apply those consequences to show that any such Möbius band
admits a parametrization entirely in terms of the unit binormal of the Frenet frame of its
midline. In Sect. 3, we use the aforementioned parametrization to obtain a dimensional re-
duction of a simple but commonly used expression for bending energy. We then formulate a
constrained variational problem, based on a dimensionless counterpart of the reduced bend-
ing energy, and derive the corresponding first and second variation conditions. In Sect. 4,
we present discretized versions of the first and second variation conditions, constraints, and
junction conditions. Our numerical results are presented in Sect. 5, where we describe lo-
cal minima of the dimensionless bending energy and provide guidelines for constructing
energetically optimal Möbius bands with n half twists and n-fold rotational symmetry for
any choice of n ≥ 3. We summarize and discuss our main findings, and we describe several
possible areas of application of our work in Sect. 6. Calculations of several essential differ-
ential geometric quantities appear in the Appendix, and graphs of the left- and right-handed
enantiomers of each energetically optimal Möbius band determined as an outcome of this
study are provided as Supplemental Material.

2 Kinematics

2.1 Parameterizations of the Reference and Deformed Configurations

Consider a material surface in a (circular) helicoidal reference configuration H with pitch
p �= 0, axis A of length �, and radius a. Given an orthonormal basis {e1, e2, e3} with positive
orientation, we parametrize H by a mapping x̂ with the explicit form

x̂(s, υ) = se1 + υf (s), (1)

where f is defined such that

f (s) = cos
2πs

p
e2 + sin

2πs

p
e3, (2)
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Fig. 1 (a) Illustration of a left-handed (p < 0) helicoidal reference configuration H with ν = 1.70 turns, as
parametrized by the mapping x̂ defined in (1). (b) Illustration of the right-handed (p > 0) enantiomer of the
helicoidal reference configuration H shown in (a). For convenience, these helicoids are taken to be of unit
width. The rulings are represented by black arrows, and a purple arrow is used to indicate the orientation e1
of the axis of each helicoid

and where each ordered pair (s, υ) belongs to the rectangular parameter set

R = {(s, υ) : 0 ≤ s ≤ �,−a ≤ υ ≤ a}. (3)

Thus, H is right-handed or left-handed depending on whether p is positive or negative,
respectively. Also, the dimensionless ratio

ν = �

|p| > 0 (4)

measures the number of times H turns about its axis A. Setting υ = 0 in (1) shows that
x̂ is defined so that s measures arclength along A. Illustrations of left- and right-handed
referential helicoids parametrized by (1), both with ν = 1.70 turns, appear in Fig. 1.

A ruled Möbius band B obtained by subjecting a helicoidal reference configuration H
to an isometric and chirality preserving deformation η can be parametrized by a mapping ŷ
that is also defined on the parameter set R and has the general form

ŷ(s, υ) = d(s) + υg(s). (5)

Without loss of generality, we stipulate that the point-valued mapping d that enters (5),
which is called the directrix of B, parametrizes the closed midline C of B. The vector-valued
mapping g that enters (5), which is called the generatrix of B, determines the orientation of
a ruling through each point of C. We assume that d and g are at least four times continuously
differentiable. To ensure that the ends of A are smoothly joined to form C, we require that
the values of d and its first three derivatives agree at s = 0 and s = �:

d(0) = d(�), ḋ(0) = ḋ(�), d̈(0) = d̈(�),
...
d (0) = ...

d (�). (6)
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Fig. 2 (a) Illustration of a left-handed Möbius band with n = 3 half twists parametrized by augmenting the
mapping ŷ defined in (5) with d and g given by (8) and (9). (b) Illustration of the right-handed enantiomer of
the Möbius band shown in (a). As with the helicoids depicted in Fig. 1, these Möbius bands are taken to be of
unit width and the rulings are represented by black arrows. The midline of each Möbius band is represented
by a red curve. Antipodal terminal rulings are shown with green and yellow arrows

Moreover, to ensure that B is nonorientable, we require the rulings at s = 0 and s = � to be
antipodal:

g(0) = −g(�). (7)

Granted that the directrix d and the generatrix g satisfy (6)1 and (7), the shape of the surface
B parametrized by (5) is independent of the particular values of d(0) = d(�) and g(0) =
−g(�), which can therefore be chosen for convenience.

Figure 2 contains illustrations of left- and right-handed ruled Möbius bands, with n = 3
half twists and circular midlines of radius �/2π , obtained by prescribing d and g of (5) to
be given by

d(s) = d∗(s) = �

2π

(
cos

2πs

�
e2 + sin

2πs

�
e3

)
, 0 ≤ s ≤ �, (8)

and

g(s) = g±
∗ (s) = cos

3πs

�
d∗(s) ± sin

3πs

�
e1, 0 ≤ s ≤ �, (9)

where the minus and plus signs yield left- and right-handed enantiomers, respectively. It will
become apparent that the Möbius bands depicted in Fig. 2 cannot be obtained by isometri-
cally deforming helicoidal reference configurations and, thus, do not correspond to solutions
of the problem considered in this study.

2.2 Consequences of Isometry and Chirality Preservation

Under a deformation η from H to B, each material point x = x̂(s, υ) on H is mapped to a
unique point

y = ŷ(s, υ) = η(x̂(s, υ)) (10)

of B. Since we have assumed that the directrix d of B parametrizes the midline C of B, we
see from (1), (5), and (10) that

d(s) = η(se1), 0 ≤ s ≤ �. (11)
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Fig. 3 Illustration of a Möbius band B with n = 3 half twists and 3-fold rotational symmetry produced by
subjecting a right-handed helicoidal reference configuration H, with ν = 1.29 turns and length-to-radius
aspect ratio �/a = 20.0, to an isometric and chirality preserving deformation η. The axis A of H and the
midline of B are depicted by red curves, and white lines depict the rulings of both surfaces. Also, the edges
of H are shown in yellow and green. Due to the nonorientability of B, the edges of H join smoothly to form
the edge of B. Moreover, the terminal rulings of H, depicted by green and yellow arrows, form an antipodal
junction. The set R upon which the respective parametrizations x̂ and ŷ of H and B are defined is also
shown, in green. Also shown are the location x̂(�/2, a/2) on H and ŷ(�/2, a/2) = η(x̂(�/2, a/2)) on B of
the material point associated with the particular choice (s, υ) = (�/2, a/2)

Hence, η maps the axis A of H onto C. Since A is a geodesic of H and since geodesics are
preserved under isometric deformations, C must be a geodesic of B. An illustration of an
isometric deformation η from a helicoidal reference configuration H with ν = 1.29 turns to
a Möbius band B with n = 3 half twists and 3-fold rotational symmetry appears in Fig. 3.

To qualify as an isometric deformation, η must preserve the length of any curve connect-
ing any two points on H and, thus, bend H into B entirely without stretching. Differentiating
the identity ŷ(s, υ) = η(x̂(s, υ)) with respect to s and υ , we consequently infer that the cor-
responding metric coefficients of H and B must match for each (s, υ) in R. In Appendix A.1,
we show that those metric requirements are met if and only if the directrix d and generatrix
g of B satisfy

|ḋ| = 1, |g| = 1, ḋ · g = 0, ḋ · ġ = 0, and |ġ| = 2π

|p| . (12)

Immediately useful consequences of (12) include

ġ · g = 0 and |g × ġ| = 2π

|p| . (13)

While (13)1 stems from differentiating (12)2, (13)2 can be confirmed with reference to (12)5

and (13)1. By (12)3 and (12)4, ḋ must be orthogonal to both g and ġ. Referring to (13), we
thus find that ḋ must be determined by g through

ḋ = ± p

2π
g × ġ. (14)
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Since, by (12)5 and (13)1, ġ×(g× ġ) = 4π2g/p2, we find from (14) that g can be expressed
as

g = ± p

2π
ġ × ḋ. (15)

An isometric deformation η from H to B preserves the chirality of H if and only if,
as arclength increases, the rulings of B turn around its midline C in the same way that
the rulings of H turn around its axis A. As arclength along C increases, the rule vector
of a helicoidal reference configuration H with parametrization (1) rotates anticlockwise or
clockwise about A depending on the sign of the pitch p. The rotation about A is clockwise
or anticlockwise depending on whether H is left-handed (p < 0) or right-handed (p > 0).
Hence, B has the same chirality as H only if

ḋ · (g × ġ) = e1 · (f × ḟ ) = 2π

p
(16)

and, thus, only if the plus sign must prevail in (14) and (15), giving

ḋ = p

2π
g × ġ and g = p

2π
ġ × ḋ. (17)

