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Abstract
Dilational materials, for which the angles between pairs of material fibers are preserved
under deformations, are an important class of metamaterials. Although these materials are
typically made by assembling discrete elemental building blocks in repeating patterns, con-
tinuum mechanics provides a powerful tool for exploring their macroscopic properties and
response. We present an analysis of the constraint, the constitutive relation, and the equi-
librium equations for homogeneous and isotropic dilational elastic material surfaces. We
also describe the possibility of penalizing deviations from local area preservation to yield a
framework for approximating isometric deformations of unstretchable elastic material sur-
faces.

Keywords Dilational material surface · Internal constraint · Constraint reaction field ·
Lagrange multiplier field · Unstretchable material surface · Penalty method

Mathematics Subject Classification (2020) 74K20 · 35Q74 · 53A05 · 53A17 · 53A45 ·
53C18

1 Introduction

A deformation that preserves the angles between each pair of material fibers in a contin-
uum is called “conformal” and a material that can sustain only conformal deformations is
called “dilational”. For a three-dimensional body, a conformal deformation must combine
a dilation with a rigid rotation. Consequently, a three-dimensional dilational material can-
not sustain deformations involving shear strain. For a homogeneous and isotropic linearly
elastic material, this would give rise to a finite bulk modulus and an infinite shear modulus
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— and, thus, Poisson ratio equal to −1. Analogously, a two-dimensional dilational material
cannot sustain in-plane shear. However, in the two-dimensional case, the degrees of freedom
associated with bending engender a much larger class of dilational deformations. Since the
in-plane Poisson ratio of a two-dimensional dilational material must equal −1, an observa-
tion due to Evans [1], which applies to any two-dimensional material with negative in-plane
Poisson ratio, implies that two-dimensional dilational materials may sustain states of syn-
clastic curvature in response to loads that would produce anticlastic bending in a non-auxetic
two-dimensional material.

The literature concerning the design, fabrication, and analysis of dilational metamateri-
als is vast and continues to expand. We mention only a few representative works and refer
the interested reader to the references cited in those works. Almgren [2] devised two- and
three-dimensional constructions consisting of rigid rods, springs, and hinges which yield
isotropic dilational structures. Sigmund [3, 4] formulated a numerical optimization scheme
for determining periodic two- and three-dimensional latticeworks with extreme mechanical
properties, including isotropic materials with Poisson’s ratios arbitrarily close to −1. Mil-
ton [5] demonstrated that isotropic two- and three-dimensional dilational materials can be
made from rigid bars and pivots alone. Cabras and Brun [6] described a new class two-
dimensional lattices that consist of superposed counterrotating cross-like elements, deter-
mined that the effective Poisson ratios of triangular, hexagonal, and cubic variants of their
design limit on −1, and confirmed their analytical predictions experimentally. Davini, Fa-
vata, Micheletti and Paroni [7] established the existence of two-dimensional honeycomb
structures with non-auxetic in-plane behavior and bending Poisson ratios that can achieve
the extreme values of ±1. Broeren, van de Sandel, van der Wijkl and Herder [8] developed
a strategy for converting a triangulated surface into dilational shell-like structure, with a sin-
gle internal degree-of-freedom, by replacing each triangular face of the surface with a skew
pantograph linkage that can only deform by scaling. Wang, Ren and Chen [9] explored the
use of conformal deformations of material surfaces as a platform for designing devices that
transform between flat and curved configurations.

Our primary objective of the present work is to derive the equations of equilibrium for a
homogeneous and isotropic elastic material surface that is subject to the internal constraint
of conformality, under which the angle between each and every pair of material fibers must
be preserved by any deformation. Secondarily, we aim to construct a relaxed framework
for treating the stronger internal constraint of unstretchability, whereby the length of each
and every material fiber must be preserved under any deformation, and thus to provide a
model for studying the behavior of materials like ordinary photocopy paper. We suppose
for simplicity that the reference configuration is flat and that complementary portions of its
edge are clamped and entirely free of loading.

