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Abstract
Fiber-orientation tensors describe the relevant features of the fiber-orientation distribution
compactly and are thus ubiquitous in injection-molding simulations and subsequent mechan-
ical analyses. In engineering applications to date, the second-order fiber-orientation tensor
is the basic quantity of interest, and the fourth-order fiber-orientation tensor is obtained
via a closure approximation. Unfortunately, such a description limits the predictive capa-
bilities of the modeling process significantly, because the wealth of possible fourth-order
fiber-orientation tensors is not exploited by such closures, and the restriction to second-
order fiber-orientation tensors implies artifacts. Closures based on the second-order fiber-
orientation tensor face a fundamental problem – which fourth-order fiber-orientation tensors
can be realized? In the literature, only necessary conditions for a fiber-orientation tensor to
be connected to a fiber-orientation distribution are found. In this article, we show that the
typically considered necessary conditions, positive semidefiniteness and a trace condition,
are also sufficient for being a fourth-order fiber-orientation tensor in the physically relevant
case of two and three spatial dimensions. Moreover, we show that these conditions are not
sufficient in higher dimensions. The argument is based on convex duality and a celebrated
theorem of D. Hilbert (1888) on the decomposability of positive and homogeneous polyno-
mials of degree four. The result has numerous implications for modeling the flow and the
resulting microstructures of fiber-reinforced composites, in particular for the effective elas-
tic constants of such materials. Based on our findings, we show how to connect optimization
problems on fourth-order fiber-orientation tensors to semi-definite programming. The pro-
posed formulation permits to encode symmetries of the fiber-orientation tensor naturally.
As an application, we look at the differences between orthotropic and general, i.e., triclinic,
fiber-orientation tensors of fourth order in two and three spatial dimensions, revealing the
severe limitations inherent to orthotropic closure approximations.
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1 Introduction

1.1 State of the Art

Fiber-orientation tensors [1] date back to the far-reaching works [2, 3] and describe the rele-
vant features of the fiber-orientation distribution of discontinuous fiber-reinforced compos-
ites. Within the virtual development and design process of such composites [1, 4–6], fiber-
orientation tensors appear in material modeling [7–12], microstructure generation [13–19],
mold filling or flow simulations [20–25] and the experimental computer tomography analy-
sis [26–28]. This wide field of application motivates a detailed understanding of the math-
ematical properties of fiber-orientation tensors. Actually, the motivation and field of appli-
cation is much more general, as fabric tensors and diffusion tensors share structural proper-
ties with fiber-orientation tensors. Fabric tensors [7, 29] share all characteristics with fiber-
orientation tensors, except for a normalization constraint and are used in the field of porous
materials. Diffusion tensors [30–32] also differ from fiber-orientation tensors only by a miss-
ing trace constraint and are used in medicine to describe the orientation of body tissues based
on the diffusion motion of water molecules. This procedure is called diffusion-weighted
magnetic resonance imaging (DW-MRI) [33, 34] and is, e.g., used on brain tissue to pre-
vent strokes [35]. In particular, insights on the mathematical properties of fiber-orientation
tensors might be transferred to diffusion tensors or fabric tensors.

The phase space of second-order fiber-orientation tensors is known [36–40], see the re-
cent review [41]. A spectral decomposition is typically used to separate the structural fea-
tures of a second-order fiber-orientation tensor, described by two independent eigenvalues
with limited admissible parameter ranges, from the spatial alignment of this structural in-
formation in terms of a rotation or eigensystem. The limited structural variability of second-
order fiber-orientation tensors is a critical ingredient for applications in process simulations
[5, 9–11].

In contrast to the second-order case, the phase space of fourth-order fiber-orientation
tensors is less well understood, a circumstance which motivated the work at hand. Al-
gebraic properties of symmetry and normalization are agreed upon and discussed in the
literature [42–46]. Bauer and Böhlke [41] developed an eigensystem-based parametriza-
tion of fourth-order fiber-orientation tensors combining the framework of irreducible ten-
sors [47–53] with the work of Kanatani [2]. This parametrization ensures normalization
as well as symmetry conditions automatically and separates second- and fourth-order data.
Moreover, additional material-symmetry constraints may be taken into account in a natural
way. Bauer and Böhlke [41] assume that positive semidefiniteness of the tensor is a suffi-
cient condition to derive admissible parameter ranges, specifying the variety of fourth-order
fiber-orientation tensors. This variety is presented for special cases motivated by material
symmetry. The case of planar fourth-order fiber-orientation tensors and derived quantities is
studied in successive papers [54, 55]. However, the necessary condition of positive semidef-
initeness of the completely symmetric tensor is assumed to be sufficient. In Sect. 2.3 of
this work, sufficiency of this condition for the cases inspected by Bauer and Böhlke [41] is
proven.

A scientific topic which is intimately connected to the question on the phase space of
fourth-order fiber-orientation tensors, is fiber-orientation closure approximations. Such clo-
sure approximations [22, 37, 56–61] are tensor-valued functions which postulate a func-
tional relationship between a given second-order fiber-orientation tensor and an unknown
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fourth-order fiber-orientation tensor [19]. Identifying the phase space of fourth-order fiber-
orientation tensors is essential to solve a fundamental problem of closure approximations –
which fourth- order fiber-orientation tensors can be realized?

1.2 Contributions

This work is divided into a basic and an applied part. In the first part, we provide a proof
for a simple characterization for the phase space of realizable fourth-order fiber-orientation
tensors in the physically relevant dimensions two and three. In case of second-order fiber-
orientation tensors, such a characterization is straightforward to obtain. Any symmetric
second-order tensor whose eigenvalues are non-negative and sum to unity represents such a
fiber-orientation tensor. In case of fourth-order tensors, an educated guess gives that com-
pletely symmetric fourth-order tensors whose eigenvalues are non-negative and sum to unity
should correspond to realizable fourth-order fiber-orientation tensors.

