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Abstract
In this paper, a complete picture of the different plastic failure modes that can be predicted
by the strain gradient plasticity model proposed in Del Piero et al. (J. Mech. Mater. Struct.
8:109–151, 2013) is drawn. The evolution problem of the elasto-plastic strain is formulated
in Del Piero et al. (J. Mech. Mater. Struct. 8:109–151, 2013) as an incremental minimization
problem acting on an energy functional which includes a local plastic term and a non-local
gradient contribution. Here, an approximate analytical solution of the evolution problem
is determined in the one-dimensional case of a tensile bar. Different solutions are found
describing specific plastic strain processes, and correlations between the different evolution
modes and the convexity/concavity properties of the plastic energy density are established.

The variety of solutions demonstrates the large versatility of the model in describing
many failure mechanisms, ranging from brittle to ductile. Indeed, for a convex plastic en-
ergy, the plastic strain diffuses in the body, while, for a concave plastic energy, it local-
izes in regions whose amplitude depends on the internal length parameter included into the
non-local energy term, and, depending on the convexity properties of the first derivative of
the plastic energy, the localization band expands or contracts. Complex failure processes
combining different modes can be reproduced by assuming plastic energy functionals with
specific convex and concave branches.

The quasi-brittle failure of geomaterials in simple tension tests was reproduced by as-
suming a convex-concave plastic energy, and the accuracy of the analytical predictions was
checked by comparing them with the numerical results of finite element simulations.

Keywords Strain gradient plasticity · Variational modelling · Non-convex plastic energy ·
Strain softening processes
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1 Introduction

In our previous paper [1] we presented two models, local and nonlocal, to describe fracture
in the plastic regime. The local model is unable to describe softening, since an instability
arises resulting in the extreme localization of the plastic deformation. This fact was noticed
since the 1960’s and since then it has been the object of a large literature because of some
peculiar aspects such as mesh-dependence of the solutions in the finite-element computa-
tions and size effect. An accurate description and ample references are given by Jirásek and
Bažant in their book [2]. Among the many localization limiters devised to contain the lo-
calization within finite regions of the body, very efficient came out to be the ones making
use of the idea of a nonlocal continuum. In [2] three models of a nonlocal continuum are
considered: integral models, and gradient models involving either the strain gradient or the
gradient of an internal variable. Strain gradient theories, strictly related with the generalized
continua [3], are compared in [4], paying attention on the models ability to localize strains.
Analogous comparative studies are proposed in [5, 6] where different plastic strain gradi-
ent theories are considered. In [7], different nonlocal models involving a damage internal
variable are analysed, focusing on their ability to reproduce softening processes.

The model presented in [1] and resumed here is a model involving the gradient of a state
variable, the plastic strain. It is developed in the simple one-dimensional setting where the
key aspects of fracture phenomena can be easily extracted. The peculiarity of the formulation
is that of being based on an energetic approach, so that the localization limiter has the form
of a supplementary energy term. Our starting point is an energy of the form

E(ε, γ ) =
∫ l

0

(
w(ε(x)) + θ(γ (x)) + 1

2
αγ ′2(x)

)
dx , (1)

where ε and γ are the terms of the additive decomposition

u′(x) = ε(x) + γ (x) (2)

of the one-dimensional deformation displacement gradient u′ into an elastic and a plastic
part, u being the axial displacement of the bar (0, l). The functions w and θ are energy
densities depending on the two parts of the deformation, and the last term in the integral is
the nonlocal term, the nonlocality being due to the fact that the derivative γ ′(x) somehow
involves the values taken by γ in a neighborhood of x. This model has been shown to
be insufficient to properly capture the final stage of material failure leading to rupture [8].
Nevertheless we keep the form (1) of the energy for simplicity, not after observing that
more refined effects can be captured taking nonlocal energy terms of a more complicated
form. Extension to multidimensional setting is also possible, and different gradient plasticity
theories can be recovered. The theory of Aifantis [9, 10] is obtained when local and non-
local plastic energies are taken as function of the cumulated plastic strain, and the theory of
Gurtin and Anand [11] turns out when a dependence on the plastic strain tensor is assumed
(see [12] for a comparative study and [13] for a detailed description of the gradient plasticity
theories).

The method followed in [1] to determine the response to a given load is the incremental
energy minimization. The load is taken to be an imposed stretch β , such that βl is the
difference between the axial displacements at the bar’s ends, and the model follows the
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evolution of the bar’s deformation from the initial unloaded state up to rupture. The model
succeeds in capturing the many phenomenological aspects of material failure reflected in the
very different fracture modes of materials like, for example, steel and concrete, describing
them with the aid of a small number of material parameters. The purpose of the present
paper is to simplify our previous model, in order to provide a simple but unitary view of the
very complicated aspects observed in fracture in the plastic regime. For this we introduce
a basic simplification, consisting in replacing the elastic energy density w by its quadratic
approximation at ε = 0 and the plastic energy density θ by its quadratic approximation at a
representative value γ̃ of γ (x). Of course the approximation is exact when both w and θ are
quadratic, and is accurate when either w and θ are close to quadratic and when both ε(x)

and the difference (γ̃ − γ (x)) are small.
Just as in our previous paper [1], the equilibrium configurations are identified with the

pairs (ε, γ ) for which the first variation of the energy is non-negative, and the stable equilib-
rium configurations for which the second variation is non-negative (when the first variation
is zero). As a result of our simplifying assumption, the complete landscape of the stable
equilibrium configurations for each value of β is provided. When β varies, the body evolves
within these configurations, according to the usual scheme of plastic loading and elastic
unloading.

An analytical solution of the evolution problem is found, under the hypothesis of homo-
geneous θ ′′, in the case of a convex-concave plastic energy density. The solution allows to
draw a complete picture of the different modes of plastic strain evolution that can be pre-
dicted, and to establish correlations between the shape of the plastic energy and the failure
mode. Indeed, different phases are encountered in the strain process, characterized by spe-
cific solutions, ranging from the initial homogeneous strain growth in regime of strain hard-
ening, to the final strain localization under stress softening. The progressive plastic strain
localization is induced by the concave branch of the plastic energy, and it interprets the grow-
ing of a cohesive fracture.1 Non-convex plastic energies were also used in [8, 14, 15] to de-
scribe different localization phenomena: McReynolds’ plastic waves propagation and neck-
ing in tensile metallic bars [8], and plastic slip patterns in single crystal plasticity [14, 15].
Non-convexity of surface energy is a crucial requirement in fracture mechanics as well. In
[16], theories of cohesive fracture were deduced from non-convex elasticity by considering
a double-well elastic potential typical of phase transition. Moving on the same research line,
in [17, 18], micro- and macro-cracking were reproduced by assigning specific non-convex
shapes (convex-concave, bi-modal) to the surface energy included into the fracture model.

The analytical solution was specialized to the case of tensile geo-materials to reproduce
the peculiar features observed in the rupture of quasi-brittle materials subjected to tensile
loadings [19–21]. While quasi-brittle fracture is usually described by damage theories [22–
24], here it is captured by properly tailoring the functional of the plastic energy density.
The accuracy of the analytical solution is checked by comparing it with experimental results
from [19] and finite element numerical simulations.

