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Abstract
Limiting chain extensibility is a characteristic that plays a vital role in the stretching of
highly elastic materials. The Gent model has been widely used to capture this behaviour,
as it performs very well in fitting stress-stretch data in simple tension, and involves two
material parameters only. Recently, Anssari-Benam and Bucchi (Int. J. Non. Linear. Mech.
128:103626, 2021) introduced a different form of generalised neo-Hookean model, focus-
ing on the molecular structure of elastomers, and showed that their model encompasses all
ranges of deformations, performing better than the Gent model in many respects, also with
only two parameters. Here we investigate the nonlinear vibration and stability of a dielec-
tric elastomer balloon modelled by that strain energy function. We derive the deformation
field in spherical coordinates and the governing equations by the Euler-Lagrange method,
assuming that the balloon retains its spherical symmetry as it inflates. We consider in turn
that the balloon is under two types of voltages, a pure DC voltage and an AC voltage su-
perimposed on a DC voltage. We analyse the dynamic response of the balloon and identify
the influential parameters in the model. We find that the molecular structure of the material,
as tracked by the number of segments in a single chain, can control the instability and the
pull-in/snap-through critical voltage, as well as chaos and quasi-periodicity. The main result
is that balloons made of materials exhibiting early strain-stiffening effects are more stable
and less prone to generate chaotic nonlinear vibrations than when made of softer materials,
such as those modelled by the neo-Hookean strain-energy density function.
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1 Introduction

Electroactive polymers are smart materials that experience deformation in response to exter-
nal electric loads. The past two decades have seen a growing trend toward studying, charac-
terizing, and modelling electroactive polymers and finding exciting new applications. Many
attempts have been made to develop this kind of smart materials.

Electroactive polymers are classified into several groups such as ferroelectric poly-
mers [1–7], electro-strictive graft polymers [8, 9], electro-rheological fluids [10–14], ionic
polymer-metal composites [15–20], stimuli-responsive gels [21–25], and dielectric elas-
tomers (DEs) [26, 27]. DEs are important for a wide range of scientific and industrial
processes, as they can be used as smart structures that exhibit large deformations under
electrical loadings. In real-world applications and academic studies, various types of DE
structures have been introduced and designed, including DE balloons [28], DE tubes [29],
DE beams [30], and DE plates [31, 32]. These prototypes can be used as actuators, sen-
sors, and/or energy harvesters, and find diverse applications such as pumps, haptic devices,
artificial muscles, and adaptive lenses.

Vibration analysis and stability analysis of DE balloons have been the object of in-
tense research efforts for many years, because of their practical relevance for prototypes.
Hence, Zhu et al. [33] analysed the nonlinear vibration of a DE spherical shell using the
neo-Hookean strain energy function, and obtained time history diagrams and frequency-
amplitude diagrams. They also calculated the natural frequency of soft balloons around
equilibrium stretches. Yong et al. [34] studied the nonlinear dynamic response of a thick-
walled neo-Hookean DE balloon under static and sinusoidal voltages. Jin and Huang [35]
assessed the random vibrations of a DE neo-Hookean balloon, obtained the random equation
around equilibrium stretches, and solved the problem using the stochastic averaging tech-
nique. Alibakhshi and Heidari [36] used the multiple scales method to analyse the nonlinear
resonance of a DE neo-Hookean spherical shell and derived the frequency-amplitude curve
and time responses. Tang et al. [37] addressed analytically the nonlinear free oscillation of
a neo-Hookean DE balloon with the Newton–harmonic balance method. Liu and Zhou [38]
employed the shooting method and the arc-length continuation method to find periodic re-
sponses and explore the nonlinear resonance of a DE neo-Hookean balloon. Tang et al. [39]
developed a vibration and stability analysis for a spherical shell made of neo-Hookean DE,
using the Newton–harmonic balance method.