A deformation y, with gradient F , of a material surface is conformal if and only if the
associated metric tensor C = F �F is of the form

C = λ1, (1)

where λ is a strictly positive scalar field and 1 is the identity tensor for the flat reference
configuration. Restricting attention to homogeneous and isotropic elastic material surfaces
and adopting a variational perspective, we consider constitutive relations that determine the
free-energy density ψ of a material surface in terms of the conformal stretch λ and the mean
and Gaussian curvatures H and K of the deformed configuration of the material surface.
Our main results are the Euler–Lagrange equations and natural boundary conditions for the
energy functional. To derive those results, we first establish the existence of a constraint
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reaction field which ensures that the angles between material fibers are preserved under any
deformation. Specifically, we prove that there is a tensorial constraint reaction field Ξ , with
values that transform the vector space associated with the reference configuration into itself
and that satisfy

Ξ� = Ξ and trΞ = 0. (2)

Our proof is inspired by a proof of the existence of the pressure in nonlinear incompressible
elasticity provided by Fosdick and MacSithigh [11]. Having established the existence of
the tensorial constraint reaction field Ξ , we derive the Euler–Lagrange equations and two
natural boundary conditions, one on the free edge of the surface and the other on the entire
edge, clamped portion included.

The paper is organized as follows. In Sect. 2, we introduce the basic kinematical objects
needed for our investigation and, in particular, establish connections between the first and
second gradients, F and G = ∇F , of the deformation y and conventional differential geo-
metric fields associated with the deformed configuration of the material surface. In Sect. 3,
we first introduce constitutive assumptions and then consider the problem of minimizing
the total free-energy of a conformally deformed homogeneous and isotropic elastic material
surface, assuming that part of the edge of the reference configuration is clamped but other-
wise free of loads. After establishing the existence of the constraint reaction field, we obtain
the Euler–Lagrange equations and the natural boundary conditions. Finally, in Sect. 4, we
present the versions of the these equilibrium conditions that arise from assuming that the
free-energy density ψ separates additively into a penalty term that depends only on the con-
formal stretch and another term that is multiplicatively separable, with factors that depend
quadratically on the conformal stretch and on the curvature of the deformed surface:

ψ = Ψ (λ) + μλ2(2H 2 − ςK), μ = constant > 0, ς = constant. (3)

Considering that the literature concerned with isometric deformations of material surfaces is
based on the assumption that the free-energy density is of the form 2μH 2, we are cautiously
optimistic that, if the dilational contribution Ψ to ψ is chosen to strongly penalize deviations
from λ = 1, the version of our equations corresponding to the choice (3) might provide a
fruitful avenue for studying isometric deformations of material surfaces.

2 Kinematics

2.1 Notation

Given natural numbers p ≥ 2, q ≥ 2, and r ≥ 2, Linpq denotes the space of linear trans-
formations from p-dimensional Euclidean vector space Vp to q-dimensional Euclidean
vector space Vq , and Linpqr denotes the space of bilinear transformations from Linpq to
r-dimensional linear vector space Vr or, equivalently, from Vp to Linqr . Given v in Vp , A
in Linqr , and M in Linpqr , vM is the element of Linqr defined such that

vM · B = M · (v ⊗ B) (4)

for each B in Linqr and M[A] is the element of Vp defined such that

w · M[A] = M · (w ⊗ A) (5)

for each w in Vp . In view of (4) and (5), vM ·A = v ·M[A] for all choices of v in Vp , A in
Linqr , and M in Linpqr . Component-based illustrations of these notational conventions, for
p = 3 and q = r = 2, appear in Sect. A.1 of the Appendix.
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2.2 Deformation

We consider a smooth deformation y that takes each point x belonging to a material surface
in a reference configuration R in two-dimensional Euclidean point space E2 to a point y(x)

on a surface S in three-dimensional Euclidean point space E3 and denote the first and second
deformation gradients by

F = ∇y and G = ∇∇y = ∇F , (6)

where ∇ represents the gradient operator on R. We also introduce the metric tensor

C = F �F (7)

of S . The fields F , F �, C, G, and F �G then have values in Lin23, Lin32, Lin22, Lin223, and
Lin222, respectively.

