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Abstract
We provide an approximation result for the pure traction problem of linearized elasticity in
terms of local minimizers of finite elasticity, under the constraint of vanishing average curl
for admissible deformation maps. When suitable rotations are included in the constraint, the
limit is shown to be the linear elastic equilibrium associated to rotated loads.
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1 Introduction

We consider the pure traction problem of finite elasticity and its relation with the linear
elastic problem. If � ⊂ R

3 is the reference configuration of an elastic body and y : � → R
3

is the deformation field, we introduce the global energy

G(y;L) :=
∫

�

W(x,∇y) dx −L(y − i), (1.1)

where i denotes the identity map on � and W : � × R
3×3 → [0,+∞] is the strain energy

density. Here, L is the load functional whose typical form is

L(v) :=
∫

�

f · vdx +
∫

∂�

g · v dS, (1.2)
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where f : � → R
3 is a body force field, g : ∂� → R

3 is a surface force field, v = y − i is the
displacement field and dS is the surface measure. For every x ∈ �, the function W(x, ·) is
assumed to be frame indifferent, uniquely minimized at rotations with value 0, C2-smooth
and quadratically growing out of rotations; in addition, W shall satisfy the natural condition

W(x,F) = +∞ if det F ≤ 0.

Letting h > 0 be an adimensional parameter, we shall consider the natural rescaling
h−2G(·;hL). We also introduce the associated linear elastic energy

F0(u;L) := 1

2

∫
�

EuD2W(x, I)Eudx −L(u),

where Eu := sym(∇u) is the infinitesimal strain tensor and I is the identity matrix. This
standard expression is formally obtained by linearization around the identity: by introducing
the rescaled displacement u = h−1v, by writing the deformation field as i + hu and by
considering the rescaled energies h−2G(i + hu;hL), functional F0(u;L) is the pointwise
limit obtained by performing a Taylor expansion for small h.

Recently, several contributions [15, 18, 19, 21, 23] have analyzed the variational limit of
the rescaled functionals h−2G(·;hL) as h → 0. For this purpose, it is necessary to assume
that L is equilibrated (i.e., with null resultant and null momentum) and that

L(Rx − x) ≤ 0 ∀R ∈ SO(3), (1.3)

where SO(3) denotes the special orthogonal group, thus preventing the rescaled energy being
driven to −∞ by rigid motions as h becomes small. In contrast to the case of the Dirichlet
problem [1, 9, 15, 22, 25], global minimizers (or quasi-minimizers) of h−2G(·;hL) over
H 1(�,R3) do not necessarily converge to minimizers of the associated linearized elastic
energy F0(·;L), as might be expected from classical continuum mechanics literature, so it
seems appropriate to shift the attention to the asymptotic behavior of suitably constrained
minimizers in order to recover a minimizer of F0(·;L) in the limit. Indeed, the results in
[15, 21, 23] show that, without further assumptions on the external loads, such as the absence
of axes of equilibrium, there holds

inf
H 1(�,R3)

h−2G(·;hL) → min
H 1(�,R3)

F0(·;R∗L) as h → 0

for some suitable R∗ ∈ SO(3), and possibly

min
H 1(�,R3)

F0(·;R∗L) < min
H 1(�,R3)

F0(·;L),

where R∗L is the notation for the rotated load functional, defined by R∗L(·) = L(RT∗ ·).
Before introducing constrained approximations, let us mention that an alternative stan-

dard way for rigorously obtaining linearized elasticity is to consider the equilibrium prob-
lems associated to small loads. Equilibrium configurations of the (rescaled) traction problem
for the equilibrated loads (f,g) are given by the deformations y : � → R

3 which solve

{−div (DW(x,∇y)) = hf, in �,

DW(x,∇y)n = hg, on ∂�,
(1.4)
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where n denotes the exterior unit normal vector to �. Under suitable conditions on f and g,
classical results based on the implicit function theorem, described for instance in [7, 28, 29],
allow to prove that there exists a solution yh to the above problem in a small neighborhood
of the identity and that uh := h−1(yh − i) → u0 in a suitable Sobolev space over �, where
u0 solves the linearized problem

{−div (D2W(x, I)Eu0) = f in �,

(D2W(x, I)Eu0)n = g, on ∂�,

that is, u0 is a minimizer of the linearized elastic energy F0(·;L). A drawback of this scheme
is that it works only if the external loads satisfy the following integrability condition

f ∈ Lp(�,R3), g ∈ W 1−1/p,p(∂�,R3) for some p > 3 (1.5)

along with further nondegeneracy constraints (the simplest one being again the absence of
axes of equilibrium) that we shall discuss in Sect. 3 along with a precise statement and some
literature review.

In this paper, we would like to avoid the additional assumptions on external loads that
are required both by the above classical approach and by the approximation with global
minimizers of the rescaled functionals h−2G(·;hL). The approach we propose is to include
a constraint on admissible deformation maps, without affecting the limit problem. The first
step towards this goal is a suitable definition of local minimizer of functionals (1.1), which
takes into account that the expected limit functional F0(·;L) can be restricted, without loss
of generality, to those u ∈ H 1(�,R3) such that

∫
�

curl u = 0, (1.6)

provided that L is equilibrated (as for the notation, we shall often omit dx in volume in-
tegrals). Indeed, if u ∈ H 1(�,R3) and w := |�|−1

∫
�

curl u, it is immediate to check that
F0(u − 1

2 w ∧ x;L) = F0(u;L), where ∧ denotes the cross product. In the infinitesimal the-
ory, the above constraint has a clear mechanical meaning: the infinitesimal rotation tensor
skew(∇u), whose axial vector is 1

2 curl u, is vanishing in average. In this perspective we
shall define constrained local minimizers y of G(·;L), the constraint being

∫
�

curl y = 0, (1.7)

by requiring that G(y;L) ≤ G(y + εψ;L) for every ψ such that
∫

�
curlψ = 0 and for any

small enough ε (we refer to Sect. 2 for the rigorous definition). In finite strain theory, the
meaning of (1.7) is obtained from the polar decomposition. Letting H := |�|−1

∫
�

∇y be
the average deformation gradient, and assuming that H is positive definite, the polar de-
composition of H provides a unique R ∈ SO(3) such that H = R

√
HT H. From the latter

relation, and since H is positive definite, we deduce that R = I if and only if HT = H, i.e.,∫
�

skew(∇y) = 0. Therefore, (1.7) means that the rotation tensor associated with the aver-
age deformation gradient is the identity. Of course, (1.7) is equivalent to (1.6) if u is the
(rescaled) displacement associated to the deformation y, i.e., y = i + hu, and in this case
|�|−1

∫
�

∇y is positive definite for small h.
We notice that nontrivial rotations close to the identity are not admissible under the

constraint (1.7), and more precisely a nontrivial rotation satisfies (1.7) if and only if the
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rotation angle is of 180 degrees (see Remark 2.3 below). In fact, since we deal with ener-
getically stable configurations (local minimizers), let us mention that, in the stability the-
ory of elastic equilibria, other constraints such as the zero moment condition by Beatty
[3] (see also [10, 11]) have been introduced for preventing instabilities due to rigid ro-
tations. The zero moment condition restricts admissible deformations to those y that sat-
isfy

∫
�

f ∧ ydx + ∫
∂�

g ∧ y dS = 0. It is interesting to notice that in a simple problem of
homogeneous normal boundary traction, the zero moment condition coincides with (1.7).
Indeed, if f ≡ 0 and g = λn, where λ ∈ R and n is the exterior unit normal to ∂�, then∫

∂�
g ∧ y dS = λ

∫
�

curl y.
According to the above definition of constrained local minimizers, in our main result (see

Theorem 2.6 in Sect. 2), under additional assumptions on W , we show that if external loads
are equilibrated then there exist constrained local minimizers yh ∈ H 1(�,R3) for G(·;hL)

such that by letting uh := h−1(yh − i) there hold

Euh ⇀ Eu0 weakly in L2(�,R3×3) and h−2G(yh;hL) → F0(u0;L)

as h → 0, where u0 minimizes F0(·;L) over H 1(�,R3).
Finally, by strengthening the hypotheses on external loads, namely by also assuming

(1.3), an almost immediate consequence of the main result is that, given R ∈ SO(3) belong-
ing to the rotation kernel

S0
L := {R ∈ SO(3) : L((R − I)x) = 0}, (1.8)

for any small enough h there exists a constrained local minimizer yh for G(·;hL) (this time
the constraint for admissible deformations y being

∫
�

curl(RT y) = 0), and

lim
h→∞

h−2G(yh;hL) = min
∈H 1(�,R3)

F0(·;RT L).

This, in a nutshell, is what might be considered the essence of the approximation of minimiz-
ers of linear elasticity with constrained local minimizers of finite elasticity: when condition
(1.3) is satisfied then close to any R ∈ S0

L there exists a sequence of constrained local min-
imizers of functionals (1.1) such that the corresponding energies converge to the energy of
the linearly elastic problem where L is replaced by RT L. This further clarifies that global
minimizers of (1.1) are not a good choice in order to approximate minimizers of the linear
elastic energy F0(·;L).