These studies were all based on the neo-Hookean model for the balloon, a model that can-
not capture the highly nonlinear strain-stiffening effect observed experimentally in the large
deformations of DEs, and caused by limiting chain extensibility. As an alternative, the Gent
strain energy function [40] is often employed to model DEs and take limiting chain extensi-
bility into account. Hence Chen and Wang [41] used the Gent model when they explored the
nonlinear dynamic characteristics of a DE balloon. Chen et al. [42] studied the electrome-
chanical instability of a Gent DE balloon. Lv et al. [43] investigated nonlinear vibrations of a
Gent DE balloon, taking damping effects into account. They conducted their dynamic anal-
ysis by depicting time-stretch responses, phase-plane diagrams, and Poincaré maps. Deng
and Li [44] analysed the influence of a protective passive layer on the vibrational behaviour
of a DE sphere, also using the Gent model. Mao et al. [45] investigated small-amplitude free
vibrations of pressurized electro-active Gent spherical balloons using incremental equations
of motion, and found that both the internal pressure and the radially applied voltage dif-
ference can be used effectively to tune the balloon’s vibration behaviour. Liang and Cai
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[46] identified new electromechanical instabilities in Gent DE balloons, namely a localized
bulging-out.

Another model based on the molecular structure of rubbers and polymers is the Arruda-
Boyce model [47], which also captures the limiting chain extensibility effect. The Arruda-
Boyce model is based on statistical mechanics, and reduces to the Gaussian network-based
neo-Hookean model in the small-deformation regime. The literature using this model to
investigate the response of DEs is not extensive on account of the complexity in its mathe-
matical formulation, which involves the inverse Langevin function (sometimes a truncated
Taylor series expansion of that function is adopted, but then the resulting polynomial can-
not capture the limiting extensibility effect). An example is the work of Itskov et al. [48],
who studied the voltage-stretch response of a DE experimentally and theoretically using the
eight-chain Arruda–Boyce model. The Gent model is an accurate and simple approximation
to the Arruda-Boyce model which accounts for limiting chain extensibility and lends itself
to analytical results.

However, the Gent model cannot predict an accurate response and capture all ranges of
deformations at the same time. To overcome this limitation, extended versions of the Gent
model have been proposed over the years. Among them, the Gent-Gent model of Pucci
and Saccomandi [49] is the most versatile model, and Mangan and Destrade [50] used it to
model the inflation of elastic tubes and balloons. Alibakhshi and Heidari [51] investigated
the nonlinear dynamics of a soft Gent-Gent DE spherical shell; they concluded that the
inclusion of the Gent-Gent model can suppress chaos in DE balloons.

Recently, Anssari-Benam and Bucchi [52] developed a simple hyperelastic model, also a
generalised neo-Hookean model in the sense that its strain energy density depends only on
the first principal invariant of strain, like the Gent model. They reported that, like the Gent
model, their model can incorporate limiting chain extensibility characteristics. It displays
further advantages such as being able to describe many ranges of deformation and having a
simple mathematical form, with only two material constants, naturally related to a molecular
chain description of soft and elastic materials, providing a sound structural basis [50] and
improved fitting compared to the Gent model [52]. Their model belongs to a subclass of the
more general model proposed by Davidson and Goulbourne [53], developed to capture the
behaviour of soft polymeric films with chain entanglements and crosslinks.

With this paper, we argue that understanding the performance of DEs balloons based on
this type of constitutive model is important, especially in the regime of nonlinear dynamics
and stability, where molecular chains are extended and contribute to a sharp stiffening of
the membrane. We shall thus extend the results of Anssari-Benam et al. [52], who recently
used that model for elastic instabilities of balloons (and tubes) inflated quasi-statically, to
now include electro-mechanical coupling, dynamic loading and nonlinear vibrations. We
also extend the recent results of Khurana et al. [54], who recently used the Davidson and
Goulbourne [53] model to study the nonlinear vibrations of DE flat plates.

