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Abstract
In linear elasticity, universal displacements for a given symmetry class are those displace-
ments that can be maintained by only applying boundary tractions (no body forces) and for
arbitrary elastic constants in the symmetry class. In a previous work, we showed that the
larger the symmetry group, the larger the space of universal displacements. Here, we gener-
alize these ideas to the case of anelasticity. In linear anelasticity, the total strain is additively
decomposed into elastic strain and anelastic strain, often referred to as an eigenstrain. We
show that the universality constraints (equilibrium equations and arbitrariness of the elastic
constants) completely specify the universal elastic strains for each of the eight anisotropy
symmetry classes. The corresponding universal eigenstrains are the set of solutions to a sys-
tem of second-order linear PDEs that ensure compatibility of the total strains. We show that
for three symmetry classes, namely triclinic, monoclinic, and trigonal, only compatible (im-
potent) eigenstrains are universal. For the remaining five classes universal eigenstrains (up
to the impotent ones) are the set of solutions to a system of linear second-order PDEs with
certain arbitrary forcing terms that depend on the symmetry class.

Keywords Universal deformation · universal displacement · linear elasticity · anelasticity ·
anisotropic solids · eigenstrain

Mathematics Subject Classification 74B05 · 74B10 · 74E10

1 Introduction

In nonlinear anelasticity, in the notion first defined in [7], strain has an elastic and an anelas-
tic part. In terms of deformation gradient it is written as F = FeFa , where Fe and Fa are
the elastic and anelastic deformation tensors, respectively [17, 37, 39]. The hybrid German-
English portmanteau term eigenstrain has its origin in the pioneering paper of Hans Reiss-
ner [31] (Eigenspannung means proper or self stress) and was further popularized by Mura
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[25, 30]. In the literature several equivalent terms have been used for the same concept; ini-
tial strain [27], nuclei of strain [29], transformation strain [11], inherent strain [42], and
residual strains [1] (see also [21, 53]). In the setting of linear elasticity, and for infinite bod-
ies, inclusions and their induced stress fields were systematically studied by Eshelby in a
celebrated paper [11]. He showed that an ellipsoidal inclusion that has uniform eigenstrain
and is embedded in an infinite linear elastic medium, has a uniform stress field. It is known
that in the case of finite bodies the stress field of an inclusion with uniform eigenstrain is
not necessarily uniform, e.g., a spherical inclusion centered at a finite ball [28]. The ex-
tension of Eshelby’s analysis of eigenstrains to nonlinear anelasticity has received attention
in the last twenty years. In the case of some special constitutive equations one can men-
tion [6, 22–24, 35, 36]. There are several more recent works that use geometric techniques
[13, 14, 16, 43, 45–47].

If one is asked to deform an elastic body to a desired arbitrary shape, most likely body
forces will be required to achieve the desired deformation, especially when one does not
specify a particular material. However, there are special deformations that can be main-
tained by applying only boundary tractions for any member of a material class. These are
called universal deformations. The systematic study of universal deformations began in two
seminal papers of Ericksen [8, 9] motivated by earlier works of Rivlin [32–34]. Ericksen
proved that for compressible isotropic solids only homogeneous deformations are universal.
For incompressible isotropic solids he found four families of universal deformations, in ad-
dition to the isochoric homogeneous deformations. He conjectured that only homogeneous
deformations have constant principal invariants. This turned out to be incorrect [12], and
led to the discovery of a fifth family of universal deformations [26, 38]. Existence of other
constant principal invariant inhomogeneous universal deformations is still an open problem,
but the current conjecture is that none exists.

We extended Ericksen’s analysis to compressible anelasticity and showed that univer-
sal deformations must be covariantly homogeneous [48]. We proved that this implies that
for simply-connected bodies universal eigenstrains are impotent. Universal deformations
and eigenstrains in incompressible anelasticity were investigated in [18]. It was shown that
the six known families of universal deformations in incompressible isotropic elasticity are
invariant under certain Lie subgroups of the special Euclidean group. In the analysis of
universal eigenstrains it was assumed that for each class of universal deformations the cor-
responding universal eigenstrains have the same symmetries. Under this assumption, the
universal eigenstrains were characterized for each class.

Ericksen’s analysis was extended to inhomogeneous compressible and incompressible
isotropic solids in [44] (this was motivated by an earlier result in [15]). It was shown that
if the energy function is assumed to be position dependent (in the reference configuration)
there are some extra universality constraints, in addition to those of the corresponding ho-
mogeneous solids. The universal inhomogeneities—the form of the position dependence of
energy function consistent with the universality constraints—were fully characterized for
compressible isotropic solids and for the six known families of universal deformations of
incompressible isotropic solids.

Ericksen and Rivlin [10] presented a limited analysis of universal deformations in
anisotropic solids assuming fixed material preferred directions. We extended Ericksen’s
analysis to transversely isotropic, orthotropic, and monoclinic solids in both compressible
and incompressible cases [49]. We showed that for compressible transversely isotropic, or-
thotropic, and monoclinic solids universal deformations are homogeneous and the universal
material preferred directions are uniform. For each of the six known families of universal
deformations in the incompressible case (that turn out to be universal for anisotropic solids
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as well) we assumed that the corresponding universal material preferred directions have the
same symmetries as those of the universal deformations (these symmetries are encoded in
the symmetries of the right Cauchy-Green strain). Under this assumption we fully character-
ized the universal material preferred directions for each family and material class. Recently,
we completed the universal program of nonlinear hyperelastic elasticity by characterizing
the universal inhomogeneities for each of the three material classes for both compressible
and incompressible cases [50].