Our arguments are based on two key ingredients. First, we use convex duality theory, in
the following form. Two closed convex cones coincide precisely if their dual cones coincide.
For the case at hand, the dual cones are a bit simpler to work with. The second insight is
based on the natural identification of completely symmetric tensors of order k with homo-
geneous polynomials of degree k. Then, a celebrated theorem due to Hilbert [62] on the de-
composability of a positive homogeneous polynomial of fourth degree into a sum of squares
of homogeneous quadratic polynomials implies the claim. Interestingly, this theorem holds
only in spatial dimensions two and three. For higher dimensions, this decomposability does
not hold. In particular, the educated guess for characterizing the phase-space of fourth-order
fiber-orientation tensors is actually false for spatial dimensions four and above. This fact
shows that there are no “elementary”, in particular dimension-independent, arguments for
showing this characterization of the phase space to be valid.

As a by-product of our analysis, we show the equivalence of representations of fiber-
orientation tensors in terms of integration, sums of monomials (rank-one tensors) and fi-
nite sums of monomials with non-negative weights summing to one, a consequence of
Carathéodory’s theorem [63].

In the applied part, we investigate the geometry of the phase space of fourth-order
fiber-orientation tensors via studying optimization problems on the latter. For this purpose,
we consider suitable semidefinite programs, i.e., optimization problems posed on positive
semidefinite matrices. Indeed, due to the characterization shown in the first part, we may
identify a realizable fourth-oder fiber-orientation tensor with a positive semidefinite matrix
in a suitable matrix representation (we use the Kelvin-Mandel notation).

Extreme states of the phase space of fourth-order fiber-orientation tensors are studied
based on the parametrizations introduced in previous work [41], which separate second-
and fourth-order data and enable to incorporate constraints on material symmetry easily.
For fixed second-order information, we identify fourth-order data maximizing the projec-
tion onto a specified direction in two and three dimensions. Restricting the parameter space
to orthotropic fourth-order information prohibits extreme projections into certain directions.
These findings demonstrate the inherent limitations of closure approximations, as closed
fourth-order information is automatically orthotropic. Due to the close connection to effec-
tive elastic properties, corresponding limitations of the effective stiffnesses become clear, as
well.

This paper is organized as follows. After recapitulating basic properties of fiber-
orientation tensors and their representation by finite sums, see Sect. 2.1, we specify a set
of fiber-orientation tensor candidates in Sect. 2.2. In Sect. 2.3, we establish sufficiency of
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the conditions these candidates fulfill for tensor order four and dimensions two and three,
leading to applications in Sect. 3. In Sect. 3.1, optimization on fiber-orientation tensors is
identified as semidefinite programming. Consequences of material symmetry constraints,
introduced in Sect. 3.2, on the problem of extreme fourth-order information, defined in
Sect. 3.3, are presented in Sects. 3.4 and 3.5 for dimensions three and two.

After submitting this work we became aware of the article by Francfort et al. [64]. The
authors were interested in the effective elastic properties of sequential laminates. For a spe-
cific scenario, they are led to studying fourth-order moments of Borel measures on the unit
sphere, and show a representation theorem similar to the one established in the article at
hand. Moreover, they employ the same strategy based on a convex dualization procedure,
reducing the question to Hilbert’s theorem on the sum-of-squares decomposition of polyno-
mials.

It is interesting to see how applied questions in different areas of engineering lead to
rather similar questions in pure mathematics. In particular, advances in one area may be
transferred to another. For instance, Francfort et al. [64] show – in our terminology – that
every fourth-order fiber-orientation tensor in three spatial dimensions may be written as the
convex combination of at most six quartics.

2 Realizability of Fourth-Order Fiber-Orientation Tensors

2.1 Fiber-Orientation Tensors

A non-polar fiber-orientation distribution is given by a probability measure1 μ on the unit
sphere

Sd−1 = {
p ∈Rd

∣∣‖p‖ = 1
}

(2.1)

in d spatial dimensions which is invariant w.r.t. the involution p �→ −p on the unit
sphere. This definition includes continuous fiber-orientation distributions, described by non-
negative and suitably normalized functions ϕ via the measure

μ = ϕ dA (2.2)

in terms of the usual surface measure dA on the unit sphere. Moreover, discrete fiber-
orientation states, described in terms of N vectors pi ∈ Sd−1 are included via the formulation

μ = 1

2N

N∑

i=1

(
δpi

+ δ−pi

)
, (2.3)

where δp denotes the Dirac measure concentrated on the point p.
As working with such measures may be cumbersome, Advani-Tucker [3] (compare also

Kanatani [2]) introduced the so-called fiber-orientation tensors A(k) of order k, where k

denotes a non-negative integer, via the definition

A(k) =
∫

Sd−1
p⊗k dμ(p) (2.4)

1On the σ -algebra of Borel sets.
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in terms of the k-fold outer tensor product p⊗k of the unit vector p, integrated over the unit
sphere. The fiber-orientation tensors have the following properties.

1. The fiber-orientation tensors are completely symmetric, i.e., the identity

A
(k)
i1 i2 ... ik

= A
(k)
iσ (1) iσ (2) ... iσ (k)

, ij ∈ {1, . . . , d}, j ∈ {1, . . . , k} (2.5)

holds for the components of the tensor A(k) and any permutation σ of the index set
{1, . . . , k}. Denoting by Symd(k) the vector space of completely symmetric k-th order
tensors in d dimensions, the condition (2.5) is equivalent to the inclusion A(k) ∈ Symk(d).

2. For odd order k, the fiber-orientation tensors vanish.
3. The fiber-orientation tensor A(k) is positive semidefinite in the sense that

A(k) ·k q⊗k ≥ 0 (2.6)

holds for all vectors q ∈Rd and the k-fold index contraction ·k of tensors.
4. Double contraction with the d ×d-identity Id recovers the fiber-orientation tensor of two

orders lower

A(k+2) : Id = A(k), k = 0,1,2, . . . (2.7)

5. The zeroth-order fiber-orientation tensor is unity, i.e., the equation

A(0) = 1 (2.8)

holds.
6. Any fixed fiber-orientation tensor A(k) of even order may be written as a finite sum

A(k) =
r∑

i=1

wi q⊗k
i (2.9)

with appropriate non-negative weights wi which sum to unity, directions qi ∈ Sd−1 and a
non-negative integer r not exceeding

(
k+d−1
d−1

)
.

