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Abstract
Macroscopic elastic core-shell systems can be generated as toy models to be deformed and
haptically studied by hand. On the mesoscale, colloidal core-shell particles and microgels
are fabricated and investigated by different types of microscopy. We analyse, using linear
elasticity theory, the response of spherical core-shell systems under the influence of a line
density of force that is oriented radially and acts along the equator of the outer surface. Inter-
estingly, deformational coupling of the shell to the core can determine the resulting overall
appearance in response to the forces. We address various combinations of radii, stiffness,
and Poisson ratio of core and shell and illustrate the resulting deformations. Macroscopi-
cally, the situation could be realized by wrapping a cord around the equator of a macroscopic
model system and pulling it tight. On the mesoscale, colloidal microgel particles symmetri-
cally confined to the interface between two immiscible fluids are pulled radially outward by
surface tension.

Keywords Linear elasticity theory · Core-shell system · Deformation under external load ·
Continuum theory

Mathematics Subject Classification 74B10 · 74A10 · 74A30

1 Introduction

Solid sphere-like core-shell systems containing an inner part, the core, of elastic proper-
ties different from a surrounding outer part, the shell, are encountered in various contexts
on different length scales. On large macroscopic scales, many stars, planets and moons can
be approximated by a core and a shell of different elasticity [1]. Jelly sweets covered by a
solid layer represent a popular example of not only mechanical or haptic but also culinary
experience. Conversely, on the mesoscopic colloidal scale and even down to the nanoscale,
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there are numerous soft matter systems involving core-shell particles. These can be prepared
in various ways [2, 3] as spherical colloidal particles with a polymer coating [4–6], as mi-
celles [7] or as polymer networks with different crosslinking degrees in the inner and outer
part [8–10]. Their controlled fabrication is not only pivotal for applications (such as microre-
actors [11, 12], targeted drug delivery [13, 14] or smart elastic materials [15, 16]). They also
serve as model systems to tailor effective repulsive square-shoulder potentials [17–27] and
to understand fundamental questions of statistical mechanics such as freezing and glass for-
mation [4, 28–30].

Our focus in this work is laid on the coupled elastic deformation of inner and outer part,
that is core and shell, respectively. We address spherical elastic systems when exposed to a
radially oriented force line density along the equatorial circumference of the shell. This setup
is motivated by the elasticity problem underlying colloidal core-shell microgel particles that
are adsorbed to the interface between two immiscible fluids. At their common contact line,
the two fluids pull on the shell of the microgel particle approximately in a radially outward
direction in a symmetric setup [31–33]. In many of such interfacial situations, the wetting
properties of the surface of a material are crucial for adsorption. A core-shell system pro-
vides an appropriate opportunity to adjust by a shell these surface wetting properties to the
current need. At the same time, the elastic properties of the core under the influence of an in-
terface are explored. Moreover, the particles may be density matched or functionalized, for
example integrating magnetic behaviour, by the selected core material [34–36]. On macro-
scopic toy model systems, the force densities can be applied by hand, while on even larger,
global scales atmospheric effects may lead to equatorially located line-like force densities on
planets. An example is the thin area of low atmospheric pressure located around the equator
of the earth in the inter-tropical convergence zone. In view of these different systems and
situations, the imposed equatorial line force density can either be oriented radially inward
(compressive) or radially outward (tensile). In the mathematical treatment this difference is
represented by an inversion of the sign of the load.