Since the central object of linear elasticity is displacement fields rather than deforma-
tions, universal displacements are the natural analogue of universal deformations in linear
elasticity [20, 41, 52]. These are displacements that can be maintained in the absence of body
forces and by applying only boundary tractions for arbitrary elastic constants in a given sym-
metry class. In [52], universal displacements of linear anisotropic elasticity were fully char-
acterized for each of the eight symmetry classes assuming that the directions of the material
anisotropy are known. Recently, we extended the analysis of universal displacements to in-
homogeneous anisotropic linear elasticity [51]. It was shown that the universality constraints
of inhomogeneous linear elasticity include those of homogeneous linear elasticity. For each
of the eight symmetry classes we fully characterized the universal inhomogeneities, i.e., the
form of position dependence of the elastic moduli that are consistent with the universality
constraints. In the present paper, we study universality in anisotropic linear anelasticity.

This paper is organized as follows. In §2 we define universal elastic strains and eigen-
strains in linear anelasticity. Universal elastic strains and eigenstrains of isotropic linear
anelasticity are discussed in §3. The same problems are investigated for the other seven sym-
metry classes (triclinic, monoclinic, tetragonal, trigonal, orthotropic, transversely isotropic,
and cubic) in §4. Conclusions are given in §5.

2 Universal elastic strains and eigenstrains in linear anelasticity

In linear anelasticity, linearized strain is additively decomposed into elastic and anelastic
parts: ε = εe + ε∗, with

ε = 1

2

(∇u + ∇uT
)

, (2.1)

where u is the displacement field and ε∗ is the linearized eigenstrain, which in this paper
we simply refer to as eigenstrain. Note that, in general, εe and ε∗ are incompatible, i.e.,
curl◦ curl εe �= 0, and curl◦ curl ε∗ �= 0, where curl◦ curl is the incompatibility operator.
The constitutive equations read σ = C · εe , or in components

σab = Cabcd

(
uc|d − ε∗

cd

)
, (2.2)

where C is the elasticity tensor and summation over repeated indices is assumed. Let us
consider a homogeneous linear elastic body B. In the Cartesian coordinates {xa} the body
has uniform elastic constants Cabcd . At x ∈ B, the displacement and eigenstrain fields have
components ua(x) and ε∗

ab(x), respectively. In the absence of body forces, the equilibrium
equations read

σab,b = Cabcd uc,db − Cabcd ε∗
cd,b = 0 . (2.3)

It is more convenient to rewrite this in terms of elastic strains as

Cabcd εe
cd,b = 0 , (2.4)
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which must hold for arbitrary Cabcd in a given symmetry class. We refer to (2.4) as the
universality constraints.

Definition 2.1 For a given symmetry class, a strain field that satisfies C · ∇εe = 0, or in
components, Cabcd εe

cd,b = 0, a = 1,2,3, for all the elasticity tensors in the symmetry class,
is called a universal elastic strain.

The incompatibility tensor is defined as R = curl◦ curl ε, or in components

Rij = Rji = εaki εblj εab,kl , (2.5)

where εabc is the permutation symbol. The six bulk compatibility equations of linear elas-
ticity are therefore given by Rij = 0 [43]. Knowing that the total strain is compatible, one
concludes that R∗ = −Re . For a given symmetry class the universality constraints (2.4) de-
termine the set of universal elastic strains as we will see in the following sections. This leads
to the definition of universal eigenstrains.

Definition 2.2 For a given symmetry class, the corresponding universal eigenstrains are the
set of solutions to the following linear partial differential equations (PDEs)

εaki εblj ε
∗
ab,kl = −εaki εblj ε

e
ab,kl , (2.6)

where εe is a universal elastic strain fields of the symmetry class. In other words, a universal
eigenstrain satisfies (2.6) for at least one universal elastic strain. Note that the above PDEs
determine universal eigenstrains up to compatible (impotent) eigenstrains.

3 Isotropic linear anelasticity

For isotropic solids, in a Cartesian coordinate system {xa}, the elasticity tensor has the rep-
resentation Cabcd = λδabδcd + μ(δacδbd + δadδbc), where λ and μ are the Lamé constants.
The universality constraints (2.4) for isotropic solids are simplified to read

λεe
cc,a + 2μεe

ab,b = 0 , a = 1,2,3 . (3.1)

Note that the above identity must hold for arbitrary elastic constants λ and μ, and hence

εe
cc,a = εe

ab,b , a = 1,2,3 . (3.2)

Therefore, universal elastic strains have constant trace and are divergence free. A divergence-
free second-order tensor can be represented as: εe

ab = εacm εbdn φcd,mn, where φcd = φdc is the
Beltrami potential [2, 19]. In other words, any constant-trace divergence-free elastic strain
is universal. Note that these universal elastic strains are incompatible as one can show that

Rij = φkl,ijkl + φij,kkll − φkj,ikkll − φik,jkll . (3.3)

Proposition 3.1 For isotropic linear elastic solids universal elastic strains are divergence
free and have constant trace. The universal eigenstrains (up to impotent eigenstrains) are
the set of solutions of the following linear PDEs:

εaki εblj ε
∗
ab,kl = −φkl,ijkl − φij,kkll + φkj,ikkll + φik,jkll , (3.4)

where φij = φji are Beltrami potentials such that εe
cc = φnn,mm − φmn,mn is constant.
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4 Anisotropic linear anelasticity