In Sect. 2 we derive the governing equation of motion using the Euler-Lagrange equation
for a purely radial large deformation of the spherical shell, considering that the spherical
symmetry holds. In Sect. 3, we study the static and dynamic stability of the solution of
the system. We find that early strain-stiffening effect (corresponding to a small number of
chain elements) stabilises the balloon. In Sect. 4, we report numerical results and discuss
the resulting time traces plots, phase-plane diagrams, Poincaré sections, and Fast Fourier
transforms (FFTs). In Sect. 5 we summarise the main conclusions and present avenues for
possible future work.
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Fig. 1 Schematic view of the
dielectric elastomer balloon in
the reference and current
configurations. Note that the
thicknesses are amplified in the
figure for illustration purposes. In
the analysis, they are assumed to
be infinitesimal compared to the
radii, leading to the membrane
approximation [50]

2 Mechanical Modelling

The schematic representation of a DE balloon is depicted in Fig. 1. The balloon undergoes
large deformation and is modelled by finite strain theory. In the reference configuration,
before external loadings are applied, the thickness and radius of the balloon are denoted
by H and R, respectively. Once the balloon is subjected to a tensile load P and a voltage
V , the current configuration is used where the thickness and radius become h and r . The
thicknesses are small enough to assume that the membrane hypothesis holds (See Mangan
and Destrade [50] for details on the validity of this assumption).

In line with previous studies, the vibration of a spherical balloon made of DE is described
in terms of the principal stretches of the elastomer. We assume that the material is isotropic
and incompressible, that the membrane undergoes a purely radial deformation, and that the
balloon retains its spherical symmetry as it inflates. We do not consider the possibility of
non-spherical bulging, an inhomogeneous deformation which is beyond the remit of this
study.

The radial and circumferential stretches for the thin spherical shell are expressed as

λr = dr(t)

dR
, (1a)

λθ = λφ = r (t)

R
, (1b)

respectively, and incompressibility imposes that

dr(t)

dR
= R2

r2
. (2)

Calling the circumferential stretch λ = λθ = λφ (and then the radial stretch is λr = λ−2), we
now derive the governing equations of motion in terms of λ and its derivatives.

Because r = λ (t)R, the kinetic energy of the thin spherical shell is expressed as

Uk = 2πR4Hρ

(
dλ

dt

)2

, (3)

where ρ is the mass density of the material (it is constant because of incompressibility).
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The work done by the inflation pressure is

WP = 4

3
πPR3(λ3 − 1), (4)

so that the associated mechanical potential energy is

UP = −4

3
πPR3λ3 + const. (5)

The strain energy function proposed by Anssari-Benam and Bucchi [52] on the basis of
statistical mechanics of molecular chains is

WABB = μN

[
1

6N
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]
, (6)

where N is the number of straight segments in a single chain of elastomers (an integer, also
known as the number of Kuhn segments), and μ is a constant, related to μ0, the infinitesimal
shear modulus, by the relation μ = 3μ0

N−1
3N−1 . Note that the constraint I1 < 3N must apply

for the natural logarithm to be defined. Note also that for large N , the material behaves as a
neo-Hookean solid, with strain energy WnH = μ0 (I1 − 3) /2.

In Eq. (6), I1 denotes the first invariant of the right Cauchy-Green deformation tensor;
here, it is equal to I1 = λ2

r +λ2
θ +λ2

φ = 2λ2 +λ−4. It follows that the stretch cannot be greater
than λm, the real root of 2λ2 + λ−4 = 3N .

Then we assume that W ∗, the electro-elastic energy of the membrane, is that of an ideal
dielectric,

W ∗ = WABB − ε

2
e.e, (7)

where ε is the electric permittivity of the material and e is the electric field, with magnitude
e = V

h
= V

H
λ2 (because h = λrH = λ2H ).

The total potential energy of the DE balloon is thus Us = 4πR2HW ∗ + UP , or

Us =4πR2H

{
μN

[
1

6N

(
2λ2 + λ−4 − 3

) − ln
(
2λ2 + λ−4 − 3N

)]

−ε

2

(
V

H

)2

λ4 − PR

3H
λ3

}
+ const. (8)

The equation of motion is finally derived from the Euler-Lagrange equation,

d

dt

(
∂L
∂λ̇

)
−

(
∂L
∂λ

)
= 0, (9)

where L = UK − US is the Lagrangian, as

ρR2

μ

d2λ

dt2
+ 2

3

(
λ − λ−5

) − 4N(λ − λ−5)

2λ2 + λ−4 − 3N
− 2εV 2

μH 2
λ3 − PR

μH
λ2 = 0. (10)