In this paper, we study the underlying elasticity problem. We present a general contin-
uum theory to compute and predict the shape change of an elastic core-shell system when
loaded by an equatorial ring of line force density. Importantly not only the shell deforms,
but also the inner core, and the two deformations are coupled to each other by the overall
architecture. Through this coupling, the core can influence or even determine the type of de-
formation of the shell, although the load is applied from outside to the shell, not to the core.
We analyse the resulting change of shape in detail, as a function of the relative size of core
and shell, different mechanical stiffness of core and shell, as well as their compressibility.
In particular, we include the possibility of an elastic auxetic response [37–42]. The latter
is characterized by a negative Poisson ratio, i.e. when stretched along one axis the system
expands along the perpendicular axes. Materials exhibiting corresponding elastic properties
have been identified, constructed and analysed [43–46]. In particular it is interesting to con-
sider core and shell materials with different Poisson ratios, as their competition can result
in qualitatively different modes of deformation. Our study links to previously investigated
geometries, particularly spherical one-component systems [47] or hollow capsules [48] as
special cases. Moreover, our additional predictions can be verified by experiments on differ-
ent scales.

2 Theory and Geometry

Within linear elasticity theory, small deformations of elastic materials are described. The
position r of a material element can be mapped to its position r′ in the deformed state
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by adding the displacement vector u. The displacement field u (r) in the bulk satisfies the
homogeneous Navier-Cauchy equations [49]

(1 − 2ν)∇2u (r) + ∇(∇ · u (r)) = 0 (1)

with −1 < ν ≤ 1/2 denoting the Poisson ratio of the elastic substance in three-dimensional
situations [50]. Materials with ν = 1/2 are incompressible, while those with negative Pois-
son ratio are referred to as auxetic materials [50]. The latter, when stretched along a cer-
tain axis, expand along the lateral directions (instead of undergoing lateral contraction). We
ignore any force acting on the bulk, for example gravity. Consequently, in the bulk, the
right-hand side of Eq. (1) is set equal to zero.

Furthermore, linear elasticity theory for homogeneous isotropic materials dictates the
stress-strain relation [50]

E

1 + ν

(
ε(r) + ν

1 − 2ν
Tr

(
ε(r)

)
I
)

= σ (r). (2)

Equation (2) describes the relationship between the strain tensor ε (r) = (∇u (r) +
(∇u (r))T

)
/2 as the symmetrized gradient of the displacement field u (r) and the symmetric

Cauchy stress tensor σ (we mark second-rank tensors and matrices by an underscore). E is
the Young modulus of the elastic material and I is the unit matrix. The Young modulus E

and the Poisson ratio ν are sufficient to quantify the properties of a homogeneous isotropic
elastic material.

The boundary conditions at the surface of the elastic shell are

σ (r) · n = λ

Rs
δ
(
θ − π

2

)
n. (3)

Here, n describes the outward normal unit vector of the surface and δ
(
θ − π

2

)
/Rs, with δ

the Dirac delta function, sets the location of the line at which the loading force line density
of amplitude λ is acting on the core-shell system. We use spherical coordinates so that θ = π

2
specifies the equator.

Since we are describing a core-shell material, different elastic properties and radii are
attributed to the core and to the shell, see Fig. 1. The core (green) is assigned the radius Rc,
the Young modulus Ec, and the Poisson ratio νc. The shell (red) is defined by the outer radius
Rs, the Young modulus Es, and the Poisson ratio νs. According to Eq. (3), λ > 0 marks the
amplitude of a line density of force pointing radially outward along the equator of the outer
surface of the shell.

The system is characterized by the following five dimensionless parameters. First, the
ratio λ/EsRs of the loading force line density on the surface to the Young modulus of the
shell describes the relative strength of the load magnitude and is proportional to the ampli-
tude of deformation. The second parameter is the ratio of Young moduli Ec/Es of the core
to the shell and in addition, the two dimensionless Poisson ratios νc and νs of core and shell,
respectively, enter the elasticity theory. The fifth parameter is the size ratio Rc/Rs of the
core to the shell.

