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Abstract
We consider a family of three-dimensional stiffened plates whose dimensions are scaled
through different powers of a small parameter ε. The plate and the stiffener are assumed
to be linearly elastic, isotropic, and homogeneous. By means of �-convergence, we study
the asymptotic behavior of the three-dimensional problems as the parameter ε tends to zero.
For different relative values of the powers of the parameter ε, we show how the interplay
between the plate and the stiffener affects the limit energy. We derive twenty-three limit
problems.

Keywords �-Convergence · Linear elasticity · Calculus of variations · Dimension
reduction · Mechanics · Thin-walled structures · Junctions

Mathematics Subject Classification 74K20 · 74B10 · 49J45

1 Introduction

Thin-walled structures are widely used in many engineering fields, such as aeronautic and
aerospace structures, vessels, civil and mechanical constructions. Since the widespread use
of such structures, many models, based on a priori kinematical assumptions, have been
proposed in the history of Mechanics, in order to predict the behavior of loaded structures.
Even though these models have been used successfully by generations of practitioners, they
generally rely on heuristic assumptions. From a theoretical point of view, as reasonable
as these assumptions may sound, they are hypotheses that jeopardize the validity of the
mechanical models.

Over the last few years, attention has been paid to the rigorous justification of the classical
mechanical theories and models: beams, shells, plates, etc. The underlying idea is to study
the asymptotic behavior of actual three-dimensional variational formulations and to let some
“smallness parameter” go to zero, so to fetch the essential features of the primitive problem
in the resulting “simplified” asymptotic one.
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A way to justify the mechanical models is via �-convergence, a variational convergence
notion appeared for the first time in a the seminal work by De Giorgi and Franzoni [12]. The
underlying idea is to replace the functional ruling the actual problem at hand by a new one,
more handy, such that it may capture the major features of the primitive problem. More in
detail, �-convergence derives the aimed asymptotic functional in such a way to achieve the
convergence of minima and minimizers of the primitive problem and of the asymptotic one.
The reader is addressed, for instance, to the monographs by Dal Maso and Braides [5, 9] for
an exhaustive exposition of the topic.

Many interesting results have been obtained in Mechanics by �-convergence. One of the
first works are by Acerbi et al. [1] and by Anzellotti et al. [3]. In the former, the asymptotic
behavior of a string is derived in the framework of non-linear elasticity. In the latter, it is
studied a plate and a beam in the context of linearized elasticity. These works represent a
milestone, since they developed a fundamental modus operandi for the following works.
�-convergence has been successfully used to justify models for beams and plates in linear
and non-linear elasticity, in isotropic and anisotropic elasticity, also under residual stress
condition [10, 11, 13, 14, 17, 28, 31–33]. More complex theories have been justified by
�-convergence, such as the Vlassov theory of thin-walled beams and the well-known Bredt
formulæ for torsion [15].

In model dimension reduction, a special chapter is reserved to junctions between bodies,
possibly having different asymptotic dimensions: for instance, the asymptotic study of the
junction of a 3D-body with a 2D-body. Several contributes can be counted [6, 8, 20, 21, 23,
24]. More recently, [18, 19, 26, 29] have studied the junction between multi-domain bodies
using classical variational techniques.

Remarkably, among the works about the limit models of joined plates and beams, there
is a lack of asymptotic models of stiffened plates. At the best of the authors’ knowledge,
there is one work in the literature facing this problem of practical interest [4]. However,
in [4], the author considers only a special case, since the beam cross-section and the plate
thickness scale with the same order of magnitude. Moreover, the limit behavior is studied
without taking into account the torsion angle of the stiffener, and over the junction region
the plate and the stiffener assume different elastic moduli, which is physically implausible.

Hereby, we face the problem of deriving the asymptotic model of a stiffened plate in
the framework of linear isotropic elasticity, as the plate thickness and the beam cross-
section go to zero, possibly with different scaling velocities. Moreover, the torsion angle
limit derivation is deeply discussed. The variational convergence is obtained in the sense of
�-convergence.

This paper is organized as follows. Section 2 introduces the notation adopted in this work,
together with the principal functional spaces. Section 3 introduces the setting of the varia-
tional problem, whilst Sect. 4 introduces the mapping from the three-dimensional structure
to a family of thin domains, together with two compactness results. Section 5 is dedicated to
the limit joining conditions of displacements and stiffener cross-sectional rotation angle. In
Sect. 6 the expression of the limit energy is obtained and the main �-convergence theorem
is proved. Finally, Sect. 7 shows that the convergence of minima and minimizers is actually
strong.

2 Notation

In this paper, we work in the real Euclidean three-dimensional space R
3. We use upper-case

bold letters to indicate tensors and lower-case bold letters to indicate vectors. The Euclidean



Linear Models of a Stiffened Plate via �-Convergence 239

(Frobenius) product is indicated with · and the corresponding induced norm by | · |. We
denote by Sym, Skw the sets of linear symmetric and antisymmetric transformations from
R

3 into R
3, respectively. tr(·) denotes the trace operator, whilst diag(a, b, c) is the diagonal

matrix with elements a, b, c on the principal diagonal. R+ denotes the set of all strictly
positive real numbers, while N denotes non-negative integers.

Let S ⊂ R
n (n ∈ {1,2,3}) be open. For any function v : S → R

3, we shall denote its
gradient by

Hv := ∇v,

and its unique decomposition in a symmetric and skew-symmetric part by Hv = Ev + Wv,
where

Ev := ∇v + ∇vT

2
, Wv := ∇v − ∇vT

2
.

We denote by

L2(S,Rq) := {
v : S →R

q : ‖v‖L2(S,Rq ) < ∞}

the Banach space of (equivalence classes of) Lebesgue-integrable functions on S with values
in R

q (q ∈N \ {0}), where

‖v‖L2(S,Rq ) :=
⎛

⎝
ˆ

S

|v|2
⎞

⎠

1/2

.

The corresponding Sobolev spaces of functions on S with values in R
q are the Banach

spaces defined as follows (we will need only the cases l ∈ {1,2}):

Wl,2(S,Rq) := {
v : S →R

q : v ∈ L2(S,Rq),∇αv ∈ L2(S,Rnα×q)∀α(∈ N) ≤ l
}
.

They are endowed with the norm

‖v‖2
Wl,2(S,Rq )

:= ‖v‖2
L2(S,Rq )

+
l∑

α=1

‖∇αv‖2
L2(S,Rnα×q )

.

Note that the (high-order) gradients ∇α(·) shall be understood in the sense of distribu-
tions.

We shall furthermore consider the Sobolev’ space

W
1,2
0 (S,Rq) := {v ∈ W 1,2(S,Rq) : v = 0 in ∂DS}

as the set of functions belonging to W 1,2(S,Rq) that assume value zero on a certain subset
∂DS of the boundary of S. In this paper, we will make use of standard results concerning
Sobolev’ spaces. The reader is addressed to the classical monograph by Adams [2] or to the
more recent book by Leoni [25].

If r ∈ N∪ {∞}, then Cr(S,Rq) denotes the space of r-times continuously differentiable
functions on S with values in R

q , and C∞
0 (S,Rq) denotes the space of functions belonging

to C∞(S,Rq) that assume value zero in a neighborhood of the boundary of S.
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We will refrain to specify the codomain R in the notation of the functional spaces: for
instance, we will simply write W 1,2(S) instead of W 1,2(S,R), and so forth.

We will denote by W−1,2 the dual space of W
1,2
0 . We recall that the following compact

embeddings hold C∞
0 ↪→ W

1,2
0 ↪→ L2 ↪→ W−1,2, and that, if the operator T ∈ W−1,2,

‖T ‖W−1,2 := sup
x∈W

1,2
0 , x �=0

|< T,x >|
‖x‖

W
1,2
0

,

where < T,x > denotes the dual pairing W−1,2 × W
1,2
0 .

If not specified, we adopt Einstein’ summation convention for indices. Indices α, β , γ ,
δ take values in the set {1,2}, indices a, b, c, d in the set {2,3}, and indices i, j in the
set {1,2,3}. With the notation A � B we mean that there exists a constant C > 0 such
that A ≤ C B . Such constant may vary line to line and is independent from the smallness
parameter ε (see after). As it is usual, we denote by −́

S
f (·)dx the average value of the

function f (·) over its integration domain, i.e., 1
meas(S)

´
S
f (·)dx, meas(S) being the Lebesgue

measure of the set S. We denote the strong convergence (convergence in norm) with the
symbol →, whilst the weak convergence will be denoted by ⇀. Finally, with the symbol
x ↓ y, we mean that x is approaching y from above (i.e., x → y+).

3 General Setting

Let us introduce the real parameter ε that takes values in a sequence of positive num-
bers converging to zero. With reference to Fig. 1, we introduce in R

3 an orthonormal ab-
solute reference system, denoted by (O;x1, x2, x3). We consider a plate-like body (here-
after, with a slightly abuse of language, just plate) occupying the region �̂ε := (−L,L) ×
(−L,L) × ε(0, T ) and a blade-like stiffener body (hereafter, with a slightly abuse of lan-
guage, just stiffener) occupying the region �̌ε := (−L,L) × εw(−W,W) × εh(0,H), being
L,T ,H,w, h ∈R

+. Moreover, let �Jε := �̂ε ∩ �̌ε = (−L,L) × εw(−W,W) × ε(0, T ) be
the overlapping region, that hereafter we refer to as junction region.

We assume that h < 1 and that W < L. The first assumption implies that the height of
the stiffener is larger than the thickness of the plate (even asymptotically), while the second
assumption is simply made to assure that the plate is larger than the width, εwW , of the
stiffener even in the case w = 0. The domain �ε := �̂ε ∪ �̌ε is depicted in Fig. 1. We shall
consider the body clamped at x1 = L, i.e., the displacement field is null in all points with
coordinate x1 equal to L (hence ∂DS := �ε ∩ {x1 = L}): this condition will be hereafter
referred to as boundary condition.

In what follows, we denote the cross-section of the stiffener by ω̌ε := εw(−W,W) ×
εh(0,H) and the mid-plane of the plate as ω̂ := (−L,L) × (−L,L).

The stored-energy functional W̃ε : �ε → R
+ is defined by

W̃ε(v) := 1

2

ˆ

�ε

C [Ev] · Ev dx, (1)

where C is a fourth-order elasticity tensor, positive definite and having the usual major and
minor symmetries. In particular, this implies that there exists a positive constant μ such that

C[A] · A ≥ μ|A|2, ∀A ∈ Sym . (2)



Linear Models of a Stiffened Plate via �-Convergence 241

Fig. 1 Geometry of the real problem

The functional in (1) can be decomposed into the sum of two contributions

W̃ε(v) = 1

2

ˆ

�̂ε

χε(x)C [Ev] · Ev dx + 1

2

ˆ

�̌ε

χε(x)C [Ev] · Ev dx,

where χε(x) : �ε → { 1
2 ,1} is defined by

χε(x) :=
{

1
2 , if x ∈ �Jε,

1, otherwise.

The function χε allows to associate half of the energy of the junction region to the stiffener
and the other half to the plate, or, more simply, it avoids to consider the energy of the region
�Jε twice.

We remark that we are interested in small deformations, and we give up capturing insta-
bilities, despite their importance for thin-walled structures in practical applications.

4 The Scaled Problem

As it is usual in this kind of problems, we change variables and define the energies over
fixed domains (see [1, 7]). For this purpose, we set

�̂ := �̂1, �̌ := �̌1, � := �1, �J := �J1, ω̌ := ω̌1.