In the absence of eigenstrains, Yavari et al. [52] characterized the universal displacements
of linear elasticity for all the eight anisotropy classes. In this section, we extend their work
to anisotropic linear anelasticity for all the eight symmetry classes: triclinic, monoclinic,
tetragonal, trigonal, orthotropic, transversely isotropic, and cubic [3–5, 40]. Consider a ho-
mogeneous body made of a linear elastic solid with elasticity tensor Cabcd that has major
Cabcd = Ccdab and minor symmetries Cabcd = Cbacd . We use the Voigt notation with the
bijection (11,22,33,23,31,12) ↔ (1,2,3,4,5,6) to write the constitutive equations as
σα = cαβεβ , where Greek indices run from 1 to 6. The elasticity tensor is then represented
by a symmetric 6 × 6 stiffness matrix as

C(x) =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

. (4.1)

In this notation the equilibrium equations are written as

⎡

⎢
⎣

∂
∂x1

0 0 0 ∂
∂x3

∂
∂x2

0 ∂
∂x2

0 ∂
∂x3

0 ∂
∂x1

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

⎤

⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

c11 c12 c13 c14 c15 c16

c12 c22 c23 c24 c25 c26

c13 c23 c33 c34 c35 c36

c14 c24 c34 c44 c45 c46

c15 c25 c35 c45 c55 c56

c16 c26 c36 c46 c56 c66

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

εe
1

εe
2

εe
3

εe
4

εe
5

εe
6

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

=
⎡

⎣
0
0
0

⎤

⎦ ,

(4.2)
where

εe
1 = εe

11 , εe
2 = εe

22 , εe
3 = εe

33 , εe
4 = 2εe

23 , εe
5 = 2εe

13 , εe
6 = 2εe

12 . (4.3)

Equation (4.2) and the arbitrariness of the elastic constants for a given symmetry class force
the elastic strains to satisfy a set of PDEs that we call universality constraints.

4.1 Triclinic solids

Triclinic solids are the least symmetric among the eight symmetry classes; the identity and
minus identity are the only symmetry transformations for such materials. This means that
triclinic linear elastic solids have twenty one independent elastic constants. In [52] it was
shown that for triclinic linear elastic solids homogeneous displacements are the only uni-
versal displacements. It is straightforward to show that for triclinic solids, the universality
constraints (2.4) read εe

β,a = 0, for β = 1, ...,6, and a = 1,2,3.1 This means that universal
elastic strains are constant. This implies that universal elastic strains are compatible, and
consequently the universal eigenstrains are impotent.

Proposition 4.1 For triclinic linear elastic solids, universal elastic strains are uniform, and
consequently, universal eigenstrains are impotent.

1All the symbolic computations in this paper were performed using Mathematica Version 13.0.0.0, Wolfram
Research, Champaign, IL.
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Remark 4.2 The universal eigenstrains are of the form ε∗(x) = 1
2

[∇u∗(x) + ∇u∗(x)T
]
,

where u∗(x) is any displacement field. For a given impotent eigenstrain ε∗(x), universal dis-
placements are superposition of u∗(x) and all homogeneous displacements. This implies that
all displacement fields are universal. However, if one defines universal eigenstrains modulo
impotent eigenstrains, in the case of triclinic solids, only homogeneous displacements are
universal.

4.2 Monoclinic solids

In a monoclinic solid there is one plane of material symmetry that we assume to be parallel to
the x1x2-plane. A monoclinic linear elastic solid has thirteen independent elastic constants.
The elasticity matrix has the following form:

c =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0
0 0 0 c45 c55 0

c16 c26 c36 0 0 c66

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

. (4.4)

In [52] it was shown that for a monoclinic linear elastic solid with planes of symmetry
parallel to the x1x2-plane, universal displacements are the superposition of homogeneous
displacements F ·x (F is a constant matrix) and the one-parameter inhomogeneous displace-
ment field (cx2x3,−cx1x3,0).

For monoclinic solids, the universality constraints (4.2) read εe
β,a = 0, for β = 1,2,3,6,

and a = 1,2,3, and

∂εe
23

∂x2
= ∂εe

23

∂x3
= 0 ,

∂εe
13

∂x2
= ∂εe

13

∂x3
= 0 ,

∂εe
13

∂x2
+ ∂εe

23

∂x1
= 0 .

(4.5)

The first two PDEs imply that εe
23 = εe

23(x1), and εe
13 = εe

13(x2), and the third PDE implies
that εe

23
′(x1) = −εe

13
′(x2) = c0, a constant. It is straightforward to check that the universal

elastic strains are compatible.

Proposition 4.3 For monoclinic linear elastic solids the universal elastic strains have the
following form

εe(x) =
⎡

⎣
c1 c6 −c0x2 + c5

c6 c2 c0x1 + c4

−c0x2 + c5 c0x1 + c4 c3

⎤

⎦ , (4.6)

where ci, i = 0,1, ...,6 are constants. These strains are compatible, and consequently, uni-
versal eigenstrains are impotent.

Remark 4.4 The universal eigenstrains are of the form ε∗(x) = 1
2

[∇u∗(x) + ∇u∗(x)T
]
,

where u∗(x) is any displacement field. For a given impotent eigenstrain ε∗(x), universal
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displacements are superposition of u∗(x) and all universal displacements in the absence of
eigenstrains, i.e., those of linear elasticity [52, Proposition 3.2]. This implies that all dis-
placement fields are universal. However, if one defines universal eigenstrains modulo impo-
tent eigenstrains, in the case of monoclinic solids, universal displacements are identical to
those given in [52, Proposition 3.2].