In spherical coordinates, the position vector r transforms from the unloaded configura-
tion to the loaded configuration as r′ = r + urer + uθeθ , with ur the radial and uθ the polar
component of the displacement field. er and eθ denote the radial and polar unit vector, re-
spectively. Due to the special axial symmetry of the problem, the azimuthal component of
the displacement field, uφ , is zero. Concerning the homogeneous Navier-Cauchy equations
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Fig. 1 Schematic visualisation of the core-shell system, here still in its initial spherical shape for illustration.
The core (green) is assigned the radius Rc, the Young modulus Ec, and the Poisson ratio νc. The shell (red)
is described by the outer radius Rs, the Young modulus Es, and the Poisson ratio νs. The system is loaded by
exposition to a ring of force line density around the equator of the outer sphere of magnitude λ.

Eq. (1) and the stress-strain relation Eq. (2) recast in spherical coordinates, where in our
case the azimuthal dependence vanishes, see the Supporting Information (SI).

For both core and shell we solve Eq. (1) by separation into a series expansion of the polar
dependence in terms of Legendre polynomials Pn (cos θ) and associated r-dependent pref-
actors (r = |r|) [51]. We distinguish by superscripts c and s the solutions for core and shell,
respectively. More precisely, the solutions [47, 52, 53] of the Navier-Cauchy equations (1)
split into a radial component u(c)

r (r) and a polar component u
(c)
θ (r) for the core and take the

form

u(c)
r (r) =

∞∑
n=0

(
a(c)

n (n + 1)(−2 + n + 4νc)r
n+1 + b(c)

n nrn−1
)
Pn (cos θ) , (4)

uc
θ (r) =

∞∑
n=1

(
a(c)

n (5 + n − 4νc)r
n+1 + b(c)

n rn−1
) d

dθ
Pn (cos θ) . (5)

The solutions for the shell additionally contain terms inverse in the radial distance from the
origin

u(s)
r (r) =

∞∑
n=0

(
a(s)

n (n + 1)(−2 + n + 4νs)r
n+1 + b(s)

n nrn−1

+n(3 + n − 4νs)c
(s)
n r−n − (n + 1)d(s)

n r−(n+2)
)
Pn (cos θ) , (6)

u
(s)
θ (r) =

∞∑
n=1

(
a(s)

n (5 + n − 4νs)r
n+1 + b(s)

n rn−1

−(−4 + n + 4νs)c
(s)
n r−n + d(s)

n r−(n+2)
) d

dθ
Pn (cos θ) . (7)

As boundary conditions, we use that the traction vectors at the interface of core and shell
(at radius Rc) must be equal

σ (c) (Rcer ) · n = σ (s) (Rcer ) · n. (8)

Requiring strict elastic no-slip coupling, also the deformations at the interface must be equal

u(c) (Rcer ) = u(s) (Rcer ) . (9)
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Since the Legendre polynomials form a complete orthogonal set, the Dirac delta function in
Eq. (3) can be expanded in Legendre polynomials

δ
(
θ − π

2

)
=

∞∑
n=0

2n + 1

2
Pn

(
cos

(π

2

))
Pn (cos θ) . (10)

Due to the assumed mirror symmetry with respect to the equatorial plane, all odd series
expansion components in the core and shell solution in Eqs. (4)-(7) vanish. Therefore we
can write for the radial displacement

u(i)
r (r) = u

(i)

r,0 (r) + u
(i)

r,2 (r)P2 (cos(θ)) + · · · (11)

with i = c for the core and i = s for the shell, respectively. Here, the first component u
(i)

r,0(r)

describes the overall volume change. We note that this term will vanish for νi → 1/2 and
remains as the only component for νi → −1. The second component gives the first correc-
tion to a spherical shape. A positive prefactor u

(i)

r,2(r) describes a relative prolate deformation

while u
(i)

r,2(r) < 0 implies a relative oblate deformation. It is in fact the latter case of an oblate
deformation which we expect when the core-shell particle is pulled outwards at the equator
(λ > 0).