We introduce the dimensionless measures of time τ = t

R
√

ρ/μ0
, voltage V = V

H
√

μ0/ε
, and

inflation pressure P = PR
μ0H

, and rewrite Eq. (10) as

λ̈ + 2

(
N − 1

3N − 1

)(
2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

)(
λ − λ−5

) − 2V
2
λ3 − Pλ2 = 0, (11)
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where the dot denotes differentiation with respect to τ .
When the voltage is applied in a Heaviside step, from V = 0 to the static voltage V =

V DC at the initial time τ = 0, the equation of motion becomes

λ̈ + 2

(
N − 1

3N − 1

)(
2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

)(
λ − λ−5

) − 2V
2
DCλ3 − Pλ2 = 0. (12)

When the voltage is alternating, say it is varying sinusoidally as

V = V DC + V AC sin(
τ), (13)

where 
 denotes the nondimensional excitation frequency, then the non-dimensional AC
dynamic equation is obtained as

λ̈ + 2

(
N − 1

3N − 1

)(
2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

)(
λ − λ−5

)

− 2V
2
DC

[
1 + V AC

V DC

sin (
τ)

]2

λ3 − Pλ2 = 0. (14)

Finally, when put under an increasing quasi-static electrical load, the DE spherical mem-
brane may undergo the static pull-in instability (when N is large and the behaviour is close to
that of a neo-Hookean material) and even the snap-through instability (when N is not large
and the strain-stiffening effect is marked). The voltage-stretch relationship for this loading
is found by taking the time derivative in Eq. (14) to be identically zero:

2

(
N − 1

3N − 1

)(
2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

)(
λ − λ−5

) − 2V
2
λ3 − Pλ2 = 0, (15)

from which the voltage follows as

V =
√(

N − 1

3N − 1

)(
2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

)(
λ−2 − λ−8

) − 1

2
Pλ−1. (16)

To find Vc , the critical voltage of quasi-static instability, which occurs at the critical amount
of stretch λc, we write that d2Us

dλ2 = 0 [28], or

N − 1

3N − 1

[
24N

(
λ − λ−5

)2

(
2λ2 + λ−4 − 3N

)2 + 2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

(
1 + 5λ−6

)] − 3V
2
λ2 − Pλ = 0. (17)

We then solve the two Eqs. (15) and (17) simultaneously to obtain Vc and λc at a given level
of internal pressure P . To find the location of all critical points, we may eliminate P , so that
they are on the curve

V =
√√√√ N − 1

3N − 1

[
24N

(
1 − λ−6

)2

(
2λ2 + λ−4 − 3N

)2 − 2λ2 + λ−4 − 9N

2λ2 + λ−4 − 3N

(
λ−2 − 7λ−8

)]
. (18)



Nonlinear Vibration and Stability of a Dielectric Elastomer Balloon. . . 539

3 Stability Analysis

3.1 Static Pull-in and Snap-Through Instabilities

By plotting the quasi-static voltage versus different values of the stretch according to
Eq. (16), we identify the onset of static instabilities.

The resulting non-dimensional voltage-stretch V − λ curve is depicted in Fig. 2(a) for
the N = 30 case. This value is representative of many polymers: for example, tensile exper-
iments show that rubber vulcanizates have a maximum extension stretch λm of about 10x,
see [40]. In simple tension, I1 = λ2 + 1/λ, so that the constraint I1 < 3N when N = 30
gives λm ∼ 10. Other materials used as dielectric elastomers, such as VHB 4905, an acrylic
elastomer produced by 3M, seem to exhibit earlier strain-stiffening effect [55, 56]. See also
Anssari-Benham et al. [52], who model the inflation of elastic rubber balloons with values
of N typically around 5, 15 and 30. For our study here, we take N = 4, 15, 30 in turn,
corresponding to maximum stretch λm = 2.45, 4.74, 6.71, respectively.

The internal pressure is taken as P = 0.0, 0.4, 0.8,1.2. As depicted in Fig. 2(a), the
voltage of static equilibrium increases sharply at first, and the radius increases moderately
on a stable path (in the sense that d2Us

dλ2 > 0). Then a maximum is reached, at the critical

stretch λS
c and critical voltage V S

c , indicated by a cross. At that stage the snap-through
instability takes place: the membrane is expected to stretch dramatically at fixed voltage
(as indicated by horizontal arrows), although this scenario is unlikely to unfold fully, as
wrinkling instability or electrical breakdown will occur along the way [31]. The dotted line
corresponds to the location of the instability points, obtained by Eq. (18).