4.3 Tetragonal solids

A tetragonal solid has five symmetry planes. The normals of four of them are coplanar and
the fifth plane is normal to the other four. In a Cartesian coordinate system (x1, x2, x3) we
assume, without loss of generality, that the fifth normal is parallel to the x3 axis. Two of the
symmetry planes are parallel to the x1x3 and x2x3-planes. The other two symmetry planes
are related to the ones parallel to the x1x3-plane by π/4 and 3π/4 rotations about the x3

axis. A tetragonal solid has six independent elastic constants and the elasticity matrix has
the following form:

c =

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c66

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

. (4.7)

In [52] it was shown that in a tetragonal linear elastic solid with the tetragonal axes
parallel to the x3-axis, the universal displacements are a superposition of homogeneous dis-
placements and the following inhomogeneous displacements:2

u1(x1, x2, x3) = F11x1 + F12x2 + F13x3 + c1x2x3 + c2x1x3,

u2(x1, x2, x3) = F21x1 + F22x2 + F23x3 − c2x2x3 + c3x1x3,

u3(x1, x2, x3) = F31x1 + F32x2 + F33x3 + g(x1, x2) ,

(4.8)

where c1 and c2 are constants, and g = g(x1, x2) is any harmonic function.
The universality constraints (4.2) give us the following thirteen PDEs:

∂εe
11

∂x1
= ∂εe

11

∂x2
= 0 ,

∂εe
22

∂x1
= ∂εe

22

∂x2
= 0 ,

∂εe
11

∂x3
+ ∂εe

22

∂x3
= 0 ,

∂εe
33

∂x1
= ∂εe

33

∂x2
= ∂εe

33

∂x3
= 0 , (4.9)

∂εe
12

∂x1
= ∂εe

12

∂x2
= 0 ,

2There is a typo in Eq.(3.22)2 in [52]: −c2x1x3 should read −c2x2x3.
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∂εe
13

∂x3
= ∂εe

23

∂x3
= 0 ,

∂εe
13

∂x1
+ ∂εe

23

∂x2
= 0 .

The first five PDEs imply that εe
11 = εe

11(x3), εe
22 = −εe

11(x3) + c0, where c0 is a constant.
Eq. (4.9)4 implies that εe

33 is constant. Eq. (4.9)5 implies that εe
12 = εe

12(x3). The last three
PDEs imply that

εe
13 = εe

13(x1, x2), εe
23 = εe

23(x1, x2), with the constraint
∂εe

13

∂x1
+ ∂εe

23

∂x2
= 0 . (4.10)

Therefore, we have the following result.

Proposition 4.5 For a tetragonal linear elastic solid with the tetragonal axis parallel to the
x3-axis in a Cartesian coordinate system (x1, x2, x3), the universal elastic strains have the
following form

εe(x) =
⎡

⎣
εe

11(x3) εe
12(x3) εe

13(x1, x2)

εe
12(x3) −εe

11(x3) + c0 εe
23(x1, x2)

εe
13(x1, x2) εe

23(x1, x2) εe
33

⎤

⎦ , (4.11)

where c0 and εe
33 are constants, εe

11(x3), εe
12(x3), and εe

13(x1, x2) are arbitrary functions, and
εe

23(x1, x2) has the following representation

εe
23(x1, x2) = −

∫
εe

13,1(x1, x2)dx2 + f (x1) , (4.12)

for an arbitrary function f (x1). Universal egenstrains (up to impotent eigenstrains) are
solutions of the six second-order linear PDEs curl◦ curl ε∗ = −Re .

Remark 4.6 The incompatibility tensor of the universal elastic strains reads

Re =
⎡

⎣
−εe

11
′′(x3) εe

12
′′(x3) −∇2εe

13(x1, x2)

εe
12

′′(x3) εe
11

′′(x3) −∇2εe
23(x1, x2)

−∇2εe
13(x1, x2) −∇2εe

23(x1, x2) 0

⎤

⎦ . (4.13)

It is seen that the universal elastic strains (and consequently the universal eigenstrains) are
impotent if εe

11 and εe
12 are linear functions, and εe

13 and εe
23 are harmonic.

4.4 Trigonal solids

A trigonal solid has three planes of symmetry whose normals lie in the same plane and are
related by π/3 rotations. We choose Cartesian coordinates (x1, x2, x3) such that the trigonal
axis is parallel to the x3-axis. A trigonal solid has six independent elastic constants and the
elasticity matrix has the following form:

c =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

c11 c12 c13 0 c15 0
c12 c11 c13 0 −c15 0
c13 c13 c33 0 0 0
0 0 0 c44 0 −c15

c15 −c15 0 0 c44 0
0 0 0 −c15 0 1

2 (c11 − c12)

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

. (4.14)
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Yavari et al. [52] showed that in the absence of eigenstrains universal displacements are a
superposition of homogeneous displacements and the following inhomogeneous displace-
ments

uinh
1 (x1, x2, x3) = a123x1x2x3 + a12x1x2 + a13x1x3 + a23x2x3,

uinh
2 (x1, x2, x3) = 1

2
(a12 + a123x3)(x

2
1 − x2

2 ) + b13x1x3 − a13x2x3,

uinh
3 (x1, x2, x3) = −a123x

2
1x2 − (a23 + b13)x1x2 + 1

3
a123x

3
2 − a13(x

2
1 − x2

2 ).