In view of (5) and (12)1–3, n = g × ḋ defines a unit normal to B at each point of C. With
reference to (12)2, (13)1, and (17)1, we find that

n = − p

2π
ġ. (18)

Invoking (12)5, we confirm that the right-hand of (18) is of unit magnitude. With (18), we
may rewrite (17) as

ḋ = n × g and g = ḋ × n. (19)

The positively-oriented orthonormal triad {ḋ,n,g} can thus be recognized as the Darboux
frame of the midline C of B. Since C is a geodesic of B, its vector curvature d̈ must be
normal to B and, thus, must be given by

d̈ = kn, (20)

where the normal curvature k of C is given by

k = d̈ · n. (21)

Next, noticing that, by (18)–(20),

(ḋ × d̈) · ...
d = kg · (k̇n + kṅ) = k2g · ṅ = −|d̈|2n · ġ = 2π

p
|d̈|2, (22)

we find that the torsion τ of C must be uniform and is determined by the pitch p of H
through

τ = (ḋ × d̈) · ...
d

|d̈|2 = 2π

p
. (23)
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Thus, in particular, τ is positive (negative) for a right-handed (left-handed) referential heli-
coid H. From (18) and the definition τg = ṅ · g = −n · ġ of the geodesic torsion of C, we
also find that

τg = 2π

p
= τ. (24)

As a consequence of (24), the angle between the Darboux and Frenet frames of C is fixed.
With this in mind, we notice from (20) that the unit normal n of the Darboux frame of C
must also serve as the unit normal of the Frenet frame of C and, accordingly, that the unit
binormal b of the Frenet frame of C must be given by

b = ḋ × n = g. (25)

Invoking Fenchel’s [4] definitions of the Frenet frame and the curvature,2 we thus infer that
the generatrix g of B is equal to the unit binormal b of the midline C of B. By (25), the
normalization which b must satisfy to qualify as the unit normal of C, namely

|b| = 1, (26)

is sufficient to ensure that (12)2 holds. Using (25) in (12)5, we deduce that b must satisfy an
additional normalization of the form

|ḃ| = 2π

|p| . (27)

Integrating the consequence

ḋ = p

2π
b × ḃ (28)

of using (25) in (17)1, we next conclude that the directrix d of C must be determined as a
functional of the unit binormal b of the Frenet frame of C through

d(s) = d(0) + p

2π

∫ s

0
b(ς) × ḃ(ς)dς, 0 ≤ s ≤ �, (29)

where, as previously noted, d(0) can be chosen arbitrarily.3 Furthermore, using (25) and
(29) in (5), we obtain the parametrization ŷ of B in the form

ŷ(s, υ) = d(0) + p

2π

∫ s

0
b(ς) × ḃ(ς)dς + υb(s), (s, υ) ∈ R, (30)

and, thus, that B must be a binormal scroll with midline C of uniform torsion τ = 2π/p.

2According to Adams et al. [5], Fenchel’s [4] definitions of the Frenet frame and curvature allow the curvature
to be negative or to vanish and are meaningful as long as the arclength derivatives of the unit tangent and unit
the binormal do not vanish simultaneously. (For the conventional definitions of those objects, the curvature
of C is equal to |k| and it follows from (20) and (24) that the angle between the Frenet and Darboux frames
may be chosen equal to either 0 or π .) We allow the normal curvature k to vanish at isolated points of C. The
vector curvature d̈ defined in (20) will therefore vanish at any point of C at which k vanishes. Regardless,
we see from (12)5 and (25) that ḃ never vanishes. Fenchel’s [4] definitions of the Frenet frame and curvature
therefore apply in the present context.
3In arriving at (29), we have recovered Koenigs’ [6] representation for a space curve of uniform torsion.
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2.3 Explicit Form of the Deformation from H to B

Let o denote the reference placement of the material point corresponding to the parameter
pair (s, υ) = (0,0), and let xi = (x − o) · ei , i = 1,2,3. Referring to (1) and (2), we thus
see the Cartesian coordinates (x1, x2, x3) of a point x = x̂(s, υ) on a helicoidal reference
configuration H must satisfy

x1 = s and x2 cos
2πx1

p
+ x3 sin

2πx1

p
= υ, (s, υ) ∈ R. (31)

In view of (1), (10), (30), and (31), we infer that the deformation η takes the material point
x = x̂(s, υ) on H with Cartesian coordinates (x1, x2, x3) to the point y on B given by

y = η(x) = d(0) + p

2π

∫ x1

0
b(s) × ḃ(s)ds +

(
x2 cos

2πx1

p
+ x3 sin

2πx1

p

)
b(x1). (32)

2.4 Closure and Junction Conditions

Using (29) to evaluate the difference d(�) − d(0), we see that the closure condition (6)1

takes the form

∫ �

0
b × ḃ ds = 0. (33)

As a first step toward considering the implications of (6)2–4, we use (25) to recast the antipo-
dal junction condition (7) in terms of b, giving

b(0) = −b(�). (34)

Next, we differentiate (28) to yield:

d̈ = p

2π
b × b̈,

...
d = p

2π
(b × ...

b + ḃ × b̈). (35)

Using (28) and (35) in (6)2–4 and taking advantage of (34), we obtain the conditions:

b(0) × (ḃ(0) + ḃ(�)) = 0,

b(0) × (b̈(0) + b̈(�)) = 0,

b(0) × (ḃ(0) + ḃ(�)) + ḃ(0) × b̈(0) − ḃ(�) × b̈(�) = 0.

⎫⎪⎪⎬
⎪⎪⎭

(36)

Since b(0) can be chosen arbitrarily without influencing the shape of B, we see from (36)1,2

that ḃ and b̈ must satisfy antipodal junction conditions:

ḃ(0) = −ḃ(�), b̈(0) = −b̈(�). (37)

Using (37) to simplify (36)3 and relying again on the arbitrary nature of b(0), we find that...
b must also satisfy an antipodal junction condition:

...
b (0) = −...

b (�). (38)
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2.5 Number of Half Twists in a Ruled Möbius Band

Granted that b satisfies the antipodal junction conditions (34), (37), and (38), a theorem due
to Călugăreanu [7] can be used to determine how many half twists are in a Möbius band B
with midline C and parametrization ŷ of the form (30). If B is an unknot, we find that its
number n of half twists is given by

n = 2(ν + w), (39)

where

w = 1

2π

∣∣∣∣
∫ �

0

∫ �

0

(ḋ(s) × ḋ(ς)) · (d(s) − d(ς))

|d(s) − d(ς)|3 dς ds

∣∣∣∣ (40)

measures the writhe of C.4 Since (29) can be used to express w in terms of b, (39) determines
n in terms of b. If B is a knot, then (39) changes to n = 2(ν + w − c), where c measures the
number of times that C crosses over itself.5

3 Energetics

3.1 Dimensional Reduction of the Bending Energy

The energy stored in isometrically deforming a homogeneous, isotropic, elastic material
surface can include only contributions due to bending. Since the Gaussian curvature is pre-
served under an isometric deformation η and since the mean curvature of a circular heli-
coidal reference configuration H vanishes, the bending energy density of a ruled Möbius
band B obtained from a smooth, isometric, chirality preserving deformation η of any such
H can depend only on the mean curvature H of B. For simplicity, we take that dependence
to be quadratic. The resistance to bending is then characterized by a constant modulus μ > 0
and the total energy E stored in bending H to B has the form

E = 2μ

∫

B
H 2 da. (41)

To convert (41) to an integral over the parameter set R defined in (3), we determine the first
and second fundamental forms I and II of B. With reference to the explicit representation
(30) of the parametrization ŷ of B and to the normalization conditions (26) and (27) that
apply to b, we show in Appendix A.2 that

I =
[

j 2 0
0 1

]
and II =

[
kj −2π/pj

−2π/pj 0

]
, (42)

where j , defined according to

j (υ) =
√

1 + 4π2υ2

p2
, −a ≤ υ ≤ a, (43)

4The writhe w connotes the extent to which a curve is coiled. While the torsion τ and the writhe w of a curve
can be altered without changing the topology of the curve, their sum, as proven by Călugăreanu [7], remains
preserved if the topology of the curve is constrained to be invariant.
5See Kleitman [8] for a definition of the crossing number c of a knot.
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is the Jacobian needed to convert the area element da of B to the area element ds dυ of the
parameter set R. From (42), we obtain the mean curvature H of B in the form