The paper is organized as follows. In Sect. 2, the one-dimensional model is formulated,
and the equilibrium and the evolution equations are deduced as necessary conditions for
certain energy minimum problems to be satisfied. In Sect. 3, the evolution problem is solved
for convex-concave plastic energies. Different solutions are determined associated to the
different stages of the plastic strain evolution. In Sect. 4, the accuracy of the analytical
solution is tested by comparing it with the experimental data of tensile tests on concrete
specimens. The analytical solution is also compared to the numerical solution resulting from
a finite element simulation. Finally, concluding remarks are drawn in Sect. 5.

1Accordingly, in [1], the energy θ was called cohesive energy.
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2 The One-Dimensional Model

2.1 General Assumptions

For the strain energy of the bar we assume the form (1)

E(ε, γ ) =
∫ l

0

(
w(ε(x)) + θ(γ (x)) + 1

2
αγ ′2(x)

)
dx , (3)

with ε and γ the elastic and plastic parts of the deformation, w and θ functions of class
C2, and α a given positive material constant. The pair (ε, γ ) is a configuration of the bar.
A deformation process is a one-parameter family t �→ (εt , γt ) of configurations, and the
parameter t is the time. We assume that w is strictly convex and with

w(0) = w′(0) = 0,

and that θ is strictly increasing and with

θ(0) = 0 , lim
γ→+∞ θ(γ ) < +∞ .

We also assume that the function θ is dissipative, that is, that in every deformation process
and at every point x of the bar the power θ ′(γt (x))γ̇t (x) is non-negative. In view of the strict
monotonicity of θ , this is equivalent to assume that

γ̇t (x) ≥ 0 (4)

in all deformation processes and at all x. Then in any deformation process γt is a non-
decreasing function of time.

No external forces are supposed to act on the bar, so that the strain energy is in fact the
total energy. We also prescribe longitudinal displacements ut (0), ut (l) at the bar’s ends, to
which corresponds the total elongation

βt l = ut (l) − ut (0) =
∫ l

0
u′

t (x) dx . (5)

We say that βt is a load, and that the map t �→βt is a load process. We only consider the
case of positive loads.

2.2 Equilibrium

A perturbation of a configuration (ε, γ ) is a pair (δε, δγ ) in which δε and δγ are the initial
time derivatives of some deformation process starting from (ε, γ ). While δε is unrestricted,
δγ is subject to the condition

δγ (x) ≥ 0 ∀x ∈ (0, l) , (6)

due to the dissipation inequality (4). We say that (ε, γ ) is an equilibrium configuration if the
first variation of the energy2

δE(ε, γ, δε, δγ ) =
∫ l

0

(
w′(ε(x)) δε(x) + θ ′(γ (x)) δγ (x) + αγ ′(x) δγ ′(x)

)
dx (7)

2For w,θ and γ the apex denotes the derivative with respect to ε, γ , and x, respectively.
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is non-negative for all perturbations (δε, δγ ) which satisfy (6) and leave unchanged the
length of the bar. In view of the decomposition (2) of u′, from the boundary condition (5)
rewritten in the form

β = γ + ε , γ = 1

l

∫ l

0
γ (x) dx , ε = 1

l

∫ l

0
ε(x) dx ,

follows that the configurations (ε, γ ) and (ε + δε, γ + δγ ) correspond to the same length of
the bar if

δγ + δε = 0 . (8)

In particular, for perturbations with δγ = 0 the first variation reduces to

δE(ε, γ, δε,0) =
∫ l

0
w′(ε(x)) δε(x) dx ,

and δε is zero. In this case, a standard argument of the Calculus of Variations leads to the
conclusion that the first variation is non-negative if and only if the map x �→w′(ε(x)) is
constant. Since by the assumed strict convexity of w the derivative w′ is strictly increasing,
x �→w′(ε(x)) constant implies x �→ε(x) constant. Then the axial force

σ = w′(ε(x)) = w′(ε) = w′(β − γ ) (9)

is the same at all x. By (8), the first term on the right-hand side of (7) becomes

∫ l

0
σδε(x) dx = σ lδε = −σ lδγ = −

∫ l

0
σδγ (x) dx .

This eliminates the dependence of the first variation (7) on δε. Moreover, by the expression
(9) of σ , the dependence on ε reduces to a dependence on β . Then for an equilibrium
configuration, for every given β the first variation becomes a function of γ and δγ

δE(β;γ, δγ ) =
∫ l

0

((
θ ′(γ (x)) − σ

)
δγ (x) + αγ ′(x)δγ ′(x)

)
dx ,

which, after an integration by parts, takes the form

δE(β;γ, δγ ) =
∫ l

0

(
θ ′(γ (x)) − σ − αγ ′′(x)

)
δγ (x) dx +

[
αγ ′(x)δγ (x)

]l

0
.

From the non-negativeness of δE and from the arbitrariness of δγ ≥ 0, it follows that

θ ′(γ (x)) − σ − αγ ′′(x) ≥ 0 ∀x ∈ (0, l), γ ′(l) ≥ 0, γ ′(0) ≤ 0. (10)

These are necessary conditions for the non-negativeness of the first variation, to be satisfied
at all interior points of the bar and at the endpoints, respectively. In turn, these conditions
imply the non-negativeness of the first variation. Therefore, inequalities (10) are both nec-
essary and sufficient for equilibrium. Moreover, in view of the dependence (9) of σ on β ,
inequalities (10) characterize the configurations equilibrated with the load β .

Inequality (10)1 is the yield condition which imposes an upper bound to the axial force
σ . This condition is nonlocal, since the bound imposed at x involves the values of γ at the
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neighboring points through the derivative γ ′′(x). The set of all points of the bar at which the
yield condition is verified as an equality is the plastic zone. Then, after setting

f (x) = θ ′(γ (x)) − σ − αγ ′′(x) , (11)

we have f (x) = 0 in the plastic zone and f (x) > 0 outside.

2.3 Incremental Minimization

For a given load process t �→βt , consider the problem of finding a deformation process
t �→(εt , γt ) such that at each t the configuration (εt , γt ) is a local minimizer of the energy in
the class of all configurations equilibrated with the load βt . Since in an equilibrium configu-
ration εt is determined by βt and γt and βt is given, the problem reduces to the determination
of a minimizing process t �→γt .

This problem can be solved by incremental energy minimization. Assuming that a local
minimizer γt at the time t is known, for a sufficiently small τ > 0 one looks for a local
minimizer γt+τ , close to γt , in the class of all configurations equilibrated with the load βt+τ .
Using the expansions βt+τ = βt + τ β̇t + o(τ) and γt+τ = γt + τ γ̇t + o(τ), setting

σt = w′(βt − γ t ) , Kt = w′′(βt − γ t ) , (12)

and neglecting the terms o(τ), the energy of (βt+τ , γt+τ ) takes the form

E(βt + τ β̇t , γt + τ γ̇t ) = E(βt , γt )

+τ

∫ l

0

(
σt (β̇t − γ̇ t ) + θ ′(γt (x))γ̇t (x) + αγ ′

t (x)γ̇ ′
t (x)

)
dx

+1

2
τ 2

∫ l

0

(
Kt(β̇t − γ̇ t )

2 + θ ′′(γt (x))γ̇ 2
t (x) + αγ̇ ′2

t (x)
)

dx .