2.3 Unit Normal. Curvature

For any choice of v �= 0 in V2, the values of the field Fv are tangent to a curve on S . Thus,
given linearly independent elements v1 and v2 of V2, the values of the field

n = Fv1 × Fv2

|Fv1 × Fv2| , (8)

which belong to V3, are of unit magnitude and are normal to S . Additionally, the field

H = nG, (9)

which has values in Lin22, can be identified as the covariant pullback, to R, of the curvature
tensor L of S . To explain further, consider the fields n̄ and L defined, for each x in R, by

n̄(y(x)) = n(x) and L(x) = −∇S n̄(z)
∣
∣
z=y(x)

, (10)

where ∇S denotes the gradient operator on S . Then, taking into consideration that

F �n = 0, (11)

we see with reference to (6) and the chain rule that

H = nG = ∇(F �n) − F �∇n = −F �(∇S n̄)F = F �LF . (12)

By (9), H is symmetric:

H� = H . (13)

In the lexicon of differential geometry, H is called the second fundamental form of S and
−∇S n̄ is called the shape operator, or Weingarten map, of S .

By (7) and (12), the mean and Gaussian curvatures, H = trL/2 and K = detL, of S can
be expressed in terms of C and H through

H = C−1 · H
2

and K = detH

detC
. (14)
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For later use, we introduce the cofactor H C of H , which has values in Lin22 and is defined
such that

H�H C = H CH� = (detH )1. (15)

As a consequence of the Cayley–Hamilton theorem and (14)1, H C is given by

H C = (trH )1 − H . (16)

In view of (13) and (16), H C is symmetric:

(H C)� = H C. (17)

2.4 Conformality and Its Consequences

A deformation y from D to S is conformal if and only if it is angle preserving, meaning that
the deformation gradient F satisfies

Fv1 · Fv2

|Fv1||Fv2| = v1 · v2

|v1||v2| (18)

for all v1 �= 0 and v2 �= 0 in V2. A result for conformal deformations between surfaces in
E3 previously established by Seguin and Fried [10] can be adapted to demonstrate that y

is conformal if any only if there exists a strictly positive scalar field λ such that the metric
tensor C of S has the form

C = λ1, (19)

where 1 is the identity tensor of Lin22. We refer to λ as a ‘conformal stretch’ and interpret
(19) as an internal constraint on the deformation y.

Applying the trace to (19), we find that λ is determined by C through

λ = trC

2
. (20)

Applying the determinant to (19), we find that λ is given alternatively by λ = √
detC. Thus,

the metric tensor C for a conformal deformation y must satisfy

trC = 2
√

detC. (21)

In view of (19), a result due to Williamson [12] can be applied to conclude that the
deformation gradient F admits a polar representation of the form

F = √
λ(I − n ⊗ n)R, (22)

where I is the identity tensor of Lin33 and R, which has values in Lin23, satisfies

R�R = 1 and RR� = I − n ⊗ n. (23)

From (22) and (23)2, we see that FF �, which has values in Lin33 and can be recognized as
the induced metric tensor for S in the ambient space E3, is given by

FF � = λ(I − n ⊗ n). (24)
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Using (22) to simplify the denominator in the representation (8) for the unit normal, we
find that

n = Fv1 × Fv2

λ|v1 × v2| . (25)

Also, the representations (14)1 and (14)2 for the mean and Gaussian curvatures of S reduce
to

H = trH

2λ
and K = detH

λ2
. (26)

Furthermore, using (26) in (16) yields a reduced representation,

H C = 2λH1 − H , (27)

for the cofactor of H .