In Fig. 2(b), we show the influence of the limiting-chain effect on the snap-through static
instability, by plotting the same curves when N = 4, 15, 30, in turn. We see that balloons
that are made of early-stiffening materials are more likely to be stable in static loading. For
example, with some inflation pressure P > 0, a balloon with N = 4 can avoid the snap-
through static instability completely and be inflated smoothly by increasing voltage, up to
stretch λ ∼ 2.4.

The general trends found here for the quasi-static voltage versus stretch plots are consis-
tent with those of previous studies based on other strain-stiffening models, such as that by
Lv et al. [43] (using the Gent model) or that by Rudykh et al. [57] (using the Ogden model).

3.2 Dynamic Pull-in and Snap-Through Instabilities

To study the dynamic stability of the balloon when it is inflated quasi-statically by inflation
pressure P and then by a step voltage H(t)V DC , where H is the Heaviside function, we
follow the energy-based technique developed by Sharma et al. [28] (see also Khurana et al.
[54]).

The Hamiltonian of the system is H (t) = UK(t)+US(t), or, in its non-dimensional form,

H (τ ) =1

2
λ̇2 + N − 1

3N − 1

[
1

2

(
2λ2 + λ−4 − 3

) − 3N ln

(
2λ2 + λ−4 − 3N

3 − 3N

)]

− 1

2
V

2
DCλ4 − 1

3
P

(
λ3 − 1

)
. (19)
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Fig. 2 (a) Static instability in the DE balloon with N = 30, when it is under internal pressure
P = 0.0, 0.4, 0.8, 1.2. The crosses correspond to the critical points of static snap-through instability, at

(λS
c , V S

c ) = (1.263, 0.6889), (1.293, 0.5639), (1.332, 0.4069), (1.385, 0.1347), respectively. (b) Influence of
the strain-stiffening effect: as the number of Kuhn segments decreases: N = 30, 15, 4, the material stiffens
earlier, which may lead to the disappearance of the snap-through instability, see N = 4 curves when P > 0

At τ = 0, the balloon is at rest: λ̇ (0) = 0 (and UK (0) = 0), inflated by the pressure P to a
stretch λ(0) = λp , found by solving Eq. (15) at V = 0, that is, by solving

2

(
N − 1

3N − 1

)(
2λ2

p + λ−4
p − 9N

2λ2
p + λ−4

p − 3N

)(
λp − λ−5

p

) − Pλ2
p = 0. (20)

Provided the balloon undergoes a periodic motion, at the time τ̃ of maximum overshoot, we
have λ̇ (τ̃ ) = 0 (and UK (τ̃ ) = 0), and the stretch is λ̃, say.

The whole system is conservative, so that D
(
λ̃
)

= H (τ̃ ) −H (0) = 0, or

D
(
λ̃
)

≡ N − 1

3N − 1

[
1

2

(
2λ̃2 − 2λ2

p + λ̃−4 − λ−4
p

)
− 3N ln

(
2λ̃2 + λ̃−4 − 3N

2λ2
p + λ−4

p − 3N

)]

− 1

2
V

2
DC

(
λ̃4 − λ4

p

)
− 1

3
P

(
λ̃3 − λ3

p

)
= 0. (21)

Hence, we obtain the dynamic loading curves by solving Eq. (20) and (21) simultaneously
and plotting the corresponding V DC − λ̃ curve for a given inflation pressure P .

To find the critical loads and stretches of dynamic instability, we write D′
(
λ̃
)

= 0, which

is Eq. (15) written at λ = λ̃. By solving this equation, simultaneously with Eq. (20) and (21),
we obtain the critical parameters, as displayed in Table 1 for different levels of inflation
pressure and number of Kuhn segments N . We see the clear trend that dynamic loadings
allow for greater stretches to be attained, at lower voltages, than static loadings, in line with
the results of Sharma et al. [28] for the neo-Hookean and Ogden models, and of Khurana
et al. [54] for the vibrations of a plate. Moreover, we see that same trend when the material
is made to stiffen earlier and earlier by decreasing N , with significant improvements in
the values of the actuation stretch λa = λc/λp , and even suppression of the snap-through
instability (in those latter cases, the actuation stretch is computed as λa = λm/λp).