(13)

For an arbitrarily small perturbation δγ̇ of γ̇t , we have

E(βt + τ β̇t , γt + τ(γ̇t + δγ̇ )) − E(βt , γt )

= τ

∫ l

0

(
σt (β̇t − γ̇ t − δγ̇ ) + θ ′(γt (x))(γ̇t (x) + δγ̇ (x)) + αγ ′

t (x)(γ̇ ′
t (x) + δγ̇ ′(x))

)
dx

+1

2
τ 2

∫ l

0

(
Kt(β̇t − γ̇ t − δγ̇ )2 + θ ′′(γt (x))(γ̇t (x) + δγ̇ (x))2 + α(γ̇ ′

t (x) + δγ̇ ′(x))2
)

dx ,

and subtracting the previous equation we get

E(βt + τ β̇t , γt + τ(γ̇t + δγ̇ )) − E(βt + τ β̇t , γt + τ γ̇t )

= τ

∫ l

0

(
− σtδγ̇ + θ ′(γt (x))δγ̇ (x) + αγ ′

t (x)δγ̇ ′(x)
)

dx

+τ 2
∫ l

0

(( − Kt(β̇t − γ̇ t )δγ̇ + θ ′′(γt (x))γ̇t (x)
)
δγ̇ (x) + αγ̇ ′

t (x)δγ̇ ′(x)
)

dx

+1

2
τ 2

∫ l

0

(
Ktδγ̇

2 + θ ′′(γt (x))δγ̇ 2(x) + αδγ̇ ′2(x)
)

dx .

(14)
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For the first-order terms in δγ̇ , integrating by parts we find

τ
(∫ l

0

(
θ ′(γt (x)) − σt − αγ ′′

t (x)
)
δγ̇ (x) dx +

[
αγ ′

t (x)δγ̇ (x)
]l

0

)

+τ 2
(∫ l

0

(
θ ′′(γt (x))γ̇t (x) − σ̇t − αγ̇ ′′

t (x)
)
δγ̇ (x) dx +

[
αγ̇ ′

t (x)δγ̇ (x)
]l

0

)

= τ
(∫ l

0

(
ft (x) + τ ḟt (x)

)
δγ̇ (x) dx + α

[(
γ ′

t (x) + τ γ̇ ′
t (x)

)
δγ̇ (x)

]l

0

)
,

with ft and σt as in (11) and (12)1 and, by time differentiation,

σ̇t = Kt(β̇t − γ̇ t ) , ḟt (x) = θ ′′(γt (x))γ̇t (x) − σ̇t − αγ̇ ′′
t (x) . (15)

By the arbitrariness of δγ , local necessary conditions for a minimum at γ̇t+τ are

(
ft (x) + τ ḟt (x)

)
δγ̇ (x) ≥ 0 ∀x ∈ (0, l) ,(

γ ′
t (0) + τ γ̇ ′

t (0)
)
δγ̇ (0) ≤ 0 ,

(
γ ′

t (l) + τ γ̇ ′
t (l)

)
δγ̇ (l) ≥ 0 ,

(16)

for all perturbations δγ̇ such that, by (6),

γ̇t (x) + δγ̇ (x) ≥ 0 ∀x ∈ (0, l) . (17)

At points at which γ̇t (x) is positive, both positive and negative values of δγ̇ (x) are allowed.
Then, by condition (16)1, (ft (x) + τ ḟt (x)) must be zero. That is, either γ̇t (x) or (ft (x) +
τ ḟt (x)) must be zero. This alternative is expressed by the complementarity condition

(
ft (x) + τ ḟt (x)

)
γ̇t (x) = 0 ∀x ∈ (0, l) . (18)

At the endpoint x = 0, assume that γ ′
t (0) = γ̇t (0) = 0 at some t . Then δγ̇ (0) ≥ 0 by (17)

and γ̇ ′
t (0) ≤ 0 by (16)2. But in the expansion

γ̇t (x) = γ̇t (0) + xγ̇ ′
t (0) + o(x) ,

γ̇t (x) must be non-negative by the dissipation inequality. Then γ̇t (0) = 0 implies γ̇ ′
t (0) ≥ 0.

Therefore, γ̇ ′
t (0) must be zero.

If γ ′
t (0) = 0 and γ̇t (0) > 0, both positive and negative values of δγ̇ (0) are allowed by

(17), and (16)2 requires that γ̇ ′
t (0) = 0. Thus, in any case γ ′

t (0) = 0 at some t implies γ̇ ′
t (0) =

0. Then γ ′
t+τ (0) = γ ′

t (0) + τ γ̇ ′
t (0) = 0. Then repeating the above with t replaced by t + τ

we get γ̇ ′
t+τ (0) = 0, and so on.

A similar conclusion holds for the endpoint x = l. Therefore, if in a minimizing process
t �→γt the Neumann boundary conditions γ ′

t (0) = 0 and γ ′
t (l) = 0 hold at some t , then the

conditions

γ̇ ′
t (0) = 0 , γ̇ ′

t (l) = 0 , (19)

hold at all subsequent t .
In what follows, we make some simplifying assumptions:

- the initial configuration is the natural configuration (ε0, γ0) = (0,0),
- the load is increasing at a constant rate β̇ ,
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- the elastic energy density is quadratic

w(ε) = 1

2
Kε2 , K > 0 .

From them it follows that, at all t ,

- the Neumann conditions (19) hold,
- β̇t is a positive constant β̇ ,
- the axial force σt is

σt = K(βt − γ t ) . (20)

Under these assumptions and with the definitions (15), at all x in (0, l) the complementarity
condition (18) poses the alternative

⎧⎨
⎩

αγ̇ ′′
t (x) − θ ′′(γt (x))γ̇t (x) + K(β̇ − γ̇ t ) = 1

τ
ft (x) ,

γ̇t (x) = 0 .

(21)

The minimizing process t �→γt is determined solving the initial-boundary value problem
consisting of this alternative, of the boundary conditions (19) and of the initial condition
γ0 = 0. The solution strongly depends on the shape of the function θ . Here we consider a
special class of functions, which we call convex-concave, which seem to reproduce quite
well the behavior of a large class of materials.

3 Solutions for Convex-Concave Energies

We say that a function γ �→θ(γ ) is convex-concave if there is a γp > 0 such that θ is convex
for γ < γp and concave for γ > γp . Then θ ′′(γ ) is positive for γ < γp and negative for
γ > γp (see graphs of Fig. 1). Moreover, by the assumptions made in Sect. 2.1, γ �→θ ′′(γ )

decreases up to a negative minimum θ ′′
m at some γm > γp and then increases again, tending

to zero for γ → +∞. For energies θ of this form, the minimizing process t �→γt comes out
to be made of a sequence of different regimes.