These properties 1.-5. are elementary to verify and well-known [3]. We provide a derivation
of property 6. in the Appendix A. Property 6. permits us to restrict to finite sums (2.9) when
considering fiber-orientation tensors of fixed order. In particular, it is not necessary to resort
to the general integration-based definition (2.4).

2.2 Fiber-Orientation Tensor Candidates

The work at hand is specifically concerned with fourth-order fiber-orientation tensors A(4) ≡
A. More precisely, we are interested in the set of realizable fourth-order fiber-orientation
tensors

A(d) =
{
A ∈ Sym4(d)

∣∣∣∣A =
∫

Sd−1
p⊗4 dμ(p) for a fiber-orientation distribution μ

}
.

(2.10)
By Property 6. of the previous section, the set A(d) may be rewritten in the form

A(d) =
{

A=
r∑

i=1

μi p⊗4
i

∣∣∣∣∣
r > 0, μi > 0 with

r∑

i=1

μi = 1, pi ∈ Sd−1

}

, (2.11)
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which is more convenient from the mathematical point of view.
The fundamental question we wish to answer in this work is the following. Suppose a

fourth-order tensor A is given – under which (easy to verify) conditions can it be repre-
sented in the form (2.11)? Here, the non-negativity of the weights is crucial. Indeed, every
completely symmetric k-th order tensor can be written as a linear combination of monomi-
als [65, Lemma 4.2], i.e., with both positive and negative weights.

Elements A ∈ A(d) are completely symmetric (2.5), positive semidefinite on quartics
(2.6)

A :: q⊗4 ≥ 0 for all q ∈ Rd , (2.12)

and satisfy the trace-conditions (2.7) as well as (2.8). Here, the operator :: stands for a fourth-
fold contraction, and gives rise to an inner product on the space Sym4(d) of completely
symmetric fourth-order tensors.

However, it is readily seen that fiber-orientation tensors A ∈ A(d) satisfy a non-negativity
condition which is stronger than the condition (2.12). More precisely, for any tensor A ∈
A(d), the inequality

S :A : S ≥ 0 holds for all S ∈ Sym2(d), (2.13)

i.e., symmetric second-order tensors S in dimension d . Indeed, in view of the representation
(2.11), we observe

S : A : S =
r∑

i=1

μi S : p⊗4
i : S =

r∑

i=1

μi

(
S : p⊗2

i

)2 ≥ 0 (2.14)

for any S ∈ Sym2(d) due to the non-negativity of the weights μi . Please notice that the
condition (2.13) is stronger than the condition (2.12) as the special symmetric tensor S =
q ⊗ q may be chosen in the condition (2.13). Moreover, the condition (2.13) is equivalent to
the positive semidefiniteness of the tensor A, considered as a linear operator

Sym2(d) → Sym2(d), S �→ A : S, (2.15)

on the vector space Sym2(d), endowed with the inner product (S,T) �→ S : T.
In the literature, the following set is typically considered [41]

Cand(d) = {
A ∈ Sym4(d)

∣∣A is positive semidefinite (2.13), Id :A : Id = 1
}

(2.16)

to consist of reasonable candidates for fiber-orientation tensors.
The set (2.16) is much easier to work with in practice than the original set A(d). In-

deed, suppose a candidate tensor A is given. Then, it is elementary to examine its complete
symmetry. Moreover, the non-negativity condition (2.13) and the normalization require-
ment A :: Id⊗ Id = 1 are assessed via an eigendecomposition of the fourth-order tensor
A, e.g., conveniently computed in an orthogonal basis like the Kelvin-Mandel represen-
tation [66, 67]. Indeed, both conditions are satisfied precisely if the eigenvalues are non-
negative and sum to unity.

In contrast, the defining condition of realizable fiber-orientation tensors (2.11) is much
harder to check, as it involves a canonical decomposition problem with non-negativity con-
straints, which is known to be non-trivial [65].
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Properties 1., 4. and 5. of fiber-orientation tensors, listed in the previous Sect. 2.1, im-
ply all defining conditions of the set Cand(d). Moreover, we just established the positive
semidefiniteness condition (2.13). Thus, the inclusion of sets

A(d) ⊆ Cand(d) (2.17)

holds. The impending question remains whether the set inclusion (2.17) is strict or not, i.e.,
whether every element A ∈ Cand(d) is also realizable, i.e., A ∈ A(d) holds.

2.3 On Sufficiency of Conditions

The purpose of this section is to check when the inverse direction of the inclusion (2.17)

Cand(d) ⊆ A(d) (2.18)

holds. It will turn out that this is true for spatial dimensions d ≤ 3 and false for dimension
d ≥ 4.

Central to our arguments is the auxiliary set

Q(d) =
{

A ∈ Sym4(d)

∣∣∣∣∣
A=

r∑

i=1

μi p⊗4
i , μi ∈R≥0, pi ∈ Sd−1, r ∈N0

}

(2.19)

of sums of fourth-order tensor-powers of vectors with non-negative weights and the set of
tensors

N(d) = {
A ∈ Sym4(d)

∣∣S :A : S ≥ 0 for all S ∈ Sym2(d)
}

(2.20)

which are completely symmetric and positive semidefinite (2.13). Notice that, in contrast to
the definition (2.11) of the set A(d), we use non-negative weights in the definition (2.19)
instead of positive weights to include the zero tensor in the set Q(d). This inclusion is nec-
essary for the set Q(d) to be closed.