H(ŷ(s, υ)) = 1

2
tr(I−1(υ)II(s, υ)) = k(s)

2j (υ)
, (s, υ) ∈ R, (44)

and, thus, is a multiplicatively separable function of s and υ .
Since the integrand of the double integral arising from using (43) and (44) in (41) is also

a multiplicatively separable function of s and υ and the parameter set R is rectangular, E

splits into the product

E = I1I2, (45)

with

I1 = �

2

∫ �

0
k2 ds, I2 = μ

�

∫ a

−a

dυ

j
. (46)

With reference to (43), we notice that I2 can be evaluated explicitly. Introducing

α = μp

π�
arcsinh

2πa

p
, (47)

we thus obtain a dimensional reduction, in closed form, of E:

E = α�

2

∫ �

0
k2 ds. (48)

The energy stored in bending a circular helicoidal reference configuration H with pitch
p, length �, and radius a into a ruled Möbius band B with midline C is therefore equivalent
to the energy stored in bending an inextensible elastica of length � and effective bending
stiffness α� into a space curve with the shape of C. To acquire some insight regarding α,
which can be identified as a characteristic measure of bending energy, let μ and the width-
to-length ratio 2a/� of H be fixed. We then see from (47) that

α�

2μa
= arcsinhm

m
∼

⎧⎪⎨
⎪⎩

1, |m| � 1,

log |m|
|m| , |m| 	 1,

(49)

where m defined by

m = 2πa

p
(50)

can be recognized as the slope of the helical edge of H. Granted that μ and 2a/� are fixed,
we thus see from (49) that: (i) α is insensitive to m for sufficiently small values of |m|; (ii)
since

1 ≤ log |m| < |m|1/2 for |m| ≥ e, (51)
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α decays more rapidly than |m|−1/2 but more slowly than |m|−1 as |m| increases for suffi-
ciently large values of |m|; (iii) since

arcsinhm

m
≥ 1√

1 + m2
, −∞ < m < ∞, (52)

where equality is achieved if and only if m = 0, it follows that

d

dm

(arcsinhm

m

)
= 1

m

( 1√
1 + m2

− arcsinhm

m

)
→

⎧
⎪⎪⎨
⎪⎪⎩

> 0, m < 0,

= 0, m = 0,

< 0, m > 0,

(53)

and, thus, that α�/2μa increases monotonically with m for m < 0 and decreases monotoni-
cally with m for m > 0.

Toward formulating a variational problem for determining admissible choices of the unit
binormal b of the midline C of B, we express the dimensionally reduced expression (48) for
bending energy E of B as a functional of b. Specifically, from (35)1 and the consequence

|b × b̈|2 = |b|2|b̈|2 − (b · b̈)2 = |b̈|2 −
( .

b · ḃ − |ḃ|2
)2 = |b̈|2 −

(1

2
˙|b|2 − 4π2

p2

)2

= |b̈|2 − 16π4

p4
(54)

of (26) and (27), we find that the square k2 = |d̈|2 of the normal curvature k of C can be
expressed as

k2 = p2

4π2
|b̈|2 − 4π2

p2
. (55)

Using (55) in (48) and invoking the definition (4) of the number ν of turns of H, we thus
obtain an alternative representation for the total energy E stored in bending H to B:

E = α�3

8π2ν2

∫ �

0
|b̈|2 ds − 2απ2ν2. (56)

3.2 Scaling

We adopt a scaling whereby lengths are measured relative to the length � of the axis A of
a helicoidal reference configuration H and energies are measured relative to the parameter
α that emerges as a natural offshoot in the derivation of the dimensional reduced version
(48) of the bending energy E. This is accomplished by defining dimensionless counterparts
x and u of the arclength s and the unit binormal b through

x = s

�
and u(x) = b(�x), 0 ≤ x ≤ 1, (57)

and defining a dimensionless counterpart F of the bending energy E through

F = E

α
= 1

8π2ν2

∫ 1

0
|u′′|2 dx − 2π2ν2, (58)
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where a prime signifies differentiation with respect to x.
With the change of variables (57), the parametrization (29) of midline C of B takes the

form

d(s, υ) = d(0) + p

2π

∫ s/�

0
u(ξ) × u′(ξ)dξ, 0 ≤ s ≤ �. (59)

Accordingly, the parametrization (30) of B takes the form

ŷ(s, υ) = d(0) + p

2π

∫ s/�

0
u(ξ) × u′(ξ)dξ + υu(s/�), (s, υ) ∈ R. (60)

Moreover, the normalization conditions (26) and (27) are converted to

|u| = 1 and |u′| = 2πν, (61)

the closure condition (33) reads

∫ 1

0
u × u′ dx = 0, (62)

and the antipodal junction conditions (34), (37), and (38) become

u(0) = −u(1), u′(0) = −u′(1),

u′′(0) = −u′′(1), and u′′′(0) = −u′′′(1).

}
(63)

3.3 Variational Problem

In seeking admissible local minima of the dimensionless energy functional F defined in
(58), we interpret the normalization conditions (61) and the closure condition (62) as con-
straints and introduce corresponding Lagrange multipliers ρ, λ, and γ that penalize devia-
tions from the constraints. Since (61) are pointwise conditions, the scalar multipliers ρ and
λ generally depend on the dimensionless arclength x. Since (62) is a global condition, γ is
a constant vector multiplier. We, thus, introduce a constraint functional G given by

G = 1

8π2ν2

∫ 1

0
(ρ(|u|2 − 1) + λ(|u′|2 − 4π2ν2) + γ · (u × u′))dx (64)

and consider the problem of minimizing the Lagrangian L defined by

L = F − G + 2π2ν2

= 1

8π2ν2

∫ 1

0
(|u′′|2 − ρ(|u|2 − 1) − λ(|u′|2 − 4π2ν2) − γ · (u × u′))dx (65)

subject to the antipodal junction conditions (63), which, viewed variationally, amount to
antiperiodic essential boundary conditions.
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3.4 Equilibrium Conditions

For a choice of u satisfying (63) to deliver a local minimum of the augmented Lagrangian
L defined in (65), it must satisfy the first and second variation conditions

δL = 0 and δ2L ≥ 0 (66)

for all variations v = δu admissible in the sense that they comply with the consequences

u · v = 0 and u′ · v′ = 0 (67)

of varying the pointwise constraints (61), the consequence

∫ 1

0
u′ × v dx = 0 (68)

of varying the closure condition (62), and the consequences

v(0) = −v(1), v′(0) = −v′(1), v′′(0) = −v′′(1), v′′′(0) = −v′′′(1), (69)

of varying the antipodal junction conditions (63).6

Varying L, integrating by parts, and using (63) and (69), we find that the first-variation
condition (66)1 takes the form

∫ 1

0
(u′′′′ + (λu′)′ + γ × u′ − ρu) · v dx = (λ(1) − λ(0))u′(0) · v(0). (70)

Applying standard localization arguments, we thus obtain the Euler–Lagrange equation

(u′′′ + λu′ + γ × u)′ = ρu (71)

and the natural junction condition

λ(0) = λ(1). (72)

Granted that (71) and (72) hold, the second variation δ2L of L reads

δ2L =
∫ 1

0
(v′′′′ + λv′′ + λ′v′ + γ × v′ − ρv) · v dx. (73)

Integrating by parts and invoking the admissibility conditions (69) to simplify (73), we find
that the second-variation condition takes the form

∫ 1

0
(|v′′|2 − λ|v′|2 − γ · (v × v′) − ρ|v|2)dx ≥ 0. (74)

A solution {u, ρ,λ,γ } of the boundary-value problem comprised by the Euler–Lagrange
equation (71), the pointwise and global constraints (61) and (62), and the essential and nat-
ural junction conditions (63) and (72) is stable if the inequality (74) holds for all variations
v of u that satisfy the admissibility conditions (67)–(69). With reference to (41), (56), and

6To obtain (68), we have used (62) and (69)1.
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(58), a Möbius band B determined by any stable solution, through (60), delivers a local
minimum of the bending energy E and, thus, is itself stable.