3.1 The Initial Elastic Regime

At the initial time t = 0 we have γ0 = β0 = 0 by assumption, σ0 = 0 by (20), and f0(x) =
θ ′(0) by (11). The support of γ̇0 consists of intervals (a, b), in each of which equation (21)1

has the form

αγ̇ ′′
0 (x) − θ ′′(0)γ̇0(x) + K(β̇ − γ̇ 0) = 1

τ
θ ′(0) .

Moreover, at the endpoints we have

γ̇ ′
0(a) = γ̇ ′

0(b) = 0 , (22)



One-Dimensional Failure Modes for Bodies with Non-convex Plastic Energies 283

Fig. 1 Graphs of θ(γ ), θ ′(γ ) and
θ ′′(γ )

either by continuity of the first derivative with adjacent intervals at which γ̇0(x) = 0, or by
the boundary conditions (19) when a = 0 or b = l. Integrating over (a, b) we find

−θ ′′(0)
1

b − a

∫ b

a

γ̇0(x)dx + K(β̇ − γ̇ 0) = 1

τ
θ ′(0) ,

and since both K and θ ′′(0) are positive, the inequality

Kβ̇ ≥ 1

τ
θ ′(0) (23)

follows. Since K,θ ′(0) and β̇ are given, this inequality can be violated choosing a suffi-
ciently small τ . This renders the first alternative in (21) unavailable. By consequence, γ̇0(x)

must be zero all over the bar.
Then γt (x) = γ0(x)+ t γ̇0(x) = 0 at the subsequent t , at which inequality (23) holds with

θ ′(0) replaced by ft = θ ′(0) − σt and σt = Kβ̇t . This proportionality between force and
load characterizes a linear elastic regime. Moreover, this regime is uniform, since γ̇t (x) has
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the constant value zero at all x and at all t . The elastic regime ends at the time

to = θ ′(0)

Kβ̇

at which fo(x) = 0,3 and the axial force assumes the value

σo = θ ′(0). (24)

Since plastic strains can develop from now on, the instant to identifies the onset of the plastic
regime. Subscript letter o stands for onset.

3.2 The Uniform Hardening Regime

At t = to we have fo(x) = 0, and in each of the intervals (ai, bi) which form the support of
γ̇o equation (21)1 becomes

αγ̇ ′′
o (x) − θ ′′(0)γ̇o(x) + K(β̇ − γ̇ o) = 0 , x ∈ (ai, bi) . (25)

Integrating over (ai, bi) under the boundary conditions (22)

−θ ′′(0)

∫ bi

ai

γ̇o(x) dx + K(bi − ai)(β̇ − γ̇ o) = 0 ,

and summing over all intervals (ai, bi),

−θ ′′(0)lγ̇ o + Kl∗o (β̇ − γ̇ o) = 0 , l∗o =
∑

i

(bi − ai) . (26)

Subtracting to equation (25), we get

α ˘̇γ ′′
o (x) − θ ′′(0) ˘̇γo(x) = 0 , x ∈

⋃
i

(ai , bi) , (27)

where

˘̇γo(x) = γ̇o(x) − l

l∗o
γ̇ o , x ∈

⋃
i

(ai, bi) , (28)

is a function with null average in (0, l). For θ ′′(0) > 0 and with the boundary conditions
˘̇γ ′
o(ai) = ˘̇γ ′

o(bi) = 0, equation (27) admits the unique solution ˘̇γo(x) = 0. Then, γ̇o is constant
over each interval (ai, bi). If (ai, bi) is strictly contained in (0, l), either γ̇o(ai) or γ̇o(bi) must
be zero, by continuity with a neighboring interval at which γ̇o(x) = 0. Therefore, γ̇o must
be zero all over the bar.

But this contradicts condition (16)1, which for fo = 0 requires ḟo ≥ 0, while from (15)2

with γ̇o = 0 we have ḟo = −Kβ̇ < 0. Therefore, there cannot be intervals at which γ̇o(x) =
3The subscript “o” denotes quantities evaluated at t = to . Even in the following, subscript letters labelling
different time instants are used to denote quantities evaluated at those instants.
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0. That is, there is a unique interval (a, b), and it coincides with (0, l). Then l∗o = l, and from
(26) we have

γ̇o(x) = γ̇ o = K

K + θ ′′(0)
β̇ ∀x ∈ (0, l) . (29)

At the instants which follow to the bar keeps a uniform regime, with x �→γt (x) constant and
l∗t = l. Moreover, by the complementarity condition (18), fo(x) = 0 and γ̇o(x) > 0 imply
ḟo(x) = 0, and therefore ft (x) = fo(x) = 0. That is, the plastic zone, which for t < to was
empty, now occupies the whole bar. Then the regime starting at to is a uniform plastic regime.

For t > to, equation (29) holds with θ ′′(0) replaced by θ ′′(γt )

γ̇t (x) = K

K + θ ′′(γt )
β̇ ∀x ∈ (0, l) . (30)

Moreover, the relation

σ̇t = K(β̇ − γ̇ t ) = Kθ ′′(γt )

K + θ ′′(γt )
β̇ , (31)

shows that the slope σ̇t /β̇ is positive as long as θ ′′(γt ) is positive. That is, the regime starting
at to is a uniform hardening regime.

3.3 The Uniform Softening Regime

The hardening regime ends at the time tp at which θ ′′(γt ) becomes zero. At this instant,
γ = γp , fp is zero, and the axial force attains the peak value σp = θ ′(γp). This explains the
choice of the subscript letter p (peak) labelling this time instant. Equation (21)1 becomes

αγ̇ ′′
p (x) + K(β̇ − γ̇ p) = 0 , x ∈ (0, l) .

Due to the boundary conditions (19), the integration over (0, l) yields γ̇ p = β̇ . Then γ̇ ′′
p (x) =

0, and from (15) we get ḟp(x) = 0, so that ft (x) = 0 at the instants t following tp . Therefore,
the regime starting at t = tp is again a uniform plastic regime.

At the instants t following tp , equation (21)1 holds with γt (x) = γ t and ft (x) = 0 at all
x in (0, l). Then integrating over (0, l) we get

γ̇ t = K

K + θ ′′(γt )
β̇ , (32)

and σ̇t is as in (31). But, since now θ ′′(γt ) is negative, the slope σ̇t /β̇ of the response curve
becomes negative, that is, a uniform softening regime takes place. Moreover, for ˘̇γ (x) =
γ̇ (x) − γ̇ (x) we have

˘̇γ ′′
t (x) + κ2

t
˘̇γt (x) = 0 , κt =

(−θ ′′(γt )

α

)1/2

.