Plan of the Paper In Sect. 2 we introduce all the assumptions of the theory and rigorously
state the main results, which are proved in Sect. 4. In Sect. 3 we give a brief comparison
between our approach and the classical results about the asymptotic behavior of equilibrium
states of traction problems via implicit function theorem. In Sect. 5 we revisit some examples
of [21] by applying our convergence results of constrained local minimizers.

2 Main Results

In this section we introduce the basic notations and assumptions, then we state the main
results. In the following, � is a bounded open connected Lipschitz subset of R3, representing
the reference configuration of the body. R3×3 is the set of real 3 × 3 matrices. R3×3

sym (resp.

R
3×3
skew) is the set of symmetric (resp. skew-symmetric) matrices. R3×3

+ denotes the set of
matrices with positive determinant.
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Assumptions on the Elastic Energy Density We let W : � × R
3×3 → [0,+∞] be a

Carathéodory function. We will consider the following assumptions.

W(x,RF) = W(x,F) ∀R ∈ SO(3) ∀F ∈ R
3×3, for a.e. x ∈ �, (W1)

minW = W(x, I) = 0 for a.e. x ∈ �. (W2)

Moreover, we shall consider the following regularity property: there exist an open neighbor-
hood U of SO(3) in R

3×3, an increasing function ω : R+ → R satisfying limt→0+ ω(t) = 0
and a constant K > 0 such that for a.e. x ∈ �

W(x, ·) ∈ C2(U), |D2W(x, I)| ≤ K and

|D2W(x,F) − D2W(x,G)| ≤ ω(|F − G|) ∀ F,G ∈ U .
(W3)

We introduce a growth condition from below: there exist C > 0 such that for a.e. x ∈ �

W(x,F) ≥ C dist(F,SO(3))2 ∀F ∈ R
3×3, (W4)

where dist(F,SO(3)) := inf{|F − R| : R ∈ SO(3)} and |F|2 := Tr(FT F). A second growth
condition from below that we shall consider is the following: there exist C ′ > 0, C̃ > 0,
s ≥ 2, q ≥ s

s−1 and r > 1 such that for a.e. x ∈ �

W(x,F) ≥ C ′(|F|s + |cof F|q + (det F)r ) − C̃ ∀F ∈R
3×3 (W5)

Finally, we introduce a polyconvexity condition: for a.e. x ∈ �

the map R
3×3 � F �→ W(x,F) is polyconvex and

W(x,F) = +∞ if det F ≤ 0, lim
det F→0+ W(x,F) = +∞.

(W6)

Model Energy Densities We present here two instances of energy densities W which satisfy
the above assumptions and for which the main result of the present paper (see Theorem 2.6
below) applies. For simplicity, we consider the homogeneous case. Incompressible materials
are usually modeled by isochoric-type energies Wiso defined on the set of matrices with uni-
tary determinant {F ∈R

3×3 : det F = 1} and one can pass to the corresponding compressible
model by letting

W(F) :=
⎧⎨
⎩
Wiso

(
F

(det F)1/3

)
+Wvol(F) if det F > 0,

+∞ if det F ≤ 0,

(2.1)

where Wvol(F) = g(det F) for some convex g : R+ → R of class C2 in a neighborhood of 1
and such that

g(t) ≥ 0 for all t > 0, g(t) = 0 if and only if t = 1, g′′(1) > 0, lim
t→0+ g(t) = +∞.

(2.2)
In addition, the function g is required to grow faster than linearly at infinity, i.e.

g(t) ≥ C ′′t r , for t > 0 sufficiently large and for some C ′′ > 0 and r > 1. (2.3)
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In view of the isochoric-volumetric decomposition (2.1), a model energy density is identified
by the choice of Wiso, while Wvol is left in a general form satisfying the above restrictions.

The first example is an energy of Yeoh type [30, 31], which is defined by choosing

Wiso(F) :=
3∑

k=1

ck(|F|2 − 3)k (2.4)

with coefficients ck > 0. It is easy to check that with this choice the energy density satisfies
all the assumptions from (W1) to (W6), provided that r ≥ 2 in (2.3). Indeed, the validity
of (W1), (W2), (W3) is trivial. The validity of (W6) follows from the polyconvexity

of the map R
3×3
+ � F �→ |F|2

(det F)2/3 . The inequality in (W4) is satisfied if dist(F,SO(3)) is
small enough, as shown in [1, Remark 2.8], and therefore (W4) directly follows from the
following claim: there are positive constants a1, a2 such that W(F) ≥ a1|F|3 − a2 for every
F ∈R

3×3. In order to prove such a claim, it is clear that we can reduce to consider the regime
dist(F,SO(3)) � 1 (i.e., |F| � 1). By (2.3) there is t0 > 1 such that g(t) ≥ C ′′t r for t ≥ t0
and the claim is obvious for det F < t0 so that we may assume det F ≥ t0. If |F| ≤ (det F)2/3

we have g(det F) ≥ C ′′(det F)r ≥ C ′′|F|3r/2 and the claim follows since r ≥ 2; else if |F| ≥
(det F)2/3 then |F|2/(det F)2/3 is large and Young inequality entails the existence of suitable
positive constants c′

3, c′′
3 such that

W(F) ≥ c3

( |F|2
(det F)2/3

− 3

)3

+ g(det F) ≥ c′
3

( |F|6
(det F)2

+ (det F)r

)
≥ c′′

3 |F| 6r
2+r .

The claim is proved since r ≥ 2, and it implies (W5) by means of the elementary inequality
|cof F| ≤ 2|F|2.

A second example of energy density for hyperelastic materials is given by Ogden type
energies, see for instance [7, Chap. 4], identified by the following choice

Wiso(F) :=
n∑

i=1

ci

(
Tr((FT F)γi/2) − 3

) +
m∑

j=1

dk

(
Tr((cofFT cofF)δj /2) − 3

)
,

where n, m are positive integers and ci, γi, dj , δj > 0. While hypotheses (W1), (W2) and
(W3) are again easily seen to be fulfilled by this model, some care must be taken concerning
the remaining assumptions. In particular, one can prove that (W5) and (W6) hold true, after
suitably restricting the values of the exponents γi and δj . More precisely, in order to obtain
polyconvexity of the function W (i.e. assumption (W6)), one shall assume that

γi ≥ 3

2
for all i = 1, . . . , n and δj ≥ 3 for all j = 1, . . . ,m.

Moreover, if we let γ := max{γi : i = 1, . . . , n} and δ := max{δj : j = 1, . . . ,m}, we have
that (W5) holds with r > 1 as in (2.3) together with

s := 3γ r

3r + γ
and q := 3δr

2δ + 3r
,

provided s ≥ 2 and q ≥ s/(s − 1). We point out that δ ≥ 3 and r > 1 imply q > 1. For
instance, (W5) is satisfied if γ ≥ 5/2 and r ≥ 4 The proof of (W5) and (W6) can be found
in [4, Proposition 6, Proposition 7]. Finally, for the proof of (W4) one can see [1, Remark
2.8] and no further restrictions on γi and δj are needed.
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Energy Functionals Let W satisfy assumptions (W1), (W2), (W3) and (W4). We denote
by (H 1(�,R3))∗ the dual of the Sobolev space H 1(�,R3). Given L ∈ (H 1(�,R3))∗, we
introduce the following energy functionals. We let G(·;L) : H 1(�,R3) → (−∞,+∞] be
defined by

G(y;L) :=
∫

�

W(x,∇y(x)) dx −L(y − i), (2.5)

and for u ∈ H 1(�,R3) we let

F(u;L) :=
∫

�

W(x, I + ∇u(x)) dx −L(u) = G(i + u;L).

We define F0 : H 1(�,R3) → (−∞,+∞) as

F0(u;L) := 1

2

∫
�

EuD2W(x, I)Eudx −L(u). (2.6)

If h > 0 we also define the rescaled functionals

Fh(u;L) := h−2F(hu;hL). (2.7)

We refer to L as the load functional. Thanks to the Sobolev embedding H 1(�,R3) ↪→
L6(�,R3), it can be always written as

L(u) =
∫

�

(f∗ · u + G∗ : ∇u) dx

for suitable f∗ ∈ L
6
5 (�,R3), G∗ ∈ L2(�,R3×3). We assume that L is equilibrated, i.e.,

L(c) = L(Wx) = 0 for every c ∈R
3 and every W ∈R

3×3
skew. (2.8)

We denote with ‖L‖∗ its norm in the space (H 1(�,R3))∗. By (2.8) and by Korn and
Poincaré inequalities, there exists a constant K� > 0 such that

L(u) ≤ K�‖L‖∗ ‖Eu‖L2(�,R3×3), (2.9)

for every u ∈ H 1(�,R3).
Concerning the elastic energy, the following rigidity inequality is crucial, see [1, 12, 13]:

there exists a constant C̃� such that for every y ∈ H 1(�,R3) there is R ∈ SO(3) (depending
on y) such that

∫
�

|∇y(x) − R|2 dx ≤ C̃�

∫
�

dist(∇y(x),SO(3))2 dx.