Combining the consequence u · u′′′ + 3u′ · u′′ = 0 of differentiating (61)1 thrice with the
consequence u′ · u′′ = 0 of differentiating (61)2, we see that u must obey

u · u′′′ = 0. (75)

Resolving the Euler–Lagrange equation (71) in the direction of u and invoking (61)1, (61)2,
the consequence |u′′|2 + u′ · u′′′ = 0 of differentiating (61)2 twice, and (75), we obtain the
identity

ρ = (u · u′′′ + λu · u′ + u · (γ × u))′ − u′ · (u′′′ + λu′ + γ × u)

= |u′′|2 − 2πνλ − γ · (u × u′). (76)

Evaluating (76) at x = 0 and at x = 1 and using the antipodal junction conditions (63)2,4

and the natural junction condition (72), we find that ρ must satisfy the junction condition

ρ(0) = ρ(1). (77)

The boundary-value problem for {u, ρ,λ,γ } involves one control parameter: the number
ν of turns, as defined in (4), contained in a helicoidal reference configuration H. Since ν does
not depend on the sign of p, any solution can be used to construct an enantiomorphic pair
of Möbius bands, each with the same number n of half twists.

4 Discretization

4.1 Euler–Lagrange Equation, Constraints, and Junction Conditions

To formulate a discrete version of the boundary-value problem for {u, ρ,λ,γ }, we partition
the range [0,1] of the dimensionless arclength x into N subintervals of dimensionless length
h = 1/N and define ui , λi , and ρi , i = 0, . . . ,N , by

ui = u(ih), λi = λ(ih), and ρi = ρ(ih), (78)

where, in keeping with (63)1, (72), and (77), the values of ui , λi , and ρi at i = 0 and i = N

must satisfy

u0 = −uN, λ0 = λN, and ρ0 = ρN. (79)

The discretization ui , i = 0, . . . ,N , of u can be used directly to construct a polygonal ap-
proximation of a curve on the surface of the unit sphere, namely the binormal indicatrix of
C. To remove the degrees-of-freedom that would otherwise arise by allowing that indicatrix
to rotate rigidly about an axis through one of its points and the center of the unit sphere, it is
convenient to arbitrarily choose and fix u(0) = −u(1). With this convention, the antipodal
matching condition (63)1 and its consequence (79)1 become moot.

We use second-order central finite differences to approximate all four derivatives of u

and the derivative of λ. To develop the central difference approximations that are needed to
obtain discrete versions of the Euler–Lagrange equation at i = 1 and i = N − 1 and of the
antipodal junction conditions (63)2–4, it is therefore convenient to introduce equally spaced
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ghost points, two before i = 0 and two after i = N . Recognizing from (26) and (34) that the
dimensionless version u of the unit binormal b determines an open curve on the surface of
the unit sphere, we see that u has an antipodal extension ue of the form

ue(x) =
{

u(x), 0 ≤ x ≤ 1,

−u(x − 1), 1 ≤ x ≤ 2.
(80)

With reference to (80), the values of ui at the ghost points are related to corresponding
interior values through

u−2 = −uN−2, u−1 = −uN−1, uN+1 = −u1, uN+2 = −u2. (81)

For the interior points i = 1, . . . ,N − 1, the resulting discrete approximations Dhui , D2
hui ,

D4
hui , and Dhλi of u′, u′′, u′′′′, and λ′ read

Dhui = ui+1 − ui−1

2h
, i = 1, . . . ,N − 1,

D2
hui = ui+1 − 2ui + ui−1

h2
, i = 1, . . . ,N − 1,

D4
hu1 = u3 − 4u2 + 6u1 − 4u0 − uN−1

h4
,

D4
hui = ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

h4
, i = 2, . . . ,N − 2,

D4
huN−1 = −u1 + 4uN − 6uN−1 + 4uN−2 − uN−3

h4
,

Dhλi = λi+1 − λi−1

2h
, i = 1, . . . ,N − 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(82)

Also, as consequences of (79)1 and (81), we see that

Dhu0 = u1 − u−1

2h
= u1 + uN−1

2h
= −DhuN,

D2
hu0 = u1 − 2u0 + u−1

h2
= −uN+1 − 2uN + uN−1

h2
= −D2

huN,

D3
hu0 = −u−2 − 2u−1 + 2u1 − u2

2h3

= uN−2 − 2uN−1 + 2uN+1 − uN+2

2h3
= −D3

huN,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(83)

from which we conclude that the discrete approximations of the antipodal conditions (63)2–4

hold trivially and are of no subsequent consequence.
The discrete approximations of u and u′ can be combined with the trapezoidal rule to

approximate the integral term in (59) to yield a discretized version of the parameterization
d of the midline C of a Möbius band B, namely

d i = d i−1 ± �

2πν

⎧⎨
⎩

u0 × uN−1, i = 1,

ui × (ui+1 − ui−1), i = 2, . . . ,N − 1,
(84)
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with d0 = d(0) = d(�), where the minus and plus signs in (84) correspond to the midlines of
the left- and right-handed enatiomeric Möbius bands, as obtained by substituting p = −�/ν

and p = �/ν from (4) in (59), respectively. Accordingly, the discretized version of the ruled
parametrization ŷ in (60) is given by

yi (υ) = ŷ(ih,υ) = d i + υui , i = 0, . . . ,N, −a ≤ υ ≤ a, (85)

where d i is defined in (84). In view of (84) and introducing the discrete approximation

t i = 1

2πν
ui × Dhui , i = 0, . . . ,N, (86)

of the unit tangent ḋ to the midline C of a Möbius band B, the discrete approximation of the
writhe w defined in (40) is given by

w = 1

2πN2

∣∣∣∣
N−1∑
i=0

N−1∑
l=0,l �=i

(t i × t l ) · (d i − d l )

|d i − d l|3
∣∣∣∣. (87)

Also, in view of (82)2 and (83)2, the discrete approximation of the dimensionless bending
energy F defined in (58) reads

F = �

8π2ν2N

N−1∑
i=0

|D2
hui |2 − 2π2ν2. (88)

Finally, the discrete conditions arising from our finite-difference discretizations of the
Euler–Lagrange equation (71), the pointwise constraints (61), and the global constraint (62)
are:

• Euler–Lagrange equation (71):

D4
hui + λiD

2
hui + DhλiDhui + γ × Dhui = ρiui , i = 1, . . . ,N − 1. (89)

• Pointwise constraint (61)1:

ui · ui = 1, i = 1, . . . ,N − 1. (90)

• Pointwise constraint (61)2:

u1 · uN−1 = 8π2ν2h2 − 1,

ui−1 · ui+1 = 1 − 8π2ν2h2, i = 1, . . . ,N − 1.

}
(91)

• Global constraint (62):7

N−1∑
i=0

ui × ui+1 = 0. (92)

7To obtain the discretized closure condition (92), we apply the trapezoidal rule of integration to (62) and
invoke (83)1 and the central difference approximation (82)1 of u′ .
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The system comprised by (89)–(92) consists of 5N −1 scalar equations for the same number
of scalar unknowns u1, . . . ,uN−1, λ1, . . . , λN , ρ1, . . . , ρN−1, and γ . Granted knowledge of
these quantities, λ0 is determined from (79)2. Also, in view of (76), the provision that u0 is
given, and (83)1,2, ρ0 = ρN is determined by

ρ0 = ρN = |D2
hu0|2 − 2πνλ0 − γ · (u0 × Dhu0). (93)

4.2 Second Variation and Projected Hessian

For the previously described discretization, the second variation (74) of the dimensionless
augmented Lagragrian L is approximated by the quadratic form,

N−1∑
i=1

(|D2
hvi |2 − λi |Dhvi |2 − γ · (vi × Dhvi ) − ρi |vi |2) + 2|D2

hvN |2 − 2λN |DhvN |2, (94)

in the admissible variations vi , i = 0, . . . ,N . The sum (94) can be recast in matrix form
V�HV, where V is the (3N − 3) × 1 column matrix assembled from the admissible varia-
tions vi , i = 1, . . . ,N − 1, and H is the (3N − 3) × (3N − 3) Hessian matrix of the system
(89)–(92) for determining u1, . . . ,uN−1, λ1, . . . , λN , ρ1, . . . , ρN−1, and γ . We apply the
method of Nocedal and Overton [9] to derive a constraint gradient matrix A and the associ-
ated projected Hessian Ĥ. A constraint gradient matrix A of dimension (2N +2)× (3N −3)

can be obtained by differentiating the 2N + 2 scalar constraints comprised by the N − 1
scalar constraints in (90), the N constraints in (91), and the three scalar constraints in
(92) with respect to 3N − 3 unknowns ui , i = 1, . . . ,N − 1. Because the 3N − 3 scalar
unknowns ui , i = 1, . . . ,N − 1, must satisfy 2N + 2 constraints, there are a total of
(3N − 3) − (2N + 2) = N − 4 independent scalar unknowns. The matrix Z of dimension
(3N − 3) × (N − 4), which can be derived from the QR factorization of A, consists of or-
thonormal columns that span the null space of the transpose A� of A. The (N −4)× (N −4)

projected Hessian Ĥ matrix is then given by Ĥ = Z�HZ. If each eigenvalue of Ĥ evaluated
at an equilibrium solution is positive, then that equilibrium solution is stable. If, otherwise,
one or more eigenvalues of Ĥ is negative or zero, then that equilibrium solution corresponds
to a saddle point.