The intersection conditions

A(d) = Q(d) ∩ {
A ∈ Sym4(d)

∣∣ Id :A : Id = 1
}

(2.21)

and

Cand(d) = N(d) ∩ {
A ∈ Sym4(d)

∣∣ Id :A : Id = 1
}

(2.22)

hold. Thus, we have the implication

if Q(d) = N(d) holds, then A(d) = Cand(d) follows. (2.23)

In particular, the fiber-orientation realization problem (2.18) may be studied in terms of
the sets (2.19) and (2.20). Both sets are closed convex cones, i.e., they are closed, convex
and invariant under the action A �→ λA for λ ≥ 0. For the set N(d), the definition (2.20)
immediately implies that it is a closed convex cone. Indeed, inequality constraints involving
continuous functions lead to closed sets in finite dimensions, and the representation S : A :
S = A :: (S ⊗ S) recasts the set (2.20) as an intersection of half spaces through zero. As the
intersection of (a family of) convex cones is a convex cone, we see that the set (2.20) is a
convex cone.
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For the set Q(d), the definition (2.19) implies that the set is a convex cone. The closedness
is a consequence of Carathéodory’s theorem [63], as detailed in the Appendix A. Indeed, as
a consequence of this theorem, we may assume that no more than rmax = (

k+d−1
d−1

)
terms enter

in the definition (2.19). Suppose a sequence (Ak) of elements in Q(d) converges to some
A ∈ Sym4(d). Let us write

Ak =
rmax∑

i=1

μi,k p⊗4
i,k , μi,k ≥ 0, pi,k ∈ Sd−1. (2.24)

We observe

rmax∑

i=1

μi,k = Id :Ak : Id → Id :A : Id as k → ∞. (2.25)

Thus, there is a uniform bound C on the coefficients μi,k . As the sets [0,C] and Sd−1 are
compact, we may extract a subsequence (not relabeled), s.t.

μi,k → μi and pi,k → pi as k → ∞ (2.26)

for suitable μi ∈ [0,C] and pi ∈ Sd−1. Due to the uniqueness of limits, we obtain the repre-
sentation

A =
rmax∑

i=1

μi p⊗4, i.e., A ∈ Q(d). (2.27)

Hence, the set Q(d) is closed.
For any set C ⊆ Rm with inner product 〈·, ·〉, the dual cone C∗ ⊆ Rm is defined by the

relation

C∗ = {z ∈Rm | 〈z,x〉 ≥ 0 for all x ∈ C} . (2.28)

It is immediate to see that the set C∗ does indeed define a closed convex cone. If, moreover,
the original set C was a closed convex cone to start with, the dual cone of the dual cone
coincides with the original set

C∗∗ = C. (2.29)

This assertion is a consequence of convex duality theory [68].
As we identified the sets Q(d) and N(d) as closed convex cones, the equivalence

Q(d) = N(d) precisely if Q(d)∗ = N(d)∗ (2.30)

follows directly, where we fix the inner product

〈A,B〉 = A ::B, A,B ∈ Sym4(d). (2.31)

For this assertion to be useful, it is necessary to identify the dual cones explicitly. We have

Q(d)∗ = {
B ∈ Sym4(d)

∣∣B :: q⊗k ≥ 0 for all q ∈Rd
}
. (2.32)
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Indeed, the inclusion ⊆ follows from the definition of the dual cone (2.28)

Q(d)∗ = {
B ∈ Sym4(d)

∣
∣A ::B ≥ 0 for all A ∈ Q(d)

}
(2.33)

by selecting A= p⊗4 as an element of Q(d). The inclusion ⊇ follows by considering

A ::B =
r∑

i=1

μi B :: p⊗4
i︸ ︷︷ ︸

≥0

≥ 0 for A ∈ Q(d). (2.34)

With a completely analogous argument, we obtain

N(d)∗ =
{

B ∈ Sym4(d)

∣∣∣∣∣
B =

r∑

i=1

sym(Si ⊗ Si ), Si ∈ Sym2(d)

}

, (2.35)

where sym refers to the complete symmetrization of all indices. To study when the sets
Q(d)∗ and N(d)∗ coincide, we use the identification of completely symmetric tensors with
homogeneous polynomials. More precisely, for any tensor B ∈ Sym4(d), the function

PB :Rd � x �→B :: x⊗4 ∈R (2.36)

defines a homogeneous polynomial of order four. Conversely, any fourth-order homoge-
neous polynomial may be represented in the form (2.36). With this interpretation, a tensor
B ∈ Sym4(d) is an element of Q(d)∗ (see equation (2.32)) precisely if the polynomial PB is
non-negative

PB(x) ≥ 0 for all x ∈Rd . (2.37)

Similarly, a tensor B ∈ Sym4(d) is an element of the set N(d)∗ (2.35) precisely if the asso-
ciated polynomial is a sum of squares

PB(x) =
r∑

i=1

Qi(x)2 (2.38)

with homogeneous quadratic polynomials Qi . The decomposability of a positive homoge-
neous polynomial of even order (2.37) into a sum of squares (2.38) is a classical problem of
real algebraic geometry, first addressed by Hilbert [62]. In our terminology, Hilbert’s results
imply that the identity

Q(d)∗ = N(d)∗ (2.39)

holds for dimensions d ≤ 3 and is false otherwise. Explicit counterexamples [69, 70] and a
quantitative version [71] are available.

The fact that positive polynomials of even order do not split as a sum of squares of
polynomials of lower order, in general, led Hilbert to formulate his 17th problem. More
precisely, he asked whether positive polynomials of even order may be written as a sum
of squares of rational functions, which eventually led to the development of real algebraic
geometry.

Unfortunately, Hilbert’s paper [62] is not formulated in contemporary mathematical jar-
gon (in particular, it is in German). Fully detailed accounts of Hilbert’s proof are available
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in the book [72, Chap. 7] and the articles [73, 74]. We refer to Pfister-Scheiderer [75] for an
elementary proof.

Based on the equality (2.39), we obtain the assertion

A(d) = Cand(d) (2.40)

in the physically relevant cases d = 2 and d = 3. For higher dimensions, these assertions are
false as a result of Hilbert’s results [62] and the fact that the sets Cand(d) and A(d) arise
via a codimension-one condition, see equations (2.21) and (2.22).