We may then compare the static and dynamic stability curves and study how they are
influenced by the number of Kuhn segments N . Figure 3 presents representative curves
of what happens when the material exhibits early strain-stiffening effect: it compares the
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Table 1 Critical stretches and voltages for the static and dynamic snap-through instabilities, for different
inflation pressure levels and number of chain elements. The loading static stretches λp , maximum stretch
λm , and actuation stretches λa = λc/λp (or λm/λp if there is no instability) are also given

N = 30 (λm = 6.078) N = 15 (λm = 4.743) N = 4 (λm = 2.447)

P = 0.0 λp = 1.0 λp = 1.0 λp = 1.0

V S
c = 0.6889 V D

c = 0.6489 V S
c = 0.6907 V D

c = 0.6511 V S
c = 0.7066 no dynamic

λS
c = 1.263 λD

c = 1.472 λS
c = 1.266 λD

c = 1.481 λS
c = 1.307 instability

λS
a = 1.263 λD

a = 1.472 λS
a = 1.266 λD

a = 1.481 λS
a = 1.309 λD

a = 2.447

P = 0.4 λp = 1.040 λp = 1.040 λp = 1.039

V S
c = 0.5639 V D

c = 0.5293 V S
c = 0.5665 V D

c = 0.5323 V S
c = 0.5909 no dynamic

λS
c = 1.293 λD

c = 1.491 λS
c = 1.298 λD

c = 1.501 λS
c = 1.361 instability

λS
a = 1.244 λD

a = 1.434 λS
a = 1.249 λD

a = 1.444 λS
a = 1.309 λD

a = 2.355

P = 0.8 λp = 1.101 λp = 1.101 λp = 1.100

V S
c = 0.4069 V D

c = 0.3790 V S
c = 0.4112 V D

c = 0.3837 V S
c = 0.4553 no dynamic

λS
c = 1.332 λD

c = 1.503 λS
c = 1.339 λD

c = 1.517 λS
c = 1.541 instability

λS
a = 1.2104 λD

a = 1.365 λS
a = 1.216 λD

a = 1.378 λS
a = 1.401 λD

a = 2.224

P = 1.2 λp = 1.264 λp = 1.258 λp = 1.229

V S
c = 0.1347 V D

c = 0.1214 V S
c = 0.1504 V D

c = 0.1362 no static no dynamic

λS
c = 1.385 λD

c = 1.459 λS
c = 1.396 λD

c = 1.483 instability instability

λS
a = 1.096 λD

a = 1.154 λS
a = 1.110 λD

a = 1.179 λS
a = 1.991 λD

a = 1.991

Fig. 3 Comparing static to
dynamic loading for a DE
balloon with early (N = 4) or late
(N = 15) strain-stiffening effect,
when it is under internal pressure
P = 0.8. The crosses correspond
to the critical points of
snap-through instability (values
in Table1). Clearly, dynamic
loading allows for greater
stretching before losing stability,
requiring a lower voltage, and
even for complete avoidance of
snap-through instability for the
free vibrations generated by a
step continuous voltage

N = 4 case to the N = 15 case, when the balloon is pre-inflated by pressure P = 0.8. It
clearly shows the delay (or vanishing) in the onset of snap-through instability when going
from static to dynamic loading, as described above.

4 Nonlinear Vibrations and Motions

In this section we analyse the dynamic response of the balloon. First, we present results when
the system is excited by a DC Heaviside step voltage signal, and then when it is under an AC
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Fig. 4 The DC dynamic response of the DE balloon for P = 0.8, when the number of Kuhn segments is
N = 4 (early strain-stiffening effect) and N = 15 (late strain-stiffening effect). In the latter case, as soon
as the voltage exceeds the critical voltage threshold V DC = 0.3837, the motion loses its periodicity. In the
former case, there is no critical voltage of dynamic instability, even though there is one for static instability

time-dependent voltage. To solve the governing equations, we use the Runge-Kutta method,
neglecting possible transient responses by a long-time integration. Using time-integration,
we generate time-stretch histories, phase-plane diagrams, Poincaré sections, and fast Fourier
transforms (FFT) plots, and identify different dynamic motion scenarios: periodicity, quasi-
periodicity, and chaos.