5 Numerical Results

Using the Levenberg–Marquardt Algorithm from the fsolve package of MATLAB to solve
the system (89)–(92) of 5N − 1 nonlinear equations, we found that the choice N = 150 was
sufficient to accurately resolve each solution obtained to a tolerance of 10−8. To assess the
stability of each numerical solution to the equilibrium conditions, we used the eig package
of MATLAB to compute the N − 4 eigenvalues of the projected Hessian Ĥ derived from the
quadratic form (94).

Given a vector ω and the corresponding rotation Q = exp(ω×), it is evident that the
Lagrangian L defined in (65) is invariant under transformations of the form {u,γ } �→
{Qu,Qγ }.8 Consistent with this observation, we found that Ĥ has three degenerate eigen-
values due to the rigid mode corresponding to the additional degree-of-freedom ω that are
not germane to the stability of our solutions. We therefore assessed stability by determining

8Here, ω× is the unique skew tensor with axial vector ω; see Bauchau and Trainelli [10] for further detail.
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Fig. 4 The closure constraint cannot be met when attempting to bend a helicoidal reference configuration H
with ν < 1.29 turns into a Möbius band B. To construct the graphs in this figure, ν was taken to equal 1.25

the sign of the smallest nonvanishing eigenvalue of Ĥ. Although stable and saddle solutions
were found, we focus subsequently on stable solutions.

We first tried to solve (89)–(92) for the conservative choice ν = 10−2. After failing in
that effort, we systematically increased ν by increments of 10−2 until finding a first stable
solution at ν = 1.29. The existence of a threshold below which no stable solution exists is
consistent with the intuitive expectation that it should not be possible to connect the ends
of a helicoidal reference configuration H with ν turns to form a Möbius band B unless
ν is sufficiently large. It is impossible to meet the closure condition (33) for ν < 1.29, as
illustrated in Fig. 4.

Further increasing ν by increments of 10−2, we found a stable solution for 1.30 ≤ ν ≤
1.39 and discovered a second threshold, at ν = 1.40, at and above which we found two stable
solutions. Above ν = 13.5, we stopped systematically increasing ν by increments of 10−2 in
favor of testing only select values of ν. Although only two stable solutions were found for
each ν > 1.40 that we considered, we cannot rule out the existence of additional thresholds
beyond which more than two stable solutions exist.

Since ν, as defined by (4), is independent of the sign of the pitch p of a helicoidal ref-
erence configuration H, any solution corresponding to a given value of ν can be used to
construct an enantiomorphic pair of Möbius bands, each with the same number n of half
twists. From this juncture onward, without loss of generality, we use the version of (84)
with a plus sign in junction with (85) to construct and graph only the right-handed stable
Möbius band B determined by each stable solution obtained for 1.29 ≤ ν ≤ 13.5. Inspecting
the graphs visually, we found that each stable Möbius band is an unknot.9 After computing
the discrete approximation (87) of the writhe w of the midline C of each stable Möbius band
B, we evaluated (39) to compute the number n of half twists in each such B. In so doing,
we found that n increases stepwise in accord with n = 2j + 1, j = 1, . . . ,13, as ν increases
from ν = 1.29 to ν = 13.5. In so doing, we also confirmed the accuracy of (39)–(40), using
(87) to approximate w, by visual inspection of the graphs. We consistently found that one of
the two stable Möbius bands determined for each ν ≥ 1.40 has an additional full twist and
larger dimensionless bending energy than the other.

The lower envelope of the dimensionless bending energy F determined by evaluating
(88) at each stable solution obtained for 1.29 ≤ ν ≤ 13.5 is shown in Fig. 5. The values of ν

corresponding to the peaks and valleys of that envelope are especially significant. Machine
precision estimates of those values, obtained by the interval halving method, are listed in

9In contrast, we found that Möbius bands determined by saddle solutions can be unknotted or knotted.
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Fig. 5 Plot of the lower envelope of the dimensionless bending energy F of each stable Möbius band
obtained by an isometric, chirality preserving deformation of a helicoidal reference configuration H with
1.29 ≤ ν ≤ 13.5 turns. The colors on the envelope represent the number n = 2j + 1, j = 1, . . . ,13, of half
twists of the Möbius band obtained for each value of j , as indicated by the color panel above the plot

Table 1 Number ν̄j of turns and
dimensionless bending energy F̄j

at the j -th peak, j = 1, . . . ,12, of
the lower envelope shown in
Fig. 5

j ν̄j F̄j

1 1.76661986 106.253778

2 2.80112699 95.1966624

3 3.85154962 93.6299380

4 4.87014125 92.7106101

5 5.90464838 91.9797528

6 6.89140903 91.4205339

7 7.89408517 90.6557287

8 8.89676131 89.9428874

9 9.86760647 89.1795797

10 10.8384516 88.3258574

11 11.8411277 87.3673587

12 12.8060574 86.3857150

Tables 1 and 2. For convenience, we denote the values of ν and F at the j -th valley by νj

and Fj , j = 1, . . . ,13. Similarly, we denote the values of ν and F at the j -th peak by ν̄j and
F̄j , j = 1, . . . ,12.

With reference to Fig. 5, we observe that:

• Each stable solution obtained for ν1 ≤ ν ≤ ν̄1 determines a stable Möbius band B with
n = 3 half twists.

• For j = 1, . . . ,11, each stable solution obtained for ν̄j < ν < ν̄j+1 determines a stable
Möbius band B with n = 2j + 3 half twists.

• For ν̄12 < ν ≤ 13.5, each stable solution determines a stable Möbius band B with n = 27
half twists.

Letting Bj denote the stable Möbius band with n = 2j + 1 half twists determined by any
stable solution obtained for νj , j = 1, . . . ,13, we also notice from Fig. 5 that:

• For j = 1, . . . ,13, Bj has lower dimensionless bending energy than every other stable
Möbius band B with n = 2j + 1 half twists and is, thus, energetically optimal.
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Table 2 Number νj of turns,
dimensionless bending energy
Fj , and number n = 2j + 1 of
half twists at the j -th valley,
j = 1, . . . ,13, of the lower
envelope shown in Fig. 5

j νj Fj n

1 1.28811996 42.3505578 3

2 2.37322017 40.3373757 5

3 3.41108030 39.8980017 7

4 4.43119251 39.7274045 9

5 5.44384690 39.6429593 11

6 6.45608744 39.5947565 13

7 7.46346708 39.5693952 15

8 8.47030065 39.5440338 17

9 9.46821609 39.5313042 19

10 10.4758892 39.5185746 21

11 11.4779164 39.5101139 23

12 12.4795931 39.5033033 25

13 13.4809940 39.5013649 27

Fig. 6 Plot of the dimensionless
bending energy Fj of each
energetically optimal band Bj

versus the number νj of turns in
its referential precursor obtained
for j = 1, . . . ,13. The numerical
values of νj and Fj ,
j = 1, . . . ,13, are provided in
Table 2

• For j = 1, . . . ,13, the dimensionless bending energy Fj of Bj decreases monotonically
as j increases from j = 1 to j = 13.10

In connection with the last of the above points, we see from a plot of Fj versus νj shown in
Fig. 6 that, for j = 1, . . . ,13, Fj decays in accord with the heuristic relation

Fj ≈ 4π2 + 3π

2ν2
j

. (95)

From plan and isometric views of Bj , j = 1, . . . ,12, provided in Figs. 7 and 8, we gain
the impression that the energetically optimal Möbius band Bj with n = 2j + 1 half twists
exhibits (2j + 1)-fold rotational symmetry. This impression is confirmed by plots presented
in Fig. 9, from which it is evident that the discrete approximation (86) of the unit tangent
ḋ to the midline Cj of each Bj with n = 2j + 1 half twists that is depicted in Figs. 7 and
8 is periodic with period 1/n. For j = 1, . . . ,13, all stable Möbius bands with n = 2j + 1

10There is a 17.9% difference between F1 and F13.
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Fig. 7 Plan views of each energetically optimal Möbius band Bj with n = 2j + 1 half twists obtained for
each value νj , j = 1, . . . ,12, of ν listed in Table 2. The helicoidal precursor of each Möbius band depicted
here has length-to-radius aspect ratio �/a = 40. Since Bj has 2j + 1 rulings perpendicular to its plan view,
the images above may convey the impression that the rulings of Bj are discontinuous at 2j + 1 points and,
thus, that the width of Bj vanishes at those points. Any such impression is illusory
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Fig. 8 Isometric views of each energetically optimal Möbius band Bj with n = 2j + 1 half twists obtained
for each value νj , j = 1, . . . ,12, of ν listed in Table 2. The helicoidal precursor of each Möbius band depicted
here has length-to-radius aspect ratio �/a = 40

half twists except the energetically optimal Möbius band Bj exhibit broken symmetry. This
finding is illustrated in Fig. 10, where we graph the energetically optimal Möbius band B2

with n = 5 half twists and two stable Möbius bands with the same number of half twists,
and equal dimensionless bending energy F = 50.0 > F2 = 40.3, obtained for ν = 2.26 and
ν = 2.45.