For every y ∈ H 1(�,R3), we combine the latter with (W4) and obtain the existence of
R ∈ SO(3) (depending on y) such that

∫
�

|∇y(x) − R|2 dx ≤ C�

∫
�

W(x,∇y(x)) dx, (2.10)

where C� := C̃�/C and C is the constant in (W4).
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Main Results We state the main result, showing that there exist suitably constrained local
minimizers of the rescaled functionals (2.7) that converge to a global minimizer of the linear
elastic energy (2.6) as h → 0. We need the precise notion of local minimizer under the
constraint of vanishing average curl. In the next definition we make use of the following
notation: for R ∈ SO(3), we let

H 1
R(�,R3) :=

{
u ∈ H 1(�,R3) :

∫
�

curl(RT u) = 0
}

.

In particular, H 1
I (�,R3) is the linear subspace of H 1(�,R3) made of vector fields with

vanishing average curl.

Definition 2.1 (constrained local minimizer) Let W satisfy assumptions (W1), (W2),
(W3) and (W4) and let R ∈ SO(3). We say that y ∈ H 1

R(�,R3) is a local minimizer for
G(·;L) over H 1

R(�,R3) if for every ψ ∈ H 1
R(�,R3) there exists ε0 = ε0(y,ψ) > 0 such

that for every ε ∈ [0, ε0] there holds G(y;L) ≤ G(y + εψ;L). We say that u ∈ H 1
R(�,R3)

is a local minimizer for F(·;L) over H 1
R(�,R3) if y(x) = Rx + u is a local minimizer for

G(·;L) over H 1
R(�,R3).

Remark 2.2 If y(x) = Rx + u we have curl(RT y) = curl(RT u). In the distinguished case
R = I we have curl y = curl u and in particular i + u ∈ H 1

I (�,R3) if and only if u ∈
H 1

I (�,R3).

Remark 2.3 If y(x) = R∗x for some R∗ ∈ SO(3), the condition
∫

�
curl y = 0 reads

skew(R∗) = 0 and it is satisfied if and only if either R∗ = I or the rotation is of 180 de-
grees. In fact, by the classical Euler-Rodrigues formula yielding the representation

R∗ = I + sin θ W + (1 − cos θ)W2

for some suitable θ ∈ R and W ∈ R
3×3
skew with |W|2 = |W2|2 = 2, we see that the condition

skew(R∗) = 0 is satisfied if and only if the rotation angle is either θ = 0 or θ = π (and if
θ = π we have |R∗ − I| = 2

√
2).

Remark 2.4 Given h > 0, Fh is defined by (2.7). By rescaling ε0 we notice that u ∈
H 1

I (�,R3) is a local minimizer for Fh(·;L) over H 1
I (�,R3) if and only if v := hu is a

local minimizer for F(·;hL) over H 1
I (�,R3).

Remark 2.5 By applying the classical results of [2], if W satisfies (W1), (W2), (W3),
(W4), (W5), (W6) and if L ∈ (H 1(�,R3))∗ satisfies (2.8), then a global minimizer of
F(·;L) over H 1(�,R3) does exist. Nevertheless, it has been recently shown in [21] that
following a sequence of global minimizers for the rescaled functionals Fh(·;L), the limit
energy as h → 0 is not necessarily equal to minH 1(�,R3) F0(·;L). Indeed, in a pure traction
problem, this limit can be strictly lower than the minimal value of F0(·;L) over H 1(�,R3).
This motivates the analysis of constrained local minimizers for obtaining the linear elastic
energy as limit of rescaled finite elasticity energies.

We are in a position to state our main result.
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Theorem 2.6 Suppose that (W1), (W2), (W3), (W4), (W5), (W6) hold true. Let L ∈
(H 1(�,R3))∗ satisfy (2.8). Then there exist a vanishing sequence (hj )j∈N ⊂ (0,1) and a se-
quence (uj )j∈N ⊂ H 1

I (�,R3) such that uj is a local minimizer for Fhj
(·;L) over H 1

I (�,R3)

for any j ∈ N according to Definition 2.1, and moreover

Euj ⇀ Eu∗ weakly in L2(�,R3×3) as j → ∞,

lim
j→∞

Fhj
(uj ;L) = F0(u∗;L),

where u∗ is a minimizer for F0(·;L) over H 1(�,R3).

The above Theorem 2.6 expresses the fact that the minimizer of the linear elastic energy
F0(·;L) (which is unique up to infinitesimal rigid displacements) gets approximated by a se-
quence of constrained local minimizers of rescaled finite elasticity functionals. We stress that
the vanishing average curl constraint disappears in the limit problem, since the stored lin-
ear elastic energy and the load functional are invariant by infinitesimal rigid displacements,
due to (2.8). Since only local minimizers are involved, the statement requires (2.8) and no
further assumptions on the external loads. In particular, assumption (1.3), appearing in [21]
for the analysis of the asymptotic behavior of global minimizers (or quasi-minimizers) of
rescaled finite elasticity functionals, is not required. Similarly, assumptions about axes of
equilibrium of external loads (see Sect. 3) are not required as well.

However, if besides (2.8) we additionally assume (1.3), we can draw some interesting
consequences of Theorem 2.6. Under assumption (1.3), it is not difficult to see that the
rotation kernel of L, defined by (1.8), is a subgroup of SO(3), see [22, Remark 2.2]. S0

L
contains the identity matrix and it is possibly reduced to it. Moreover, if R ∈ S0

L, then for
every S ∈ SO(3) we get

RT L((S − I)x) = L((RS − I)x) −L((R − I)x) = L((RS − I)x) ≤ 0,

that is, RT L still satisfies (1.3) (hence it also satisfies (2.8), see [22, Remark 2.1]) for every
R ∈ S0

L. Therefore the map β : S0
L → R

β(R) := min{F0(u;RT L) : u ∈ H 1(�,R3)} (2.11)

is well defined and continuous. We notice that the energy identity satisfied by solutions to
the minimization problem (2.11) implies that β(R) = − 1

2B(RT L,RT L), where B(·, ·) is the
Betti form associated to couples of equilibrated loads, defined by

B(L1,L2) :=
∫

�

Eu1 D2W(x, I)Eu2 dx.

Here, ui are solutions to the linear elastic problem with external loads Li , i = 1,2. The
degeneracy properties of the Betti form are relevant in the analysis of the nonlinear elastic
equations for pure traction problems, see [6]. A nondegeneracy condition on β also appears
in the following results which are straightforward consequences of Theorem 2.6.

Corollary 2.7 Assume that (W1), (W2), (W3), (W4), (W5), (W6) hold true and that
L ∈ (H 1(�,R3))∗ satisfies (2.8) and (1.3) Let R ∈ S0

L. Then there exist a vanishing sequence
(hj )j∈N ⊂ (0,1) and a sequence (yj )j∈N ⊂ H 1

R(�,R3) such that yj is a local minimizer for
G(·;hjL) over H 1

R(� : R3) for every j ∈N according to Definition 2.1 and

lim
j→∞

h−2
j G(yj ;hjL) = β(R).



10 E. Mainini et al.

Corollary 2.8 In the same assumptions of Corollary 2.7, suppose that S0
L \{I} �= ∅ and that β

from (2.11) is not a constant map. Then for every n ∈ N there exist {Rk : k = 1,2...n} ⊂ S0
L

and h0 = h0(n) > 0 such that for every h ∈ (0, h0) the functional G(· ;hL) has a local
minimizer yk over H 1

Rk
(�,R3) for every k = 1,2...n (according to Definition 2.1) and

G(yk;hL) �= G(yk′ ;hL) if k �= k′.

The last corollary shows that the nonlinear elastic energy might have several constrained
local minimizers (each corresponding to a different constraint) at different energy levels.
The condition requiring that β is not a constant map is verified for instance in the example
from [21, Theorem 2.7], which we will further discuss in Sect. 5.

3 The Classical Approach via Implicit Function Theorem

In this section we briefly review some known results concerning existence and asymptotic
behavior of equilibrium configurations of hyperelastic bodies, that make use of a perturba-
tive method which relies on the implicit function theorem. This is done for the sake of a
comparison with the assumptions of our result in Theorem 2.6. Indeed, the classical results
that we are going to describe hereafter require stronger summability and nondegeneracy
assumptions on external loads, as well as more regularity of W (in turn, they do not need
polyconvexity).