4.1 DC Dynamic Instability

Here we investigate the influence of the number of Kuhn segments N on the DC dynamic
instability. In other words, we illustrate and confirm the results summarised in Table 1 by an
example.

In Fig. 4 we compare the possible onset of DC dynamic instability for two values of N

(N = 4,15) when the balloon is under inflation pressure P = 0.8.
When the voltage is below dynamic instability thresholds, say V DC = 0.3836 (see Ta-

ble 1), we clearly see that the balloon undergoes periodic motions: in the time-stretch dia-
grams (Fig. 4a), regular and predictable trajectories are observed.

Just above the threshold V D
c =0.3837 of dynamic instability for the softer membrane

with N = 15, at V DC = 0.3838, say, the balloon can no longer sustain periodic motions
and the stretch increases uncontrollably, reflecting dynamic instability and confirming the
predictions of the previous section.

In contrast, we can increase the voltage for the stiffer membrane with N = 4 to high val-
ues, V DC = 0.7, say, and still observe periodic motions, even though the voltage is beyond
the threshold of quasi-static instability (which is V S

c =0.4553, see Table 1). These various
behaviours are also reflected in the corresponding phase diagrams of Fig. 4b.

The amplitude of the free nonlinear oscillations is 1
2

(
λ̃ − λp

)
, where we recall that

λ̃, the maximum overshoot, is computed from Eq. (21). Then, writing that H (τ ) = H (0)

(which is true for all τ because the system is conservative), gives λ̇2 = −2D (λ), see
Eqs. (19) and (21). It follows that the period T of the oscillations is given by the inte-

gral T = √
2
∫ λ̃

λp

dλ√−D(λ)
. Hence, when V DC = 0.3836, 0.7, we find λ̃ = 1.339, 2.403, and

T = 3.904, 2.685, respectively, for the early stiffening elastomer with N = 4, see Fig. 4.

4.2 AC Dynamic Instability

One of the important phenomena that has been noted in DEs is the possible emergence of
chaos from forced oscillations. In general, chaos may arise in a system due to sensitivity
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Fig. 5 Quasiperiodic vibrations of a DE balloon made of early-stiffening material with N = 4, for P = 0.8,
V DC = 0.3836, V AC/V DC = 0.1. (a) Time-stretch diagram, (b) Phase portrait, (c) Poincaré section, (d) Fast
Fourier Transform

to the initial condition and/or a change in one or several of the system’s parameters. In
this section, the influence of parameter N on the nonlinear vibrations of the DE balloon is
studied with special consideration to the possibility of chaos.

For illustrative and representative purposes, we take the applied inflation pressure to be
P = 0.8, initial stretch at rest taken from Table 1, i.e., λ(0) = λp = 1.1, λ̇(0) = 0, and we
chose the excitation frequency as 
 = 1.5.

Figure 5 illustrates the nonlinear vibrations of an electroactive balloon with early-
stiffening characteristics N = 4, put under dynamic step voltage loading V DC = 0.3836,
and voltage forcing with amplitude V AC/V DC = 0.1. We clearly see the emergence of beats
after a certain time (once the transient response has died out) in the time-stretch plot. The
quasi-periodicity attractor is observed in this figure by inter-operating the phase portrait, the
Poincaré section, and FFT. The Poincaré section is drawn by sectioning the phase portrait
at every period of the forcing frequency 
 (we left out enough periods to get rid of the
transient response). The Poincaré section indicates a closed curve, the sign of quasi-periodic
oscillations. Separated spectra in FFT also confirm quasi-periodicity.

Changing now from N = 4 to a softer material with N = 15, while keeping the other pa-
rameters the same, we observe a change from quasi-periodicity to chaos attractor, see Fig. 6.
This change was to be expected, because the voltage loading V DC = 0.3836 is very close
to the critical value of dynamic instability (V c = 0.3837), and the addition of the alternative
voltage increases the magnitude of the voltage by 10%, enough to trigger instability and
drift toward large actuation, which will then hit an upper ceiling at λm = 4.743.