With the boundary conditions (19) this differential equation has the null solution, except at
κt l = π , where it admits the trigonometric solution

˘̇γt (x) = A cos
πx

l
, (33)
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with A an arbitrary constant. The uniform solution γ̇t = γ̇ t , which is the only possible one
for κt l < π , for κt l > π becomes unstable. Indeed, by (15), (31) and (32),

ḟt = θ ′′(γt )γ̇ t − σ̇t = 0 .

But ft (x) = 0 and ḟt = 0 imply ḟt (x) = 0. Then in (14) the zero- and first-order terms in δγ̇

vanish, and the condition of non-negativeness of the right-hand side of (14) reduces to

∫ l

0

(
Kδγ̇

2 + θ ′′(γt )δγ̇
2(x) + αδγ̇ ′2(x)

)
dx ≥ 0 .

In particular, for the perturbation δγ̇ (x) = ε cosπx/l, with ε a small constant, we have

θ ′′(γt ) + απ2

l2
≥ 0 ,

a condition violated for −θ ′′(γt ) > απ2/l2.
Equation (32) satisfies the dissipation inequality γ̇ t ≥ 0 as long as the denominator is

positive. In the uniform softening regime, θ ′′(γt ) decreases from θ ′′(γp) = 0 to the minimum
θ ′′
m, and then increases tending to zero for γt → +∞. If K +θ ′′

m is negative, there is a θ ′′
r > θ ′′

m

for which K + θ ′′
r = 0. Then K + θ ′′(γt ) is negative for all γt such that θ ′′(γt ) < θ ′′

r , and for
all such γt the dissipation inequality is violated. Moreover, by (31), when θ ′′(γt ) tends to
θ ′′
r the slope of the response curve tends to −∞. The impossibility of reaching the γt larger

than γr and the very quick reduction of the axial force when γt approaches γr are interpreted
as signs of the outcoming brittle rupture of the bar.

In conclusion, the uniform softening regime continues up to γt = +∞, except in two
cases. The first is the case θ ′′

m < −K , in which brittle fracture takes place. The second is the
case θ ′′

m < −απ2/l2, in which the constant solution becomes unstable. This second case is
studied in the next section.

3.4 The Localized Softening Regime

If απ2/l2 is smaller than −θ ′′
r and −θ ′′

m, the uniform softening regime ends at the time tc at
which

θ ′′(γc) = −απ2/l2. (34)

At tc there is a bifurcation of equilibrium, and the unstable uniform solution is replaced by
a localized solution, in which the support of γ̇t is strictly contained in (0, l). Since a phase
of contraction of the plastic region initiates, the subscript letter c is used to define this time
instant. The present study is restricted to the case in which the support of γ̇t is a single
interval (a, b), with a = 0 and b = l∗t < l to be determined for each t > tc .

At t = tc the localized regime starts with the solution (33)

γ̇c(x) = γ̇ c + A cos
πx

l
, x ∈ (0, l) ,

with the additional boundary condition γ̇c(l) = 0. This condition determines the constant
A = γ̇ c . Then γ̇c(x) > 0 at all x. Moreover, fc(x) is zero at all x because tc is the final
instant of the preceding regime in which ft (x) was zero. By the complementarity condition
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(18), γ̇c(x) > 0 and fc(x) = 0 imply ḟc(x) = 0. Then at the time t = tc + τ we have ft =
fc + τ ḟc + o(τ) = 0, and the differential equation (21)1 takes the form

αγ̇ ′′
t (x) − θ ′′(γt (x))γ̇t (x) + K(β̇ − γ̇ t ) = 0 , x ∈ (0, l∗t ) , l∗t < l . (35)

This is a second-order differential equation with a variable coefficient θ ′′(γt (x)). Leaving
apart any attempt for a closed-form solution, we prefer to focus on the general behavior of
the solutions. For this we make a drastic simplification: at each t , we replace the function
x �→θ ′′(γt (x)) by a constant, which we denote by θ ′′

t .4 With this simplification and using the
boundary conditions

γ̇ ′
t (0) = 0 , γ̇t (l

∗
t ) = γ̇ ′

t (l
∗
t ) = 0 ,

by integration of (35) over (0, l∗t ) we get

−θ ′′
t lγ̇ t + Kl∗t (β̇ − γ̇ t ) = 0 ,

and, therefore,

γ̇ t = Kβ̇

K + θ ′′
t l /l∗t

, σ̇t = Kθ ′′
t β̇

Kl∗t /l + θ ′′
t

. (36)

Substituting into (35) and setting

˘̇γt (x) = γ̇t (x) − l

l∗t
γ̇ t ,

the differential problem reduces to

α ˘̇γ ′′
t (x) − θ ′′

t
˘̇γt (x) = 0 ,

∫ l∗t

0

˘̇γt (x) dx = 0 , x ∈ (0, l∗t ) ,

˘̇γ ′
t (0) = ˘̇γ ′

t (l
∗
t ) = 0 , ˘̇γt (l

∗
t ) + γ̇ t

l

l∗t
= 0 .

Its closed-form solution is

γ̇t (x) = γ̇ t

l

l∗t

(
1 + cos

πx

l∗t

)
, l∗2

t = −απ2

θ ′′
t

. (37)

Here, again, the boundary condition γ̇t (l
∗
t ) = 0 has been used to determine the support (0, l∗t )

of γ̇t . By (36)1 the dissipation inequality γ̇ t ≥ 0 now requires K + θ ′′
t l/ l∗t ≥ 0, a condition

more severe than the condition K + θ ′′
t ≥ 0 for the uniform regime. Thus, in the localized

regime the threshold for brittle fracture is lower than in the uniform regime.
While ft (x) = 0 in (0, l∗t ), in the interval (l∗t , l) in which γ̇t (x) is zero, from (15)2 and

(36)2 we find ḟt (x) = −σ̇t > 0, and therefore ft (x) > 0. Therefore, at each t the plastic
zone is exactly (0, l∗t ). When θ ′′

t decreases up to the minimum θ ′′
m the length l∗t decreases

as well, that is, we have a progressive contraction of the plastic zone. For γt beyond the
minimum γm, θ ′′

t starts growing, and a regime of expansion of the plastic zone begins. The
time instant tm separates the contraction and expansion phases. As shown in the next section,
the description of this new regime deserves particular attention.

4The criteria for selecting this constant will be discussed later.
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3.5 The Expansion of the Plastic Zone

In the expansive regime, at each time t the plastic zone (0, lt ) is known from the preceding
step, and the support (0, l∗t ) of γ̇t is unknown but larger than (0, lt ). This situation requires
a full application of the incremental minimization technique developed in Sect. 2.3.