3 Energetics. Euler–Lagrange Equation. Natural Boundary Conditions

We suppose that the material surface under consideration can sustain only conformal de-
formations and is characterized by a free-energy density ψ , measured per unit area of the
reference configuration R, determined by a constitutive relation of the form

ψ = ψ̃(λ,H,K), (28)

where λ, H , and K are given in terms of the deformation y by (20) and (26). In view of
(28), the total free-energy E stored in a conformal deformation y of R to S is

E =
∫

R
ψ̃(λ,H,K)da, (29)

where da is the elemental area of R.
Consider a smooth variation

u = δy (30)

of y. To be compatible with the stipulation that y be conformal, u must satisfy the condition

(∇u)�F + F �∇u = (F · ∇u)1, (31)

arising from varying the internal constraint (19) in conjunction with the consequence

δλ = F · ∇u (32)

of varying (20).
Let the edge ∂R of R be smooth and let ν denote the unit normal to ∂R, directed outward

from R. Suppose that the interior of R and some open subset C of ∂R are free of all applied
loads and that the remainder ∂R \ C of ∂R is clamped, whereby

u|∂R\C = 0. (33)

Then the first variation δE of E must vanish in equilibrium

δE = 0. (34)
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To determine δE, it is necessary to compute δH and δK . Toward that objective, we first
consider δn and δH . Varying (11), we see that

F �δn + (∇u)�n = 0 (35)

and, thus, with reference to (24) and the consequence

n · δn = 0 (36)

of varying the condition |n| = 1, that

δn = −F (∇u)�n

λ
. (37)

Next, we see from (9) and (37) that

δH = λn(∇∇u) − (F (∇u)�n)G

λ
. (38)

Using (32) and (38) to simplify the consequence of varying (26)1, we thus find that

δH = (n ⊗ 1) · ∇∇u − 2HF · ∇u

2λ
(39)

Similarly, varying (26)2 and invoking (27), (32), and (38), we find that

δK = λ(n ⊗ H C) · ∇∇u − (n ⊗ F �G[H C] + 2λ2KF ) · ∇u

λ3
. (40)

Applying the first variation to (29) and referring to (32), (39), and (40), we find that

δE =
∫

R
((ϕ(λ,H,K)F − n ⊗ σ (λ,H )) · ∇u + (n ⊗ Γ (λ,H )) · ∇∇u)da, (41)

with

ϕ(λ,H,K) = λψ̂λ(λ,H,K) − Hψ̂H (λ,H,K) − 2Kψ̂K(λ,H,K)

λ
,

σ (λ,H ) = ψ̂K(λ,H,K)F �G[H C]
λ3

,

Γ (λ,H ) = λψ̂H (λ,H,K)1 + 2ψ̂K(λ,H,K)H C

2λ2
.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(42)

As defined, σ (λ,H ) is inV2 and Γ (λ,H ) is in Lin22. Recalling (17), Γ (λ,H ) is symmetric.
Integrating by parts with reference to (33), we find that (41) can be expressed as

δE =
∫

R
(Div(Div(n ⊗ Γ (λ,H )) + n ⊗ σ (λ,H ) − ϕ(λ,H,K)F )) · uda

−
∫

C
(Div(n ⊗ Γ (λ,H )) + n ⊗ σ (λ,H ) − ϕ(λ,H,K)F )ν · uds

+
∫

∂R
(n ⊗ Γ (λ,H )ν) · ∇uds, (43)
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where Div denotes the divergence operator on R and ds is the elemental length along ∂R.
Letting τ denote a unit tangent to ∂R, we next use the representation

∇u = (∇u)τ ⊗ τ + (∇u)ν ⊗ ν = us ⊗ τ + uν ⊗ ν (44)

of ∇u on ∂R to convert the integrand of the third term on the right-hand side of (43) to

(n ⊗ Γ (λ,H )ν) · ∇u = (τ · Γ (λ,H )ν)us · n + (ν · Γ (λ,H )ν)uν · n
= ((τ · Γ (λ,H )ν)u · n)s + (ν · Γ (λ,H )ν)uν · n

− ((τ · Γ (λ,H )ν)n)s · u. (45)

Referring once again to (33), we thus obtain δE in the form

δE =
∫

R
(Div(Div(n ⊗ Γ (λ,H )) + n ⊗ σ (λ,H ) − ϕ(λ,H,K)F )) · uda

−
∫

C
(Div(n ⊗ Γ (λ,H )) + n ⊗ σ (λ,H ) − ϕ(λ,H,K)F )ν · uda

−
∫

C
((τ · Γ (λ,H )ν)n)s · uda +

∫

∂R
(ν · Γ (λ,H )ν)n · uν ds. (46)