For the plate, we introduce the scaling mapping q̂ε : �̂ → �̂ε defined by q̂ε(x1, x2, x3) :=
(x1, x2, εx3). After setting Q̂ε := ∇q̂ε = diag(1,1, ε), we define ûε : � →R

3 by

ûε := Q̂εu ◦ q̂ε, (3)
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for every function u : �ε → R
3. Taking derivatives, one finds the scaled gradient for the

plate

Ĥεûε := (Hu) ◦ q̂ε = Q̂−1
ε HûεQ̂−1

ε =

⎛

⎜
⎜⎜
⎜
⎝

(Hûε)11 (Hûε)12
(Hûε)13

ε

(Hûε)21 (Hûε)22
(Hûε)23

ε

(Hûε)31
ε

(Hûε)32
ε

(Hûε)33
ε2

⎞

⎟
⎟⎟
⎟
⎠

, (4)

and the scaled strain for the plate

Êεûε := (Eu) ◦ q̂ε = Q̂−1
ε EûεQ̂−1

ε . (5)

Similarly, for the stiffener, we introduce the scaling mapping q̌ε : �̌ → �̌ε defined by
q̌ε(x1, x2, x3) := (x1, ε

wx2, ε
hx3), the tensor Q̌ε := ∇q̌ε = diag(1, εw, εh), and the scaled

displacement ǔε : � →R
3 defined as

ǔε := Q̌εu ◦ q̌ε. (6)

The scaled gradient for the stiffener is defined by

Ȟεǔε := (Hu) ◦ q̌ε = Q̌−1
ε HǔεQ̌−1

ε =

⎛

⎜⎜⎜⎜
⎝

(Hǔε)11
(Hǔε)12

εw
(Hǔε)13

εh

(Hǔε)21
εw

(Hǔε)22
ε2w

(Hǔε)23
εw+h

(Hǔε)31
εh

(Hǔε)32
εw+h

(Hǔε)33
ε2h

⎞

⎟⎟⎟⎟
⎠

, (7)

so that the scaled strain for the stiffener reads

Ěεǔε := (Eu) ◦ q̌ε = Q̌−1
ε EǔεQ̌−1

ε . (8)

By changing variables, we can rewrite the stored energy over the fixed domains, and we
further divide it by ε. Note that this operation does not affect the minimizer of the problem.
We obtain

Wε(ûε, ǔε) := W̃ε

ε
= 1

2

ˆ

�̂

χ̂εC

[
Êεûε

]
· Êεûεdx + 1

2

ˆ

�̌

χ̌εC

[
εkĚεǔε

]
· εkĚεǔεdx,

=: Ŵε(ûε) + W̌ε(ε
kǔε),

(9)

where we have set χ̂ε := χε ◦ q̂ε , χ̌ε := χε ◦ q̌ε and

2k := w + h − 1.

We can interpret 2k as the scaling exponent of an asymptotic characteristic size of the struc-
ture, defined by the asymptotic cross-sectional area of the stiffener (i.e., εh+w) divided by
the asymptotic thickness of the plate (i.e., ε). We further anticipate that k and h will play a
fundamental role in what follows.

We now prove the compactness of some properly rescaled sequences of displacements,
both for the plate and the stiffener. The limit displacement fields will be of Kirchhoff-Love
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and Bernoulli-Navier type. The former is defined by

KL0(�̂ε) :=
{

v ∈ W
1,2
0 (�̂ε,R

3) : ∃ ξ̂α ∈ W
1,2
0 (ω̂),

∃ ξ̂3 ∈ W
2,2
0 (ω̂), vα = ξ̂α − x3∂αξ̂3, v3 = ξ̂3

}
,

the latter by

BN0(�̌ε) :=
{

v ∈ W
1,2
0 (�̌ε,R

3) : ∃ ξ̌1 ∈ W
1,2
0 ((−L,L)),

∃ ξ̌a ∈ W
2,2
0 ((−L,L)), v1 = ξ̌1 − x2∂1ξ̌2 − x3∂1ξ̌3, va = ξ̌a

}
.

Lemma 1 Let {ûε} ⊂ W
1,2
0 (�̂,R3) be a sequence such that supε Ŵε(ûε) < ∞. Then, there

exist a subsequence (not relabeled) {ûε} and a û ∈ KL0(�̂) such that ûε ⇀ û in W 1,2(�̂,R3).
We denote by Ê the limit of Êεûε in the weak topology of L2(�̂,R3×3).

Proof Since C is positive-definite, from inequality (2) and from Korn inequality, it follows
that

sup
ε

∥∥ûε

∥∥2

W1,2(�̂,R3)
� sup

ε

∥∥Eûε

∥∥2

L2(�̂,R3×3)
� sup

ε

∥∥∥Êεûε

∥∥∥
2

L2(�̂,R3×3)
< ∞.

Hence, up to a subsequence, ûε ⇀ û for a certain û ∈ W
1,2
0 (�̂,R3). From (5), we have that

∥∥(Eûε)α3

∥∥
L2(�̂)

=
∥∥∥ε(Êεûε)α3

∥∥∥
L2(�̂)

� ε and
∥∥(Eûε)33

∥∥
L2(�̂)

=
∥∥∥ε2(Êεûε)33

∥∥∥
L2(�̂)

� ε2. As

a consequence, we deduce that

∂3ûαε + ∂αû3ε → ∂3ûα + ∂αû3 = 0, in L2(�̂) (not summed on α),

∂3û3ε → ∂3û3 = 0, in L2(�̂).

Hence, û ∈ KL0(�̂) as follows by integration. We conclude the lemma by noticing that
Êεûε ⇀ Ê in L2(�̂,R3×3) for some Ê in L2(�̂,R3×3). �

Lemma 2 Let {εkǔε} ⊂ W
1,2
0 (�̌,R3) be a sequence such that supε W̌ε(ε

kǔε) < ∞; then,
there exist a subsequence (not relabeled) {εkǔε} and a ǔ ∈ BN0(�̌) such that εkǔε ⇀ ǔ
in W 1,2(�̌,R3). We denote by Ě the limit of εkĚεǔε in the weak topology of L2(�̌,R3×3).

Proof The proof is similar to that of Lemma 1. Since C is positive-definite and from Korn
inequality, it follows that

sup
ε

∥∥εkǔε

∥∥2

W1,2(�̌,R3)
� sup

ε

∥∥εkEǔε

∥∥2

L2(�̌,R3×3)
� sup

ε

∥∥∥εkĚεǔε

∥∥∥
2

L2(�̌,R3×3)
< ∞.

Hence, up to a subsequence, εkǔε ⇀ ǔ for a certain ǔ ∈ W
1,2
0 (�̌,R3). Since {(εkEǔε

)
ij
} for

(i, j) �= (1,1) converge to zero in L2(�̌), we deduce that

εk
(
∂aǔ1ε + ∂1ǔaε

)→ ∂aǔ1 + ∂1ǔa = 0, in L2(�̌) (not summed on a),

εk
(
∂2ǔ3ε + ∂3ǔ2ε

)→ ∂2ǔ3 + ∂3ǔ2 = 0, in L2(�̌),

εk∂aǔaε → ∂aǔa = 0, in L2(�̌) (not summed on a).
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Hence, ǔ ∈ BN0(�̌) as follows by integration. We conclude the lemma by noticing that
εkĚεǔε ⇀ Ě in L2(�̌,R3×3) for some Ě in L2(�̌,R3×3). �

5 The Junction Conditions

The present section is devoted to establish the relationship existing between the limit fields
û and ǔ. This is carried out by studying the junction conditions on �J .

5.1 The Junction Conditions for Displacements

From (3) and (6), the following equality must be satisfied for the identity of û and ǔ in �Jε :

Q̂−1
ε ûε ◦ q̂−1

ε = Q̌−1
ε ǔε ◦ q̌−1

ε in �Jε,

which may be rewritten more explicitly for all (x1, x2, x3) ∈ �J as

εkû1ε(x1, ε
wx2, x3) = εkǔ1ε(x1, x2, ε

1−hx3),

εk+wû2ε(x1, ε
wx2, x3) = εkǔ2ε(x1, x2, ε

1−hx3),

εkû3ε(x1, ε
wx2, x3) = εk+1−hǔ3ε(x1, x2, ε

1−hx3).

(10)

It is noteworthy that, in this way, the junction region, which originally depends on ε, has
been transformed into the fixed domain �J .

The following two technical lemmata express an approximation of the trace operator;
similar results can be found in [15, 24]. We recall that h < 1.

Lemma 3 Let w ∈ W 1,2(�J ) and wε ∈ W 1,2(�J ) be a sequence such that wε ⇀ w in
W 1,2(�J ). Then, the sequence of functions

(x1, x2) �→ −
T̂

0

wε(x1, x2, ε
1−hx3)dx3

converges in the norm of L2((−L,L) × (−W,W)) to the trace of the function w on
(−L,L) × (−W,W) × {0}. The trace will be denoted simply by w(x1, x2,0).

Proof We have:

L̂

−L

Ŵ

−W

∣∣∣∣∣∣
−
T̂

0

wε(x1, x2, ε
1−hx3) − wε(x1, x2,0)dx3

∣∣∣∣∣∣

2

dx2dx1

=
L̂

−L

Ŵ

−W

∣∣∣∣∣∣∣
−

ε1−hTˆ

0

wε(x1, x2, t) − wε(x1, x2,0)dt

∣∣∣∣∣∣∣

2

dx2dx1

=
L̂

−L

Ŵ

−W

∣∣∣∣∣∣∣
−

ε1−hTˆ

0

tˆ

0

∂3wε(x1, x2, s)dsdt

∣∣∣∣∣∣∣

2

dx2dx1



Linear Models of a Stiffened Plate via �-Convergence 245

≤
Lˆ

−L

Ŵ

−W

−
ε1−hTˆ

0

∣∣
∣∣
∣∣

tˆ

0

∂3wε(x1, x2, s)ds

∣∣
∣∣
∣∣

2

dtdx2dx1

≤
Lˆ

−L

Ŵ

−W

−
ε1−hTˆ

0

t

tˆ

0

|∂3wε(x1, x2, s)|2 dsdtdx2dx1

� ε1−h

L̂

−L

Ŵ

−W

T̂

0

|∂3wε(x1, x2, s)|2 dsdx2dx1 � ε1−h,

where we have used a change of variable, the Fundamental Theorem of Calculus, and the
Cauchy-Schwartz inequality (twice). The thesis follows from the continuity of the trace
operator for functions in W 1,2 (see, for instance, [2, Theorem 5.36]) and from the general
assumption h < 1. �

With a similar argument, one can prove the following counterpart for the stiffener of the
previous lemma.

Lemma 4 Let w ∈ W 1,2(�J ) and wε ∈ W 1,2(�J ) be a sequence such that wε ⇀ w in
W 1,2(�J ). Then, the sequence of functions

(x1, x3) �→ −
Ŵ

−W

wε(x1, ε
wx2, x3)dx2

converges in the norm L2((−L,L) × (0, T )) to the trace of the function w on (−L,L) ×
{0} × (0, T ). The trace will be denoted simply by w(x1,0, x3).

The limit junction conditions for the displacements are derived in the next result.