We then select a sufficiently small τ > 0, and minimize the energy (13) under the ap-
proximation θ ′′(γt (x)) = θ ′′

t . Then the alternative (21) becomes

αγ̇ ′′
t (x) − θ ′′

t γ̇t (x) + K(β̇ − γ̇ t ) = 1

τ
ft (x) ∀x ∈ (0, l∗t ) ,

γ̇t (x) = 0 ∀x ∈ (l∗t , l) ,

(38)

where ft is a non-negative function, known from the previous minimizing steps and null
over (0, lt ). Then integrating over (0, l∗t ) we get

α
(
γ̇ ′

t (l
∗
t ) − γ̇ ′

t (0)
) − θ ′′

t lγ̇ t + Kl∗t (β̇ − γ̇ t ) = 1

τ

∫ l∗t

lt

ft (x) dx . (39)

Dividing by l∗t and subtracting to (38)1 we obtain the differential equation

α ˘̇γ ′′
t (x) − α

˘̇γ ′
t (l

∗
t ) − ˘̇γ ′

t (0)

l∗t
− θ ′′

t
˘̇γt (x) = 1

τ

(
ft (x) − 1

l∗t

∫ l∗t

lt

ft (x) dx
)

,

with ˘̇γ defined as in (28). Moreover, from (22) and the continuity of γ̇t and γ̇ ′
t at x = l∗t we

have

˘̇γ ′
t (0) = 0 , ˘̇γt (l

∗
t ) + l

l∗t
γ̇ t = 0 , ˘̇γ ′

t (l
∗
t ) = 0 .

It is convenient to split ˘̇γt into the sum of two functions γ̇1, γ̇2 with support on (0, l∗t ) and
(lt , l

∗
t ), respectively, satisfying the equations

αγ̇ ′′
1 (x) − θ ′′

t γ̇1(x) = − 1

τ l∗t

∫ l∗t

lt

ft (x) dx , x ∈ (0, l∗t ) ,

αγ̇ ′′
2 (x − lt ) − θ ′′

t γ̇2(x − lt ) = 1

τ
ft (x) , x ∈ (lt , l

∗
t ) ,

(40)

and the conditions

γ̇ ′
1(0) = 0 , γ̇2(0) = γ̇ ′

2(0) = 0 ,

γ̇1(l
∗
t ) + γ̇2(ht ) + l

l∗t
γ̇ t = 0 , γ̇ ′

1(l
∗
t ) + γ̇ ′

2(ht ) = 0 , ht = l∗t − lt .
(41)

For γ̇1 with γ̇ ′
1(0) = 0, the solution is

γ̇1(x) = A cosκtx − 1

τακ2
t l∗t

∫ l∗t

lt

ft (x) dx , κt =
(−θ ′′

t

α

)1/2
, (42)

with A an arbitrary constant. For γ̇2 we look at a solution of the form

γ̇2(ξ) =
∫ ξ

0
gt (η) cosκt (ξ − η)dη , ξ = x − lt , (43)
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with gt a function to be determined. Since

γ̇ ′
2(ξ) = gt (ξ) − κt

∫ ξ

0
gt (η) sinκt (ξ − η)dη ,

γ̇ ′′
2 (ξ) = g′

t (ξ ) − κ2
t

∫ ξ

0
gt (η) cosκt (ξ − η)dη ,

the differential equation (40)2 is satisfied by

g′
t (ξ ) = 1

ατ
ft (lt + ξ) . (44)

The condition γ̇2(0) = 0 is identically satisfied, and from γ̇ ′
2(0) = 0 we have gt (0) = 0.

Therefore,

gt (ξ) = 1

ατ

∫ ξ

0
ft (lt + η)dη . (45)

The conditions (41) at x = l∗t yield

A cosκt l
∗
t − 1

κ2
t l∗t

gt (ht ) +
∫ ht

0
gt (ξ) cosκt (ht − ξ) dξ + l

l∗t
γ̇ t = 0 ,

−Aκt sinκt l
∗
t + gt (ht ) − κt

∫ ht

0
gt (ξ) sinκt (ht − ξ) dξ = 0 .

(46)

Multiplying the first equation by sinκt l
∗
t , the second by κ−1

t cosκt l
∗
t , and summing, we get

(cosκt l
∗
t

κt

− sinκt l
∗
t

κ2
t l∗t

)
gt (ht ) +

∫ ht

0
gt (ξ) sinκt (lt + ξ) dξ + l

l∗t
γ̇ t sinκt l

∗
t = 0 . (47)

From (39) and (45) we have

l

l∗t
γ̇ t = Klβ̇ − αgt (ht )l/l

∗
t

Kl∗t + θ ′′
t l

, (48)

and by integration by parts we have

∫ ht

0
gt (ξ) sinκt (lt + ξ) dξ =

∫ ht

0
g′

t (ξ )
cosκt (lt + ξ)

κt

dξ − gt (ht )
cosκt l

∗
t

κt

.

Then equation (47) takes the form

∫ ht

0
g′

t (ξ )
cosκt (lt + ξ)

κt

dξ

= sinκt l
∗
t

(gt (ht )

κ2
t l∗t

− Klβ̇ − αgt (ht )l/l
∗
t

Kl∗t + θ ′′
t l

)

= K sinκt l
∗
t

Kl∗t + θ ′′
t l

(gt (ht )

κ2
t

− lβ̇
)

,
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and from (44) and (45) we finally get

κt

∫ ht

0
ft (lt + ξ) cosκt (lt + ξ) dξ = K sinκt l

∗
t

Kl∗t + θ ′′
t l

(∫ ht

0
ft (lt + ξ) dξ + lθ ′′

t τ β̇
)

,

which we re-arrange as follows

−lθ ′′
t τ β̇ =

∫ ht

0
ft (lt + ξ)

(
1 − K + θ ′′

t l/l∗t
K

κt l
∗
t

cosκt (lt + ξ)

sinκt l
∗
t

)
dξ . (49)

By the inequality5

K + θ ′′
t l/l∗t > 0 ,

the denominator in (48) is positive, so that from the positivity of γ̇ t it follows

gt (ht ) <
K

α
l∗t β̇,

so that gt (ht ) is bounded for τ → 0. Using (45) this shows that ht → 0 for τ → 0.
Then, by means of the expansion

ft (lt + ξ) = ft (lt ) + ξf ′
t (lt ) + o(ξ) ,

we approximate6

∫ ht

0
ft (lt + ξ) dξ = ft (lt )ht + 1

2
f ′

t (lt )h
2
t ,

∫ ht

0
ft (lt + ξ) cosκt (lt + ξ) dξ = cosκt lt

(
ft (lt )ht + 1

2
f ′

t (lt )h
2
t

)
,

from which, using (49), we obtain

−Klθ ′′
t τ β̇ =

(
K − κt

Kl∗t + lθ ′′
t

tanκt lt

)(
ft (lt )ht + f ′

t (lt )
h2

t

2

)
.

Then we obtain the following solution for the length ht :

−Klθ ′′
t τ β̇ =

⎧⎪⎪⎨
⎪⎪⎩

(
K − κt

Kl∗t + lθ ′′
t

tanκt lt

)
ft (lt )ht + o(ht ) if ft (lt ) > 0 ,

(
K − κt

Kl∗t + lθ ′′
t

tanκt lt

)
f ′

t (lt )
h2

t

2
+ o(h2

t ) if ft (lt ) = 0 and f ′
t (lt ) > 0 .