(4.15)

The universality constraints (4.2) give us the following fourteen PDEs:

∂εe
33

∂x1
= ∂εe

33

∂x2
= ∂εe

33

∂x3
= 0 ,

∂εe
13

∂x3
= ∂εe

23

∂x3
= 0 ,

(4.16)

and

∂εe
11

∂x3
+ ∂εe

22

∂x3
= 0 ,

∂εe
11

∂x1
+ ∂εe

12

∂x2
= 0 ,

∂εe
22

∂x1
− ∂εe

12

∂x2
= 0 ,

∂εe
12

∂x1
+ ∂εe

22

∂x2
= 0 ,

∂εe
12

∂x1
− ∂εe

11

∂x2
= 0 ,

(4.17)

and

∂εe
13

∂x1
+ ∂εe

23

∂x2
= 0 ,

∂εe
11

∂x3
− ∂εe

22

∂x3
− 2

∂εe
23

∂x2
+ 2

∂εe
13

∂x2
= 0 ,

∂εe
11

∂x1
− ∂εe

22

∂x1
− 2

∂εe
12

∂x2
= 0 ,

∂εe
23

∂x1
+ ∂εe

13

∂x2
+ ∂εe

12

∂x3
= 0 .

(4.18)

From (4.16) one concludes that εe
33 is constant and εe

13 = εe
13(x1, x2), εe

23 = εe
23(x1, x2). From

the last four PDEs in (4.17) one gets

∂εe
11

∂x1
+ ∂εe

22

∂x1
= 0 ,

∂εe
11

∂x2
+ ∂εe

22

∂x2
= 0 .

(4.19)
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These together with (4.17)1 imply that εe
22(x1, x2, x3) = −εe

11(x1, x2, x3) + c0, where c0 is a
constant. Substituting this into (4.18)3 one obtains

∂εe
11

∂x1
− ∂εe

12

∂x2
= 0 . (4.20)

This together with (4.17)2 implies that

∂εe
11

∂x1
= ∂εe

12

∂x2
= 0 , (4.21)

and hence εe
11 = εe

11(x2, x3) and εe
12 = εe

12(x1, x3). Now the remaining PDEs are simplified
to read:

∂εe
13

∂x1
+ ∂εe

23

∂x2
= 0 ,

∂εe
11

∂x3
− ∂εe

23

∂x2
+ ∂εe

13

∂x1
= 0 ,

∂εe
12

∂x1
− ∂εe

11

∂x2
= 0 ,

∂εe
23

∂x1
+ ∂εe

13

∂x2
+ ∂εe

12

∂x3
= 0 .

(4.22)

From (4.22)3, one obtains

∂

∂x1
εe

12(x1, x3) = ∂

∂x2
εe

11(x2, x3) ⇒ ∂2

∂x2
1

εe
12(x1, x3) = ∂2

∂x2
2

εe
11(x2, x3) = 0 . (4.23)

Thus, one has

εe
11(x2, x3) = x2f11(x3) + g11(x3) ,

εe
12(x1, x3) = x1f12(x3) + g12(x3) .

(4.24)

From (4.22)3, one concludes that f12(x3) = f11(x3). Equation (4.22)2 can be rewritten as

∂εe
13(x1, x2)

∂x1
− ∂εe

23(x1, x2)

∂x2
= −x2f

′
11(x3) − g′

11(x3) . (4.25)

Therefore, x2f
′′
11(x3) + g′′

11(x3) = 0, which implies that f ′′
11(x3) = g′′

11(x3) = 0. Thus,
f11(x3) = a11x3 + a0, and g11(x3) = b11x3 + c1. Similarly, from (4.22)4 one concludes that
g12(x3) = b12x3 + c2.

Finally, the three PDEs in (4.22) are simplified to read

∂εe
13

∂x1
+ ∂εe

23

∂x2
= 0 ,

∂εe
13

∂x1
− ∂εe

23

∂x2
= −a11x2 − b11 ,

∂εe
23

∂x1
+ ∂εe

13

∂x2
= −a11x1 − b12 .

(4.26)
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From the first two one obtains

εe
13(x1, x2) = −1

2
a11x1x2 − 1

2
b11x1 + f13(x2) ,

εe
23(x1, x2) = 1

4
a11x

2
2 + 1

2
b11x2 + f23(x1) .

(4.27)

Substituting these back into (4.26)3, one obtains f ′
23(x1) + 1

2a11x1 + b12 = −f ′
13(x2). This

implies that f ′
23(x1) + 1

2a11x1 + b12 = −f ′
13(x2) = c3, and hence f23(x1) = − 1

4a11x
2
1 +

(−b12 + c3)x1 + c4, and f13(x2) = −c3x2 + c5.
In summary, we have proved the following result.

Proposition 4.7 For trigonal linear elastic solids whose trigonal axes are parallel to the
x3 axis in a Cartesian coordinate system (x1, x2, x3), the universal elastic strains have the
following components

εe
11(x1, x2, x3) = a11x2x3 + a0x2 + b11x3 + c1 , εe

22(x1, x2, x3) = −εe
11(x1, x2, x3) + c0 ,

εe
33(x1, x2, x3) = εe

23 , εe
23(x1, x2, x3) = 1

4
a11x

2
2 + 1

2
b11x2 − 1

4
a11x

2
1 + (−b12 + c3)x1 + c4 ,

εe
13(x1, x2, x3) = −1

2
a11x1x2 − 1

2
b11x1 − c3x2 + c5 ,

εe
12(x1, x2, x3) = a11x1x3 + b12x3 + c2 .