The solutions for the displacements of the core and the shell diverge in response to the
Dirac delta function at the equator on the surface of the shell, see the boundary condition
Eq. (3). Yet, each mode of deformation is only excited to a finite degree by the Dirac delta
function, see Eq. (10). Therefore, the second components u

(c)

r,2(r) and u
(s)

r,2(r) for the core and

the shell remain finite and u
(s)

r,2(r) is even finite at the surface of the shell. We shall use them
as parameters to characterise the relative oblate or prolate deformation of the core and the
shell shape.

For convenience, we evaluate these second components at the core and shell radii and
normalize them with the corresponding unloaded radii of the core and the shell, respec-
tively. Hence, we use subsequently u

(c)

r,2/Rc ≡ u
(c)

r,2(Rc)/Rc and u
(s)

r,2/Rs ≡ u
(s)

r,2(Rs)/Rs as
dimensionless measures for the shape of the core and the shell.

3 Results and Discussion

3.1 General Solution and Limiting Behaviour

We first present the solutions for the displacements under the prescribed boundary condi-
tions by providing the core coefficients of the expansions (4) and (5)

a(c)
n = λ

EsRs

2n + 1

2
Pn (0)

(
Rc

Rs

)−2

R−n
s

[(
Ec

Es

)
c̃01,n + c̃02,n

]
1

D
, (12)

b(c)
n = − λ

EsRs

2n + 1

2
Pn (0)R−(n−2)

s

[(
Ec

Es

)
c̃03,n + c̃04,n

]
1

D
, (13)

and the shell coefficients of the expansions (6) and (7)

a(s)
n = λ

EsRs

2n + 1

2
Pn (0)R−n

s



82 J. Kolker et al.

×
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Es

)2
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D
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EsRs
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2
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Rs
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c Rs
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Ec

Es

)2

c̃14,n +
(

Ec

Es

)
c̃15,n + c̃16,n

]
1

D
, (17)

with

D =
(

Ec

Es

)2

c̃17,n + Ec

Es
c̃18,n + c̃19,n. (18)

The constants c̃01,n to c̃19,n are listed in the SI. In the absence of a core, i.e. Rc → 0, or in the
absence of the shell, i.e. Rc → Rs, we recover the previous solution for a one-component
system as given in Ref. [47]. Also for the special case of Ec = Es and vc = vs of identical
core and shell elasticities, our solution reduces to that of a one-component system.

3.2 Relative Deformation of the Shell and the Core

In the following, the degrees of deformation of the core and the shell are investigated for
volume conserving conditions (νc = νs = 1/2) for both tensile (λ > 0) and compressive (λ <

0) situations. Figure 2 shows the relative deformation u
(i)

r,2/Ri for a tensile (left column) and
a compressive (right column) line force density. The relative deformation is plotted for the
shell (i = s) in a) and b) and for the core (i = c) in c) and d) as a function of the ratios of
Young moduli Ec/Es . Data are provided for several size ratios Rc/Rs ranging from 0.3 to 1.

The first observation is that the coefficient u
(i)

r,2/Ri is negative for the tensile case and
positive for a compressive situation, corresponding to a relative oblate and prolate deforma-
tion. This is a simple consequence of the force load pulling or pushing the equator to the
outward or inward direction, respectively.

Second, the absolute magnitude of deformation decreases in both cases with increasing
Ec/Es which is the expected trend if the core is getting harder than the shell (at fixed shell
elasticity). For Ec/Es → 0 we obtain the special case of a hollow sphere. In this limit, the
relative deformation of the core and the shell reaches a finite saturation (note the logarithmic
scale in Fig. 2). In the opposite limit Ec/Es → ∞ the core gets rigid, which implies that the
displacement of the shell stays finite but the displacement of the core tends to zero. We find
a common finite slope of ±1 for the curves associated with the core for Ec/Es → ∞ in
Fig. 2.
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Fig. 2 Relative deformation u
(i)
r,2/Ri as a function of the ratio of Young moduli Ec/Es at different size ra-

tios Rc/Rs . Two cases are considered, namely a,c) tensile (oriented radially outward, λ/(EsRs) = 1) and
b,d) compressive (oriented radially inward, λ/(EsRs) = −1) line force densities. For both cases the rela-
tive deformation of the shell (i = s) in a) and b) and the core (i = c) in c) and d) is shown on a double
logarithmic scale. Further parameters are νc = νs = 1/2. The blue dashed line corresponds to the limit of a
one-component system (for Rc/Rs = 1).