Throughout this section, we assume � ⊂ R
3 to be of class C2, and besides (W1) and

(W2) we shall consider the following additional regularity hypothesis on the strain energy
density

W ∈ C3(� × U) for some U ⊆ R
3×3 open neighbourhood of SO(3), (W7)

along with the coercivity condition

there exists C∗ > 0 s.t. FT D2W(x, I)F ≥ C∗|F|2 for all F ∈R
3×3 and all x ∈ �. (W8)

Given a couple of external (dead) loads f : � → R
3 and g : ∂� → R

3 acting on the elastic
body � as forces of body and surface type, respectively, equilibrium configurations are given
by the deformations y : � →R

3 which solve

{−div (DW(x,∇y)) = f, in �,

DW(x,∇y)n = g, on ∂�.
(3.1)

In view of the above assumptions on W , it is trivial to observe that, if there are no external
forces, i.e. f = g = 0, then the identity map i solves (3.1), as well as the map y(x) = Rx + c,
for every R ∈ SO(3) and every c ∈ R

3. Therefore one may expect that problem (3.1) admits
a solution when the couple (f,g) consists of a small perturbation of (0,0) and that the
gradient of such solution is close, in some suitable sense, to the identity matrix (or at least
to a rotation). This approach is based on a careful use of the implicit function theorem and
it has been pursued for the first time in the works by Stoppelli [26, 27], where loads are
of the form (hf, hg), for some fixed (f,g) and small parameter h > 0. This approach for
traction problems of the type (3.1) has been further developed by several authors, see, e.g.,
[5, 6, 16, 17]. We also mention the comprehensive book [29] for a thorough description and
[7, Sect. 6.7] for an exhaustive exposition of the literature concerning this topic (see also
[8, 28]).
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We now outline the results, starting by fixing the functional framework. We consider the
Nemitsky operators associated with −div (DW(x,∇y(x))) and DW(x,∇y(x))n, that is

W 2,p(�,R3) → Lp(�,R3) × W 1−1/p,p(�,R3),

y �→
(−div (DW(·,∇y(·)))

DW(x,∇y(x))n

)
.

(3.2)

We remark that it is hereafter fundamental to have p > 3 in order to obtain that W 1,p(�,R3)

is a Banach algebra along with the continuous embedding

W 1,p(�,R3) ↪→ L∞(�,R3). (3.3)

In particular, this ensures that the Nemitsky operator (3.2) is of class C1, see [29, Lemma
2.1, Chapter V]. This motivates assumptions (1.5) for external loads. Given a small param-
eter h > 0, we are then interested in existence and asymptotic behavior of solutions to the
rescaled nonlinear problem (1.4), which formally coincide with critical points of the func-
tional G(·;hL) defined by (2.5), with the load functional given by (1.2). We easily notice
that, if (1.4) possesses a solution, the forces must necessarily satisfy the following compati-
bility condition

∫
�

fdx +
∫

∂�

g dS = 0. (3.4)

In addition, after simple computations, one can observe that, if yh ∈ W 2,p(�,R3) solves
(1.4), then it must necessarily satisfy the zero moment condition

∫
�

yh ∧ fdx +
∫

∂�

yh ∧ g dS = 0. (3.5)

When (3.5) holds, we say that the loads f and g are equilibrated with respect to the deforma-
tion yh. (3.4) can be imposed as an a priori condition on the loads while (3.5) may be only
regarded as an a posteriori condition. Nevertheless, we assume the loads f and g to satisfy

∫
�

x ∧ fdx +
∫

∂�

x ∧ g dS = 0. (3.6)

Loosely speaking, a justification of this assumption lies in the fact that a solution to (1.4)
(thus verifying (3.5)) is expected to be a small perturbation of the identity map i. We just say
that loads are equilibrated if (3.4) and (3.6) hold. Moreover, heuristically speaking, another
natural condition which, together with (3.6), goes in the direction of ruling out the chance
that ∇yh converges to a rotation R �= I is the absence of axes of equilibrium for the couple
(f,g). We recall that a ∈ R

3 is said to be an axis of equilibrium for (f,g) if, for any rotation
R ∈ SO(3) around a, there holds

∫
�

x ∧ RT fdx +
∫

∂�

x ∧ RT gdS = 0,

which is equivalent to
∫

�

Rx ∧ fdx +
∫

∂�

Rx ∧ gdS = 0.



12 E. Mainini et al.

The presence of axes of equilibrium for a couple (f,g) is linked with the astatic load matrix,
defined as

Kf,g :=
∫

�

x ⊗ fdx +
∫

∂�

x ⊗ gdS.

In particular, if we call λ1, λ2, λ3 ∈R the eigenvalues of the matrix Kf,g (which is symmetric
in view of (3.6)), it is known that the absence of axes of equilibrium is equivalent to the
following assumption:

λi + λj �= 0, for all i, j = 1, . . . ,3, i �= j. (3.7)

We refer to [5, Sect. 3] for a more detailed characterization of this property. We also observe
that the couple of assumptions (3.4) and (3.6) coincides with (2.8). Furthermore, we notice
that if loads are equilibrated and satisfy (1.3), assumption (3.7) (i.e., absence of axes of
equilibrium) can be rephrased by prescribing that the rotation kernel (1.8) of L only contains
the identity matrix (this can be seen for instance by combining [23, Proposition 6.2] and [5,
Proposition 3.8]).

The following result is contained in [29, Corollary 6.9, Chapter V]. We point out that for
such a result the assumptions on the lack of axes of equilibrium for the loads (f,g) could
be relaxed, see for instance Theorem 6.8 and Corollary 6.10 in Chapter V of [29] and the
thorough analysis in [5, 6]. However, to the best of our knowledge, even the results with
weaker assumptions do not allow the full generality for the equilibrated couple (f,g): for
instance, they do not cover the case in which every axis in R

3 is an axis of equilibrium for
(f,g) (which is equivalent to saying that the rotation kernel of L is the whole of SO(3)), a
case which we consider in our example in Sect. 5.

Theorem 3.1 ([29, Corollary 6.9, Chapter V]) Suppose that � is of class C2 and that
(W1), (W2), (W7) and (W8) are satisfied. Let p > 3. Let f ∈ Lp(�,R3) and g ∈
W 1−1/p,p(∂�,R3) satisfy (3.4) and (3.6) and let us assume that the eigenvalues (λi)i=1,...,3

of the astatic load Kf,g satisfy (3.7). Then there exists h0 > 0 such that for any h ∈ (0, h0)

there exists a deformation yh ∈ W 2,p(�,R3) which solves (1.4). Moreover the map

Y : [0, h0) → W 2,p(�,R3),

h �→ Y(h) = yh

(3.8)

extended to the identity i for h = 0, belongs to C1([0, h0);W 2,p(�,R3)).

It is now immediate to investigate the asymptotic behavior of the deformation yh as
h → 0. A direct consequence of Theorem 3.1 is that

yh → i in W 2,p(�,R3) as h → 0

which, in view of (3.3), in turn implies that

∇yh → I, ∈ L∞(�,R3) as h → 0.

Being the map Y from (3.8) of class C1, we can perform a first order Taylor expansion at
h = 0, which guarantees the existence of a function u0 ∈ W 2,p(�,R3) such that

uh := yh − i
h

→ u0 in W 2,p(�,R3) as h → 0.
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Since

h∇uh → 0 in L∞(�,R3) as h → 0,

we can carry out a Taylor expansion of DW(x, ·) near the identity, that is

DW(x, I + h∇uh(x)) = hD2W(x, ξh(x))∇uh(x) for every x ∈ �, (3.9)

for some ξh(x) belonging to the segment [I, I + h∇uh(x)], and thus ξh is uniformly con-
verging to I as h → 0+. Now, in view of the equation (1.4) satisfied by yh = i + huh and of
(3.9) we deduce that

∫
�

D2W(x, ξh(x))∇uh(x) : ∇v(x) dx =
∫

�

f · vdx +
∫

∂�

g · v dS

for all v ∈ H 1(�,R3). Then, thanks to the regularity of W we can pass to the limit as h → 0
and obtain

∫
�

D2W(x, I)∇u0(x) : ∇v(x) dx =
∫

�

f · vdx +
∫

∂�

g · v dS

for all v ∈ H 1(�,R3), i.e. u0 weakly solves

{−div (D2W(x, I)∇u0) = f in �,

(D2W(x, I)∇u0)n = g on ∂�.

This means that u0 is an equilibrium configuration for the linearized elastic problem with
loads (f,g) and as such it minimizes functional F0(·;L) over H 1(�,R3).

4 Proof of the Main Results

Let us state a preliminary result about Korn inequalities. We state it for W 1,p(�,R3) vector
fields with generic p ∈ (1,+∞). It is based on the standard Korn inequality, see [24], which
yields the existence of a constant Dp,� such that for every u ∈ W 1,p(�,R3×3) there holds

min
W∈R3×3

skew

‖∇u − W‖Lp(�,R3×3) ≤ Dp,� ‖Eu‖Lp(�,R3×3). (4.1)

Lemma 4.1 Let p ∈ (1,+∞). There are constants Zp,� and Qp,� (only depending on p, �)
such that

∫
�

|∇u|p ≤ Zp,�

∫
�

|Eu|p for every u ∈ W 1,p(�,R3) s.t.
∫

�

curl u = 0 (4.2)

and
∫

�

|∇u|p ≤ Qp,�

∫
�

|Eu|p for every u ∈ W 1,p(�,R3) s.t.
∫

�

|∇u|p−2curl u = 0. (4.3)
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Proof Suppose first that
∫

�

|∇u|p−2curl u = 0. Then for every W ∈ R
3×3
skew,

d

dε

∣∣∣∣
ε=0

∫
�

|∇u + εW|p = p

∫
�

|∇u|p−2∇u : W = p

∫
�

|∇u|p−2 skew(∇u) : W = 0,

implying that the unique projection of ∇u on the vector space of constant skew-symmetric
tensor fields over � is 0. Therefore, (4.1) gives (4.3).