(50)

Particularly, we have

ht = O(τ) if ft (lt ) > 0, ht = O(τ 1/2) if ft (lt ) = 0 and f ′
t (lt ) > 0.

5This inequality comes from the positiveness of the denominator in the expression (36) of γ̇ t in the regime
of contraction of the plastic zone. When the plastic zone expands, −θ ′′

t decreases and l∗t increases, thus
preserving the positiveness of K + θ ′′

t l/ l∗t .
6Here and in the sequel we neglect the term ft (lt )h

2
t with respect to the term ft (lt )ht .
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Fig. 2 Stress-strain curve

In the localized regime, the function t �→κt is increasing in the contractive regime and de-
creasing in the expansive regime. At the transition time tm, from (37)2 we have κml∗m = π

and lm = l∗m, so that tanκmlm = 0. The term inside the parenthesis in (50) then reduces to

−κm

Kl∗m + lθ ′′
m

tanκmlm
= ±∞,

and both equalities in (50) are satisfied only if hm = 0. At the instants t which immediately
follow tm we have ht > 0 and, for coherence with the sign of the term on the left-hand side
of (50), the parenthesis must be positive, so that we have tanκt lt < 0. Since κt lt < π , it then
follows that κt decreases, lt increases and the product κt lt decreases.

To conclude, a typical stress-strain curve that characterizes the evolution process de-
scribed in this section is drawn in Fig. 2. It is constituted by five different branches, which
correspond to the different phases of the stretching process. Red dots indicate the points of
transition between phases associated to the instants (to, tp, tc, tm).

4 Quasi-Brittle Failure in Geomaterials

In this section, the analytical results of Sect. 3 are implemented in a numerical algorithm
to reproduce the failure process observed in tensile tests on geomaterials. The accuracy
of the analytical predictions are checked by comparing them with the experimental stress-
strain curves of simple tension tests on lightweight concretes in [19], and with the numerical
results of finite element simulations.

4.1 Semi-Analytical Algorithm

According to the incremental minimization procedure of Sect. 2.3, we discretize time into
intervals of length τ , and, within each time step t → t + τ , we estimate the plastic strain
γt+τ supposing that γt is known.

Given γt , we estimate ft (x) by (11). If γt is not homogeneous, θ ′′
t (γt (x)) is approximated

by the constant θ ′′
t = θ ′′(γ̃t ) where γ̃t is a representative value of γt (x). We consider the
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following three alternative expressions for γ̃t :

γ̃t = max
x

{γt (x)}, or γ̃t = l

lt
γ̄t = 1

lt

∫ lt

0
γt (x)dx, or γ̃t = γ̄t = 1

l

∫ l

0
γt (x)dx,

(51)
with (0, lt ) the plastic zone. The plastic strain rate γ̇t is determined by following the scheme
sketched below.

• If θ ′′
t ≥ 0, γ̇t is homogeneous, and it has the expression (30).

• Elseif θ ′′
t < 0, three different solutions are possible, depending on the values of l, lt , and

l∗t = π
√

− α

θ ′′
t

:

– If l∗t ≥ l, γ̇t is homogeneous, and it is given by (30).
– Elseif l∗t ≤ lt < l, γ̇t localizes, and the plastic zone contracts; γ̇t has the expression

(37), with ¯̇γt as in (36)1.
– Elseif lt < l∗t < l, γ̇t still localizes, but the plastic zone expands; the length of the

plastic zone is l∗t = lt +ht , with ht evaluated from (50); the solution is γ̇t (x) = γ̇1(x)+
γ̇2(x) + l

l∗t
¯̇γt , with ¯̇γt , γ̇1 and γ̇2 determined from (48), (42) and (43), respectively, and

the constant A given by (46)1.
– End

• End

Plastic strain and axial force at t + τ are

γt+τ = γt + τ γ̇t , and σt+τ = σt + τ σ̇t , with σ̇t = K(β̇t − ¯̇γt ).

This computation is repeated at each time step. The geometrical and constitutive data that
must be assigned to perform the computation are l, β̇ , τ , K , θ = θ(γ ) and α, and they are
assigned in the next section.

4.2 Parameters Calibration

In this section, the constitutive parameters of the model are calibrated to reproduce the ex-
perimental results of [19], where simple tension tests are performed on prismatic specimens
made of lightweight concrete.

We assign K = 18 · 103 MPa, corresponding to the Young’s modulus of lightweight con-
crete [19]. For the plastic energy density, we take the piece-wise cubic polynomial

θ(γ ) = 1

6

(θ ′′
i − θ ′′

i−1)

(γi − γi−1)
(γ −γi−1)

3 + θ ′′
i−1

2
(γ −γi−1)

2 +θ ′
i−1(γ −γi−1)+θi−1, γ ∈ [γi−1, γi],

(52)
with θi = θ(γi), and i = 1, . . . , n. We consider n = 4. The four branches are defined in
intervals between the points (0, γc, γm, γu,∞), as shown by the graphs of Fig. 3. The strain
γc is that at which the localization regime initiates (see Sect. 3.4), and the strain γm is that at
which θ ′′ attains the minimum value.

Some experimental data are needed to calibrate the parameters in (52). They are reported
in Fig. 4, where the envelope of the experimental curves7 is plotted. They are the stress σo =
2.50 MPa at the end of the linear elastic phase, and the pair up = 8 ·10−3 mm and σp = 3.25
MPa at peak stress. In Fig. 4, the horizontal axis measures the relative displacement umeas

7We have considered the experimental curves of Fig. 25 in [19].
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Fig. 3 Graphs of the piecewise
cubic function θ = θ(γ ), with its
first and second derivative

Fig. 4 Experimental stress-displacement curve from [19]. Displacement umeas refers to the measuring length
lmeas = 35 mm

within a measure length of 35 mm across the crack, and thus the corresponding stretching is
β = umeas/35. With these data, the parameters γi , θi , θ ′

i and θ ′′
i are determined as follows.
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At γ = 0, θ ′
0 = σo from (24) and θ0 = 0. The values of θ ′′

0 , γc and θ ′′
c are

θ ′′
0 = 2(σp − σo)/γp, γc = π2αγ 2

p

2l2(σp − σo)
+ γp, θ ′′

c = −2(σp − σo)(γc − γp)/γ 2
p ,

where γp = up/35 − σp/K is the plastic strain corresponding to the peak stress. The above
expressions are determined by solving the equations

θ ′(γp) = σp, θ ′′(γp) = 0, θ ′′(γc) = −απ2/l2.