To derive the Euler–Lagrange equation and natural boundary conditions for the con-
strained variational problem under consideration, we rely on the following result, which
concerns the existence of a constraint reaction field Ξ with values in Lin22:

Proposition Let y, with gradient F = ∇y, be a conformal deformation from R to S . Then,
a field g with values in V3 satisfies

∫

R
g · uda = 0 (47)

for every field u with values in V3 that is consistent with

(∇u)�F + F �∇u = (F · ∇u)1 and u|∂R = 0 (48)

if and only if there exists a field Ξ with values in Lin22 and the properties

Ξ� = Ξ and trΞ = 0 (49)

such that g is determined by F and Ξ through

g = Div(FΞ). (50)

Proof Let g be given by (50), where Ξ obeys (49), and suppose that u is consistent with
(48). Then,

∫

R
g · uda =

∫

R
u · Div(FΞ)da

=
∫

∂R
FΞν · uds −

∫

R
FΞ · ∇uda
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= −1

2

∫

R
Ξ · (F �∇u + (∇u)�F − (F · ∇u)1)da

= 0. (51)

This confirms that (49) and (50) are sufficient to ensure that the condition (47) holds.
We next suppose that (47) holds and that Ξ satisfies (49). Consider the field equation

Div(λΞ) = F �g, λ = tr(F �F ). (52)

Given F , (52) amounts to a linear system of two first-order inhomogeneous partial differen-
tial equations, for the two independent components of Ξ , that can always be solved for Ξ .
Then, by (48), (49), (52), and the identity (80) established in Sect. A.2 of the Appendix,

∫

R
g · uda =

∫

R

(F �g · F �u

λ
+ (g · n)u · n

)

da

=
∫

R

(F �u · Div(λΞ)

λ
+ (g · n)u · n

)

da

=
∫

R

(

Div(ΞF �u) − λΞ · ∇
(F �u

λ

)

+ (g · n)u · n
)

da

= −
∫

R

(

λu ·
(

∇
(F

λ

)

[Ξ ]
)

+ Ξ · (F �∇u) − (g · n)u · n
)

da

= −
∫

R

(

λn ·
(

∇
(F

λ

)

[Ξ ]
)

− g · n
)

u · nda

= 0. (53)

At a point interior to R, we choose in (53) a field u whose projection on n is compactly
supported about a sufficiently small neighborhood of the point and consequently arrive at

g · n = λn ·
(

∇
(F

λ

)

[Ξ ]
)

. (54)

Furthermore, by (24), (52), (54), and (80),

g =
(FF �

λ
+ n ⊗ n

)

g

= F Div(λΞ)

λ
+ λ

(

n ·
(

∇
(F

λ

)

[Ξ ]
))

n

= F Div(λΞ)

λ
+ λ

(

∇
(F

λ

)

[Ξ ]
)

= F (λDivΞ + Ξ∇λ)

λ
+ λG[Ξ ] − FΞ∇λ

λ

= Div(FΞ). (55)

This confirms that (49) and (50) are necessary to ensure that the condition (47) holds and,
since it was previously shown that (49) and (50) are sufficient to ensure that the condition
(47) holds, completes the proof of the proposition. �
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Through the Proposition, we have established the existence of a constraint reaction field
(or Lagrange multiplier field) Ξ with symmetric and traceless values in Lin22. By (49), the
representation of Ξ relative to any basis has exactly two independent components. Those
components can be regarded as a pair of scalar constraint reaction fields that are required by
the constraint (19) dictating that the deformation y be conformal. Applying the Proposition
to the first variation δE of E in the form (46), we find that the equilibrium condition (34) is
met only if the Euler–Lagrange equation

Div(Div(n ⊗ Γ (λ,H )) + n ⊗ σ (λ,H ) − ϕ(λ,H,K)F − FΞ) = 0 (56)

holds on the interior of R.
Toward deriving the natural boundary conditions that accompany the Euler–Lagrange

equation (56), we first record the consequence
∫

R
u · Div(FΞ)da =

∫

C
FΞν · uds (57)

of the identity

FΞ · ∇u = Ξ · F �∇u = Ξ · (F �∇u + (∇u)�F − (F · ∇u)1)