Lemma 5 The following equalities hold for almost every x1 ∈ (−L,L):

�̂1

[
ξ̂1(x1,0) − T

2
∂1ξ̂3(x1,0)

]
= �̌1ξ̌1(x1),

�̂2

[
ξ̂2(x1,0) − T

2
∂2ξ̂3(x1,0)

]
= �̌2ξ̌2(x1),

�̂3ξ̂3(x1,0) = �̌3ξ̌3(x1),

(11)

where �̂i : (0,1) ×R
+ → {0,1} and �̌i : (0,1) ×R

+ → {0,1} are defined as follows:

�̂1 =
{

0, if k > 0,

1, if k ≤ 0,
�̌1 =

{
0, if k < 0,

1, if k ≥ 0,

�̂2 =
{

0, if k + w > 0,

1, if k + w ≤ 0,
�̌2 =

{
0, if k + w < 0,

1, if k + w ≥ 0,

�̂3 =
{

0, if k + h − 1 > 0,

1, if k + h − 1 ≤ 0,
�̌3 =

{
0, if k + h − 1 < 0,

1, if k + h − 1 ≥ 0.
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Proof We provide a detailed proof for the first component of the displacement, the others
being similar. We consider the first of (10) averaged with respect to x2 and x3:

εk −
T̂

0

−
Ŵ

−W

û1ε(x1, ε
wx2, x3)dx2dx3 = −

Ŵ

−W

−
T̂

0

εkǔ1ε(x1, x2, ε
1−hx3)dx3dx2. (12)

Since εkǔ1ε ⇀ ǔ1 in W 1,2(�J ), by Lemma 3 it follows that

−
T̂

0

εkǔ1ε(·, ·, ε1−hx3)dx3 → ǔ1(·, ·,0) in L2((−L,L) × (−W,W)),

from which we deduce that

−
Ŵ

−W

−
T̂

0

εkǔ1ε(·, x2, ε
1−hx3)dx3dx2 → −

Ŵ

−W

ǔ1(·, x2,0)dx2 in L2((−L,L)). (13)

Similarly, since û1ε ⇀ û1 in W 1,2(�J ), by Lemma 4 we find that

−
T̂

0

−
Ŵ

−W

û1ε(·, εwx2, x3)dx2dx3 → −
T̂

0

û1(·,0, x3)dx3 in L2((−L,L)). (14)

By passing to the limit in (12), taking into account (13) and (14), we obtain

0 = −
Ŵ

−W

ǔ1(·, x2,0)dx2 for k > 0,

−
T̂

0

û1(·,0, x3)dx3 = −
Ŵ

−W

ǔ1(·, x2,0)dx2 for k = 0,

−
T̂

0

û1(·,0, x3)dx3 = 0 for k < 0.

(15)

Since

−
Ŵ

−W

ǔ1(x1, x2,0)dx2 = −
Ŵ

−W

(
ξ̌1(x1) − x2∂1ξ̌2(x1)

)
dx2 = ξ̌1(x1),

−
T̂

0

û1(x1,0, x3)dx3 = −
T̂

0

(
ξ̂1(x1,0) − x3∂1ξ̂3(x1,0)

)
dx3 = ξ̂1(x1,0) − T

2
∂1ξ̂3(x1,0),

equation (15) implies the first identity of (11).
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For the other components of the displacement, from (10), we find:

εk+w −
T̂

0

−
Ŵ

−W

û2ε(x1, ε
wx2, x3)dx2dx3 = −

Ŵ

−W

−
T̂

0

εkǔ2ε(x1, x2, ε
1−hx3)dx2dx3,

εk+h−1 −
T̂

0

−
Ŵ

−W

û3ε(x1, ε
wx2, x3)dx2dx3 = −

Ŵ

−W

−
T̂

0

εkǔ3ε(x1, x2, ε
1−hx3)dx2dx3,

and arguing as above we complete the proof. �

5.2 The Junction Conditions for the Torsion Angle

This Section is dedicated to establish a further relationship existing between the limit fields,
involving the torsion angle of the stiffener. Hereafter, M := max{w,h}, m := min{w,h}. As
a trivial consequence, M ≥ m, with equality holding if and only if h = w.

We start with a scaled Korn-type inequality.

Lemma 6 Let u ∈ W 1,2(�̌ε,R
3). Then, we have

‖u‖W1,2(�̌ε,R3) �
1

εM
‖Eu‖L2(�̌ε,R3×3) .

Proof We use an argument from [13, Theorem 3.2]. Decompose �̌ε in parallelepipeds hav-
ing cross-section εM × εM . For each of them, apply the scaled Korn inequality of the type
in [3, Theorem A.1.] (see also [22, Theorem 2]). Then, summing up, the thesis follows. �

Lemma 7 With the assumptions and the notation of Lemma 2, we have
∥∥∥εk+MȞεǔε

∥∥∥
L2(�̌,R3×3)

�
∥∥∥εkĚεǔε

∥∥∥
L2(�̌,R3×3)

< ∞. (16)

In particular, up to a subsequence,

εk+MȞεǔε ⇀ Ȟ in L2(�̌,R3×3),

where Ȟ ∈ L2(�̌,Skw(R3×3)) has components

Ȟ12 =
{

∂2ǔ1, if M = w,

0, otherwise,
Ȟ13 =

{
∂3ǔ1, if M = h,

0, otherwise,
Ȟ32 = ϑ,

with ϑ a function in L2(�̌).

Proof The proof of (16) follows immediately by changing variables and scaling into the
fixed domain the result of Lemma 6, and by recalling Lemma 2. From this bound we deduce
that there exists a subsequence, not relabeled, of εk+MȞεǔε and a Ȟ ∈ L2(�̌,R3×3), such
that

εk+MȞεǔε ⇀ Ȟ in L2(�̌,R3×3).
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Since εM
(
εkĚεǔε

)
→ 0 in L2(�̌,R3×3), it follows that εk+MW̌εǔε ⇀ Ȟ in L2(�̌,R3×3).

Accordingly, Ȟ is a skew-symmetric tensor field. Moreover, from the definition (7) and the
convergence of εkǔε ⇀ ǔ in W 1,2(�̌,R3), we deduce that

εk+M
(

Ȟεǔε

)

12
= εk+M−w∂2ǔ1ε ⇀

{
∂2ǔ1, if M = w,

0, otherwise,

εk+M
(

Ȟεǔε

)

13
= εk+M−h∂3ǔ1ε ⇀

{
∂3ǔ1, if M = h,

0, otherwise.

(17)

The proof is completed by setting ϑ := Ȟ32. �

The function ϑ defined in Lemma 7 can be interpreted as the rotation angle, or torsion
angle, of the stiffener cross-section around the longitudinal axis x1. It is noteworthy that if
w = h the first two sequences of (17) have non-trivial limits simultaneously.

We shall now characterize the torsion angle ϑ . The idea is to show that the cross-sectional
displacement field of the stiffener can be approximated by a rigid one. To do so, let us
introduce the set of infinitesimal rigid displacements on ω̌:

R(ω̌) := {r ∈ L2(ω̌,R2) : ∃ϕ ∈R, c ∈ R
2, ra(x2, x3) = Ebaxbϕ + ca},

where E is the Ricci symbol (E22 = E33 = 0, E23 = −E32 = 1). Then, R(ω̌) is a finite closed
subspace of W 1,2(ω̌,R2). We indicate with P the projection of L2(ω̌,R2) onto R(ω̌). It
can be shown (see [30, Theorem 2.5]) that a two-dimensional Korn inequality holds for all
functions w ∈ W 1,2(ω̌,R2):

‖w − Pw‖W1,2(ω̌,R2) � ‖Ew‖L2(ω̌,R2×2) . (18)

Denoting with (x2(G), x3(G)) = (0, H
2 ) the coordinates of the centre of mass of ω̌, we define

(with summation convention and a, b, c, d ∈ {2,3}):

ta(ǔε) := −
ˆ

ω̌

ǔaεdx2dx3, IG(ω̌) :=
ˆ

ω̌

(x2 − x2(G))2 + (x3 − x3(G))2dx2dx3,

ϑε(x1) := 1

IG

ˆ

ω̌

Ecd (xc − xc(G)) ǔdε dx2 dx3,

(
Pǔε

)
a
:= ta(ǔε) + Eba(xb − xb(G))ϑε(x1).

(19)

Lemma 8 Let εkǔε be a sequence satisfying the assumptions of Lemma 7. Then,

∥∥εk
(
ǔε − Pǔε

)∥∥
L2((−L,L),W1,2(ω̌,R2))

� ε2m.

Proof Taking into account (18) and (8), we have

L̂

−L

∥∥εk
(
ǔε − Pǔε

)∥∥2

W1,2(ω̌,R2)
dx1 �

Lˆ

−L

∑

ab

∥∥εk
(
Eǔε

)
ab

∥∥2

L2(ω̌)
dx1
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�
∑

ab

∥
∥∥εk(Q̌εĚεǔεQ̌ε)ab

∥
∥∥

2

L2(�̌)

�
∥∥
∥εk+2w(Ěεǔε)22

∥∥
∥

2

L2(�̌)
+
∥∥
∥εk+2h(Ěεǔε)33

∥∥
∥

2

L2(�̌)

+
∥
∥∥εk+w+h(Ěεǔε)23

∥
∥∥

2

L2(�̌)

� ε4m + ε4M + ε2(M+m)

� ε4m,

where we have used the fact that one among w and h equals M (while the other, by defini-
tion, equals m), and the fact that ε2M ≤ εM+m ≤ ε2m. �

Lemma 9 With the assumptions and notation of Lemmata 7 and 8, we have

1. εk−mϑε ⇀ ϑ in L2(�̌);
2. ϑ is a function of x1 only;
3. ϑ ∈ W

1,2
0 ((−L,L)),

where ϑ and ϑε are defined in (17) and (19), respectively.

Proof From Lemma 8, we have
∥∥εk∂a(ǔε − Pǔε)

∥∥
L2(�̌)

� ε2m. (20)

Since (WPǔε)23 = −ϑε by (19), it follows that
∥∥εkϑε + εk

(
Wǔε

)
23

∥∥
L2(�̌)

= ∥∥εk
(
W
(
ǔε − Pǔε

))
23

∥∥
L2(�̌)

� ε2m,

thanks to Lemma 8.
By using the fact that M + m = h + w, we can rewrite this inequality as

∥∥∥εkϑε + εk+M+m
(

W̌εǔε

)

23

∥∥∥
L2(�̌)

� ε2m,

from which we deduce
∥∥∥εk−mϑε + εk+M

(
W̌εǔε

)

23

∥∥∥
L2(�̌)

� εm. Recalling (17), we conclude

that εk−mϑε ⇀ ϑ in L2(�̌), thus proving claim 1.
Claim 2 follows from claim 1, since ϑε , by definition, does not depend on x2 and x3.
To prove claim 3 we consider a test function ψ ∈ C∞

0 (ω̌), such that
´

ω̌
ψdx2dx3 =

− IG(ω̌)

2 . Taking into account (19), we find (with summation convention):

IG(ω̌)εk−mϑε = −2εk−mϑε

ˆ

ω̌

ψdx2dx3 = −ϑεε
k−m

ˆ

ω̌

ψ∂a (xa − xa(G))dx2dx3

= ϑεε
k−m

ˆ

ω̌

∂aψ (xa − xa(G))dx2dx3

= εk−m

ˆ

ω̌

Eac∂aψ (Ebc (xb − xb(G))ϑε)dx2dx3
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= εk−m

ˆ

ω̌

Eac∂aψ
(
(Pǔε)c − tc

)
dx2dx3

= εk−m

ˆ

ω̌

Eac∂aψ(Pǔε)cdx2dx3

− εk−m

ˆ

ω̌

Eac∂aψ

⎛

⎝−
ˆ

ω̌

ǔcεdx2dx3

⎞

⎠dx2dx3

= εk−m

ˆ

ω̌

Eac∂aψ(Pǔε)cdx2dx3

= εk−m

ˆ

ω̌

Eac∂aψǔcεdx2dx3 − εk−m

ˆ

ω̌

Eac∂aψ
(
ǔε − Pǔε

)
c

dx2dx3.