In order to prove that (4.2) holds, assume by contradiction that there exists a sequence
(uj )j∈N ⊂ W 1,p(�,R3) such that

∫
�

curl uj = 0 and
∫

�
|∇uj |p = 1 for every j ∈ N, and∫

�
|Euj |p → 0 as j → ∞. By (4.1) and since

∫
�

skew(∇uj ) = 0, there exists a sequence
(Wj )j∈N ⊂ R

3×3
skew such that

|�||Wj | =
∣∣∣∣
∫

�

(skew(∇uj ) − Wj )

∣∣∣∣ ≤ |�| p−1
p ‖∇uj − Wj‖Lp(�,R3×3)

≤ |�| p−1
p Dp,� ‖Euj‖Lp(�,R3×3),

and since
∫

�
|Euj |p → 0 we conclude that Wj → 0 and that

∫
�

|∇uj − Wj |p → 0 as j →
∞. But then we have∫

�

|∇uj |p ≤ 2p−1
∫

�

|∇uj − Wj |p + 2p−1|�||Wj |p

and the right hand side goes to 0 as j → ∞, contradicting the fact that
∫

�
|∇uj |p = 1 for

every j ∈N and thus proving (4.2). �

Let us now state a simple result about the minimization of the linear elastic energy.

Lemma 4.2 Let M > 0. Suppose that (W1), (W2), (W3), (W4), hold and that L satisfies
(2.8) and ‖L‖∗ ≤ CM/K�, where K� is the constant in (2.9) and C is the constant in (W4).
If u∗ ∈ H 1(�,R3) minimizes F0(·;L) over H 1(�,R3), then

∫
�

|Eu∗|2 dx ≤ M2.

Proof Let us consider a solution u∗ ∈ H 1(�,R3) to the linear elastic problem

min
{
F0(·;L) : u ∈ H 1(�,R3)

}
, (4.4)

whose existence is ensured by the compatibility conditions (2.8) by standard arguments.
Being a minimizer, u∗ satisfies the energy identity

∫
�

Eu∗ D2W(x, I)Eu∗ dx = L(u∗). (4.5)

From (4.5), by the basic ellipticity estimate symFD2W(x, I) symF ≥ C|symF|2, where C

is the constant in (W4), by taking into account (2.9) we get

C

∫
�

|Eu∗|2 ≤
∫

�

Eu∗ D2W(x, I)Eu∗ dx = L(u∗) ≤ K�‖L‖∗ ‖Eu∗‖L2(�,R3×3),

that is,

‖Eu∗‖2
L2(�,R3×3)

≤ C−2K2
� ‖L‖2

∗.

Thanks to the assumption ‖L‖∗ ≤ CM/K�, we conclude. �
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For every R > 0 and for every L ∈ (H 1(�,R3))∗, in the sequel we shall consider the
following constrained minimization problems of finite elasticity

min

{
F(u;L) : u ∈ H 1(�,R3),

∫
�

|Eu|2 ≤ R

}
, (4.6)

min

{
F(u;L) : u ∈ H 1(�,R3),

∫
�

|Eu|2 ≤ R,

∫
�

curl u = 0
}

. (4.7)

Lemma 4.3 Suppose that (W1), (W2), (W3), (W4), (W5), (W6) hold and that L ∈
(H 1(�,R3))∗ satisfies (2.8). Let R > 0. Then there exists a solution to problem (4.6) and
there exists a solution to problem (4.7).

Proof Let (un)n∈N ⊂ H 1(�,R3) denote a minimizing sequence for problem (4.6). Since
F(0;L) = 0, it is not restrictive to assume that F(un;L) ≤ 1 for every n ∈ N. Moreover, by
(2.10) there exists a sequence (Rn)n∈N ⊂ SO(3) such that

∫
�

|I + ∇un − Rn|2 dx ≤ C�

∫
�

W(x, I + ∇un) dx

≤ C�F(un;L) + C�L(un) ≤ C� + C�L(un).

(4.8)

From (2.9) and (4.8), since
∫

�
|Eun|2 ≤ R, we deduce that the sequence (∇un)n∈N is

bounded in L2(�,R3×3). Thanks to Poincaré inequality and to (2.8), we deduce that up
to subsequences ∇un weakly converge to ∇u for some u ∈ H 1(�,R3), that L(un) → L(u),
and that Eun weakly converge to Eu in L2(�,R3). The weak L2(�,R3×3) lower semicon-
tinuity of the map F �→ ∫

�
|F|2 yields

∫
�

|Eu|2 ≤ R. On the other hand, with the notation
yn(x) := x+hun(x), the assumption (W5) implies, thanks to the classical results by Ball [2,
§6], that cof∇yn (resp. det∇yn) weakly converge in Lq(�,R3×3) to cof∇y (resp. weakly
converge in Lr(�) to det∇y). By the polyconvexity assumption (W6) on the Carathéodory
function W , and since L(un) → L(u) as n → ∞, we deduce that

F(u;L) ≤ lim inf
n→+∞ F(un;L).

Since (un)n is by assumption a minimizing sequence, we conclude that u ∈ H 1(�,R3) is a
solution to problem (4.6).

The same argument shows that there exists a solution to problem (4.7), since the weak
L2(�,R3×3) convergence of ∇un to ∇u implies that

∫
�

curl un → ∫
�

curl u. �

Remark 4.4 It is worth noticing that a solution u to problem (4.7) is not a priori guaranteed
to be a constrained local minimizer in the sense of Definition 2.1. Indeed it may happen that
u satisfies

∫
�

|Eu|2 = R, so that for instance by taking ψ = u, for every ε > 0 the function
u + εψ is not admissible for problem (4.7).

Remark 4.5 Let h > 0 and M > 0. Then by Lemma 4.3 there exists a solution vh to the
problem

min

{
F(v;hL) : v ∈ H 1(�,R3),

∫
�

|Ev|2 ≤ M2h2,

∫
�

curl v = 0
}

,
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and thus uh =: h−1vh is a solution to

min

{
Fh(u;L) : u ∈ H 1(�,R3),

∫
�

|Eu|2 ≤ M2,

∫
�

curl u = 0
}

. (4.9)

The next lemma provides convergence to constrained linear elasticity and generalizes
results from [19, 20]. The proof is a �-convergence argument. With respect to the analysis
in [19, 20], here we crucially take advantage of the constraints in the minimization problem,
that allow to avoid further assumptions on external loads.

Lemma 4.6 Suppose that (W1), (W2), (W3), (W4), (W5), (W6) hold and that L ∈
(H 1(�,R3))∗ satisfies (2.8). Let M > 0 and let (hj )j∈N ⊂ (0,1) be a vanishing sequence.
For any j ∈ N, let uj := uhj

, where uhj
is a solution to problem (4.9) (with hj in place of

h, see Remark 4.5). Then there exists u∗ ∈ H 1(�,R3) such that
∫

�
|Eu∗|2 ≤ M2 and such

that, up to subsequences, Euj ⇀ Eu∗ weakly in L2(�,R3×3) as j → ∞ and

lim
j→+∞

Fhj
(uj ;L) = F0(u∗ ;L) = min

u∈H 1(�,R3)

{
F0(u ;L) :

∫
�

|Eu|2 ≤ M2

}
. (4.10)

Proof Step 1 (lower bound). Suppose that supj∈NFhj
(ũj ;L) < +∞ and that Eũj ⇀ Eũ

weakly in L2(�,R3×3) for some sequence (ũj )j∈N ⊂ H 1(�,R3) such that
∫

�
curl ũj = 0

for every j ∈ N and some ũ ∈ H 1(�,R3). By the weak L2(�,R3×3) lower semicontinuity
of the map F �→ ∫

�
|F|2, we get

lim inf
j→+∞

∫
�

|Eũj |2 ≥
∫

�

|Eũ|2. (4.11)

By applying [20, Lemma 5.1] we obtain the existence of W ∈R
3×3
skew such that

√
hj∇ũj →

W in L2(�,R3×3) as j → ∞. However, since
∫

�
curl ũj = 0, by Lemma 4.1 we deduce that

the sequence (∇ũj )j∈N is bounded in L2(�,R3), thus forcing W ≡ 0. From [20, Lemma
5.2] we also deduce that 1Bj

Eũj ⇀ Eũ weakly in L2(�,R3×3) as j → ∞, where Bj :=
{x ∈ � : |√hj∇ũj (x)| ≤ 1}. We stress that [20, Lemma 5.1, Lemma 5.2] are stated under
the additional incompressibility constraint requiring W(F) = +∞ if det F �= 1, but they are
true (with the very same proof) even without such a constraint.

By the frame indifference assumption (W1), there exists a function V such that for a.e.
x ∈ �

W(x,F) = V(x, 1
2 (FT F − I)) ∀F ∈R

3×3.

By (W3) we deduce that for a.e. x ∈ � the function V(x, ·) is C2 smooth in a suitable
neighborhood Ũ of the origin in R

3×3, with a x-independent modulus of continuity η :R+ →
R, which is increasing and vanishing at 0+. By following the proof of [20, Lemma 5.3], we
define

Dũj := Eũj + 1

2
hj∇ũT

j ∇ũj .