3 Consequences and Variations

3.1 Optimal Microstructure: Programming on Fiber-Orientation Tensors

Identifying microstructures which lead to extreme effective physical properties of mi-
crostructured composite materials is a central goal in the field of material design. Following
Sect. 2.3, and focusing on the practically relevant case of fourth-order fiber-orientation ten-
sors in two or three dimensions, i.e., d = 2 or d = 3 and k = 4, the condition A ∈ Cand(d)

with (2.16)

Cand(d) = {
A ∈ Sym4(d)

∣∣ A ∈ N(d), Id :A : Id = 1
}

(3.1)

is sufficient for the tensor A to be realizable, i.e., there exists at least one microstructure
composed of fibers which is described by the tensor A on average. In consequence, one
strategy to identify extreme microstructures is to optimize w.r.t. fiber-orientation tensors.
Optimization on the phase space of fourth-order fiber-orientation tensors may be accom-
plished via semidefinite programming, as the set

N(d) = {
A ∈ Sym4(d)

∣∣S :A : S ≥ 0 for all S ∈ Sym2(d)
}
, (3.2)

defined in equation (2.20), is a closed convex cone and requires the tensor A to be positive
semidefinite. The normalization or trace condition Id : A : Id= 1 as well as the complete
symmetry condition A ∈ Sym4(d) represent linear constraints of the semidefinite program.
Linear semidefinite programming on the phase space of fourth-order fiber-orientation ten-
sors solves the problem

maximize C ::A
subject to A ∈ Cand(d)

Gk ::A= gk, k = 1, . . . ,m,

(3.3)

with the fourth-order tensor C entering the objective function and tuples (Gk, gk) of fourth-
order tensors and scalars specifying m additional linear constraints. In order to solve the
problem (3.3), a transition from tensorial notation to the Kelvin-Mandel notation is advised.
In Kelvin-Mandel notation, fourth-order tensors with the left and right minor symmetry are
represented in an orthonormal basis of symmetric second-order tensors. In contrast to the
commonly used Voigt notation [76], the Kelvin-Mandel basis tensors are not only orthogonal
but also normalized. As a result, in dimensions two and three, the eigenvalues of the matrix
with respect to the Kelvin-Mandel basis tensors are identical to the eigenvalues of a fourth-
order tensor with the aforementioned symmetries. The change from tensorial notation to
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Kelvin-Mandel notation is made possible by the symmetries of the problem and allows to
reduce the dimension of the problem by introducing tensor bases. In the case d = 3, k = 4
and the symmetries at hand, it is possible to represent the tensor

A=
6∑

ξ=1

6∑

ζ=1

Aξζ Bξ ⊗ Bζ , (3.4)

in terms of a six times six coefficient matrix Aξζ and the dyads Bξ ⊗ Bζ with the indices
ξ, ζ ∈ {1, . . . , 6}. Details of the Kelvin-Mandel notation are given in Bauer and Böhlke [41].
The complete index symmetry of the tensor A stated in equation (2.5) is easily imposed by
linear constraints, since the representation of a completely symmetric tensor N in Kelvin-
Mandel notation reads

(3.5)

with redundant coefficients color-coded following the reference [41] and “symmetric” indi-
cating matrix symmetry of the tensor coefficients in equation (3.5).

An active rotation of a fiber-orientation tensor changes the alignment in space of the
averaged directional information on the fibers’ orientation. However, the averaged informa-
tion itself, apart from its alignment in space, is unaffected. If we are interested in study-
ing the averaged information itself, independent of its alignment in space, we can use an
eigensystem-based parametrization of fourth-order fiber-orientation tensors [41]. The 15-
dimensional space Sym4(3), reduced by the normalization constraint (2.8), leaves 14 di-
mensions, i.e., three defining the spatial alignment of the averaged information and eleven
remaining dimensions which represent structural information. In addition to distinguishing
alignment and structural information, the parametrization of Bauer and Böhlke [41] sep-
arates second- and fourth-order information following the seminal work of Kanatani [2].
Therefore, searching for fourth-order data which maximizes the objective function for given
second-order information is possible. Further, material symmetry properties can be easily
incorporated by using the additional constraints in equation (3.3). Following Bauer and Böh-
lke [41, Equation (59)], a general, i.e., triclinic, fourth-order fiber-orientation tensor may be
parameterized by

A (A, d1, . . . , d9) =Aiso + 6

7
sym (dev (A) ⊗ Id) + F

tricl (d1, . . . , d9) (3.6)

based on an eigensystem-dependent parametrization of the corresponding second-order
fiber-orientation tensor

A =
3∑

i=1

3∑

j=1

Âij ei ⊗ ej =
3∑

i=1

λi vi ⊗ vi , (3.7)
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where we apply the common ordering convention

λ1 ≥ λ2 ≥ λ3. (3.8)

In addition, equation (3.6) contains the isotropic fourth-order fiber-orientation tensor

Aiso = 7

35
sym (Id⊗ Id) , (3.9)

a triclinic fourth-order deviatoric structure tensor represented in Kelvin-Mandel notation by

F
tricl (d1, . . . , d9) = (3.10)
⎡

⎢⎢⎢
⎣

−(d1 + d2) d1 d2 −√
2(d4 + d5)

√
2d6

√
2d8

−(d1 + d3) d3
√

2d4 −√
2(d6 + d7)

√
2d9

−(d2 + d3)
√

2d5
√

2d7 −√
2(d8 + d9)

completely symmetric

⎤

⎥⎥⎥
⎦

Bv
ξ ⊗ Bv

ζ ,

the operator sym(·) projecting onto the completely symmetric part of a tensor and the op-
erator dev(·) extracting the deviatoric part of a tensor [47]. For clarity, the constant and
second-order part of equation (3.6), which corresponds to the linear closure [77], is given
explicitly

Aiso + 6

7
sym (dev (A(λ1 , λ2)) ⊗ Id) = (3.11)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

6
7 λ1 − 3

35
1
7λ1 + 1

7λ2 − 1
35 − 1

7λ2 + 4
35 0 0 0

6
7λ2 − 3

35 − 1
7λ1 + 4

35 0 0 0

− 6
7λ1 − 6

7λ2 + 27
35 0 0 0

completely symmetric

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

Bv
ξ ⊗ Bv

ζ ,

already including the normalization constraint λ3 = 1 − λ1 − λ2 enforced by the condition
(2.8). If we follow the ordering convention on the eigenvalues of A in expression (3.8)
and decide for either right- or left-handed coordinates, a symmetric second-order tensor,
which is automatically orthotropic, will have at least four eigensystems. These four systems
differ by the action of elements of the orthotropic symmetry group, each changing signs of
two eigenvectors at a time. Without loss of generality, we choose one of the possible four
eigensystems to be defined by