Setting ϑ̃ε := εk−m

IG

´
ω̌

Eac∂aψǔcεdx2dx3 and taking into account inequality (20), we deduce

εk−mϑε − ϑ̃ε → 0 in L2(�̌). (21)

We now show that ∂1ϑ̃ε is bounded in L2. By definition, Eab∂a∂bψ = 0 everywhere in ω̌ and
∂aψ = 0 on ∂ω̌; therefore, we have

IG∂1ϑ̃ε = εk−m

ˆ

ω̌

Eac∂aψ∂1ǔcεdx2dx3

= 2εk−m

ˆ

ω̌

Eac∂aψ(Eǔε)c1dx2dx3 − εk−m

ˆ

ω̌

Eac∂aψ∂cǔ1εdx2dx3

= 2εk−m

ˆ

ω̌

Eac∂aψ(Eǔε)c1dx2dx3

− εk−m

ˆ

ω̌

∂c

(
Eac∂aψǔ1ε

)
dx2dx3 + εk−m

ˆ

ω̌

Eac∂a∂cψǔ1εdx2dx3

= 2εk−m

ˆ

ω̌

Eac∂aψ(Eǔε)c1dx2dx3

− εk−m

ˆ

∂ω̌

Eac∂aψncǔ1εds + εk−m

ˆ

ω̌

Eac∂a∂cψǔ1εdx2dx3

= 2εk−m

ˆ

ω̌

Eac∂aψ(Eǔε)c1dx2dx3

= 2εh−m

ˆ

ω̌

∂2ψεk(Ěεǔε)31dx2dx3 − 2εw−m

ˆ

ω̌

∂3ψεk(Ěεǔε)21dx2dx3,
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since, by (8), we have (Eǔε)21 = εw(Ěεǔε)21 and (Eǔε)31 = εh(Ěεǔε)31. Hence, by noticing
that one among w or h equals m, the remaining one being equal to M , recalling Lemma 2
we deduce that ∂1ϑ̃ε is bounded in L2((−L,L)). From (21) and Lemma 9 we conclude that
ϑ̃ε ⇀ ϑ in W 1,2(�̌). Since, additionally, ϑ̃ε(L) = 0, we conclude that ϑ̃ ∈ W

1,2
0 ((−L,L)),

and hence claim 3 is proved. �

Finally, we derive the last junction condition involving the torsion angle ϑ .

Lemma 10 With the assumptions and notation of Lemma 9, the following equality holds for
almost every x1 ∈ (−L,L)

�̂ϑ∂2ξ̂3(x1,0) = �̌ϑϑ(x1), (22)

where the functions �̂ϑ : (0,1)×R
+ → {0,1} and �̌ϑ : (0,1)×R

+ → {0,1} are defined by

�̂ϑ :=
{

0, if k + M − 1 > 0,

1, if k + M − 1 ≤ 0,
�̌ϑ :=

{
0, if k + M − 1 < 0,

1, if k + M − 1 ≥ 0.

Proof Taking the derivative with respect to x3 of the second of (10), one finds

εk+w∂3û2ε(x1, ε
wx2, x3) = εk+1−h∂3ǔ2ε(x1, x2, ε

1−hx3) ∀ (x1, x2, x3) ∈ �J . (23)

By multiplying each member by ε−m, one obtains

εk+w−m∂3û2ε(x1, ε
wx2, x3) = εk+1−h−m∂3ǔ2ε(x1, x2, ε

1−hx3) ∀ (x1, x2, x3) ∈ �J ,

which can be rearranged as

εk+w−m∂3û2ε(x1, ε
wx2, x3)

= εk+1−h+M2(Ěεǔε)32(x1, x2, ε
1−hx3) − εk+1−h−m∂2ǔ3ε(x1, x2, ε

1−hx3) (24)

for every (x1, x2, x3) ∈ �J . In deriving (24), we have used the identity (Ěǔε)32 =
εh+w(Ěεǔε)32 (see (8)) and the identity k + 1 − h − m + h + w = k + 1 − h + M since, by
definition, h + w = M + m.

We now use some arguments that can be found in the monograph by Le Dret [24, Sect. 4].
From Lemma 1, we know that ∂3û2ε is bounded in L2(�̂), which implies that ∂3û2ε is

bounded in L2((−W,W),L2(ω13)), where we have set ω13 := (−L,L) × (0, T ). Similarly,
from Lemma 7 and (17), we know that εk−m∂2ǔ3ε is bounded in L2(�̌), which implies
that εk−m∂2ǔ3ε is bounded in L2((0, T ),L2(ω12)), where we have set ω12 := (−L,L) ×
(−W,W).

We now prove that ∂2∂3û2ε is bounded in L2((−W,W),W−1,2(ω13)) and that
εk−m∂3∂2ǔ3ε is bounded in L2((0, T ),W−1,2(ω12)).

For every function ψ0 ∈ W
1,2
0 (ω13), we have

∣∣< ∂2∂3û2ε,ψ0 >
∣∣=

∣∣∣∣∣∣
−
ˆ

ω13

∂2û2ε∂3ψ0dx1dx3

∣∣∣∣∣∣
≤ ∥∥∂2û2ε

∥∥
L2(ω13)

‖∂3ψ0‖L2(ω13)

=
∥∥∥
(

Êεûε

)

22

∥∥∥
L2(ω13)

‖∂3ψ0‖L2(ω13) �
∥∥∥
(

Êεûε

)

22

∥∥∥
L2(ω13)

‖ψ0‖W
1,2
0 (ω13)
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hence

∥
∥∂2∂3û2ε

∥
∥

W−1,2(ω13)
�
∥
∥∥
(

Êεûε

)

22

∥
∥∥

L2(ω13)

and

sup
ε

Ŵ

−W

∥∥∂2∂3û2ε

∥∥2

W−1,2(ω13)
dx2 � sup

ε

Ŵ

−W

∥∥∥
(

Êεûε

)

22

∥∥∥
2

L2(ω13)
dx2 < ∞,

where we have used the compactness result of Lemma 1. Hence, ∂2∂3û2ε is bounded in
L2((−W,W),W−1,2(ω13)).

Similarly, for every function ψ0 ∈ W
1,2
0 (ω12), we have

∣∣< εk−m∂3∂2ǔ3ε,ψ0 >
∣∣=

∣∣∣∣∣∣
−
ˆ

ω12

εk−m∂3ǔ3ε∂2ψ0dx1dx2

∣∣∣∣∣∣

≤ ∥∥εk−m∂3ǔ3ε

∥∥
L2(ω12)

‖∂2ψ0‖L2(ω12)

= ε−m+2h
∥∥∥εk

(
Ěεǔε

)

33

∥∥∥
L2(ω12)

‖∂2ψ0‖L2(ω12) ,

where we have used (8). Arguing as for ∂2∂3û2ε , and using the compactness result of Lemma
2 we deduce that ∂3∂2ǔ3ε is bounded in L2((0, T ),W−1,2(ω12)), since either −m + 2h = h

(> 0) or −m + 2h = 2M − m (> 0).
To sum up, we have:

∂3û2ε is bounded in W 1,2((−W,W),W−1,2(ω13)),

εk−m∂2ǔ3ε is bounded in W 1,2((0, T ),W−1,2(ω12)). (25)

From [24, Lemma 1.3], we have that W 1,2((−W,W),X), with X any separable Hilbert
space, is continuously embedded in the Holder space C0,1/2((−W,W),X). Thus, the fol-
lowing estimates (which represent a generalization of Lemmata 3 and 4) hold

∥∥∂3û2ε(x1, ε
wx2, x3) − ∂3û2ε(x1,0, x3)

∥∥2

W−1,2(ω13)

� εw
∥∥∂3û2ε

∥∥2

W1,2((−W,W),W−1,2(ω13))
,

∥∥εk−m∂2ǔ3ε(x1, x2, ε
1−hx3) − εk−m∂2ǔ3ε(x1, x2,0)

∥∥2

W−1,2(ω12)

� ε1−h
∥∥εk−m∂2ǔ3ε

∥∥2

W1,2((0,T ),W−1,2(ω12))
. (26)

We multiply both members of (24) by three functions ϕi , whose variable is xi , such that∏3
i=1 ϕi ∈ C∞

0 (�J ), and we integrate over �J :

LHSε := εk+w−m

ˆ

�J

∂3û2ε(x1, ε
wx2, x3)

3∏

i=1

ϕi(xi)dx1dx2dx3
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= 2εM+1−h

ˆ

�J

εk(Ěεǔε)32(x1, x2, ε
1−hx3)

3∏

i=1

ϕi(xi)dx1dx2dx3

−
ˆ

�J

εk+1−h−m∂2ǔ3ε(x1, x2, ε
1−hx3)

3∏

i=1

ϕi(xi)dx1dx2dx3 =: RHSε. (27)

The left-hand side of (27) can be rearranged as

LHSε = −εk+w−m

Ŵ

−W

ϕ2

⎛

⎝
ˆ

ω13

û2ε(x1, ε
wx2, x3)ϕ1∂3ϕ3dx1dx3

⎞

⎠dx2

= −εk+w−m

Ŵ

−W

ϕ2

⎛

⎝
ˆ

ω13

û2ε(x1,0, x3)ϕ1∂3ϕ3dx1dx3

⎞

⎠dx2

+ εk+w−m

Ŵ

−W

ϕ2 < ∂3û2ε(x1, ε
wx2, x3) − ∂3û2ε(x1,0, x3), ϕ1ϕ3 > dx2

from which we deduce that

∣∣∣∣∣∣
LHSε + εk+w−m

Ŵ

−W

ϕ2

⎛

⎝
ˆ

ω13

û2ε(x1,0, x3)ϕ1∂3ϕ3dx1dx3

⎞

⎠dx2

∣∣∣∣∣∣

≤ εk+w−m

Ŵ

−W

|ϕ2| ‖∂3û2ε(x1, ε
wx2, x3) − ∂3û2ε(x1,0, x3)‖W−1,2(ω13)‖ϕ1ϕ3‖W

1,2
0

dx2

� εk+w−m+w/2

where the last inequality follows by using (26) and (25). Thus,

εmLHSε

εk+w
= −

Ŵ

−W

ϕ2

⎛

⎝
ˆ

ω13

û2ε(x1,0, x3)ϕ1∂3ϕ3dx1dx3

⎞

⎠dx2 + O(εw/2)

→ −
Ŵ

−W

ϕ2

⎛

⎝
ˆ

ω13

û2(x1,0, x3)ϕ1∂3ϕ3dx1dx3

⎞

⎠dx2

=
ˆ

�J

−∂2ξ̂3(x1,0)

3∏

i=1

ϕi(xi)dx1dx2dx3, (28)

since ∂3û2(x1,0, x3) = −∂2ξ̂3(x1,0).
The first integral of the right-hand side of (27) is of order O(εM+1−h), by the compactness

result of Lemma 2, while the second integral can be handled as the left-hand side of (27), to
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Fig. 2 Junction conditions
discriminant: displacements and
torsion angle

find

RHSε

ε1−h
= −

T̂

0

ϕ3

⎛

⎝
ˆ

ω12

εk−m∂2ǔ3ε(x1, x2,0)ϕ1ϕ2dx1dx2

⎞

⎠dx3 + O(ε(1−h)/2) + O(εM).

Since, by Lemma 7, εk−m∂2ǔ3ε ⇀ ϑ in L2(�̌) from (25) we deduce that εk−m∂2ǔ3ε ⇀ ϑ

also in H 1((0, T ),W−1,2(ω12)). This in particular implies that

ˆ

ω12

εk−m∂2ǔ3ε(x1, x2,0)ϕ1ϕ2dx1dx2 = < ϕ1 ⊗ ϕ2 ⊗ δ0, ε
k−m∂2ǔ3ε >

→ < ϕ1 ⊗ ϕ2 ⊗ δ0, ϑ >=
ˆ

ω12

ϑ(x1)ϕ1ϕ2dx1dx2

from which we deduce that

RHSε

ε1−h
→ −

T̂

0

ϕ3

ˆ

ω12

ϑ(x1)ϕ1ϕ2dx1dx2dx3 =
ˆ

�J

−ϑ(x1)

3∏

i=1

ϕi(xi)dx1dx2dx3. (29)

Rewriting (27) as

εk+w

εmε1−h

εmLHSε

εk+w
= RHSε

ε1−h
,

noticing that k+w−m+h−1 = k+M −1, and passing to the limit, by taking into account
(28) and (29), we conclude the proof. �

5.3 Different Regimes for the Limit Junction Conditions

Considering (11) and (22), ten different cases are possible for the joining conditions, de-
pending on the values of w and h. The general scenario is graphically depicted in Fig. 2,
whereby the four lines represents the conditions �̂i = �̌i = 1 and �̂ϑ = �̌ϑ = 1. The possible
cases have been labeled with letters from A to J. In particular, we have five areal regions
(A− E) and five segment-like domains (F− J).