The third equation is (34), defining the plastic strain at the onset of localization. Parameters
γm and θm are related to the instant tm of transition from contraction to expansion of the
plastic zone, and it corresponds to the point of the stress-strain curve separating the concave
and the convex softening branches. Accordingly, the pair (γm, θm) controls the shape of the
stress-strain softening tail. We assign the values γm = 2 · 10−4 and θm = −5 · 103. The strain
γu satisfies the equation θ ′(γu) = 0, and its value is γu = γm − 2θ ′

m/(θ ′′
m + θ ′′

u ). Finally,

θi = θi−1 + θ ′
i−1(γi − γi−1) + (θ ′′

i + 2θ ′′
i−1)(γi − γi−1)

2/6,

θ ′
i = θ ′

i−1 + (θ ′′
i + θ ′′

i−1)(γi − γi−1)/2,

with i = c,m,u, which guarantee the continuity of θ and θ ′ at γi .
A further datum needed to calibrate the non-local coefficient α is the size of the band

where fracture localizes, which is about 2.7 times the maximum aggregate size, according
to the estimates proposed in [25]. Since the concrete used for experiments in [19] has the
maximum aggregate size equal to 8 mm, we assume the fracture bandwidth lf ract = 22
mm, and we suppose that it represents the minimum size of the localization zone. Since
the smallest zone where plastic strains localize is attained at tm, and, its half-bandwidth is
l∗m = π

√−α/θ ′′
m from (37), we take l∗m = 11 mm. By inverting the above relation, we assign

α = −l∗2
m θ ′′

m/π2.

Finally, we assume that the bar length is l = 17.5 mm, corresponding to one half of the
length of the specimen zone where strains are measured in experiments.

4.3 Results

The stress-strain curves obtained by implementing the semi-analytical algorithm of Sect. 4.1
for the three possible choices (51) of γ̃t are plotted in Fig. 5 (red and blue curves), and
they are compared with the experimental envelope, and with the numerical curve of a finite
elements simulation (black curve). The FEM code used for the simulation is based on a
staggered scheme which, at each time increment, iterates the two-step minimization of the
energy functional (3), first with respect to u, keeping γ constant, and then with respect to
γ , for constant u. Since minimization with respect to γ is a constrained non-linear problem,
it is solved by a sequential quadratic programming scheme (see [8] for details on the finite
element implementation).

Profiles of γ given by the analytical solution and those of the numerical simulation are
plotted in Fig. 6 at different instant of the evolution process. The analytical solutions re-
produce all the phases of the evolution of γ , which are described in the following. The
differences between analytical and numerical results are also commented.
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Fig. 5 Stress-strain curves. Numerical (black line) and analytical (blue and red lines) curves are compared
with the experimental curves envelope (gray strip)

Fig. 6 Profiles of γ at different values of β : (a) numerical solution, (b) analytical solution with γ̃t = l
lt

γ̄t , (c)
analytical solution with γ̃t = maxx {γt (x)}

Initially, γ grows homogeneously. Strain localization initiates when the representative
strain γ̃t reaches the value γ̃t = γt = γc . The phase of localization on smaller and smaller
zones is related to the concave decreasing branch of the stress-strain curves of Fig. 5, and
it terminates when γ̃t = γm. Analytical and numerical profiles of γ̇ at the initial and final
instants of the localization process are compared in Fig. 7(a). We notice that the minimum
length of the localization zone is about 11 mm (profiles for β = 2.8) in accordance with the
length l∗m = 11 mm assigned in Sect. 4.2. Then, the evolution proceeds with a progressive
enlargement of the plastic zone, and the related branch of the stress-strain curve is the final
convex tail. Profiles at two different instants of the enlargement phase are plotted in Fig.
7(b) and (c). We observe that the analytical profiles obtained with the assumption (51)1

overestimate the size of the localization zone, which, for β > 5.7, cover the whole bar with
homogeneous γ̇ . On the contrary, the size of the localization zone is underestimated when
the assumption (51)2 is made.

The differences between the analytical and numerical profiles of Figs. 6 and 7 translate
into differences among the stress-strain curves of Fig. 5. The analytical stress-strain curves
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Fig. 7 Comparison of profiles of γ̇ at different values of β

exhibit an evident dependence on the choice of the representative value γ̃t used into the
algorithm. By comparing the blue and red curves, we notice that the assumptions (51)1

and (51)2 plays opposite effects. For the assumption (51)1 (blue curve), the slope of the
softening branch is overestimated in the initial concave part and it is underestimated in the
next convex tail, while the opposite trend is observed if the assumption (51)2 is made (red
curve). We explain these differences by noticing that, from (36), σ̇ is proportional to θ ′′

t .
Then, θ ′′(max{γt }) < θ ′′(lγ̄t / lt ) < 0, when both γ̃t = max{γt } and γ̃t = lγ̄t / lt belong to
the set (γc, γm) (phase of localization related to the concave stress-strain branch), because
max{γt } > lγ̄t / lt and the curve θ ′′(γ ) is decreasing (see Fig. 3). As a result, the softening
concave branch associated to γ̃t = max{γt } (blue curve) is more sloped than that associated
to γ̃t = lγ̄t / lt (red curve). On the contrary, 0 > θ ′′(max{γt }) > θ ′′(lγ̄t / lt ), if max{γt } and
lγ̄t / lt are larger than γm (phase of enlargement, characterized by the convex stress-strain
branch), since θ ′′(γ ) is increasing, and, thus, the blue softening convex branch related to
γ̃t = max{γt } has a lower slope than the red one related to γ̃t = lγ̄t / lt .

5 Conclusions

The incremental minimization problem proposed in [1] for the evolution of strain in non-
local elasto-plastic bodies was analytically solved in the simple case of a bar subjected to an
increasing stretching. A convex-concave plastic energy density θ was assigned to the ma-
terial, in addition to a non-local contribution depending on the gradient of the plastic strain
γ , and different solutions were found, describing specific evolution modes, and characteriz-
ing the different phases of the deformation process. Correlations were established between
solutions and convexity/concavity properties of θ and of its first derivative θ ′.

A convex or a concave function θ makes the evolution stress-hardening or strain-
softening, respectively. In hardening regime, γ evolves homogeneously, spreading in the
whole bar. In softening regime, the evolution of γ is still homogeneous if θ is moderately
concave, but, for a sufficiently large concavity (i.e., large values of |θ ′′|), γ localizes in a
bar portion whose width is proportional to |θ ′′|, and the localization zone shrinks or expands
depending on the concavity/convexity of θ ′. Brittle failure is also captured by assuming a
function θ whose concavity is large enough in comparison to the elastic modulus of the
material.

Since the analytical solutions are determined under the hypothesis of homogeneous θ ′′
at each time step of the incremental evolution, the effects of this assumption on the solution
accuracy was tested by comparing the analytical predictions with those of finite-element
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simulations. Criteria for parameters calibration were proposed, then the failure process ex-
perienced by concrete specimens in simple tension tests was reproduced. The main stages
of the softening process observed in experiments were captured by the analytical solutions,
and the influence of the different choices of the constant θ ′′ at each time step was analysed.
By comparing the response curves of Fig. 5, it was found that the analytical solution also
gives quantitatively accurate estimates, provided that the representative strain γ̃ is properly
chosen.

To conclude, the proposed study has pointed out the versatility of the gradient plasticity
model [1] in describing a large variety of different plastic evolution modes, and it has led the
way to reproduce complex failure processes by properly assigning the shape of the plastic
energy functional. A further step of the research will be to extend the formulation to the
multi-dimensional context.
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