Moreover, in Fig. 2a all curves intersect in the same point at Ec = Es . At this point the
two materials are identical and the size ratio becomes irrelevant for the deformation at the
shell surface. The curves of Fig. 2b do not exhibit a common intersection point due to our
normalization of the relative deformation with Rc and the fact that the radial deformation
is in general not homogeneous along the radius. For increasing Rc/Rs , the influence of the
core grows and the curves exhibit more sensitivity as a function of Ec for fixed Es .

To complement the picture, Fig. 3 shows the same quantity as in Fig. 2 for the tensile
case, namely the relative oblate deformation u

(i)

r,2/Ri , but now as a function of the size ratio
Rc/Rs for a) the shell (i = s) and b) the core (i = c). Curves for several ratios of Young
moduli Ec/Es are displayed. For Ec = Es (dashed red curves), the resulting effective one-
component system features a shell displacement that does not depend on the size ratio of
core to shell. Conversely, the plotted core displacement does depend on the size ratio for
Ec = Es because it is normalized by the size of the core. The deformation scaled by Rc in
the limit of small core size Rc → 0 (see Fig. 3b) reaches different limits for different ratios
of Young moduli although the core becomes vanishingly small. Furthermore, the limit of a
hollow sphere system Ec/Es → 0, is also shown in Fig. 3a) and b).

3.3 Deformational Behaviour for Different Poisson Ratios of Core and Shell

We now study the different deformation behaviour for the core and the shell with respect
to their Poisson ratios. In particular we explore the elastic response for an auxetic core
combined with a regular elastic shell, and vice versa. Such combinations can, at least, be
realized in macroscopic elastic model systems, when appropriate materials are chosen. Thus
their behaviour is investigated systematically for varying compressibility and auxetic prop-
erties. Figure 4 shows the deformational behaviour of the core and the shell as a function of
their (in general different) Poisson ratios νc and νs . For simplicity we here consider the same
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Fig. 3 Relative oblate

deformation u
(i)
r,2/Ri as a

function of the size ratio Rc/Rs

for different ratios of Young
moduli Ec/Es for a) the shell
(i = s) and b) the core (i = c) on
semi-logarithmic scale. Further
parameters are νc = νs = 1/2
and λ/(EsRs) = 1. The red
(Ec/Es = 1) and blue
(Ec/Es → 0) dashed curves
correspond to one-component
and hollow sphere systems,
respectively.

stiffness of the core and the shell, Ec = Es . Moreover we fix the core size to Rc = 0.5Rs

and the load amplitude to λ/(EsRs) = 0.1.
We distinguish between two different states of the displacement: I) the shell is more

oblate than the core and II) the core is more oblate than the shell. In order to do so, we use
the absolute value of the (here always negative) second coefficient of relative deformation of

the shell
∣∣∣u(s)

r,2/Rs

∣∣∣ and the core
∣∣∣u(c)

r,2/Rc

∣∣∣. For state I) (reddish and greenish in Fig. 4) we have∣∣∣u(s)

r,2/Rs

∣∣∣ >

∣∣∣u(c)

r,2/Rc

∣∣∣, while for state II) (greyish in Fig. 4) we have
∣∣∣u(s)

r,2/Rs

∣∣∣ <

∣∣∣u(c)

r,2/Rc

∣∣∣.
See also the two schematic sketches on the top right-hand side of Fig. 4. The transition from

I) to II), given by the same relative degree of oblate deformation
∣∣∣u(s)

r,2/Rs

∣∣∣ =
∣∣∣u(c)

r,2/Rc

∣∣∣, is

shown in Fig. 4 by the yellow line separating the two regions. There is a non-monotonic
behaviour of this line as a function of νc for an auxetic shell (νs ≈ −0.6) and a nearly
incompressible core.