Analyzing Fig. 2, it is noteworthy that for no combination of w and h (recall that w and
h are strictly positive) the four joining conditions in (11) and (22) are non-trivial at the same
time. The fictitious intersection, where all joining conditions would be non-trivial at once,
is at point (w = 0, h = 1). This corresponds to a non scaling of the stiffener in direction x2



Linear Models of a Stiffened Plate via �-Convergence 255

and to scaling with the same velocity the plate thickness and the stiffener dimension along
x3. This scaling leads the stiffener to degenerate into a prismatic portion of the plate: thus,
the problem is equivalent to the asymptotic scaling of only a plate.

6 The Limit Stored Energy

In this Section, we characterize the limit stored energy, and we will prove our main �-
convergence result.

To begin, in the next two lemmata we characterize some components of the limit strain.

Lemma 11 With the assumptions and notations of Lemma 1, we have, up to subsequences,
in the weak L2(�̂) topology,

(
Êεûε

)

αβ
⇀

∂αûβ + ∂βûα

2
. (30)

Proof It is sufficient to notice that
(

Êεûε

)

αβ
= ∂αûβε+∂β ûαε

2 and to apply Lemma 1. �

Lemma 12 With the assumptions and notation of Lemma 7 we have, up to subsequences, in
the weak L2(�̌) topology:

εk
(

Ěεǔε

)

11
⇀ ∂1ǔ1, (31)

εk
(

Ěεǔε

)

13
⇀

⎧
⎪⎨

⎪⎩

1
2 (∂3� + x2) ∂1ϑ if M = w = h,

x2∂1ϑ + η13 if M = w �= h,

0 otherwise,

(32)

εk
(

Ěεǔε

)

12
⇀

⎧
⎪⎨

⎪⎩

1
2

(
∂2� − (x3 − H

2 )
)
∂1ϑ if M = w = h,

−(x3 − H
2 )∂1ϑ + η12 if M = h �= w,

0 otherwise,

(33)

where η13 ∈ L2(�̌) is independent of x2, η12 ∈ L2(�̌) is independent of x3, and � ∈
L2((−L,L),W 1,2(ω̌)) is the so-called torsion function, solution of the following boundary
value problem:

⎧
⎪⎨

⎪⎩

�� = 0, in ω̌,

∇� · n = −x2n3 + (x3 − H
2 )n2, on ∂ω̌,

−́
ω̌
�dx2dx3 = 0,

(34)

where n is the unit outer normal to ∂ω̌ and �(·) is the Laplacian operator.

Proof To prove (31), it is sufficient to notice that εk
(

Ěεǔε

)

11
= εk∂1ǔ1ε and to apply

Lemma 2.
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We have already deduced that, up to subsequences, εk
(

Ěεǔε

)

1a
⇀ Ě1a in L2(�̌). To

characterize Ě1a , note that

2∂1

(
W̌εǔε

)

23
= ∂1

(
∂3ǔ2ε

εw+h
− ∂2ǔ3ε

εw+h

)

= ∂3

(
∂1ǔ2ε + ∂2ǔ1ε

εw+h

)
− ∂2

(
∂1ǔ3ε + ∂3ǔε 1

εw+h

)

= 2∂3

(
Ěεǔε

)

12

εh
− 2∂2

(
Ěεǔε

)

13

εw

in the sense of distributions. Hence, for ψ ∈ C∞
0 (�̌), we have

ˆ

�̌

εk+M
(

W̌εǔε

)

23
∂1ψdx

=
ˆ

�̌

εk+M−h
(

Ěεǔε

)

12
∂3ψdx −

ˆ

�̌

εk+M−w
(

Ěεǔε

)

13
∂2ψdx. (35)

We note that, in L2(�̌),

εk+M−h
(

Ěεǔε

)

12
⇀

{
Ě12, M = h,

0, otherwise,
εk+M−w

(
Ěεǔε

)

13
⇀

{
Ě13, M = w,

0, otherwise.

Passing to the limit in (35), we find

ˆ

�̌

−ϑ∂1ψdx =

⎧
⎪⎨

⎪⎩

´
�̌

Ě12∂3ψdx − ´
�̌

Ě13∂2ψdx, M = h = w,

−´
�̌

Ě13∂2ψdx, M = w �= h,´
�̌

Ě12∂3ψdx, M = h �= w.

Thus,

∂1ϑ =

⎧
⎪⎨

⎪⎩

∂2Ě13 − ∂3Ě12 if M = h = w,

∂2Ě13 if M = w �= h,

−∂3Ě12 if M = h �= w,

and

Ě13 =
{

x2∂1ϑ + γ13(x1, x3), if M = w �= h,

0, if M = h �= w,

Ě12 =
{

0, if M = w �= h,

−x3∂1ϑ + γ12(x1, x2), if M = h �= w.

To conclude this part of the proof, we set η13 := γ13 and η12 := γ12 − H
2 ∂1ϑ .

For the case M = h = w, in [16, Lemma 4.1] it is shown that there exists a function
� ∈ L2((−L,L),W 1,2(ω̌)) satisfying the boundary value problem (34) and such that it can
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Fig. 3 Junction conditions
discriminant: the twenty-three
cases. In black the bisector line
h = w

be written Ě13 = 1
2 (∂3� + x2)∂1ϑ and Ě12 = 1

2 (∂2� − (x3 − H/2))∂1ϑ . � is commonly
known in Mechanics as torsion function. �

Since we characterized only some components of the limit strain, the others will be de-
fined by minimization of the stored energy density. In fact, the convergences stated in Lem-
mata 1 and 2 determine only some components of the limit strain energy, whilst the others
remain undetermined. The minimization problem will select them in such a way to render
the energy as small as possible. For this reason, we define

f̂0(Êαβ) := min
Ai3

{
f (A) : A ∈ Sym, Aαβ = Êαβ

}
,

f̌0(Ě1i ) := min
Aab

{
f (A) : A ∈ Sym, A1i = Ě1i

}
.

(36)

To perform an explicit computation, we hereafter consider a linear homogeneous
isotropic material. It can be shown (see, for instance, [27, Article 68]) that for this kind
of materials the stored energy density admits the unique representation

f (A) := 1

2
C[A] · A = μ|A|2 + λ

2
| tr A|2, ∀A ∈ Sym, (37)

where μ > 0 and λ > − 2
3μ are called Lamé parameters. The energy density (37) is also

known as Saint Venant-Kirchhoff’s.
A direct computation shows that with

ẐZZ := Êαβeα ⊗ eβ − ν

1 − ν
(Ê11 + Ê22)e3 ⊗ e3,

ŽZZ := Ě11 [e1 ⊗ e1 − ν(e2 ⊗ e2 + e3 ⊗ e3)] + Ě1a [e1 ⊗ ea + ea ⊗ e1] ,

(38)

we have

f (Ẑ) = f̂0(Êαβ) = E

2(1 − ν2)

(
Ê2

11 + Ê2
22 + 2νÊ11Ê22 + 2(1 − ν)Ê2

12

)
,

f (Ž) = f̌0(Ě1i ) = E

2
Ě2

11 + 2μ
(
Ě2

12 + Ě2
13

)
,

(39)

where E := μ(2μ+3λ)

μ+λ
is the Young modulus and ν := λ

2(λ+μ)
is the Poisson ratio. In particular,

for the stiffener, we have the following characterization of the stored-energy density:

f̌0(Ě1i ) =

⎧
⎪⎨

⎪⎩

f̌0
(
∂1ǔ1,

1
2

(
∂2� − (x3 − H

2 )
)
∂1ϑ, 1

2 (∂3� + x2) ∂1ϑ
)
, if M = h = w,

f̌0(∂1ǔ1,0, x2∂1ϑ + η13), if M = w �= h,

f̌0(∂1ǔ1,−(x3 − H
2 )∂1ϑ + η12,0), if M = h �= w.

(40)
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Remark 1 The characterization (40) of the stored-energy density for the stiffener, combined
with the ten regimes provided by all the possible junction conditions (see Sect. 5.3 and
Fig. 2), results into twenty-three different limit problems, as shown in Fig. 3. In particular,
we have nine cases (i.e., A3, F3, B3, G3, C3, I, D, J, E3) for M = w �= h, seven cases (i.e.,
A1, F1, B1, G1, C1, H, E1) for M = h �= w and seven cases (i.e., A2, F2, B2, G2, C2, K, E2)
for M = h = w.

For future convenience, let us introduce the set of the triads of the limit admissible dis-
placements

A := {(û, ǔ, ϑ) ∈ KL0(�̂) × BN0(�̌) × W
1,2
0 ((−L,L)) satisfying (11), (22)},

the set

Aε := {(ûε, ε
kǔε) ∈ W

1,2
0 (�̂,R3) × W

1,2
0 (�̌,R3) satisfying (10)},

and the extension of the stored energy W (û, ǔ, ϑ) : KL0(�̂)×BN0(�̌)×W
1,2
0 ((−L,L)) →

[0,∞) defined by

W (û, ǔ, ϑ) :=
{

Ŵ (û) + W̌ (ǔ, ϑ), if (û, ǔ, ϑ) ∈ A ,

∞, otherwise,

where

Ŵ (û) :=
ˆ

�̂

f̂0(Êαβ)dx

and

W̌ (ǔ, ϑ) :=
ˆ

�̌

f̌0(Ě1i )dx.

Theorem 1 As ε ↓ 0, the sequence of functionals Wε

(
ûε, ε

kǔε

)
�-converges to the functional

W (û, ǔ, ϑ) in the following sense:

(a) (Liminf inequality) for every sequence εn ↓ 0 and for every sequence {ûεn , ε
k
nǔεn} ⊂ Aεn

such that

ûεn ⇀ û in W 1,2(�̂,R3),

εk
nǔεn ⇀ ǔ in W 1,2(�̌,R3),

εk+M
n

(
W̌εn ǔεn

)

32
⇀ ϑ in L2(�̌),

we have

lim inf
n→∞ Wεn (ûεn , ε

k
nǔεn ) ≥ W (û, ǔ, ϑ);

(b) (Existence of a recovery sequence) assume either
i) case G3: k = 0, h + w = 1, 1/2 < M = w < 1, and 0 < m = h < 1/2;
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ii) case A1: k < 0, k + w < 0, k + h − 1 < 0, M = h, and m = w;
iii) case E3: k > 0, k + w > 0, k + h − 1 > 0, k + M − 1 > 0, M = w.

For every sequence εn ↓ 0 and for every
(
û, ǔ, ϑ

) ∈ A there exists a sequence
{ûεn , ε

k
nǔεn} ⊂ Aεn , called recovery sequence, such that

ûεn ⇀ û in W 1,2(�̂,R3),

εk
nǔεn ⇀ ǔ in W 1,2(�̌,R3),

εk+M
n

(
W̌εn ǔεn

)

32
⇀ ϑ in L2(�̌),

and

lim
n→∞ Wεn (ûεn , ε

k
nǔεn ) = W (û, ǔ, ϑ).

Proof (a) Liminf inequality We start by proving the weak sequential lower semicontinu-
ity of the family of stored energy functionals. Without loss of generality, we can sup-
pose that lim infn→∞ Wεn (ûεn , ε

k
nǔεn ) < ∞ otherwise there is nothing to prove. Hence,

supn Wεn (ûεn , ε
k
nǔεn ) < ∞, and Lemmata 1, 2, 7, 11, and 12 hold. Taking into account the

decomposition given in (9), we need to show the weak sequential lower semicontinuity of
the stored energy contributions due to the plate and the stiffener, i.e.,

lim inf
n→∞ Ŵεn (ûεn ) ≥

ˆ

�̂

f̂ (Ẑ)dx, lim inf
n→∞ W̌εn (ε

k
nǔεn ) ≥

ˆ

�̌

f̌ (Ž)dx

for every sequence ûεn ⇀ û in W 1,2(�̂,R3) and εk
nǔεn ⇀ ǔ in W 1,2(�̌,R3), respectively.