2
= 0, (58)

which follows from (31) and (49), and the clamping condition (33). Granted that (56) holds
on the interior of R, we find that (46) reduces to

δE = −
∫

C
(Div(n ⊗ Γ (λ,H )) + n ⊗ σ (λ,H ) − ϕ(λ,H,K)F − FΞ)ν · uda

−
∫

C
((τ · Γ (λ,H )ν)n)s · uda +

∫

∂R
(ν · Γ (λ,H )ν)uν · nds. (59)

Since u and the normal component uν = (∇u)ν of its gradient can be varied independently
on the interior of C, we conclude from (59) that the equilibrium condition (34) is met only
if the natural boundary condition

(

Div(n ⊗ Γ (λ,H )) + n ⊗ σ (λ,H ) − ϕ(λ,H,K)F − FΞ
)

ν − ((τ · Γ (λ,H )ν)n)s = 0
(60)

holds at each interior point of C and the natural boundary condition

ν · Γ (λ,H )ν = 0 (61)

holds on the entirety of ∂R. The Euler–Lagrange equation (56) and natural boundary con-
ditions (60) and (61) must be augmented by the condition (19) embodying the constraint
that the deformation y of R to S be conformal and by conventional clamping conditions of
∂R \ C.

4 Penalization

Our strategy for constructing a relaxed framework for treating the internal constraint of
unstretchability stems from the observation that a deformation y of a material surface is
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isometric if and only if is not only conformal but also isoareal, meaning that the associated
metric tensor C also satisfies both (1) and

detC = 1. (62)

This intuitively appealing equivalence is likely well-known. For recent proof, see Seguin
and Fried [10]. On the basis of this observation, we propose a strategy for approximating
an isometric deformation of a material surface by considering a conformal deformation in
conjunction with a method for penalizing, within some prescribed tolerance, deviations from
local area preservation. The complementary option, in which the deformation is isoareal
and a penalty method is used to control deviations from angle preservation, seems equally
viable. However, in this case the reaction to the constraint is analogous to that familiar
from the treatment of isochoric deformations in three space dimensions and, thus, is of less
immediate interest to us.

Specifically, to penalize deviations from local area preservation, we take the response
function ψ̃ determining the free-energy density ψ to be of the particular form

ψ̃(λ,H,K) = Ψ (λ) + μλ2(2H 2 − ςK), (63)

where μ > 0 is a bending modulus and ς is a dimensionless parameter; also, Ψ is convex,
satisfies

Ψ (1) = 0, Ψ ′(1) = 0, Ψ ′′(1) > 0, lim
λ→0

Ψ (λ) = +∞, (64)

and depends on a penalty parameter, say ε, in such a way that

lim
ε→∞Ψ (λ) =

{

0, λ = 1,

+∞, λ �= 1.
(65)

The properties that Ψ must possess for the present purpose are identical to those of the
penalty functions discussed by Simo and Taylor [13, §3.1].

Granted that ψ̃ has the form (63), we see that (42)1 simplifies to

ϕ(λ,H,K) = Ψ ′(λ) (66)

and, with reference to the representation (27) of H C, that (42)2, 3 specialize to

σ (λ,H ) = μςF �
(G[H ]

λ
− 2H�y

)

,

Γ (λ,H ) = 2μ(1 − ς)λH1 + μςH ,

⎫

⎪⎬

⎪⎭

(67)

where � denotes the Laplacian on R. In view of (66) and (67), we find that the Euler–
Lagrange equation (56) specializes to

2μ(1 − ς)�(λHn) + μς Div
(

Div(n ⊗ H ) + n ⊗ F �
(G[H ]

λ
− 2H�y

))

− Ψ (λ)�y − F (Ψ ′(λ)∇λ + DivΞ) − G[Ξ ] = 0 (68)
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and, furthermore, that the natural boundary conditions (60) and (61) become