By (W2), (W3) and by a Taylor expansion, we get the existence of j0 ∈ N such that for
every j > j0 the estimate

∣∣∣∣∣V(x, hjDũj ) − h2
j

2
DũT

j D2V(x,0) Dũj

∣∣∣∣∣ ≤ h2
j η(hj |Dũj |)|Dũj |2
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holds for a.e. x ∈ Bj , since hj |Dũj (x)| ≤ 2
√

hj and thus hjDũj (x) ∈ Ũ for a.e. x ∈ Bj if j

is large enough. We deduce

Fhj
(ũj ) ≥ 1

h2
j

∫
Bj

W(x, I + hj∇ũj ) dx −L(ũj ) = 1

h2
j

∫
Bj

V(x, hjDũj ) dx −L(ũj )

≥
∫

Bj

1

2
DũT

j D2V(x,0)Dũj dx −
∫

Bj

η(hj |Dũj |)|Dũj |2 dx −L(ũj )

≥ 1

2

∫
�

(1Bj
Dũj )D2W(x, I) (1Bj

Dũj ) dx − η(2
√

hj )

∫
�

|1Bj
Dũj |2 dx −L(ũj )

for every j > j0, where the last inequality is due D2W(x, I) = D2V(x,0) and to the
monotonicity of the modulus of continuity η, and we also recall that η(2

√
hj ) → 0 as

j → ∞. By recalling that
√

hj∇ũj strongly converge to zero in L2(�,R3×3), hence
a.e. in � up to subsequences, and since (1Bj

hj∇ũT
j ∇ũj )j∈N is a bounded sequence in

L2(�,R3×3), we deduce that up to subsequences 1Bj
hj∇ũT

j ∇ũj weakly converge to zero in
L2(�,R3×3) so that 1Bj

Dũj weakly converge in L2(�,R3×3) to Eũ as j → ∞. Since the
map F �→ ∫

�
FT D2W(x, I)Fdx is weakly L2(�,R3×3) lower semicontinuous, and since

L ∈ (H 1(�,R3))∗ and (2.8) imply L(ũj ) → L(ũ) thanks to Korn and Poincaré inequalities,
we conclude that

lim inf
j→+∞

Fhj
(ũj ;L) ≥ 1

2

∫
�

EũD2W(x, I)Eũdx −L(ũ).

Step 2 (upper bound). Let now ū ∈ H 1(�,R3) be such that
∫

�
|Eū|2 ≤ M2. Let

δj := h
1/5
j and ūj := ū ∗ ρj , where ρj (x) := δ−3

j ρ(x/δj ) and ρ : R3 → R is the standard
unit symmetric mollifier. We notice that ūj → ū in H 1(�,R3) as j → +∞ and that the el-
ementary estimate ‖ρj‖W1,∞(R3) ≤ 2δ−4

j ‖ρ‖W1,∞(R3) holds. Therefore, by Young inequality
we obtain

‖ūj‖W1,∞(�,R3) ≤ ‖ū‖L1(�′,R3)‖ρj‖W1,∞(R3) ≤ 2δ−4
j ‖ρ‖W1,∞(R3)‖ū‖L1(�′,R3),

where �′ is a suitable open neighbor of � (and ū is understood as a not relabeled H 1(�′,R3)

extension). We deduce h‖ūj‖W1,∞(�,R3) → 0 as j → +∞. Therefore I+hj∇ūj ∈ U for a.e.
x in � if j is large enough, where U is the neighborhood of SO(3) that appears in assumption
(W3), which then implies, by Taylor expansion,

lim sup
j→+∞

|Fhj
(ūj ;L) −F0(ūj ;L)|

≤ lim sup
j→+∞

∫
�

∣∣∣∣∣
1

h2
j

W(x, I + hj∇ūj ) − 1

2
∇ūT

j D2W(x, I)∇ūj

∣∣∣∣∣
≤ lim sup

j→+∞

∫
�

ω(hj |∇ūj |) |∇ūj |2

≤ lim sup
j→+∞

‖ω(hj |∇ūj |)‖L∞(�)

∫
�

|∇ūj |2 = 0.

The latter limit is zero since hj∇ūj → 0 in L∞(�,R3×3), as ω is increasing with
limt→0+ ω(t) = 0, and since ūj → ū in H 1(�,R3) as j → +∞, which also implies
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F0(ūj ;L) → F0(ū;L), so that by writing |Fhj
(ūj ;L) − F0(ū;L)| ≤ |Fhj

(ūj ;L) −
F0(ūj ;L)| + |F0(ūj ;L) −F0(ū;L)| we deduce

lim
j→+∞

Fhj
(ūj ;L) = F0(ū;L).

Moreover, by using Young inequality again we deduce that for any j ∈N

∫
�

|Eūj |2 ≤
∫

�

|Eū|2 ≤ M2. (4.12)

Step 3 (convergence). Since we are assuming

uj ∈ argminu∈H 1(�,R3)

{
Fhj

(u;L) :
∫

�

|Eu|2 ≤ M2,

∫
�

curl u = 0
}

(4.13)

for every j ∈ N, it is readily seen that supj∈NFhj
(uj ;L) < +∞. Moreover, since∫

�
|Euj |2 ≤ M2 for every j ∈ N, up to subsequences there exists u∗ ∈ H 1(�,R3) such that

Euj ⇀ Eu∗ weakly in L2(�,R3×3), see [19, Lemma 3.2]. By Step 1 we get
∫

�
|Eu∗|2 ≤ M2,

see (4.11), and

1

2

∫
�

Eu∗ D2W(x, I)Eu∗ dx −L(u∗) ≤ lim inf
j→+∞

Fhj
(uj ;L). (4.14)

To every ū ∈ H 1(�,R3) such that
∫

�
|Eū|2 ≤ M2, we associate the sequence (ūj )j∈N ⊂

H 1(�,R3) constructed as in Step 2. Therefore, such a sequence converges to ū strongly in
H 1(�,R3) with hj‖∇ūj‖L∞(�,R3×3) → 0 as j → +∞, and it satisfies

∫
�

|Eūj |2 ≤ M2 for
every j ∈N, see (4.12). For every j ∈ N we let wj := |�|−1

∫
�

curl ūj so that

∫
�

curl (ūj − 1
2 wj ∧ x) = 0,

since curl(a ∧ x) = 2a for every a ∈ R
3. Thus wj → w := |�|−1

∫
�

curl ū as j → ∞. We
deduce that ūj − 1

2 wj ∧ x strongly converge in H 1(�,R3) to ū − 1
2 w ∧ x as j → +∞, that

hj‖∇(ūj − 1
2 wj ∧ x)‖L∞(�,R3×3) → 0 as j → ∞, and that for every j ∈N there holds

∫
�

|E(ūj − 1
2 wj ∧ x)|2 =

∫
�

|Eūj |2 ≤ M2.

By (4.14), (4.13) and by Step 2 we get

F0(u∗;L) ≤ lim inf
j→+∞

Fhj
(uj ;L) ≤ lim sup

j→+∞
Fhj

(uj ;L)

≤ lim sup
j→+∞

Fhj
(ūj − 1

2 wj ∧ x;L) = F0(ū − 1
2 w ∧ x;L) = F0(ū;L),

where the last equality is due to the invariance of F0(·;L) by infinitesimal rigid displace-
ments. By the arbitrariness of ū, we deduce that u∗ is a solution to the minimization problem
in the right hand side of (4.10), and that indeed (4.10) holds. �

Next we provide the key lemma towards the proof of the main theorem.
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Lemma 4.7 Assume that (W1), (W2), (W3), (W4), (W5), (W6) hold true, that L ∈
(H 1(�,R3))∗ satisfies (2.8) and that

‖L‖∗ < γ (�,C) := 1

K�

min

{
1

C�

,
C

2

}
, (4.15)

where C� is the constant in (2.10), K� is the constant in (2.9) and C is the constant in
(W4). Then there exists h̄ > 0 such that if h ∈ (0, h̄) and if

vh ∈ argmin

{
F(v;hL) : v ∈ H 1(�,R3),

∫
�

|Ev|2 ≤ h2,

∫
�

curl v = 0
}

, (4.16)

then
∫

�

|Evh|2 < h2.

Proof Step 1. Let us consider a minimizer u∗ ∈ H 1(�,R3) of the linear elastic problem
(4.4), whose existence is ensured by the compatibility conditions (2.8) on L. It satisfies
the energy identity (4.5), and since by (4.15) we have ‖L‖∗ ≤ C

2K�
, by applying Lemma

4.2 with M = 1/2 we deduce
∫

�
|Eu∗|2 ≤ 1/4. Let h ∈ (0,1) and let ūh := u∗ ∗ ρh, where

ρh(x) = δ−3
h ρ(x/δh) and δh = h1/5, so that the argument in Step 2 of the proof of Lemma 4.6

yields ūh → u∗ in H 1(�,R3) along with h‖∇ūh‖L∞(�,R3×3) → 0 as h → 0, and moreover

lim
h→0

1

h2

∫
�

W(x, I + h∇ūh) dx = 1

2

∫
�

Eu∗ D2W(x, I)Eu∗ dx.