It is easy to prove, by an application of Fatou Lemma, that Ŵεn (ûεn ) is sequential lower
semicontinuous with respect to the strong W 1,2(�̂,R3) topology. However, the convexity
of the integrand function f̂ (·) is sufficient (yet not necessary in the vector-valued case)
to ensure the sequential lower semicontinuity also with respect to the weak W 1,2(�̂,R3)

topology (see, for instance, [9, Proposition 1.18], [34, Theorem 2.6]). By using (36), we
infer

lim inf
n→∞ Ŵεn (ûεn ) = lim inf

n→∞

ˆ

�̂

χ̂εn f̂
(

Êεn ûεn

)
dx

≥
ˆ

�̂

f̂
(

Ê
)

dx ≥
ˆ

�̂

f̂
(
ẐZZ
)

dx
(

=:
ˆ

�̂

f̂0

(
Êαβ

)
dx
)
.

Similarly, for the stiffener, we infer

lim inf
n→∞ W̌εn (ε

kǔεn ) = lim inf
n→∞

ˆ

�̌

χ̌εn f̌
(
εk
nĚεn ǔεn

)
dx

≥
ˆ

�̌

f̌
(
ĚEE
)

dx ≥
ˆ

�̌

f̌
(
ŽZZ
)

dx
(

=:
ˆ

�̌

f̌0

(
Ě1i

)
dx
)
,
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and from Lemma 12, we have

ˆ

�̌

f̌0

(
Ě1i

)
dx

=

⎧
⎪⎨

⎪⎩

´
�̌

f̌0
(
∂1ǔ1,

1
2

(
∂2� − (x3 − H

2 )
)
∂1ϑ, 1

2 (∂3� + x2) ∂1ϑ
)

dx, if M = h = w,´
�̌

f̌0(∂1ǔ1,0, x2∂1ϑ + η13)dx, if M = w �= h,´
�̌

f̌0(∂1ǔ1,−(x3 − H
2 )∂1ϑ + η12,0)dx, if M = h �= w.

A direct computation shows that, for the latter two cases, the estimation is independent from
η12 and η13. We provide the computation for the case M = w �= h only, the other one being
conceptually similar. We have

ˆ

�̌

f̌0(∂1ǔ1,0, x2∂1ϑ + η13)dx =
ˆ

�̌

f̌0(∂1ǔ1,0, x2∂1ϑ)dx+

+ 2μ

ˆ

�̌

η2
13dx + 4μ

ˆ

�̌

x2∂1ϑη13dx

≥
ˆ

�̌

f̌0(∂1ǔ1,0, x2∂1ϑ)dx,

since the integral of x2∂1ϑη13 is zero because η13 does not depend on x2 by Lemma 12.
Consequently, we have that

lim inf
n→∞ W̌εn (ε

kǔεn )

≥

⎧
⎪⎨

⎪⎩

´
�̌

f̌0

(
∂1ǔ1,

1
2

(
∂2� − (x3 − H

2 )
)
∂1ϑ, 1

2 (∂3� + x2) ∂1ϑ
)

dx, if M = h = w,´
�̌

f̌0(∂1ǔ1,0, x2∂1ϑ)dx, if M = w �= h,´
�̌

f̌0(∂1ǔ1,−(x3 − H
2 )∂1ϑ,0)dx, if M = h �= w.

(41)

(b) Existence of a recovery sequence

case i) We start by proving case i). So, let k = 0, h + w = 1, 1/2 < M = w < 1, and
0 < m = h < 1/2.

Let (û, ǔ, ϑ) ∈ A . From the definition of A we have that

û1 = ξ̂1(x1, x2) − x3∂1ξ̂3(x1, x2), û2 = ξ̂2(x1, x2) − x3∂2ξ̂3(x1, x2), û3 = ξ̂3(x1, x2),

and

ǔ1 = ξ̌1(x1) − x2∂1ξ̌2(x1) − x3∂1ξ̌3(x1), ǔ2 = ξ̌2(x1), ǔ3 = ξ̌3(x1),

for appropriate functions ξ̂ξξ and ξ̌ξξ . With the values in consideration of k, h and w, Lemmata
5 and 10 imply that

ξ̂1(x1,0) = ξ̌1(x1) ξ̌2(x1) = 0, ξ̂3(x1,0) = 0, ∂2ξ̂3(x1,0) = 0. (42)
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To start, we assume ξ̂i ∈ C∞((−L,L)× (−L,L)), and ξ̌3, ϑ ∈ C∞((−L,L)). Moreover,
we assume that all these functions have value zero in a neighborhood of x1 = L and, in view
of (42), we may also assume that ξ̂3 is equal to zero in a neighborhood of (−L,L) × {0}.

Let the sequences û�
ε and ǔ�

ε be defined by:

û
�

1ε := −x3∂1ξ̂3(x1, x2) − εwx3∂1ξ̌3(x1) + r̂
�

1ε,

û
�

2ε := −x3∂2ξ̂3(x1, x2) − εhx3ϑ(x1) + r̂
�

2ε,

û
�

3ε := ξ̂3(x1, x2) + εhx2ϑ(x1) + εwξ̌3(x1) + r̂
�

3ε,

and

ǔ
�

1ε := ξ̂1(x1,0) − x3∂1ξ̌3(x1) − εwx2∂1ξ̂2(x1,0) + εhx2x3∂1ϑ(x1),

ǔ
�

2ε := εwξ̂2(x1,0) − εhx3ϑ(x1) − νε2wx2∂1ξ̂1(x1,0) + νε2wx2x3ψ̌(x3)∂
2
1 ξ̌3(x1),

ǔ
�

3ε := ξ̌3(x1) + εhx2ϑ(x1) − νε2hx3ψ̌(x3)
[
−x3

2
∂2

1 ξ̌3(x1) + ∂1ξ̂1(x1,0)
]
,

with

r̂
�

1ε(x1, x2, x3) := −(1 − ψ̂)x2∂1ξ̂2(x1,0) + (1 − 2ψ̂)εhx2x3∂1ϑ(x1)

+

⎧
⎪⎨

⎪⎩

ξ̂1(x1,0), if |x2| ≤ εwW,

ξ̂1(x1,2(|x2| − εwW)), if εwW ≤ |x2| ≤ 2εwW,

ξ̂1(x1, x2), if |x2| ≥ 2εwW,

r̂
�

2ε(x1, x2) := −(1 − ψ̂)νx2∂1ξ̂1(x1,0)

+

⎧
⎪⎨

⎪⎩

ξ̂2(x1,0), if |x2| ≤ εwW,

ξ̂2(x1,2(|x2| − εwW)), if εwW ≤ |x2| ≤ 2εwW,

ξ̂2(x1, x2), if |x2| ≥ 2εwW,

r̂
�

3ε(x1, x2, x3) := −ψ̂ε2 ν

1 − ν

[
x3

(
∂1ξ̂1(x1, x2) + ∂2ξ̂2(x1, x2)

)

−x2
3

2

(
∂2

1 ξ̂3(x1, x2) + ∂2
2 ξ̂3(x1, x2)

)]
,

where ψ̌(x3) : [0,H ] → [0,1] is the continuous piece-wise affine function taking value
equal to 0 in [0, T ε1−h], 1 in [2T ε1−h,H ], and being affine in [T ε1−h,2T ε1−h], whilst
ψ̂(x2) : [−L,L] → [0,1] is the continuous piece-wise affine function taking value equal to
0 in [−εwW,εwW ], 1 in [−L,−2εwW ]∪ [2εwW,L], and being affine in [εwW,2εwW ] and
[−2εwW,−εwW ].

Note that the sequences û�
ε , ǔ�

ε are continuous at the interfaces, i.e., at x2 = ±εwW and
x2 = ±2εwW . Due to the smoothness of ξ̂ξξ , ξ̌ξξ , and ϑ , we can conclude that û�

ε , ǔ�
ε are (at

least) of class W 1,2. It can be easily verified that the pair (û�
ε, ǔ�

ε) satisfies the boundary
conditions at x1 = L and the junction conditions (10) for ε small enough, since ξ̂3 is equal
to zero in a neighborhood of (−L,L) × {0}.
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Since |∂2ψ̂(x2)| � ε−w , |∂2(x2ψ̂(x2))| ≤ 3 for every x2, and since |∂3ψ̌(x3)| � εh−1,
|∂3(x3ψ̌(x3))| ≤ 3 for every x3, it follows that

û�
ε → û in W 1,2(�̂,R3), εkǔ�

ε → ǔ in W 1,2(�̌,R3).

It is easily checked that

εkĚεǔ�
ε → ŽZZ in L2(�̌,R3×3), εk+M

(
W̌εǔ�

ε

)

32
→ ϑ in L2(�̌),

where (see Eq. (38))

ŽZZ := ∂1ǔ1 [e1 ⊗ e1 − ν(e2 ⊗ e2 + e3 ⊗ e3)] + x2∂1ϑ [e1 ⊗ e3 + e3 ⊗ e1] .

Let now (see Eq. (38))

ẐZZ := ∂αûβ + ∂βûα

2
eα ⊗ eβ − ν

1 − ν
(∂1û1 + ∂2û2)e3 ⊗ e3.

From the convergence û�
ε → û in W 1,2(�̂,R3) it immediately follows that (Êεû�

ε)αβ →
(ẐZZ)αβ in L2(�̂). A short computation shows that the component 13 is

(Êεû�
ε)13 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

εhx2∂1ϑ

ε
, if |x2| ≤ εwW,

[1 + ∂3

(
x3(1 − 2ψ̂)

)
]ε

hx2∂1ϑ

ε
, if εwW ≤ |x2| ≤ 2εwW,

0, if |x2| ≥ 2εwW,

and recalling that h + w = 1 we deduce that

|(Êεû�
ε)13| �

{
|∂1ϑ |, if |x2| ≤ 2εwW,

0, if |x2| ≥ 2εwW,

from which it follows that (Êεû�
ε)13 → 0 in L2(�̂). With similar arguments we arrive at

Êεû�
ε → ẐZZ in L2(�̂,R3×3).

The strong convergence of the rescaled strains leads to

lim
ε→0

Wε(û�
ε, ε

kǔ�
ε) = lim

ε→0

1

2

ˆ

�̂

χ̂εC

[
Êεû�

ε

]
· Êεû�

εdx + 1

2

ˆ

�̌

χ̌εC

[
εkĚεǔ�

ε

]
· εkĚεǔ�

εdx

= 1

2

ˆ

�̂

C

[
ẐZZ
]
· ẐZZdx + 1

2

ˆ

�̌

C

[
ŽZZ
]
· ŽZZdx =

ˆ

�̂

f (ẐZZ)dx +
ˆ

�̌

f (ŽZZ)dx

=
ˆ

�̂

f̂0(Ẑαβ)dx +
ˆ

�̌

f̌0(Ž1i )dx = W (û, ǔ, ϑ),

where we have used the definition (36) and the identity (39).
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Thus, under the regularity assumptions made, {û�
εn

, ǔ�
εn

} is a recovery sequence. The
general case {û�

εn
, ǔ�

εn
} is achieved by approximating (û, ǔ, ϑ) in A by a sequence from

A ∩
(
C∞(�̂,R3) × C∞(�̌,R3) × C∞((−L,L))

)
that strongly converges to (û, ǔ, ϑ) in

W 1,2(�̂,R3) × W 1,2(�̌,R3) × W 1,2((−L,L)), concluding with a standard diagonal argu-
ment.

case ii) We now prove case ii). Let k < 0, k + w < 0, k + h − 1 < 0, M = h, and m = w.
Let (û, ǔ, ϑ) ∈ A . From the definition of A we have that

û1 = ξ̂1(x1, x2) − x3∂1ξ̂3(x1, x2), û2 = ξ̂2(x1, x2) − x3∂2ξ̂3(x1, x2), û3 = ξ̂3(x1, x2),

and

ǔ1 = ξ̌1(x1) − x2∂1ξ̌2(x1) − x3∂1ξ̌3(x1), ǔ2 = ξ̌2(x1), ǔ3 = ξ̌3(x1),

for appropriate functions ξ̂ξξ and ξ̌ξξ . In the case under study, Lemmata 5 and 10 state that

ξ̂1(x1,0) = ξ̂2(x1,0) = ξ̂3(x1,0) = 0, ∂2ξ̂3(x1,0) = 0. (43)

We first build the recovery sequence assuming that ξ̂i ∈ C∞((−L,L) × (−L,L)), and
ξ̌i , ϑ ∈ C∞(−L,L). Moreover, we assume that all these functions have value zero in a
neighborhood of x1 = L, and in view of (43), that ξ̂i are equal to zero in a neighborhood of
(−L,L) × {0}.