The different colour codes on the right hand side in Fig. 4 represent the magnitude of
the relative oblate deformation of the shell for state I) and of the core for state II). For nine
selected points indicated in the νcνs-plane we illustrate the corresponding shapes of the core
and the shell as given by the components u

(c)

r,0, u
(c)

r,2, u
(s)

r,0 and u
(s)

r,2, respectively, describing the
change in volume and relative oblate deformation.

At the origin in the state diagram, where νc = νs = 0, the relative oblate deformation of
the core and the shell are equal so that the yellow line passes through the origin in Fig. 4.
Strictly speaking, this point [and all others on the diagonal from (a) to (d)] describes a one-
component system, because there the elastic properties of the core and the shell are identical.

We note that in general the yellow line of
∣∣∣u(s)

r,2/Rs

∣∣∣ =
∣∣∣u(c)

r,2/Rc

∣∣∣ does not coincide with the

diagonal of νc = νs in Fig. 4, although we find a one-component material in the latter case.
One aspect that contributes to this result is the inhomogeneous stress and strain distribution
in the system, resulting from the force density that is concentrated at the equator. Further
remarks on these stress and strain distributions are given in Sect. 3.4.
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Fig. 4 Bottom right: State diagram exhibiting two situations I) and II) in the plane spanned by the two Poisson
ratios of the core νc and the shell νs at fixed Ec = Es , Rc = 0.5Rs and λ/(EsRs) = 0.1. In I), corresponding
to the reddish and greenish region, the relative oblate deformation of the shell is larger in magnitude than
that of the core, see schematic representation on the top right. Here we plot in region I of the state diagram∣∣∣u(s)

r,2/Rs

∣∣∣ as colour-coded on the top right. Conversely, in II), corresponding to the greyish region in the state

diagram, the relative oblate deformation of the core is larger in magnitude than that of the shell. Here we

plot in region II of the state diagram
∣∣∣u(c)

r,2/Rc

∣∣∣ as colour-coded on the top right. The two states I) and II) are

separated by yellow lines, which represent the same relative degree of oblate deformation. Effectively, a one-
component system is given by the (white dashed) diagonal from (a) to (d). Furthermore, for nine parameter
combinations indicated for various points (a)-(i) in the state diagram, the corresponding elliptical shapes of
core and shell are shown on the left with the light curves as a reference to the undeformed system.

Clearly, for the parameter combinations on the yellow line separating regions I) and II),
the relative oblate deformations of core and shell are equal, as seen in Fig. 4 (a), (c), and

(i)
(∣∣∣u(s)

r,2/Rs

∣∣∣ =
∣∣∣u(c)

r,2/Rc

∣∣∣). In the special cases of (a) and (i) we recover spherical shapes

of core and shell, even if the volume has changed
(∣∣∣u(c)

r,2/Rc

∣∣∣ =
∣∣∣u(s)

r,2/Rs

∣∣∣ = 0
)

. We observe

that
∣∣∣u(c)

r,2/Rc

∣∣∣ and
∣∣∣u(s)

r,2/Rs

∣∣∣ in the state diagram are continuous when varying the Poisson

ratios, even in the vicinity of (e). For νs = −1, we found that the shell determines the con-
sidered modes u

(c)

r,2 and u
(s)

r,2, forcing them to vanish. In conclusion, different Poisson ratios
can largely tune the behaviour of the core-shell structure under external loading.

3.4 Internal Stress Field

We now provide explicit data for the internal stress field. For quasi volume conserving con-
ditions (vc = vs = 0.4999), a size ratio of Rc/Rs = 0.5, and an amplitude of λ/(EsRs) = 0.1
of the force line density, loaded configurations of the core-shell system for three different
ratios of Young moduli Ec/Es are shown in Fig. 5.