Hence in Figs. 6ab, the time trace and phase plane reveal irregular and unpredictable
trajectories, indicating chaotic behaviour, and all bonded above at λm = 4.743. An infinite
number of points can be generated in the Poincaré section (Fig. 6c), showing the complex
dynamical behaviour of the balloon. The FFT diagram illustrates a continuous distribution
and infinite number of spectra, confirming the chaos phenomenon.
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Fig. 6 Chaotic vibrations of the softer DE balloon with N = 15, and inflation pressure P = 0.8, when the
DC voltage V DC = 0.3836, is too close to the critical voltage of dynamic instability. Here the superposed
AC voltage V AC = 0.1V DC has enough amplitude to send the voltage above the threshold of instability.
(a) Time-stretch diagram and (b) Phase portrait, showing erratic vibrations, all bonded above by the limiting
stretch λm = 4.743. (c) Poincaré section and (d) FFT, confirming the chaotic behaviour

When we decrease the DC voltage in Fig. 6 to V DC = 0.3 for the N = 15 model, we
place the motion sufficiently away from the critical voltage of dynamic stability to observe
that the response of the system becomes quasi-periodic. The resulting numerical integration
and plots are very similar to those of Fig. 5 and are not reproduced here. This means that for
a weak strain-stiffening DE balloon, we can reach a stable quasiperiodic vibration by de-
creasing the DC voltage. However, the static voltage must be much smaller than the critical
static and DC dynamic voltages (see Table 1).

We then look at what happens to forced AC oscillations for the DE balloon with strong
strain-stiffening effect (N = 4), when the DC static voltage is large enough to bring the
stretch close to the limiting stretch λm = 2.447. Hence we take V DC = 0.7, which according
to the results of Fig. 3 generates a maximum overshoot λ̃ = 2.403. This value is within less
than of 2% of λm, and superposing an AC voltage will generate nonlinear vibrations which
hit that barrier and eventually lead to chaos, see Fig. 7.

In this section we focused on the role that N might play in the occurrence or suppression
of chaos, compared to very soft models such as the neo-Hookean model. We saw that a
great variety of situations can arise, and presented some examples. For a more complete
parametric study, see the work of Chen et al. [42].

5 Conclusion

We investigated nonlinear vibrations and instability modes of an inflated dielectric elastomer
balloon modelled by a generalised neo-Hookean model with a strain-stiffening effect that
captures the microscopic properties of elastomers. We derived the governing equations for
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Fig. 7 Chaotic vibrations of the DE balloon for P = 0.8, V DC = 0.7, V AC

V DC
= 0.1 and N = 4. (a) Time-

stretch diagram, (b) Phase portrait, (c) Poincaré section, (d) FFT

two types of voltage loading: a static voltage (either applied quasi-statically or as a step
function) and a sinusoidal voltage superposed on top of a step DC voltage.

We found and solved the equations for the static and dynamic snap-through instabil-
ity modes. We then solved the dynamic vibration equations numerically by the Runge-Kutta
method. The analysis was conducted by plotting and commenting the time-stretch responses,
phase-plane diagrams, Poincaré sections, Fast Fourier Transforms, and stretch-voltage dia-
grams.

The main outcomes of the paper are as follows. (1) The microscopic properties of the DE
balloon material affect greatly the instability and vibration modes. (2) As the number of links
in a single chain N is decreased, the DE balloon material exhibits earlier strain-stiffening
effects and presents greater static and dynamic stability. (3) Moreover, a decreasing Kuhn
number N can suppress the chaotic oscillations found in softer materials (close to the neo-
Hookean material), provided the stretch is not too close to the limiting-chain stretch.

The results presented in this paper cover the hyperelastic region of DEs. However, ex-
perimental tests have shown that DEs can also undergo inelastic (plastic) deformations, on
account of different external factors such as the stress-controlled or voltage-controlled cyclic
loading conditions, which is considered as a kind of ratchetting [58]. The analysis of this
state of deformation is beyond the scope of the paper.
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