(4.28)
These strains are compatible, and consequently, universal eigenstrains are impotent.

Remark 4.8 The universal eigenstrains are of the form ε∗(x) = 1
2

[∇u∗(x) + ∇u∗(x)T
]
,

where u∗(x) is any displacement field. For a given impotent eigenstrain ε∗(x), universal
displacements are superposition of u∗(x) and all universal displacements in the absence of
eigenstrains, i.e., those of linear elasticity [52, Proposition 3.4]. This implies that all dis-
placement fields are universal. However, if one defines universal eigenstrains modulo impo-
tent eigenstrains, in the case of trigonal solids, universal displacements are identical to those
given in [52, Proposition 3.4].

4.5 Orthotropic solids

An orthotropic solid has three mutually orthogonal symmetry planes. Let us choose Carte-
sian coordinates (x1, x2, x3) whose coordinate planes are parallel to the symmetry planes.
An orthotropic solid has nine independent elastic constants, and the elasticity matrix has the
following form:

c =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

. (4.29)

In [52] it was shown that in an orthotropic linear elastic solid whose planes of symme-
try are normal to the coordinate axes in a Cartesian coordinate system (x1, x2, x3), and
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in the absence of eigenstrains the universal displacements are the superposition of homo-
geneous displacement fields and the three-parameter inhomogeneous displacement field
(a1x2x3, a2x1x3, a3x1x2).

The universality constraints (4.2) give us the following fifteen PDEs:

∂εe
11

∂x1
= ∂εe

11

∂x2
= ∂εe

11

∂x3
= 0 ,

∂εe
22

∂x1
= ∂εe

22

∂x2
= ∂εe

22

∂x3
= 0 ,

∂εe
33

∂x1
= ∂εe

33

∂x2
= ∂εe

33

∂x3
= 0 ,

∂εe
12

∂x1
= ∂εe

12

∂x2
= 0 ,

∂εe
13

∂x1
= ∂εe

13

∂x3
= 0 ,

∂εe
23

∂x2
+ ∂εe

23

∂x3
= 0 .

(4.30)

Thus, the normal elastic strains are constant and εe
23 = εe

23(x1), εe
13 = εe

13(x2), and εe
12 =

εe
12(x3). Therefore, we have proved the following result.

Proposition 4.9 For orthotropic linear elastic solids with planes of symmetry normal to the
coordinate axes in a Cartesian coordinate system (x1, x2, x3), the universal elastic strains
have the following form

εe(x) =
⎡

⎣
εe

11 εe
12(x3) εe

13(x2)

εe
12(x3) εe

22 εe
23(x1)

εe
13(x2) εe

23(x1) εe
33

⎤

⎦ , (4.31)

where εe
11, εe

22, εe
33 are constant, and εe

23(x1), εe
13(x2), εe

12(x3) are arbitrary functions. Uni-
versal eigenstrains (up to impotent eigenstrains) are the set of solutions to the following six
PDEs

∂2ε∗
11

∂x2
2

+ ∂2ε∗
22

∂x2
1

− 2
∂2ε∗

12

∂x1∂x2
= 0 ,

∂2ε∗
11

∂x2
3

+ ∂2ε∗
33

∂x2
1

− 2
∂2ε∗

13

∂x1∂x3
= 0 ,

∂2ε∗
22

∂x2
3

+ ∂2ε∗
33

∂x2
2

− 2
∂2ε∗

23

∂x2∂x3
= 0 ,

− ∂2ε∗
11

∂x2∂x3
− ∂2ε∗

23

∂x2
1

+ ∂2ε∗
13

∂x1∂x2
+ ∂2ε∗

12

∂x1∂x3
= εe

23
′′
(x1) ,

− ∂2ε∗
22

∂x1∂x3
+ ∂2ε∗

23

∂x1∂x2
− ∂2ε∗

13

∂x2
2

+ ∂2ε∗
12

∂x2∂x3
= εe

13
′′
(x2) ,

− ∂2ε∗
33

∂x1∂x2
+ ∂2ε∗

23

∂x1∂x3
+ ∂2ε∗

13

∂x2∂x3
− ∂2ε∗

12

∂x2
3

= εe
12

′′
(x3) .

(4.32)
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Remark 4.10 The incompatibility tensor of the universal elastic strains reads

Re =
⎡

⎣
0 −εe

12
′′(x3) −εe

13
′′(x2)

−εe
12

′′(x3) 0 −εe
23

′′(x1)

−εe
13

′′(x2) −εe
23

′′(x1) 0

⎤

⎦ . (4.33)

We observe that the universal elastic strains (and consequently the universal eigenstrains)
are impotent if εe

23(x1), εe
13(x2), εe

12(x3) are linear functions.