To define the recovery sequence for the stiffener, ǔ�
ε , we shall use the continuous piece-

wise affine function ψ̌(x3) : [0,H ] → [0,1] defined as in the previous case. We set

εkǔ
�

1ε := ξ̌1(x1) − x2∂1ξ̌2(x1) − x3∂1ξ̌3(x1) − εwx2x3∂1ϑ(x1) + νε2w x2
2

2
x3∂

3
1 ξ̌3(x1),

εkǔ
�

2ε := ξ̌2(x1) − εwx3ϑ(x1) − νε2w
(
x2∂1ξ̌1(x1) − x2

2

2
∂2

1 ξ̌2(x1) − x2x3∂
2
1 ξ̌3(x1)

)
,

εkǔ
�

3ε := ξ̌3(x1) + εwx2ϑ(x1) − νε2hψ̌(x3)
(
x3∂1ξ̌1(x1) − x2x3∂

2
1 ξ̌2(x1) − x2

3

2
∂2

1 ξ̌3(x1)
)

− νε2w x2
2

2
∂2

1 ξ̌3(x1).

(44)
Since |∂3(x3ψ̌(x3))| ≤ 3 for every x3, it follows that

ǔ�
ε → ǔ in W 1,2(�̌,R3), and εk+M

(
W̌εǔ�

ε

)

32
→ ϑ in L2(�̌),

and

εkĚεǔ�
ε → ŽZZ in L2(�̌,R3×3),

where (see Eq. (38))

ŽZZ := ∂1ǔ1 [e1 ⊗ e1 − ν(e2 ⊗ e2 + e3 ⊗ e3)] − x3∂1ϑ [e1 ⊗ e2 + e2 ⊗ e1] .
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The recovery sequence for the plate û�
ε is defined by

û
�

1ε := ξ̂1(x1, x2) − x3∂1ξ̂3(x1, x2) + ǔ
�

1ε(x1, ε
−wx2, ε

1−hx3),

û
�

2ε := ξ̂2(x1, x2) − x3∂2ξ̂3(x1, x2) + ε−wǔ
�

2ε(x1, ε
−wx2, ε

1−hx3),

û
�

3ε := ξ̂3(x1, x2)

− ε2 ν

1 − ν

[
x3

(
∂1ξ̂1(x1, x2) + ∂2ξ̂2(x1, x2)

)
− x2

3

2

(
∂2

1 ξ̂3(x1, x2) + ∂2
2 ξ̂3(x1, x2)

)]

+ ε1−hǔ
�

3ε(x1, ε
−wx2, ε

1−hx3).

(45)
Since ξ̂i are equal to zero in a neighborhood of (−L,L) × {0}, for ε small enough the
junction conditions (10) are automatically satisfied.

For x3 ∈ [0, T ] we have that

ǔ
�

1ε(x1, ε
−wx2, ε

1−hx3)

= ε−k
[
ξ̌1 − ε−wx2∂1ξ̌2 − ε1−hx3∂1ξ̌3 − ε1−hx2x3∂1ϑ + ν

x2
2

2
x3∂

3
1 ξ̌3(x1)

]
,

ε−wǔ
�

2ε(x1, ε
−wx2, ε

1−hx3)

= ε−k−w
[
ξ̌2 − εw+1−hx3ϑ − ν(εwx2∂1ξ̌1 − x2

2

2
∂2

1 ξ̌2 − εw+1−hx2x3∂
2
1 ξ̌3)

]
,

ε1−hǔ
�

3ε(x1, ε
−wx2, ε

1−hx3)

= ε1−h−k
[
ξ̌3 + x2ϑ − ν

x2
2

2
∂2

1 ξ̌3

]
,

and since −k, 1 − h − k, and −k − w are strictly greater than zero, it follows that

û�
ε → ǔ in W 1,2(�̂,R3).

A tedious calculation then shows that

Êεû�
ε → ẐZZ in L2(�̂,R3×3),

where (see Eq. (38))

ẐZZ := ∂αûβ + ∂βûα

2
eα ⊗ eβ − ν

1 − ν
(∂1û1 + ∂2û2)e3 ⊗ e3. (46)

The proof is concluded as in case i)

case iii) We finally prove case iii). Let k > 0, k + w > 0, k + h − 1 > 0, k + M − 1 > 0
and M = w. In this case, from Lemmata 5 and 10 we deduce that ξ̌i = 0 and ϑ = 0. As
a consequence, the limit displacement û as well as the limit strain tensor Ě (and Ž) of the
beam are identically equal to zero.

To start, we assume (û,0,0) ∈ A ∩
(
C∞(�̂,R3) × C∞(�̌,R3) × C∞((−L,L))

)
and to

have value zero in a neighborhood of x1 = L. From the definition of A , there exist smooth
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functions ξ̂ξξ , characterizing the KL0 displacement type. We recall that, in this particular case,
ξ̌i = ϑ = 0. Let us introduce the sequences û�

ε and εkǔ�
ε defined as follows:

û
�

1ε := ξ̂1(x1, x2) − x3∂1ξ̂3(x1, x2),

û
�

2ε := ξ̂2(x1, x2) − x3∂2ξ̂3(x1, x2),

û
�

3ε := ξ̂3(x1, x2)

− ε2 ν

1 − ν

[
x3

(
∂1ξ̂1(x1, x2) + ∂2ξ̂2(x1, x2)

)
− x2

3

2

(
∂2

1 ξ̂3(x1, x2) + ∂2
2 ξ̂3(x1, x2)

)]
,

εkǔ
�

1ε := εkξ̂1(x1, ε
wx2) − εk+h−1x3∂1ξ̂3(x1, ε

wx2),

εkǔ
�

2ε := εk+wξ̂2(x1, ε
wx2) − εk+h−1+wx3∂2ξ̂3(x1, ε

wx2),

εkǔ
�

3ε := εk+h−1ξ̂3(x1, ε
wx2) − ν

1 − ν
εk+2hx3

(
∂1ξ̂1(x1, ε

wx2) + ∂2ξ̂2(x1, ε
wx2)

)

+ ν

1 − ν
εk+3h−1 x2

3

2

(
∂2

1 ξ̂3(x1, ε
wx2) + ∂2

2 ξ̂3(x1, ε
wx2)

)
. (47)

It can be easily verified that the pair (û�
ε, ε

kǔ�
ε) satisfies the boundary conditions at x1 = L,

the junction conditions (10), and verifies the following convergences

Êεû�
ε → ẐZZ in L2(�̂,R3×3),

εkĚεǔ�
ε → 000 in L2(�̌,R3×3),

εk+M
(

W̌εǔ�
ε

)

32
→ 0 in L2(�̌),

û�
ε → û in W 1,2(�̂,R3),

εkǔ�
ε → 0 in W 1,2(�̌,R3), (48)

with ẐZZ defined as in (46).
The proof is concluded as in case i) �

Remark 2 As it can be noticed, the construction of the recovery sequence is quite cumber-
some, and general construction rules do not exist. For this reason, we decided to provide
the recovery sequence for two “extreme” cases (ii and iii) and for an “intermediate” one
(i), see also Fig. 3. As a consequence, in the statement of Theorem 1 we have explicitly
considered, in the part concerning the existence of a recovery sequence, only three out of
the twenty-three possible cases. We stress the fact that the given Liminf inequality proof is
valid for every choice of the scaling parameters (in the admissible ranges), i.e., for all the
twenty-three cases.

We did not check all the twenty-three cases, but in all the presented cases we constructed
a recovery sequence. We are therefore confident that Theorem 1 holds for all the twenty-
three cases, even if it is stated for only three.
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We can explicitly write the expression of the limit stored-energy functional. Considering
the case i) of Theorem 1 for the sake of simplicity, we have:

W̌ (ǔ, ϑ) = 1

2

L̂

−L

⎛

⎝
EA −ES2 0

EJ2 0
sym μJt

⎞

⎠

⎛

⎝
∂1ξ̂1(x1,0)

∂2
1 ξ̌3(x1)

∂1ϑ(x1)

⎞

⎠ ·
⎛

⎝
∂1ξ̂1(x1,0)

∂2
1 ξ̌3(x1)

∂1ϑ(x1)

⎞

⎠dx1,

where A := ´
ω̌

dx2dx3 = 2WH is the cross-sectional area of the stiffener, S2 := ´
ω̌
x3dx2dx3 =

WH 2 is the static moment with respect to the x2 axis, J2 := ´
ω̌
x2

3 dx2dx3 = 2
3WH 3 is the

moment of inertia with respect to the x2 axis, Jt := 4
´

ω̌
x2

2 dx2dx3 = 8
3HW 3 is the torsional

moment of inertia. Similarly, we have

Ŵ (û) = 1

2

ˆ

ω̂

(
T E

1−ν2 K − T 2E
2(1−ν2)

K

− T 2E
2(1−ν2)

KT T 3E
3(1−ν2)

K

)

⎛

⎜⎜⎜⎜⎜
⎝

∂1 ξ̂1

∂2 ξ̂2
1
2

[
∂2 ξ̂1+∂1 ξ̂2

]

∂2
1 ξ̂3

∂2
2 ξ̂3

∂1∂2 ξ̂3

⎞

⎟⎟⎟⎟⎟
⎠

·

⎛

⎜⎜⎜⎜⎜
⎝

∂1 ξ̂1

∂2 ξ̂2
1
2

[
∂2 ξ̂1+∂1 ξ̂2

]

∂2
1 ξ̂3

∂2
2 ξ̂3

∂1∂2 ξ̂3

⎞

⎟⎟⎟⎟⎟
⎠

dx1dx2,

where we have posed

K :=
⎛

⎝
1 ν 0

1 0
sym 2(1 − ν)

⎞

⎠ .

7 Strong Convergence of Minima and Minimizers

So far, we just considered the stored energy functional. However, the equilibrium problem
is ruled by the total energy F̃ε , which is the sum of the stored energy W̃ε minus the work
done by external loads L̃ε

F̃ε(u) := W̃ε(u) − L̃ε(u),

where the latter is assumed to be

L̃ε(u) :=
ˆ

�ε

b · udx =
ˆ

�̂ε

χε(x)b · udx +
ˆ

�̌ε

χε(x)b · udx,

and where b belongs to L2(�ε,R
3). After the scaling of Sect. 4, we have

Lε(ûε, ǔε) := 1

ε
L̃ε(uε) =

ˆ

�̂

χ̂εb̂ε · ûεdx +
ˆ

�̌

χ̌εb̌ε · εkǔεdx

=: L̂ε(ûε) + Ľε(ε
kǔε),

where we have posed

b̂ε := Q̂−T
ε b ◦ q̂ε, b̌ε := εkQ̌−T

ε b ◦ q̌ε.
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In particular, we consider loads of the form

b̂ε =
(
b̂1(x), b̂2(x), b̂3(x)

)
,

b̌ε =
(

b̌1(x), b̌2(x) − ε−m m(x1)

IG

(x3 − x3(G)), b̌3(x) + ε−m m(x1)

IG

(x2 − x2(G))

)
,

where b̂i ∈ L2(�̂), b̌i ∈ L2(�̌) and m(x1) ∈ L2((−L,L)).
It is easy to see that the external loads contributions continuously converge in the sense

of the convergence used in Theorem 1 to the limit functionals

L̂ε(ûε) → L̂ (û) =
ˆ

�̂

b̂i ûidx,

Ľε(ε
kǔε) → Ľ (ǔ, ϑ) =

ˆ

�̌

b̌i ǔidx +
Lˆ

−L

mϑdx1.