The loaded configurations are colour coded for the components of the (symmetric) stress
tensor, defined by σ (i) = σ (i)

rr er ⊗ er + σ
(i)
rθ (eθ ⊗ er + er ⊗ eθ ) + σ

(i)
θθ eθ ⊗ eθ , for the core
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Fig. 5 Loaded configurations of the core-shell system at fixed νc = νs = 0.4999, Rc = 0.5Rs , and
λ/(EsRs) = 0.1. The colour code reflects the three scaled components of the symmetric stress tensor

σ
(i)
rr /Ei , |σ (i)

rθ |/Ei and σ
(i)
θθ /Ei for the core (i = c) and the shell (i = s). Three different ratios of Young

moduli Ec/Es each are shown for the three components. The core and shell boundaries are indicated by

black lines. To achieve a better resolution, only the absolute value of σ
(i)
rθ /Ei is shown. By symmetry, this

tensor component changes sign in the different quadrants of the xz-plane.

(i = c) and the shell (i = s). The components of the stress tensor are scaled by the respective
Ei in the core (i = c) and in the shell (i = s). Results for the deformations and associated
components of stress are calculated from Eqs. (2) and (4)-(7), where the infinite series are
truncated at n = 32.

For all configurations, all components of the stress tensor are of the greatest extent around
the equatorial line of loading along the shell surface. Clearly, the system there experiences
a displacement in positive radial (outward) direction. Due to the quasi-incompressibility of
both shell and core, a strong degree of inverted displacement results at the poles.

For Ec 
 Es , the soft core deforms more easily than the surrounding harder shell and
experiences a higher amount of scaled stress. The scaled stress of the quasi-incompressible
shell is transferred from the equator towards the inside by the bulk elasticity of the shell (see
the right column in Fig. 5). Conversely, for Ec � Es , there is hardly any influence of the
deformation of the shell on the core for the scaled stresses (see the left column in Fig. 5).
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For comparison, the center column in Fig. 5 shows a loaded one-component system Ec = Es

and the corresponding scaled components of stress.

4 Conclusions

We have analysed in detail the deformational response of an elastic core-shell system to a ra-
dially oriented force line density acting along the outside equatorial line. Natural extensions
of our considerations include the following.

First, the axially symmetric situation that we addressed could be generalized to systems
exposed to line densities that are modulated along the circumference. Moreover, the ef-
fect of surface force densities applied in patches or distributed over the whole surface area
could be analysed, instead of pure force line densities. In a further step, the imposed dis-
tortions may not only be imposed from outside, but could additionally result from internal
active or actuation centers. Obvious candidates for corresponding actuatable cores are given
by magnetic gels [54, 55]. For these types of systems, magnetically induced deformations
have already been analysed by linear elasticity theory in the case of one-component elastic
spheres [56–58].

The considered geometry of loading can effectively be realised in experiments on the
mesoscale by exposing core-shell microgel particles to the interface between two immisci-
ble fluids acting on the elastic system [32, 33]. There, interfacial tension radially pulls on the
equatorial circumference along the common contact line in a symmetric setup. Yet, our de-
scription can be applied to any system on any scale that can be characterized by continuum
elasticity theory. For example, macroscopic elastic core-shell spheres could be generated as
toy models using soft transparent elastic shells on an elastic core. The line of loading force
could then simply be imposed by tying a cord around the equator of these macroscopic core-
shell spheres and tightening it. In this setup, the direction of the force is inverted as well.
However, this in our evaluation simply means that all directions of displacement are inverted.
Such macroscopic approaches may support the involvement of auxetic components [37–42].
Depending on the materials at hand, this strategy may facilitate the experimental confirma-
tion of our results, possibly by direct visual inspection.
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