The machine precision estimates of νj , j = 1, . . . ,13, listed in Table 2 were obtained by
solving (89)–(92) for ν = 1.29 + 10−2m, m = 0,1, . . . ,1221, extracting lower precision es-
timates of νj from a rough version the lower envelope shown in Fig. 5, and, finally, applying
the interval-halving method to obtain refined estimates. We next develop a heuristic relation
between νj and j which allows us to avoid this computationally costly procedure. For an
energetically optimal Möbius band Bj with n = 2j + 1 half twists, we see from (39) that νj

is given by

νj = 2j + 1

2
− wj , (96)

where wj is the writhe of the midline Cj of Bj . To obtain a provisional relation between wj

and j , we use (87) to compute wj for j = 1, . . . ,13. From the plot provided in Fig. 11, we
infer that wj is closely approximated by the heuristic relation

wj ≈ 2

π(2j + 1)
, j = 1, . . . ,13. (97)
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Fig. 9 Tangent indicatrix of the midline of each energetically optimal Möbius band Bj with n = 2j + 1 half
twists, j = 1, . . . ,12, shown in Figs. 7 and 8

From Table 3, we see that, for j = 1, . . . ,13, the values of ν∗
j determined by

ν∗
j = 2j + 1

2
− 2

π(2j + 1)
(98)
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Fig. 10 (a) Zoomed-in view of an interval about the valley point ν2 = 2.39 of the lower envelope shown in
Fig. 5. The green dot marks the value F2 of the dimensionless bending energy F of the energetically optimal
Möbius band B2 with n = 5 half twists and 5-fold rotational symmetry. The red and blue dots mark the shared
value of the dimensionless bending energy F > F2, at ν = 2.26 and ν = 2.45, of stable Möbius bands which
also have n = 5 half twists but broken symmetry. Plan and isometric views of the Möbius bands obtained for
ν = 2.26, ν = ν2 = 2.39, and ν = 2.45 appear in (b), (c), and (d), respectively

Fig. 11 Plots of the heuristic
relation (97) for the writhe wj of
the midline Cj of each
energetically optimal Möbius
band Bj with n = 2j + 1 half
twists versus j for j = 1, . . . ,13

differ from the machine precision values of νj in Table 2 by at most 0.091%.
To test whether (98) can be used to provide an accurate initial guess for values of νj with

j > 13, we solved (89)–(92) in an interval about ν = ν∗
j for j = 10q , q = 2,3, . . . ,10, and

used interval halving to obtain machine precision estimates of νj . From Table 4, we see that,
for the choices of j considered, the values of ν∗

j and the refined values of νj differ by at most
0.067%. Consistent with our results for νj , j = 1, . . . ,13, we found that the energetically
optimal Möbius band Bj determined by each value of νj in Table 4 has n = 2j + 1 half
twists and has (2j + 1)-fold rotational symmetry. This finding is illustrated in Figs. 12 and
13, where we present plan and isometric views of Bj for j = 20, j = 60, and j = 100, and in
Fig. 14, where we plot the corresponding tangent indicatrices. From plots shown in Fig. 15
of the empirical relation (95) for the dimensionless bending energy Fj and the numerically
values of Fj obtained for each considered choice of j , we see that (95) remains accurate up
to j = 100. This boosts our confidence in the heuristic foundation of the expression (98) for
the approximation ν∗

j of νj .
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Table 3 Values of ν∗
j

, νj , and
percent difference for
j = 1,2, . . . ,13

j ν∗
j

νj % difference

1 1.28779341 1.28811996 0.01267706

2 2.37267605 2.37322017 0.01465063

3 3.40905432 3.41108030 0.02970587

4 4.42926447 4.43119251 0.02176005

5 5.44212548 5.44384690 0.01581320

6 6.45102925 6.45608744 0.03918916

7 7.45755868 7.46346708 0.03959781

8 8.46255178 8.47030065 0.04576234

9 9.46649370 9.46821609 0.09096469

1 10.4696848 10.4758892 0.02962153

11 11.4723209 11.4779164 0.02438101

12 12.4745352 12.4795931 0.02026879

13 13.4764215 13.4809940 0.01696194

Table 4 Values of ν∗
j

, νj , and
percent difference for j = 10q ,
q = 2,3, . . . ,10

j ν∗
j

νj % difference

20 20.4844727 20.4862279 0.00428404

30 30.4895636 30.4866293 0.00481221

40 40.4921405 40.4665585 0.03159883

50 50.4936968 50.4611965 0.03219293

60 60.4947387 60.4376458 0.04721057

70 70.4954850 70.4043185 0.06470311

80 80.4960458 80.4016244 0.05868412

90 90.4964828 90.3977727 0.05456786

100 100.496833 100.361300 0.06747688

Fig. 12 Plan views of each energetically optimal Möbius band Bj with n = 2j + 1 half twists, for j = 20,
j = 60, and j = 100

We found that the midline Cj of an energetically optimal Möbius band Bj with n = 2j +1
half twists becomes increasingly planar as j increases. This phenomenon is illustrated in
Fig. 16, which contains plots the deviation �j of Cj from its plane of symmetry and graphs
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Fig. 13 Isometric views of each energetically optimal Möbius band Bj with n = 2j + 1 half twists, for
j = 20, j = 60, and j = 100

Fig. 14 Tangent indicatrix of the midline of each energetically optimal Möbius band Bj with n = 2j +1 half
twists, for j = 20, j = 60, and j = 100. From zoomed-in views contained in bounding boxes with identical
dimensions, it is evident that the amplitude of undulation decreases and the number of undulations increases
as n = 2j + 1 increases

Fig. 15 Plot of the dimensionless
bending energy Fj of each
energetically optimal Möbius
band Bj versus νj for all values
of νj listed in Tables 3 and 4

of those midlines for j = 1,2,3,9, and j = 100, and in Fig. 17, where plot of the natural
logarithm of the maximum value �max

j of �j versus the natural logarithm 2j + 1 for j =
1,2, . . . ,13, and j = 10q , q = 2,3, . . . ,10. From Fig. 16, it is evident that �j has period
1/n and its amplitude decreases with n. From Fig. 17, we see that �max

j obeys a scaling
relation of the form

�max
j ∼ 1

(2j + 1)2
. (99)

Thus, �j → 0 as j → ∞. The midline Cj of Bj with n = 2j + 1 half twists undulates 2n

times about its plane of symmetry. If the length � of Cj is fixed, then the amplitude of the
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Fig. 16 Left: Plots of the deviation �j of the midline Cj of an energetically optimal Möbius band Bj with
n = 2j + 1 half twists from its plane of symmetry versus the dimensionless arclength x for representative
values 1, 2, 3, 9, and 100 of j . Right: Graphs of the midline Cj of Bj as j = 1,2,3,9 and j = 100

Fig. 17 Log–log plot of the
maximum dimensionless
deviation �max

j
of the midline Cj

of an energetically optimal
Möbius band Bj with n = 2j + 1
half twists from its plane of
symmetry versus the n = 2j + 1

undulation must decrease as j increases. That Cj becomes increasingly planar as j increases
is therefore consistent with intuition. However, with reference to (23), the midline Cj of Bj

cannot be planar since it must have uniform torsion

τj = 2πνj

�
. (100)

Using (98) in (100), we see that

τj ≈ π(2j + 1)

�
− 4

(2j + 1)�
(101)

and, thus, that τj increases monotonically with the number 2j + 1 of turns in Bj .
A solution to (89)–(92) obtained for a choice of ν ≥ 1.29 can be used to construct enan-

tiomeric Möbius bands corresponding to enantiomeric helicoidal reference configurations
of axial length � with ν ≥ 1.29 turns. While the right-handed Möbius band is determined by
(85) after using the solution obtained for the given choice of ν to construct d i , i = 1, . . . ,N ,
by choosing the plus sign in (84), its left-handed enantiomer is determined in the same way
except that the minus sign is chosen in (84). It is evident from (88) that the enantiomeric
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Möbius bands determined for a given choice of ν ≥ 1.29 have identical dimensionless bend-
ing energy. Our results concerning energy minima, therefore, apply equally well to left-
handed Möbius bands. Graphs of the left-handed counterparts of the energetically optimal
Möbius bands presented in this section are provided in our Supplemental Material. Whereas
the right-handed Möbius band determined for each ν arises from isometrically deforming
a right-handed helicoidal reference configuration with axis of length � and positive pitch
p = �/ν, the left-handed enantiomer of that Möbius band arises from isometrically deform-
ing a left-handed helicoidal reference configuration with axis of length � and negative pitch
p = −�/ν.