4.6 Transversely isotropic solids

A transversely isotropic solid has an axis of symmetry that is normal to the isotropy planes.
Let us assume that the axis of transverse isotropy is along the x3-axis in a Cartesian coordi-
nate system (x1, x2, x3). A transversely isotropic solid has five independent elastic constants,
and the elasticity matrix has the following representation:

c =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 1

2 (c11 − c12)

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

. (4.34)

In [52] it was shown that, in the absence of egenstrains, universal displacements have the
following form:

u1(x1, x2, x3) = c1x1 + c2x2 + cx2x3 + x3h1(x1, x2) + k1(x1, x2),

u2(x1, x2, x3) = −c2x1 + c1x2 − cx1x3 + x3h2(x1, x2) + k2(x1, x2),

u3(x1, x2, x3) = c3x3 + û3(x1, x2),

(4.35)

where ξ(x2 + ix1) = h2(x1, x2) + ih1(x1, x2) and η (x2 + ix1) = k2(x1, x2) + ik1(x1, x2)
3 are

holomorphic, and û3(x1, x2) is harmonic.
The universality constraints (4.2) give us the following fifteen PDEs:

∂εe
33

∂x1
= ∂εe

33

∂x2
= ∂εe

33

∂x3
= 0 ,

∂εe
13

∂x3
= ∂εe

23

∂x3
= 0 ,

∂εe
13

∂x1
+ ∂εe

23

∂x2
= 0 ,

(4.36)

3Note that there is a typo in [52, Proposition 3.6].



254 A. Yavari, A. Goriely

and

∂εe
11

∂x3
+ ∂εe

22

∂x3
= 0 ,

∂εe
11

∂x1
+ ∂εe

12

∂x2
= 0 ,

∂εe
22

∂x1
− ∂εe

12

∂x2
= 0 ,

∂εe
12

∂x1
− ∂εe

11

∂x2
= 0 ,

∂εe
12

∂x1
+ ∂εe

22

∂x2
= 0 .

(4.37)

From (4.36)1 one concludes that εe
33 is constant. The remaining PDEs in (4.36) imply that

εe
13 = εe

13(x1, x2), εe
23 = εe

23(x1, x2), and
∂εe

13(x1,x2)

∂x1
+ ∂εe

23(x1,x2)

∂x2
= 0. Therefore, εe

13(x1, x2) is
an arbitrary function and

εe
23(x1, x2) = −

∫
εe

13,1(x1, x2)dx2 + ε̂23(x1) , (4.38)

where ε̂23(x1) is an arbitrary function. From the last four PDEs in (4.37), one obtains

∂εe
11

∂x1
+ ∂εe

22

∂x1
= 0 ,

∂εe
11

∂x2
+ ∂εe

22

∂x2
= 0 , (4.39)

which together with (4.37)1 imply that εe
22(x1, x2, x3) = −εe

11(x1, x2, x3) + c0, where c0 is a
constant. The remaining PDEs are (4.37)2 and (4.37)4. They imply that

∂2εe
11

∂x2
1

+ ∂2εe
11

∂x2
2

= 0 ,

εe
12(x1, x2, x3) =

∫
εe

11,2(x1, x2, x3)dx1 + ε̂(x2, x3) ,

(4.40)

where ε̂(x2, x3) is an arbitrary function. Therefore, we have proved the following result.

Proposition 4.11 For transversely isotropic linear elastic solids with the isotropy plane par-
allel to the x1x2-plane in a Cartesian coordinate system (x1, x2, x3), the universal elastic
strains have the following form

εe(x) =
⎡

⎣
εe

11(x1, x2, x3) εe
12(x1, x2, x3) εe

13(x1, x2)

εe
12(x1, x2, x3) −εe

11(x1, x2, x3) + c0 εe
23(x1, x2)

εe
13(x1, x2) εe

23(x1, x2) εe
33

⎤

⎦ , (4.41)

where εe
33 is constant. εe

11(x1, x2, x3) satisfies the PDE (4.40)1, and εe
12(x1, x2, x3) has the

representation (4.40)2. εe
13(x1, x2) is an arbitrary function, while εe

23(x1, x2) has the repre-
sentation (4.38). Universal egenstrains (up to impotent eigenstrains) are the set of solutions
of the six second-order linear PDEs curl◦ curl ε∗ = −Re , where the incompatibility tensor
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of the universal elastic strains reads

Re =

⎡

⎢
⎢⎢
⎣

− ∂2εe
11

∂x2
3

∂2εe
12

∂x2
3

∂
∂x2

(
∂εe

23
∂x1

− ∂εe
13

∂x2

)

∂2εe
12

∂x2
3

∂2εe
11

∂x2
3

∂
∂x1

(
∂εe

13
∂x2

− ∂εe
23

∂x1

)

∂
∂x2

(
∂εe

23
∂x1

− ∂εe
13

∂x2

)
∂

∂x1

(
∂εe

13
∂x2

− ∂εe
23

∂x1

)
0

⎤

⎥
⎥⎥
⎦

. (4.42)

4.7 Cubic solids

A cubic solid has nine planes of symmetry at every point such that their normals are parallel
to the edges and face diagonals of a cube. Suppose the edges of the cube are parallel to
the coordinate axes of a Cartesian coordinate system (x1, x2, x3). A cubic solid has three
independent elastic constants and with respect to this coordinate system has an elasticity
matrix with the following representation

c =

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

. (4.43)

In [52] it was shown that for cubic solids and in the absence of eigenstrains universal dis-
placements have the following form

u1(x1, x2, x3) = a

2
x1(x

2
3 − x2

2 ) + c1x1x3 + b1x1x2 + d1x1 + g1(x2, x3),

u2(x1, x2, x3) = a

2
x2(x

2
1 − x2

3 ) + a1x1x2 − c1x2x3 + d2x2 + g2(x1, x3),

u3(x1, x2, x3) = a

2
x3(x

2
2 − x2

1 ) − a1x1x3 − b1x2x3 + d3x3 + g3(x1, x2),

(4.44)

where g1, g2, and g3 are arbitrary harmonic functions.
The universality constraints (4.2) give us the following nine PDEs:

∂εe
11

∂x1
= ∂εe

22

∂x2
= ∂εe

33

∂x3
= 0 ,

∂εe
22

∂x1
+ ∂εe

33

∂x1
= 0 ,

∂εe
11

∂x2
+ ∂εe

33

∂x2
= 0 ,

∂εe
11

∂x3
+ ∂εe

22

∂x3
= 0 ,

(4.45)
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and

∂εe
12

∂x1
+ ∂εe

23

∂x3
= 0 ,

∂εe
12

∂x2
+ ∂εe

13

∂x3
= 0 ,

∂εe
13

∂x1
+ ∂εe

23

∂x2
= 0 .

(4.46)

From (4.45)1, εe
11 = εe

11(x2, x3), εe
22 = εe

22(x1, x3), and εe
33 = εe

33(x1, x2). From the remaining
PDEs in (4.45) one concludes that

εe
11(x2, x3) = g(x2) + h(x3) ,

εe
22(x1, x3) = f (x1) − h(x3) ,

εe
33(x1, x2) = −f (x1) − g(x2) ,

(4.47)

where f (x1), g(x2), and h(x3) are arbitrary functions.
From (4.46) one concludes that

εe
12(x1, x2, x3) = f3(x1, x3) + g3(x2, x3) ,

εe
23(x1, x2, x3) = f1(x1, x2) + g1(x1, x3) ,

εe
13(x1, x2, x3) = f2(x1, x2) + g2(x2, x3) ,

(4.48)

such that

∂

∂x1
f3(x1, x3) + ∂

∂x3
g1(x1, x3) = 0 ,

∂

∂x2
g3(x2, x3) + ∂

∂x3
g2(x2, x3) = 0 ,

∂

∂x1
f2(x1, x2) + ∂

∂x2
f1(x1, x2) = 0 .

(4.49)

Thus

g1(x1, x3) = −
∫

f3,1(x1, x3)dx3 + α(x1) ,

g3(x2, x3) = −
∫

g2,3(x2, x3)dx2 + γ (x3) ,

f2(x1, x2) = −
∫

f1,2(x1, x2)dx1 + β(x2) ,

(4.50)

where α(x1), β(x2), and γ (x3) are arbitrary functions. Therefore, we have proved the fol-
lowing result.
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Proposition 4.12 For cubic linear elastic solids the universal elastic strains have the follow-
ing form

εe(x) =
⎡

⎣
g(x2) + h(x3) f3(x1, x3) + g3(x2, x3) f2(x1, x2) + g2(x2, x3)

f3(x1, x3) + g3(x2, x3) f (x1) − h(x3) f1(x1, x2) + g1(x1, x3)

f2(x1, x2) + g2(x2, x3) f1(x1, x2) + g1(x1, x3) g(x2) + h(x3)

⎤

⎦ ,

(4.51)
where g1(x1, x3), g3(x2, x3), and f2(x1, x2) are given in (4.50), and the remaining functions
are arbitrary. Universal egenstrains (up to impotent eigenstrains) are the set of solutions of
the six second-order linear PDEs curl◦ curl ε∗ = −Re , where the incompatibility tensor of
the universal elastic strains reads

Re =
⎡

⎣
−g′′(x2) − h′′(x3) −∇2f3(x1, x3) − ∇2g3(x2, x3) −∇2f1(x1, x2) − ∇2g1(x1, x3)

−∇2f3(x1, x3) − ∇2g3(x2, x3) −f ′′(x1) + h′′(x3) −∇2f2(x1, x2) − ∇2g2(x2, x3)

−∇2f1(x1, x2) − ∇2g1(x1, x3) −∇2f2(x1, x2) − ∇2g2(x2, x3) g′′(x2) + h′′(x3)

⎤

⎦ .

(4.52)

5 Conclusion

We have studied the universality of elastic and anelastic strains in anisotropic linear anelas-
ticity. Universal displacements are those displacement fields that satisfy the equilibrium
equations in the absence of body forces for arbitrary elastic constants in a given symme-
try class. The universality constraints of linear anelasticity restrict the possible forms of
elastic strains. We completely characterized the universal elastic strains for all the eight
symmetry classes. We observed that for triclinic, monoclinic, and trigonal solids univer-
sal elastic strains are compatible. The total strain ε = εe + ε∗ is compatible, and hence,
curl◦ curl εe + curl◦ curl ε∗ = 0. Having determined the set of universal elastic strains for
every symmetry class, the corresponding universal eigenstrains are found to be those that
satisfy the linear second-order PDEs curl◦ curl ε∗ = − curl◦ curl εe for at least one univer-
sal elastic strain field εe(x). For triclinic, monoclinic, and trigonal classes we showed that
only compatible eigenstrains are universal. If universal eigenstrains are defined modulo the
compatible eigenstrains, for these three classes the universal displacements are identical to
the corresponding linear elasticity universal displacements that were characterized in [52].
For the other five classes universal eigenstrains are solutions to a system of inhomogeneous
PDEs with forcing terms that are certain arbitrary functions depending on the symmetry
class. We observed that the smaller the symmetry group, the smaller the space of universal
elastic strains, and consequently, the smaller the space of universal eigenstrains. Hence, we
have achieved a complete classification of universal elastic strains in linear anelasticity.
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