Q =
3∑

i=1

vi ⊗ ei , (3.12)

mapping the arbitrary but fixed basis {ei} onto the eigensystem {vi}. Selecting one of the
other three possible eigensystems results in two sign changes of groups of tensor coefficients
but leaves the identified physical quantity unaffected. The Kelvin-Mandel [66, 67] basis
Bv

ξ ⊗ Bv
ζ in (3.10) and (3.11) is spanned in the eigensystem and therefore, e.g., B1 = v1 ⊗ v1

holds. This simplifies incorporating specific material symmetry.
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3.2 Material Symmetry Constraints

Constraints of material symmetry reduce the dimensionality of the optimization problem
stated in equation (3.3). Furthermore, material symmetry constraints arise naturally in the
context of closure approximations, as any second-order fiber-orientation tensor is (at least)
orthotropic, whereas fourth-order fiber-orientation tensors may not be orthotropic, in gen-
eral. A rotation Q ∈ SO(d) is said to belong to the symmetry class S(N) of a given tensor
N, provided its action by rotation leaves the tensor invariant, i.e., the characterization

S(N) = {Q ∈ SO(d) |Q �N =N} (3.13)

holds with the Rayleigh product � rotating each tensor basis of the tensor N by the rotation
Q. Forte and Vianello [48] identified the possible symmetry classes of fourth-order tensors,
which read – ordered by increasing cardinality of the symmetry group S(N) – triclinic, mon-
oclinic, orthotropic, trigonal, tetragonal, transversely isotropic, cubic and isotropic. Isotropic
quantities are symmetric with respect to all rotations, whereas the triclinic symmetry group
is trivial, S(N) = {Id}.

Material symmetry constraints impose linear constraints in the optimization problem
(3.3). For example, orthotropic symmetry w.r.t. the symmetry axes in three-dimensions is
equivalent to vanishing parameters di = 0 for i ∈ {4, 5, 6, 7, 8, 9} in the parametrization
(3.6), as the orthotropic symmetry class

Sorthotropic = {
Sortho

1 ,Sortho
2 ,Sortho

3 ,Sortho
4

}
(3.14)

consists of the rotations

Sortho
1 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ vi ⊗ vj , Sortho
2 =

⎡

⎣
1 0 0
0 −1 0
0 0 −1

⎤

⎦ vi ⊗ vj , (3.15)

Sortho
3 =

⎡

⎣
−1 0 0

0 1 0
0 0 −1

⎤

⎦ vi ⊗ vj , Sortho
4 =

⎡

⎣
−1 0 0

0 −1 0
0 0 1

⎤

⎦ vi ⊗ vj , (3.16)

expressed in a coordinate system
{
vi

}
whose axes are normal to symmetry planes of the

orthotropic quantity.

3.3 Extreme Fourth-Order Information

We are interested in the phase space of fourth-order fiber-orientation tensors, extending
previous work of Bauer and Böhlke [41]. For this purpose, we fix a second-order fiber-
orientation tensor and study the set of all fourth-order fiber-orientation tensors which cover
the prescribed second-order tensor in the sense that the condition A : Id = A holds. This set
is closed and convex, and we wish to study the “extreme states” of this set. For this purpose
and with the notation introduced in the previous sections, suppose that a fiber-orientation
tensor A(λ1, λ2) is given in its principal axes and where λ1, λ2 refer to the two largest
eigenvalues. Then, we consider an arbitrary direction

n(ϕ, θ) =
⎡

⎣
cos(ϕ) sin(θ)

sin(ϕ) sin(θ)

cos(θ)

⎤

⎦ vi (3.17)
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Fig. 1 Two views on identical surfaces of polar plots of the maximum objective function value, i.e.,
n⊗4(ϕ, θ = 0) :: A, of problem (3.18) for values λ1 = 1/3 and λ2 = 1/3. Results for the unconstrained tri-
clinic case, i.e., Sproblem = S triclinic are given in light gray, whereas results with restriction to the orthotropic
subspace, i.e., Sproblem = Sorthotropic are shown in blue

on the unit sphere, parameterized by the angles ϕ and θ . We consider the tensor C = n⊗4 in
problem (3.3) combined with the constraint A : Id = A(λ1, λ2), specifying the second-order
information. In addition, material symmetry is ensured by enforcing Q �A for all rotations
Q ∈ Sproblem of the selected symmetry class Sproblem, leading to the problem

maximize n⊗4 ::A
subject to A ∈ Cand(3),

A : Id = A(λ1, λ2),

Q �A =A ∀Q ∈ Sproblem.

(3.18)

For the convenience of the reader, we translated typical constraints of problem (3.18)
in terms of expressions Gk :: A = gk with k = 1, . . . ,m with tensors Gk = Gk

ξζ Bv
ξ ⊗ Bv

ζ ,
see Table 1 in appendix B. Before discussing the results, we briefly comment on the moti-
vation for investigation the optimization problem (3.18). The effective stiffness Ceff of a
short-fiber reinforced composite is rather accurately described by a Voigt-type orientation
average [3] of the stiffness Cud(p) of a short-fiber composite with fibers aligned in direction
p. More precisely, it holds

Ceff =
∫

S2
Cud(p) dμ(p) (3.19)

with the fiber-orientation distribution μ, see equations (2.2) and (2.3). Based on the obser-
vation that the effective stiffness Cud(p) of a composite with aligned fibers whose centers
and lengths are random is transversely isotropic, and thus may be represented in the form

Cud = b1 p⊗4 + b2 p⊗2 ⊗s Id+b3 p⊗2�∗ Id+b4 Id⊗ Id+b5 I
S (3.20)

for suitable coefficients b1, b2, . . . , b5, the effective stiffness (3.19) may be expressed explic-
itly in the form

Ceff = b1 A+ b2 A ⊗s Id+b3 A�∗ Id+b4 Id⊗ Id+b5 I
S (3.21)
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Fig. 2 Polar plots of the
maximum objective function
value, i.e., n⊗4(ϕ, θ = 0) ::A, of
problem (3.18) for values
λ1 = 1/2 and λ2 = 3/8. Results
for the unconstrained triclinic
case, i.e., Sproblem = S triclinic

are given in light gray, whereas
results with restriction to the
orthotropic subspace, i.e.,
Sproblem = Sorthotropic are
shown in blue

where the fiber-orientation tensors A and A appear explicitly, see Advani-Tucker [3] for
details. In equations (3.20) and (3.21), IS stands for the identity tensor on symmetric second-
order tensors and the symbol �∗ is an abbreviation of the product

(B�∗C)ijkl = BikCjl + BilCjk + BjlCik + BjkCil (3.22)

between two symmetric second-order tensors B and C, expressed in index notation.
Typically, the coefficient b1 is large compared to the remaining coefficients. Therefore,

monitoring the product A :: n⊗4 provides a good indication of the stiffness Ceff :: n⊗4 in
direction n. Actually, our proposed techniques permit to handle the product Ceff :: n⊗4

directly, in view of the representation formula (3.21). However, the results would depend on
the arising parameters b1, b2, . . . , b5, and thus obfuscate potential insights. For this reason,
we chose to retain the material-independent choice (3.18).