6 Summary and Discussion

We derived the exact provisions under which a (circular) helicoidal reference configuration
H of given pitch p �= 0, axial length �, and radius a can be isometrically deformed into a
ruled Möbius band B with the same chirality as H. Leveraging those provisions, we found
that the rulings of any such B must align with the unit binormal b of the midline C of B and,
moreover, that C must be a geodesic of B and must have uniform torsion τ = 2π/p. On this
basis, we obtained a general representation for B in terms of b, with parametric dependence
on p and �. Granted that the energy, per unit area, stored in bending H to B is of the form
2μH 2, with H being the mean curvature of B, we discovered that the total bending energy
E reduces, without approximation and in closed form, and valid independent of the width
of B, to an integral over C, with integrand proportional to the square of the normal curvature
k of C. We then formulated a variational problem for determining b subject to constraints
needed to ensure that the deformation η from H to B is isometric and that the ends of H
join smoothly to form B. We found that the dimensionless version of our variational prob-
lem involves only one input parameter: ν = �/|p|, which measures the number of times H
turns around its axis. Deriving the first and second variation conditions for our dimension-
less variational problem, we developed a numerical method for satisfying those conditions.
Using that method, we constructed solutions corresponding to local minima of the dimen-
sionless bending energy F . We solved that problem exhaustively for values of ν up to 13.5
and then selectively for values of ν up to slightly above 100. Over the considered range of
ν, we found that any B determined by such a local minimum of F is unknotted and has an
odd number n of half twists between n = 3 and n = 201. For n = 2j + 1, j = 1, . . . ,13, we
found that there is a choice νj of ν such that the corresponding Möbius band Bj exhibits n-
fold rotational symmetry and has lower dimensionless bending energy than any other stable
Möbius band B with the same number of half twists. For select values of j between j = 14
and j = 100, we found that a heuristic approximation ν∗

j of νj obtained by post-processing
our numerical results for j = 1, . . . ,13 can be used reliably to compute a solution that de-
termines an energetically optimal Möbius band Bj with n = 2j + 1 half twists and n-fold
rotational symmetry. We therefore infer that a helicoid H cannot be isometrically deformed
into a ruled Möbius band B with n half twists and n fold rotational symmetry unless it
has the specific number ν of turns needed to ensure that B is energetically optimal. These
energetically optimal Möbius bands emerge naturally by minimizing F without imposing
symmetry requirements of any kind.

The absence of a solution to our variational problem for ν < 1.29 is analogous to a
discovery of Schönke and Fried [11], who found that a chain made from N ≥ 7 identical
twisted links connected by hinges cannot be closed into a linkage with the topology of a
Möbius band unless the twist angle exceeds a certain critical threshold that depends on N .
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Each linkage consisting of N ≥ 7 critically twisted links of length �/N can be thought of
as a discrete approximation of the Möbius band we obtain for ν = ν1 = 1.29. Moreover, the
relaxed configuration of the open chain that forms any such linkage is a discrete approxima-
tion of a helicoid. Passing to the limit N → ∞ with � fixed, Schönke and Fried [11] found
that the sequence of critically twisted linkages converges to a Möbius band with n = 3 half
twists and 3-fold rotational symmetry. That limit surface is a binormal scroll and its midline
is a geodesic which has uniform torsion equal to the value τ1 = 2πν1/� of the torsion of the
midline of the Möbius band B1 with n = 3 half twists obtained in the present work. Thus,
that limit surface is identical to B1.

For 1.29 ≤ ν ≤ 13.5, we discovered two branches of solutions that minimize F . The
lower envelope of F versus ν, shown in Fig. 5, was constructed from those branches. Al-
though we did not encounter evidence of more than two solution branches for 1.29 ≤ ν ≤
1.01 × 102, we cannot dismiss their possible existence. We speculate, however, that for
any additional solution that might exist for a choice of ν considered in the present work
would have dimensionless bending energy greater than the corresponding values of F on
the branches of solutions discussed here.

For certain values of ν, we obtained solutions that yield knotted Möbius bands. However,
each such solution was found to be a saddle point of the dimensionless bending energy F .
Langer and Singer [12] conjectured that a knotted elastica cannot be in equilibrium unless
it has points of self-contact. Since the integrand of the dimensionless bending energy F is
proportional to the square of the normal curvature k of the midline C of B and since each
knotted B we encountered was observed to be free of self-contact, our findings concerning
the stability of knotted Möbius bands appear to support this conjecture.

We also obtained saddle solutions that yield unknotted Möbius bands which might serve
to model transition states in biological processes. Louie and Somorjai [13] observed that
β-barrel proteins with antiparallel strands constructed from α-helical proteins, which re-
semble the midlines of the Möbius bands corresponding to our unknotted saddle solutions,
are intermediate states in this protein folding transformation. Stępień et al. [14] observed
that porphyrins, which exhibit configurations that are also similar to the Möbius bands cor-
responding to our unknotted saddle solutions, might be stabilized by electronic interactions.
Wallin et al. [15] found that attractive non-native interactions are vital for forming knot-
ted proteins. Liu et al. [16] discovered that knotted DNA rings transform into circular rings
in solutions of sufficiently low ion concentrations, indicating that ionic interactions might
stabilize knots. Based on these studies and our findings, we suspect that bending energy is
insufficient to stabilize the saddle solutions and that this deficiency might be rectified by
including energetic contributions that account for electrostatic and short-range weak inter-
actions.

A unit binormal b determined by solving our variational problem can be used to construct
a Möbius band B of width equal to twice the radius a of its helicoidal precursor H. However,
B will intersect itself if a is too large. It would be cumbersome to use our numerical method
to determine the supremum of a below which a helicoidal reference configuration H with ν

turns can be deformed isometrically into a Möbius band B which does not intersect itself. A
more effective approach to the challenge might rest on augmenting our framework to include
a constraint that forbids the interpenetration of matter.

Our framework provides a foundation for exploring analogous deformations of other ref-
erence shapes, including hyperbolic hyperboloids of one sheet, which, as Lasters et al. [17]
observe, resemble protein β-barrels. Any ruled surface can sustain an isometric deformation
if the rulings are rigid material line elements. Classifying the stable deformed configura-
tions of all such reference shapes might facilitate studies of molecular synthesis and protein
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Fig. 18 Topological switch between stable Möbius bands constructed from isometric deformations of a ref-
erence helicoid H with ν = ν̄1 = 1.77 turns, both corresponding to the first peak of the lower envelope shown
in Fig. 5. Although the Möbius bands on the left and the right have n = 3 and n = 5 half twists, respectively,
they have the same dimensionless bending energy F̄1 = 1.06 × 102

folding, helping to eliminate backbone strain of the kind discussed by Dou et al. [18]. Our
findings might provide guidelines for designing novel deployable structures such as those
described by Schönke and Fried [11, Figs. 7–8]. Since reported configurations allow elas-
tic bending, they can further be used in compliant mechanisms. Modularly using connected
Möbius bands in lattices could lead to bi- or multi-stable systems. The analogy between
bendable Möbius bands and linkages with torsional spring hinges poses various vital ques-
tions regarding the constructability and stability of the resulting mechanisms.