We let u∗
h := ūh − 1

2 wh ∧ x, where wh := |�|−1
∫

�
curl ūh, and w := |�|−1

∫
�

curl u∗, so that
also along u∗

h we have

lim
h→0

1

h2

∫
�

W(x, I + h∇u∗
h) dx = 1

2

∫
�

Eu∗ D2W(x, I)Eu∗ dx,

since the linear elastic energy is unaffected by the addition of infinitesimal rigid displace-
ments, and similarly we have L(u∗

h) → L(u∗) as h → 0 thanks to (2.8). Moreover, since
u∗

h → u∗ − 1
2 w ∧ x in H 1(�,R3) as h → 0, and since

∫
�

|Eu∗|2 ≤ 1/4, we see that for small
enough h there holds

∫
�

|hEu∗
h|2 = ∫

�
|hEūh|2 ≤ h2, so that hu∗

h is admissible for problem
(4.16).

Step 2. For every h ∈ (0,1), let vh as in (4.16) and uh := h−1vh. By Step 1 we get

F(vh;hL) ≤ F(hu∗
h;hL) = h2

2

∫
�

Eu∗ D2W(x, I)Eu∗ dx − h2L(u∗) + o(h2) (4.17)

as h → 0. On the other hand, by (2.10) and thanks to the Euler-Rodrigues formula yielding
the representation

Rh = I + sin θhWh + (1 − cos θh)W2
h

for some suitable θh ∈R and Wh ∈R
3×3
skew with |Wh|2 = |W2

h|2 = 2, we have

1

C�

∫
�

(∣∣Evh − (1 − cos θh)W2
h

∣∣2 + |skew(∇vh) − sin θhWh|2
)

dx

= 1

C�

∫
�

|I − Rh + ∇vh|2 dx ≤
∫

�

W(x, I + ∇vh) dx = hL(vh) +F(vh;hL).

(4.18)
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By taking into account that
∫

�
curl vh = 0, i.e.,

∫
�

skew(∇vh) = 0, an application of Jensen
inequality yields

1

C�

∫
�

∣∣Evh − (1 − cos θh)W2
h

∣∣2
dx + |�|

C�

|sin θhWh|2 ≤ hL(vh) +F(vh;hL). (4.19)

From (4.16), (4.17) and (4.19), by (2.9) and by the energy identity (4.5) we deduce

1

C�

∫
�

∣∣Evh − (1 − cos θh)W2
h

∣∣2
dx + |�|

C�

|sin θhWh|2

≤ −h2

2

∫
�

Eu∗ D2W(x, I)Eu∗ dx + K�h‖L‖∗ ‖Evh‖L2(�,R3×3) + o(h2)

≤ K�h2‖L‖∗ + o(h2)

(4.20)

as h → 0. By setting

Ah := h−1(1 − cos θh)W2
h and Bh := h−1 sin θhWh, (4.21)

thanks to (4.20) we deduce that
∫

�

|Euh − Ah|2 dx + |�||Bh|2 ≤ C�K�‖L‖∗ + o(1) (4.22)

as h → 0. In particular, since
∫

�
|Euh|2 ≤ 1, we deduce that |�||Ah|2 ≤ 2 + 2C�K�‖L‖∗ +

o(1) as h → 0. Then we get |�||Bh|2 ≤ C�K�‖L‖∗ + o(1) as h → 0. Since both |Ah| and
|Bh| are bounded as h → 0, and since |Wh|2 = |W2

h|2 = 2, from (4.21) we deduce that
limh→0 θh = 0, therefore sin θh ∼ θh, 1 − cos θh ∼ θ2

h/2, and thus from (4.21) again we get
Ah → 0 as h → 0.

Step 3. We end the proof by contradiction, assuming that there exists a vanishing se-
quence (hn)n∈N ⊂ (0,1) such that

h2
n

∫
�

|Euhn |2 =
∫

�

|Evhn |2 = h2
n (4.23)

for all n ∈N. Thanks to Lemma 4.6 (applied with M = 1), along a not relabeled subsequence
we have Euhn ⇀ Eu∗ weakly in L2(�,R3×3) and thanks to (4.23) and to (4.22) we have

1 − 2
∫

�

Euhn : Ahn =
(∫

�

|Euhn |2 − 2
∫

�

Euhn : Ahn

)

≤
∫

�

∣∣Euhn − Ahn

∣∣2 ≤ C�K�‖L‖∗ + o(1)

as n → +∞. We pass to the limit as n → +∞ and by recalling that Ahn → 0 we obtain

1 ≤ C�K�‖L‖∗,

which is a contradiction with (4.15). �

Corollary 4.8 Suppose that the assumptions of Theorem 2.6 are satisfied and let

M0 > max

{
1,

‖L‖∗
γ (�,C)

}
,
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where γ (�,C) is defined in Lemma 4.7. There exist h0 > 0 such that if 0 < h < h0 and vh

is a solution to

min

{
F(v;hL) : v ∈ H 1(�,R3),

∫
�

|Ev|2 ≤ M2
0 h2,

∫
�

curl v = 0
}

, (4.24)

then vh is a local minimizer for F(·;hL) over H 1
I (�,R3) and uh := h−1vh is a local mini-

mizer for Fh(·;L) over H 1
I (�,R3).

Proof The existence of a solution to problem (4.24) is due to Lemma 4.3 and Remark 4.5.
Since ‖M−1

0 L‖∗ < γ (�,C), we may apply Lemma 4.7 with M−1
0 L in place of L, thus

finding h0 > 0 such that vh satisfies
∫

�
|Evh|2 < M2

0 h2 as soon as h ∈ (0, h0).
Let ψ ∈ H 1(�,R3) be such that

∫
�

curlψ = 0. For any given h ∈ (0, h0), the continuity
of the map [0,1] � ε �→ ∫

�
|Evh + εψ |2 shows that there exists ε0 = ε0(vh,ψ) such that

for every ε < ε0 there holds
∫

�
|Evh + εψ |2 < M2

0 h2. Thus for every ε < ε0 we have that
vh + εψ is admissible for problem (4.24) and so F(vh;hL) ≤ F(vh + εψ;hL) as claimed.
The statement about uh follows from Remark 2.4. �

Proof of Theorem 2.6 Let M0 and h0 be as in Corollary 4.8 and let (hj )j∈N ⊂ (0, h0) be a
vanishing sequence. For every j ∈ N, let vj be a solution to problem (4.24) (with hj in
place of h), whose existence is ensured by Remark 4.5. By Corollary 4.8, for every j ∈ N

we have that vj is a local minimizer for F(·;hjL) over H 1
I (�,R3×3), and uj := h−1

j vj is
a local minimizer for Fhj

(·;L) over H 1
I (�,R3×3). Moreover, by Lemma 4.6 we get, up to

subsequences, Euj = hj
−1
Evj ⇀ Eu∗ weakly in L2(�,R3×3) as j → ∞ and

lim
j→∞

Fhj
(uj ;L) = lim

j→+∞
h−2

j F(vj ;hjL) = F0(u∗;L),

where u∗ ∈ H 1(�,R3) is a solution to

min
u∈H 1(�,R3)

{
F0(u;L) :

∫
�

|Eu|2 ≤ M2
0

}
.

Since the choice of M0 from Corollary 4.8 is such that M−1
0 ‖L‖∗ < γ (�,C), we obtain

‖L‖∗ ≤ CM0
K�

, thus by Lemma 4.2 we deduce that u∗ minimizes F0(·;L) over the whole

H 1(�,R3). �

Proof of Corollary 2.7 Since R ∈ S0
L, then RT L satisfies (2.8) as remarked in Sect. 2. Hence,

by Theorem 2.6 there exist a sequence (hj )j∈N ⊂ (0,1) and local minimizers vj for
F(· ;hj RT L) over H 1

I (�,R3) such that

lim
j→∞

h−2
j F(vj ;hj RT L) = β(R),

where β is defined by (2.11). By setting yj (x) := Rx + hj Rvj we get
∫

�
curl(RT yj ) = 0.

By taking into account frame indifference and again that R ∈ S0
L we get

G(yj ;hjL) =
∫

�

W(x,R + hj∇Rvj ) dx − hjL(yj − x)

=
∫

�

W(x, I + hj∇vj ) dx − hjL(yj − Rx)

=
∫

�

W(x, I + hj∇vj ) dx − h2
jL(Rvj ) = F(vj ;hj RT L).
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Therefore yj is a local minimizer for G(· ;hjL) over H 1
R(�,R3) and

lim
j→∞

h−2
j G(yj ;hjL) = lim

j→∞
h−2

j F(vj ;hj RT L) = β(R)

as claimed. �

Proof of Corollary 2.8 Since S0
L \ {I} �= ∅ and since β is not a constant map then β(S0

L) =
[a, b] for some couple of reals a, b, a < b, and so for every n ∈ N there exists {Rk : k =
1,2...n} ⊂ S0

L such that β(Rk) �= β(R′
k) if k �= k′. By Corollary 2.7 for every vanishing

sequence (hj )j∈N ⊂ (0,1) and for every k = 1,2....n there exist a subsequence (h
(k)
j )j∈N

and local minimizers y(k)
j for G(· ;h(k)

j L) over H 1
Rk

(�,R3) such that

lim
j→∞

(
h

(k)
j

)−2
G(y(k)

j ;h(k)
j L) = β(Rk).