3.4 Results in Three Spatial Dimensions

On a regular grid of points on one-eighth of the unit sphere, the maximum values of the
objective function of problem (3.18) are visualized in Figs. 1, 2, 3 as spherical plots. Due to
the symmetry of the objective function specified by the quartic product n⊗4, inspecting the
results on a grid of direction within one-eighth of the unit sphere is sufficient. Figures 1 to 3
differ by the given second-order fiber-orientation information, i.e., tuples A(λ1, λ2). Each of
the figures contains two surfaces. The first surface plotted in light gray represents the maxi-
mum objective function obtained without material constraints on A, whereas the second sur-
face plotted in blue represents the same quantity with A restricted to orthotropic fourth-order
fiber-orientation tensors, i.e., Sproblem = Sorthotropic in problem (3.18). Figures 1 to 3 demon-
strate that restricting to the orthotropic subspace limits the possibility to obtain large values
of the objective function in specific directions. Only in directions aligned with the axes of
the eigensystem

{
vi

}
as well as in directions with (ϕ, θ) ∈ {(0, 45◦), (90◦, 45◦), (45◦, 0)},

the constraint of orthotropy does not induce a restriction on the extreme value of the ob-
jective function. With increasing anisotropy of the specified second-order information, the
consequences of the constraint onto the orthotropic subspace decrease.

Some care is advised when interpreting the results shown in Fig. 1. Indeed, as the pre-
scribed second-order fiber-orientation tensor A is isotropic, the three mutually orthogonal
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Fig. 3 Polar plots of the maximum objective function value, i.e., n⊗4(ϕ, θ = 0) :: A, of problem (3.18) for
values λ1 = 8/10 and λ2 = 1/10. Results for the unconstrained triclinic case, i.e., Sproblem = S triclinic are
given in light gray, whereas results with restriction to the orthotropic subspace, i.e., Sproblem = Sorthotropic

are shown in blue

eigenvectors v1, v2 and v3 are not unique. Thus, the surface in Fig. 1 should be interpreted
relative to this orthogonal basis. Changing this orthogonal basis also changes the coordinates
of the direction vector n.

Please note also that the fourth-order fiber-orientation tensor A maximizing the product
A : n⊗4 will, in general, have a smaller symmetry group than the corresponding second-
order fiber-orientation tensor A ≡ A : Id, as the direction n “breaks the symmetry” (in
physics terminology). For instance, the tensors realizing the maxima shown in Fig. 1 will
not be isotropic, but their associated A-tensors will be.

Similar considerations apply to cases where two eigenvalues of the second-order fiber-
orientation tensor A coincide, as considered below.

3.5 Results in Two Spatial Dimensions

If the given second-order fiber-orientation A is planar, i.e., fulfills the conditions λ2 = 1−λ1

and 1/2 ≤ λ1 ≤ 1, the constraint A : Id = A(λ1, λ2) in problem (3.18) will enforce planarity
of the resulting fourth-order fiber-orientation tensor A. Within the plane spanned by the di-
rections v1 and v2, the maximum values of the objective function n⊗4 :: A are plotted in
Fig. 4 (a) to (f) with and without constraints in terms of material symmetry. The directions
n(ϕ, θ) within the plane v1 and v2 are characterized by the condition θ = π/2 and varying
angle ϕ. The values of the objective function obtainable for directions aligned with v1 and
v2 are λ1 and λ2, respectively. For directions specified by angles ϕ ∈ {0, 45◦, 90◦}, the ob-
jective values obtained with or without material symmetry constraints are identical. For all
other directions, restricting to the class of orthotropic fiber-orientation tensors A limits the
values of the objective function that can be attained. This limitation decreases as second-
order fiber-orientation tensor information advances towards the uni-directional state, i.e.,
λ1 → 1.

4 Conclusion

The work at hand showed that the set of candidates for fourth-order fiber-orientation tensors

Cand(d) = {
A ∈ Sym4(d)

∣∣S : A : S ≥ 0 for all S ∈ Sym2(d), Id :A : Id = 1
}
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(a) λ1 = 5/10 (b) λ1 = 6/10

(c) λ1 = 7/10 (d) λ1 = 8/10

(e) λ1 = 9/10 (f) λ1 = 1

Fig. 4 Polar plots of the maximum objective function value, i.e., n⊗4(ϕ, θ = 0) :: A, of problem (3.18) and
λ2 = 1 −λ1 for selected values of λ1. Results are given for restriction to the triclinic or orthotropic subspace,
i.e., Sproblem = S triclinic or Sproblem = Sorthotropic respectively
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represents all realizable fourth-order fiber-orientation tensors for the practically relevant spa-
tial dimensions d = 2 or d = 3. This result provides an a-posteriori justification for the ap-
proach of Bauer and Böhlke [41] to characterize the variety of fourth-order fiber-orientation
tensors based on tensor decompositions.

Our result has a number of interesting implications and applications. For a start, it permits
assessing the realizability of a given fourth-order tensor as a fiber-orientation tensor in a
simple and straightforward way. Consider, for instance, fiber-microstructure generators [18,
19, 78], which serve as the basis for full-field simulations and where the fourth-order fiber-
orientation tensor serves as the input. Then, if the prescribed tensor does not belong to the
set Cand(d), it cannot be realized by a fiber microstructure at all, independent of the size of
the microstructure and the number of considered fibers. This simple fact provides constraints
on fiber-orientation closure approximations used in fiber-orientation dynamics [37, 38], and
may be used to re-evaluate their physical plausibility.