Wang et al. [19] devised a strategy for synthesizing Möbius molecules that can switch
between distinct topologies. Our framework could provide guidelines for making uni-
formly twisted, adjustable, and topologically switchable molecules. For the value ν̄j , j =
1,2, . . . ,12, of ν corresponding to each peak of the lower envelope shown in Fig. 5, two
co-existing equilibrated Möbius bands have identical dimensionless bending energy F = F̄j

but different numbers, n = 2j + 1 and n = 2j + 3, of half twists. Since those Möbius bands
can both be constructed from a reference helicoid with ν = ν̄j turns, machine precision val-
ues of which are given in Table 1, a topological switch between them is feasible, entirely
without stretching. An example of such a switch is illustrated, for the case j = 1 involving
Möbius bands with n = 3 and n = 5 half twists, in Fig. 18. Converting one of these Möbius
bands into the other would necessarily require the ability to (i) cut a Möbius band along
one of its rulings, (ii) increase or reduce the number of twists of an open ribbon by one
full twist while ensuring that chirality is preserved, and (iii) reconnect the ends of the open
ribbon obtained after altering its number of twists. Each stable Möbius band obtained in this
work is a static equilibrium configuration corresponding to a local minimizer of the under-
lying bending energy. A dynamical theory that could describe the folding pathway traversed
when bending a reference helicoid into a Möbius band or the switching pathways between
two coexisting Möbius bands with distinct numbers of half twists might be a worthwhile
direction for future research.

Synthesizing a Möbius molecule with a chosen chirality is known to be challenging.
Batch processes designed to produce chiral molecules often yield mixtures in which right-
and left-handed molecules are present. Han et al. [20] synthesized Möbius molecules by
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folding and cutting DNA and observed nearly 1:1.4 distribution of left and right-handed
Möbius molecules. In an effort to produce self-assembled molecules of a chosen chirality,
Geng et al. [21] used chiral block copolymers as reference molecules. Their process predom-
inantly yielded Möbius bands with left-handed chirality. By bending and cyclizing twisted
fibers resembling circular helicoids, Ouyang et al. [22] found that right- and left-handed
fibers exclusively yielded right- and left-handed Möbius molecules, respectively. Ouyang
et al. [22] also acknowledged the challenges entailed in fabricating twisted fibers that yield
self-assembled Möbius bands with targeted numbers of half twists. Our chirality preserving
isometric deformations might provide a basis for developing alternative strategies for syn-
thesizing Möbius molecules with desired chirality. Moreover, our numerical results might
help design reference molecules that could be self-assembled into Möbius molecules with
programmed numbers of half twists.

Naturally occurring and synthetic Möbius bands that resemble the energetically optimal
Möbius bands obtained here have many potential applications. Rosengren et al. [23] demon-
strated that Möbius cyclotides are very resistant to proteolysis, which makes them excellent
templates for drug design applications, as revealed by Craik et al. [24], and insecticidal
agents, as shown by Jennings et al. [25]. Irobalieva et al. [26] showed that supercoiled DNA
plasmids adopt diverse three-dimensional conformations ranging from circular to lemnis-
cular. These configurations are crucial for DNA functionalities and are similar to our ener-
getically optimal Möbius bands shown in Fig. 7. In a review of the structural design and
self-assembly of DNA origami, Hong et al. [27] highlighted the utility of synthetic DNA
plasmids, resembling our Möbius bands, in applications such as in electronics, elaborated
by Maune et al. [28] and in drug delivery, as discussed by Zhang et al. [29]. We anticipate
our work will provide new pathways for constructing synthetic molecules, thereby hastening
advances in the above applications. In particular, our heuristic relation between the number
n = 2j + 1 of half twists in an energetically optimal Möbius band Bj and the number νj of
turns of its helicoidal precursor H establishes a guideline for selecting a reference helicoid
that can be used to synthesize a stable Möbius band with n-fold rotational symmetry.

Appendix A

A.1 Metric Coefficients

The metric coefficients of a helicoidal reference configuration H with parameterization x̂ of
the form (1)–(2) are given by

x̂s(s, υ) · x̂s(s, υ) = 1 + 4π2υ2

p2
,

x̂υ(s, υ) · x̂s(s, υ) = 0,

x̂υ(s, υ) · x̂υ(s, υ) = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(s, υ) ∈ R. (A.1)

Similarly, we find that the metric coefficients of a Möbius band B with parametrization ŷ of
the form (5) are given by

ŷs(s, υ) · ŷs(s, υ) = |ḋ(s)|2 + 2υḋ(s) · ġ(s) + υ2|ġ(s)|2,
ŷs(s, υ) · ŷυ(s, υ) = ḋ(s) · g(s) + υg(s) · ġ(s),

ŷυ(s, υ) · ŷυ(s, υ) = |g(s)|2,

⎫⎪⎪⎬
⎪⎪⎭

(s, υ) ∈ R. (A.2)
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A smooth deformation η from H to B is isometric if and only if the corresponding metric
coefficients of H and B satisfy

x̂s(s, υ) · x̂s(s, υ) = ŷs(s, υ) · ŷs(s, υ),

x̂s(s, υ) · x̂υ(s, υ) = ŷs(s, υ) · ŷυ(s, υ),

x̂υ(s, υ) · x̂υ(s, υ) = ŷυ(s, υ) · ŷυ(s, υ),

⎫⎪⎪⎬
⎪⎪⎭

(s, υ) ∈ R. (A.3)

Using (A.1) and (A.2) in (A.3), the directrix d and generatrix g of B must satisfy

|ḋ(s)|2 + 2υḋ(s) · ġ(s) + υ2|ġ(s)|2 = 1 + 4π2υ2

p2
,

ḋ(s) · g(s) + υg(s) · ġ(s) = 0,

|g(s)|2 = 1,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(s, υ) ∈ R. (A.4)

While the first of (A.4) holds only if

|ḋ| = 1, ḋ · ġ = 0, |ġ| = 2π

|p| , (A.5)

which respectively correspond to (12)1,4,5, the second and third of (A.4) hold only if

|g| = 1, ḋ · g = 0, (A.6)

which respectively correspond to (12)2,3. If, conversely, (A.5) and (A.6) hold, then the
matching conditions (A.4) are satisfied. Hence, as claimed in Sect. 2.2, the metric coeffi-
cients of H and B match if and only if d and g satisfy (12).

A.2 First and Second Fundamental Forms

Recalling the definition (43) of j , we see from (A.3) and (A.4) that the first fundamental
form I shared by H and B is given by

I(υ) =
[

j 2(υ) 0

0 1

]
, (s, υ) ∈ R. (A.7)

To calculate the second fundamental form II of B, we first note from the final form (30) of
the parametrization ŷ of B, the normalization (26) of b, and the consequence b · ḃ = 0 of
differentiating (26) that

ŷs(s, υ) × ŷυ(s, υ) = p

2π
(b(s) × ḃ(s)) × b(s) + υḃ(s) × b(s)

= p

2π
ḃ(s) − υb(s) × ḃ(s), (s, υ) ∈ R. (A.8)

Thus, by the normalization (27) of ḃ,

|ŷs(s, υ) × ŷυ(s, υ)| = j (υ), (s, υ) ∈ R, (A.9)

and n̄ defined by

n̄(s, υ) = − p

2πj (υ)
ḃ(s) + υ

j (υ)
b(s) × ḃ(s), (s, υ) ∈ R, (A.10)
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defines a unit normal to B at each point on B. With reference to (18), the choice of sign in
(A.10) ensures that n̄ satisfies n̄(·,0) = n on the midline C of B. Next, combining (A.10),
the further consequences

ŷss(s, υ) = p

2π
b(s) × b̈(s) + υb̈(s),

ŷsυ(s, υ) = ḃ(s),

ŷυυ(s, υ) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(s, υ) ∈ R, (A.11)

(30), the consequence

ḃ · (b × b̈) = −4π2k

p2
(A.12)

of (18), (25), and (35)1, and the respective consequences b · ḃ = 0 and ḃ · b̈ = 0 of differen-
tiating (26) and (27), we find that

n̄(s) · ŷss(s, υ) = k(s)j (υ),

n̄(s) · ŷsυ(s, υ) = − p

2πj (υ)
,

n̄(s) · ŷυυ(s, υ) = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(s, υ) ∈ R, (A.13)

and, thus, conclude that II is given by

II(s, υ) =
[

k(s)j (υ) −2π/pj (υ)

−2π/pj (υ) 0

]
, (s, υ) ∈ R. (A.14)

The relations (A.7) and (A.14) are consistent with (42)1 and (42)2, respectively.
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