In the next theorem, we show that the external loads do not impact on our �-limit result.
This is the reason why we focused only on the stored energy in the previous part of the
paper.

Theorem 2 As ε ↓ 0, the sequence of functionals Fε(ûε, ε
kǔε) := Wε(ûε, ε

kǔε) − Lε(ûε,

εkǔε) �-converges to the limit functional F (û, ǔ, ϑ) := W (û, ǔ, ϑ) − L (û, ǔ, ϑ) in the
sense specified in Theorem 1.

Proof The proof follows from the well-known stability of �-convergence with respect to
continuous, real-valued perturbations (see [9, Proposition 6.20]). �

We conclude the paper by showing that the sequence of minima and minimizers from the
sequence of three-dimensional total energies converges to the unique solution of the varia-
tional �-limit problem. From a mechanical point of view, it can be interpreted as follows: the
equilibrium configurations of the sequence of three-dimensional problems converge towards
the equilibrium configuration provided by the �-limit functional minimization. Moreover,
we show that the convergence is actually strong.

Theorem 3 Suppose Theorems 1 and 2 hold.
As ε ↓ 0, the sequence of three-dimensional minimization problems for the functional

Fε(ûε, ε
kǔε) := Wε(ûε, ε

kǔε) − Lε(ûε, ε
kǔε),

min
(ûε,εk ǔε)∈Aε

Fε(ûε, ε
kǔε), (49)

has a unique solution for each term in the sequence. The solution is denoted by (û#
ε, ε

kǔ#
ε).

Similarly, the minimization problem for the �-limit functional F (ûuu,ǔuu,ϑ) := W (ûuu,ǔuu,

ϑ) − L (ûuu,ǔuu,ϑ),

min
(û,ǔ,ϑ)∈A

F (ûuu,ǔuu,ϑ), (50)

admits a unique solution denoted by (ûuu
#
, ǔuu

#
, ϑ#). Moreover, we have that
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1. û#
ε → û# in W 1,2(�̂,R3);

2. εkǔ#
ε → ǔ# in W 1,2(�̌,R3);

3. εk+M
(

W̌εǔ#
ε

)

32
→ ϑ# in L2(�̌);

4. Fε(û#
ε, ε

kǔ#
ε) converges to F (û#, ǔ#, ϑ#).

Proof The existence of a solution for problems (49), (50) can be proved through the Direct
Method of the Calculus of Variations; the uniqueness follows from the strict convexity of
the functionals Fε and F .

From Theorem 2, Propositions 6.8 and 8.16 (lower-semicontinuity of sequential �-
limits), Theorem 7.8 (coercivity of �-limits) and Corollary 7.24 (convergence of minima
and minimizer) of [9], it follows that the weak convergence counterpart of points 1, 2, 3 is
satisfied, and that point 4 is also proved. To show that the convergence is actually strong, we
adapt some arguments proposed in [14, 15].

Let us denote by aε the approximate minimizer of problem (50), defined as the recovery

sequence(s) appearing in Theorem 1, but with (ξ̂ξξ, ξ̌ξξ ,ϑ) replaced by (ξ̂ξξ
#
, ξ̌ξξ

#
, ϑ#), related to

the pair (û#, ǔ#). By part (b) of Theorem 1 and by Theorem 2 we have

lim
ε↓0

Fε(âε, ε
k ǎε) = F (ξ̂ξξ

#
, ξ̌ξξ

#
, ϑ#), lim

ε↓0
Lε(âε, ε

k ǎε) = L (ξ̂ξξ
#
, ξ̌ξξ

#
, ϑ#).

In particular,

lim inf
ε↓0

(
F̂ε(û#

ε) − F̂ε(âε)
)

≤ 0, lim inf
ε↓0

(
F̌ε(ε

kǔ#
ε) − F̌ε(ε

k ǎε)
)

≤ 0,

lim
ε↓0

L̂ε(û#
ε − âε) = 0, lim

ε↓0
Ľε(ε

kǔ#
ε − εk ǎε) = 0.

(51)

As a preliminary observation, quadratic forms (37) satisfy the identity

f (U) = f (A) +C[A] · (U − A) + f (U − A)

for every A, U ∈ Sym. By the coercivity condition (2), we obtain the following inequality:

f (U) ≥ f (A) +C[A] · (U − A) + μ|U − A|2.

Then, we have

F̂ε(û#
ε) − F̂ε(âε) ≥

ˆ

�̂

1

2
C

[
Êεâε

]
· Êε(û#

ε − âε)dx

+ μ

2

∥∥∥Êεû#
ε − Êεâε

∥∥∥
2

L2(�̂,R3×3)
− L̂ε(û#

ε − âε),

F̌ε(ε
kǔ#

ε) − F̌ε(ε
k ǎε) ≥

ˆ

�̌

1

2
C

[
εkĚεǎε

]
· εkĚε(ǔ#

ε − ǎε)dx

+ μ

2

∥∥∥εkĚεǔ#
ε − εkĚεǎε

∥∥∥
2

L2(�̌,R3×3)
− Ľε(ε

kǔ#
ε − εk ǎε), (52)
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since, χ̂ε, χ̌ε ≥ 1
2 . For brevity sake, we introduce the following notation (to be specialized

for the plate and the stiffener with the usual symbols ˆ̇and ˇ̇):
Aε := Eεaε, Uε := Eεu#

ε, ���ε := Uε − Aε,

so that (52) rewrite as

F̂ε(û#
ε) − F̂ε(âε) ≥

ˆ

�̂

1

2
C

[
Âε

]
· �̂��εdx + μ

2

∥∥∥�̂��ε

∥∥∥
2

L2(�̂,R3×3)
− L̂ε(û#

ε − âε),

F̌ε(ε
kǔ#

ε) − F̌ε(ε
k ǎε) ≥

ˆ

�̌

1

2
C

[
εkǍε

]
· εk�̌��εdx + μ

2

∥∥∥εk�̌��ε

∥∥∥
2

L2(�̌,R3×3)

− Ľε(ε
kǔ#

ε − εk ǎε).

To start, we prove that the first integral appearing in the right hand side of both of (52) tends
to zero in the limit of ε ↓ 0. The integrands of these two integrals rewrite as

2μ
(
Âijε�̂ijε

)
+ λ

(
Âiiε�̂jjε

)
, ε2k[2μ

(
Ǎijε�̌ijε

)
+ λ

(
Ǎiiε�̌jjε

)
]. (53)

It follows by part (b) of Theorem 1 that

Âε → ẐZZ in L2(�̂,R3×3),

εkǍε → ŽZZ in L2(�̌,R3×3),
(54)

with ẐZZ and ŽZZ defined as in (39).
By Lemma 1, Lemma 2 and (54) we have that �̂��ε and εk�̌��ε are bounded in L2(�̂,R3×3)

and L2(�̌,R3×3), respectively. Thus, from (54) and the structure of ẐZZ and ŽZZ, we deduce
that

lim
ε↓0

ˆ

�̂

Âα3ε�̂α3εdx = 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

lim
ε↓0

´
�̌

ε2kǍ23ε�̌23εdx = 0, if M = w = h,

lim
ε↓0

´
�̌

ε2kǍ23ε�̌23εdx = lim
ε↓0

´
�̌

ε2kǍ12ε�̌12εdx = 0, if M = w �= h,

lim
ε↓0

´
�̌

ε2kǍ23ε�̌23εdx = lim
ε↓0

´
�̌

ε2kǍ13ε�̌13εdx = 0, if M = h �= w.

From (4), (7), and (54), it follows that �̂αβ ⇀ 0 in L2(�̂) and that εk�̌11 ⇀ 0 in L2(�̌), and
therefore

lim
ε↓0

ˆ

�̂

Âijε�̂αβεdx = 0, lim
ε↓0

ˆ

�̌

ε2kǍijε�̌11εdx = 0.

From Lemma 12, it also follows that, up to subsequences,

εkǓ13ε ⇀

⎧
⎪⎨

⎪⎩

1
2

(
∂3�

# + x2
)
∂1ϑ

# if M = w = h,

x2∂1ϑ
# + η#

13 if M = w �= h,

0 otherwise ,
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εkǓ12ε ⇀

⎧
⎪⎨

⎪⎩

1
2

(
∂2�

# − (x3 − H
2 )
)
∂1ϑ

#, if M = w = h,

−(x3 − H
2 )∂1ϑ

# + η#
12, if M = h �= w,

0, otherwise,

in L2(�̌), where �#, η#
12 and η#

13 are specified in the lemma. By (54),

εkǍ13ε →

⎧
⎪⎨

⎪⎩

1
2

(
∂3�

# + x2

)
∂1ϑ

#, if M = w = h,

x2∂1ϑ
#, if M = w �= h,

0, otherwise,

εkǍ12ε →

⎧
⎪⎨

⎪⎩

1
2

(
∂2�

# − (x3 − H
2 )
)
∂1ϑ

#, if M = w = h,

−(x3 − H
2 )∂1ϑ

#, if M = h �= w,

0, otherwise,

in L2(�̌). In any case,

lim
ε↓0

ˆ

�̌

ε2kǍ1aε�̌1aεdx = 0.

Let �̂33 be the limit in the weak L2(�̂) topology of �̂33ε , and �̌aa be the limit in the weak
L2(�̌) topology of εk�̌aaε . Summarizing, we have

lim
ε↓0

ˆ

�̂

CÂε · �̂εdx = lim
ε↓0

ˆ

�̂

2μÂ33ε�̂33ε + λÂiiε�̂33εdx

=
ˆ

�̂

�̂33(∂1û1# + ∂2û2#)
λ(1 − 2ν) − 2μν

1 − ν
dx = 0,

lim
ε↓0

ˆ

�̌

ε2k
CǍε · �̌εdx = lim

ε↓0

ˆ

�̌

ε2k
[
2μǍaaε�̌aaε + λǍiiε�̌bbε

]
dx

=
ˆ

�̌

�̌aa∂1ǔ#1(λ − 2ν(μ + λ))dx = 0,

because of the relationships between elastic moduli (E, ν) and Lamé constants (λ, μ) nullify
identically the integrand functions. Hence, considering (51) and (52), we have shown that

∥∥∥Êεû#
ε − Êεâε

∥∥∥
2

L2(�̂,R3×3)
→ 0,

∥∥∥εkĚεǔ#
ε − εkĚεǎε

∥∥∥
2

L2(�̌,R3×3)
→ 0. (55)

By applying Korn inequality, we also have that
∥∥û#

ε − âε

∥∥
W1,2(�̂,R3)

→ 0,
∥∥εkǔ#

ε − εk ǎε

∥∥
W1,2(�̌,R3)

→ 0.

From which points 1 and 2 follow.
Furthermore, by (55) and Lemma 7, we have

lim
ε↓0

∥∥∥εk+MȞε(ǔ#
ε − ǎε)

∥∥∥
2

L2(�̌)
= 0,
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that implies that

εk+M
(

W̌εǔ#
ε

)

32
=εk+M

(
Ȟε(ǔ#

ε − ǎε)
)

32
− εk+M

(
Ȟε(ǔ#

ε − ǎε)
)

23

+ εk+M
(

W̌εǎε

)

32
→ ϑ#

in L2(�̌). Hence, also point 3 is proven. �

Remark 3 Being confident that the �-convergence result of Theorem 1 can be extended to
all the twenty-three cases, Theorem 2 actually assesses the strong convergence of minima
and minimizers for all such cases.
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