A second consequence concerns the effective elastic properties of short-fiber reinforced
composites. It is well-known that, together with the volume fraction and the aspect ratio, the
fourth-order fiber-orientation tensor is responsible for the effective elastic properties of such
a composite [3, 8, 9, 40]. Classical closure approximations, expressing the fourth-order fiber-
orientation tensor as an isotropic tensor function of the second-order fiber-orientation tensor,
are restricted, by definition, to orthotropic symmetry. In particular, the set of realizable effec-
tive stiffnesses is restricted to being orthotropic. Our computational investigations revealed
that this restriction to orthotropy actually underestimates the achievable effective stiffnesses
in particular directions for a prescribed second-order fiber-orientation tensor significantly.
Thus, we expect that using the full phase space of fourth-order fiber-orientation tensors will
be critical for exploiting the full lightweight potential of such short-fiber composites, e.g.,
by reducing safety factors. First steps in this direction were already proposed [3, 79, 80],
and these works may be revisited with fresh impetus.

Last but not least let us stress the simplicity and utility of the connection between op-
timization of fiber microstructures described by fourth-order fiber-orientation tensors and
semi-definite programming introduced in the work at hand. In particular due to the power
of the available optimization solvers, new directions were opened to engineers working on
fiber-reinforced components and their optimal design.

Appendix A: Representing a Fiber-Orientation Tensor as a
Non-negative Sum of Monomials

The purpose of this appendix is to show the monomial decomposition (2.9), i.e., that every
fixed fiber-orientation tensor A(k) of even order may be written as a finite sum

A(k) =
r∑

i=1

wi q⊗k
i (A.1)

with appropriate non-negative weights wi , directions qi ∈ Sd−1 and a non-negative integer r

not exceeding
(
k+d−1
d−1

)
, the dimension of the space of completely symmetric k-tensors in d

dimensions.
As a prerequisite, we require Carathéodory’s theorem [63], which states that any vector

z in an m-dimensional vector space V which is represented in the form

z =
r∑

i=1

xi , xi ∈ V, (A.2)
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may also be written in the form

z =
∑

i∈I
ρi xi (A.3)

for an index set I ⊆ {1, . . . , r} with at most m elements and non-negative coefficients ρi .
For the convenience of the reader, we include a short derivation, following Reznick [81]. Let
us consider the case

z =
m+1∑

i=1

xi , i.e., r = m + 1. (A.4)

The vectors {xi} are linearly dependent, i.e., there are coefficients ci , not all zero, s.t. the
representation

0 =
m+1∑

i=1

ci xi (A.5)

holds. We may assume that some of the ci are positive. Indeed, if they were non-positive,
we may multiply the coefficients by −1. Furthermore, suppose that the coefficients ci are
ordered, upon possibly reindexing the sequence. In particular, the inequality

ci ≤ cm+1, i.e., 0 ≤ 1 − ci

cm+1
, (A.6)

holds for all i = 1, . . . ,m as cm+1 > 0. We may rearrange equation (A.5) into the form

xm+1 = −
m∑

i=1

ci

cm+1
xi . (A.7)

Inserting this representation into the expression (A.4) yields

z =
m∑

i=1

xi + xm+1 =
m∑

i=1

(
1 − ci

cm+1

)
xi . (A.8)

Thus, we arrived at the conclusion of Carathéodory’s theorem for the special case (A.4) in
view of the non-negativity assertion (A.6) of the coefficients.

The general case (A.2) with more terms r > m + 1 follows from applying the special
case (A.4) inductively.

Suppose a fiber-orientation tensor A(k) is given, i.e., there is some probability measure μ

and a representation (2.4)

A(k) =
∫

Sd−1
p⊗k dμ(p). (A.9)

The space of Radon measures may be considered as the continuous dual space of the space
of continuous functions on the unit sphere Sd−1. It is a classical result of functional analysis
(e.g., as a direct consequence of the Krein-Milman theorem [82, Example 8.16]) that the
sum of Dirac measures is dense in the space of Radon measures w.r.t. the weak-∗ topology,
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Table 1 Constraints of problem (3.18) reformulated in terms of the condition Gk :: A = gk with Gk =
Gk

ξζ Bv
ξ ⊗ Bv

ζ

Description Non-vanishing coefficients Gk
ξζ gk

Complete symmetry of A G44 = 1, G23 = −2 0

G55 = 1, G13 = −2 0

G66 = 1, G12 = −2 0

G45 = 1, G36 = −√
2 0

G46 = 1, G25 = −√
2 0

G56 = 1, G14 = −√
2 0

A in eigensystem of A G14 = G24 = G34 = 1 0

G15 = G25 = G35 = 1 0

G16 = G26 = G36 = 1 0

Normalization G11 = G22 = G33 = G44 = G55 = G66 = 1 1

Eigenvalues of A : Id G11 = G12 = G13 = 1 λ1

G12 = G22 = G23 = 1 λ2

Sproblem = Sorthotropic G24 = 1 0

G34 = 1 0

G15 = 1 0

G35 = 1 0

G16 = 1 0

G26 = 1 0

i.e., there are rj positive weights wi,j and directions pi,j ∈ Sd−1, s.t., for any continuous
function φ : Sd−1 → R, we have

rj∑

i=1

wi,j φ(pi,j ) →
∫

Sd−1
φ(p) dμ(p) as j → ∞. (A.10)

Choosing the monomials of homogeneity k as special continuous functions, we thus obtain
the result

rj∑

i=1

wi,j p⊗k
i,j → A(k) as j → ∞. (A.11)

By Carathéodory’s theorem (A.3) we can assume a uniform bound on the ranks rj , i.e., it
holds

r∑

i=1

wi,j p⊗k
i,j → A(k) as j → ∞. (A.12)

Appendix B: Constraints

Typical constraints of problem (3.18) are translated in terms of the condition Gk :: A = gk

with k = 1, . . . ,m with Gk = Gk
ξζ Bv

ξ ⊗ Bv
ζ in Table 1.
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