We let

δn := min{|β(Rk) − β(R′
k)| : k �= k′, k, k′ = 1,2, . . . n}.

It is readily seen that for every k = 1,2....n there exists h
(k)

0 > 0 such that, for every 0 < h <

h
(k)

0 , the functional G(· ;hL) has a local minimizer y(k) over H 1
Rk

(�,R3) satisfying

|G(y(k) ;hL) − β(Rk)| < δn/2.

The result follows by choosing h0 := min{h(k)

0 : k = 1,2...n}. �

5 Constrained Local Minimizers at Different Energy Levels: An Example

In this Section we give an explicit example in which the situation described in Corollary 2.7
and Corollary 2.8 occurs. To this aim we shall consider the Yeoh type energy density defined
by (2.1) and (2.4), with Wvol(F) = g(det F), where g : R+ → R is the convex C2 function
(satisfying (2.2) and (2.3) with r = 2) obtained by setting

g(t) = c(t2 − 1 − 2 log t)

for some c > 0. This is a usual choice, see [14].
By taking into account that for every B ∈R

3×3
sym there holds

|I + εB|2
det(I + εB)2/3

− 3 = ε2(2|B|2 − 4
3 |TrB|2) + o(ε2)

as ε → 0, and since

Wvol(I + εB) = g(det(I + εB)) = ε2

2
g′′(1)|TrB|2 + o(ε2) = 2ε2c|TrB|2 + o(ε2),

we get

1

2
BD2W(I)B = 2c1|B|2 + (2c − 4

3c1)|TrB|2
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and we choose from now on c1 = 2, c = 4
3 so that

1

2
BD2W(I)B = 4|B|2.

Let now

� := {x = (x, y, z) ∈R
3 : x2 + y2 < 1, 0 < z < 1}, (5.1)

B := {(x, y) ∈ R
2 : x2 + y2 < 1}, let φ : B → R be the radial function whose radial profile

(still denoted by φ) is

φ(r) := log r + r2 − 3r + 2, r :=
√

x2 + y2, (5.2)

and let us consider a load functional of the form

L(u) =
∫

�

f · udx where f(x) = f(x, y, z) := r−1φ′(r)(x, y,0). (5.3)

It is readily seen that φ(1) = φ′(1) = 0 and that f ∈ Lp(�,R3) if and only if p < 2 (so that
assumption (1.5) is not satisfied) and thus L ∈ (H 1(�,R3))∗. It is also easy to see that L is
equilibrated. We claim that L((R − I)x) = 0 for every R ∈ SO(3), that is, condition (1.3) is
satisfied and S0

L ≡ SO(3) (which implies that every direction in R
3 is an axis of equilibrium

of L, because the astatic load is zero). Indeed if R ∈ SO(3) then by the Euler-Rodrigues
formula there exist θ ∈ [0,2π) and a ∈R

3, |a| = 1, such that for every x ∈ �

Rx = x + sin θ (a ∧ x) + (1 − cos θ)a ∧ (a ∧ x),

hence by setting c(a, θ) = (1 − cos θ)(π(1 − a2
3) − 1) we have

∫
�

f(x) · (R − I)xdx = sin θ

∫
�

f(x) · (a ∧ x) dx + (1 − cos θ)

∫
�

f(x) · ((a · x)a − x) dx

= c(a, θ)

∫ 1

0
r2φ′(r) dr = −2c(a, θ)

∫ 1

0
rφ(r) dr = 0

as claimed.
Let us now consider the following rotation of π/2 around the z axis

R∗ :=
(

0 −1 0
1 0 0
0 0 1

)
.

We claim that β(R∗) < β(I), that is, the map β defined in (2.11) takes two different values
as required in Corollary 2.8. To this aim we need the following

Lemma 5.1 Let � as in (5.1), φ as in (5.2) and L as in (5.3). Then

min
H 1(�;R3)

F0(· ;RT
∗ L) ≤ min

u∈H 2(B)

∫
B

8u2
xy + 2(uyy − uxx)

2 −
∫

B

(uyφy + uxφx) < 0.

Proof Let B the unit ball in R
2 and

K := {(uy,−ux,0) : u ∈ H 2(B)} ⊂ H 1(�;R3).
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It is easily seen that K is weakly closed in H 1(�,R3) so there are minimizers of F0(· ;RT∗ L)

over K (recalling that RT∗ L satisfies (2.8) since the z axis is an axis of equilibrium for L).
Therefore

min
v∈H 1(�;R3)

F0(v ;RT
∗ L) ≤ min

u∈H 2(B)

∫
B

8u2
xy + 2(uyy − uxx)

2 −
∫

B

(uyφy + uxφx). (5.4)

If u is a minimizer of the right hand side of (5.4), 0 < ε < 1, Bε := {(x, y) ∈ R
2 : x2 +

y2 < ε} and ζ ∈ H 2
0 (B \ Bε), by taking into account that �φ ∈ L2(B \ Bε), a first variation

argument for the minimization problem in the right hand side of (5.4) yields

4
∫

B\Bε

(4uxyζxy + uyyζyy + uxxζxx − uyyζxx − uyyζxx) =
∫

B\Bε

(ζyφy + ζxφx)

= −
∫

B\Bε

ζ�φ,

and after integration by parts we obtain the Euler-Lagrange equation

4�2u + �φ = 0 in D′(B \ Bε),

for every 0 < ε < 1, where �2 denotes the planar biharmonic operator. On the other hand if
u is a minimizer then by using u as test function we easily get

∫
B

16u2
xy + 4(uyy − uxx)

2 + (uyφy + uxφx) = 0. (5.5)

In view of (5.4), and since F0(0 ;RT∗ L) = 0, in order to conclude it is enough to show that
minv∈KF0(v ;RT∗ L) �= 0. Assume by contradiction that minv∈KF0(v ;RT∗ L) = 0: then by
(5.5) we get

∫
B

4u2
xy + (uyy − uxx)

2 = 0,

that is uxy = uyy − uxx = 0 a.e. in B , hence �2u = 0 a.e. in B and from the above Euler-
Lagrange equation we deduce �φ ≡ 0 in B \ Bε , a contradiction since �φ = 3 − 2

r
in

B \ Bε . �

We can now conclude by proving the claim, i.e., by proving that β(R∗) < β(I). Let
v = (v1, v2, v3) ∈ H 1(�,R3), ṽ := (v1, v2) and let ũ ∈ H 1(B,R2) be defined by ũ(x1, x2) :=∫ 1

0 ṽ(x1, x2, x3) dx3. By Jensen inequality it is readily seen that

F0(v ;L) ≥ 4
∫

B

|Ẽ(ũ)|2 −
∫

B

∇φ · ũ,

where Ẽ(·) is the upper-left 2 × 2 submatrix of E(·). By arguing as in the proof of Theorem
2.7 of [22], if

η∗(r) = − 1

16
rφ(r) + 1

16r

∫ r

0
t2φ′(t) dt,



Asymptotic Behavior of Constrained Local Minimizers in Finite Elasticity 25

then the radial function defined by w(r) := ∫ r

0 η∗(t) dt belongs to H 2(B) and ∇w minimizes

J (ũ) := 4
∫

B

|Ẽ(ũ)|2 −
∫

B

∇φ · ũ

over H 1(B), hence w minimizes

4
∫

B

|D2v|2 −
∫

B

∇φ · ∇v

among all v in H 2(B), where D2 denotes the Hessian in the x, y variables. Therefore for
every 0 < ε < 1 and for every ψ ∈ H 2

0 (B \ Bε)

8
∫

B\Bε

D2v · D2ψ −
∫

B\Bε

∇φ · ∇ψ = 0,

that is, w solves the biharmonic equation 8�2w = −�φ in B \ Bε and since �φ is not
identically zero then �w is not identically zero as well. This implies, by Young inequality,
∫

B

8w2
xy + 2(wyy − wxx)

2 −
∫

B

∇w · ∇φ <

∫
B

8w2
xy + 4w2

yy + 4w2
xx −

∫
B

∇w · ∇φ. (5.6)

Notice that the inequality is strict, since the Young inequality 2(wyy −wxx)
2 ≤ 4w2

xx +4w2
yy

holds with equality if and only if wxx = −wyy , and we have just checked that �w does not
vanish identically on B . In particular, 2(wxx − wyy)

2 < 4w2
xx + 4w2

yy on a set of positive
measure in B . From Lemma 5.1 and from (5.6) we infer

β(R∗) = min
u∈H 1(�,R3)

F(u ;RT
∗ L) ≤ min

v∈H 2(B)

∫
B

8v2
xy + 2(vyy − vxx)

2 −
∫

B

∇v · ∇φ

≤
∫

B

8w2
xy + 2(wyy − wxx)

2 −
∫

B

∇w · ∇φ <

∫
B

8w2
xy + 4w2

xx + 4w2
yy −

∫
B

∇w · ∇φ

= min
v∈H 2(B)

∫
B

8v2
xy + 4v2

xx + 4v2
yy −

∫
B

∇v · ∇φ ≤ min
u∈H 1(�,R3)

F(u ;L) = β(I)

as claimed. In particular, Corollary 2.8 applies to this example.
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