μ
(

2(1 − ς)∇(λHn) + ς Div(n ⊗ H ) + ςn ⊗ F �
(G[H ]

λ
− 2H�y

))

ν

− (Ψ (λ)F + FΞ)ν + μ(n ⊗ (2(1 − ς)Hν + ςHν)sτ = 0 (69)

and

(1 − ς)λ2H + ςν · Hν = 0. (70)

If the deformation is isoareal, so that λ ≡ 1 and K ≡ 0 (since R is planar and since K is
preserved for any deformation y that is both conformal and isoareal), then (63) reduces to
the choice

ψ = 2μH 2 (71)

of free-energy density that has commonly been used in studies of isometrically deformed
material surfaces. We are therefore cautiously optimistic that, with a suitable choice of the
penalty term, boundary-value problems involving the equilibrium conditions (68)–(70), the
constraint of conformality, and the clamping conditions might provide a useful avenue for
approximating isometrically deformed material surfaces. In this regard, we are led to won-
der how closely solutions to such boundary-value problems might approximate solutions to
corresponding problems within the context of the theory of Chen, Fosdick and Fried [14].

Appendix

This appendix consists of two parts. First, we illustrate the notational conventions underly-
ing (4) and (5) for the particular case p = q = 2 and r = 3. Second, we establish an identity
needed for the calculation (53) involved in establishing necessity in the proof of the Propo-
sition contained in Sect. 3.

A.1 Illustration of the Notational Conventions (4) and (5)

Suppose that p = q = 2 and r = 3. Let M , A, and v be elements of Lin322, Lin22, and V3,
respectively. Then, given an orthonormal basis {e1, e2, e3} for V3 chosen such that

M = Miαβei ⊗ eα ⊗ eβ, A = Aαβ = eα ⊗ eβ, and v = viei , (72)

the elements vM of Lin22 and M[A] of V3 have respective representations

vM = viMiαβeα ⊗ eβ and M[A] = MiαβAαβei , (73)

where the summation convention applies with Roman subscripts ranging over {1,2,3} and
Greek subscripts ranging over {1,2}. Then, by (72)2 and (73)1,

vM · A = (viMiαβeα ⊗ eβ) · (Aκμeκ ⊗ eμ) = viMiαβAαβ (74)

while, by (72)1 and (73)2,

v · M[A] = vkek · (MiαβAαβei ) = viMiαβAαβ, (75)

from which the equivalence of vM · A and v · M[A] becomes evident.
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A.2 Verification of an Identity Used in Establishing (55)

Suppose that y is a conformal deformation with deformation gradient F and metric tensor
C = λ1. Let {e1, e2, e3} be a positively-oriented orthonormal basis chosen so that F and C
have representations

F = Fiαei ⊗ eα and C = F �F = Cαβeα ⊗ eβ = λeα ⊗ eα, (76)

respectively, where the summation convention applies with Roman subscripts ranging over
{1,2,3} and Greek subscripts ranging over {1,2}. Let A be an element of Lin22 defined such
that

A = Aαβeα ⊗ eβ with A11 + A22 = 0 and A12 = A21. (77)

By (76)2 and (77),

eα · F �
(

∇
(F

λ

)

[A]
)

= Fiα

(Fiβ

λ

)

,γ
Aβγ

=
((FiαFiβ

λ

)

,γ
− Fiα,γ Fiβ

λ

)

Aαβ

=
((Cαβ

λ

)

,γ
− Fiγ,αFiβ

λ

)

Aαβ

=
(

δαβ,γ − Fiγ,αFiβ + Fiβ,αFiγ − λ,αδβγ

2λ

)

Aαβ

= − (FiβFiγ − λδβγ ),αAβγ

2λ

= 0, (78)

from which it follows that

F �
(

∇
(F

λ

)

[A]
)

= 0 (79)

and, hence, with reference to (24), that

∇
(F

λ

)

[A] =
(FF �

λ
+ n ⊗ n

)

∇
(F

λ

)

[A]

=
(

n · ∇
(F

λ

)

[A]
)

n. (80)
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