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Abstract

In our previous papers (Griso et al. in J. Elast. 141:181-225, 2020; J. Elast., 2021, https://
doi.org/10.1007/s10659-021-09816-w), we considered thick periodic structures (first paper)
and thin stable periodic structures (second paper) made of small cylinders (length of order
& and cross-sections of radius r). In the first paper r = k¢ with « a fixed constant, ¢ — 0,
while in the second ¢ — 0 and r/e — 0. In this paper, our aim is to give the asymptotic
behavior of thin periodic unstable structures, when ¢ — 0, /¢ — 0 and §?/r — 0.

Our analysis is again based on decompositions of displacements. As for stable periodic
structures, Korn type inequalities are proved. Several classes of unstable and auxetic struc-
tures are introduced. The unfolding and limit homogenized problems are really different
of those obtained for the thin stable periodic structures. The limit homogenized operators
are anisotropic, the spaces containing the macroscopic limit displacements depend on the
periodicity cells. It was not the case in the two previous studies. Some examples are given.

Keywords Linear elasticity - Homogenization - Stable structure - Periodic beam structure -
Periodic unfolding method - Dimension reduction - Korn inequalities
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1 Introduction

The aim of this paper is to study the asymptotic behavior of an unstable 3D e-periodic
structure made of thin beams in the framework of the linear elasticity. The beams have a
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8 G. Griso et al.

circular cross-section whose radius is r, the periodicity parameter is ¢, we assume that r/e
and &?/r tend to 0.

Thin elastic reticulated structures were considered, e.g., in [1], [6], [8], [24], [30], [32],
[33], [36].

There are many types of unstable structures or unstable states in structures in all or in
some specific directions. The instabilities can be wished if well understood and modeled,
they can also be used to better design materials or develop new auxetic structures. It is well
known to engineers that for stable structures (wire trusses, lattices) made of very thin beams,
bending dominates the stretching-compression. A contrario, if the same structures are made
of thick beams the stretching-compression dominates. If structures are unstable, they work
on rotation around nodes mostly.

This paper is the continuation of [23] which dealt with the 3 D-stable periodic structures.
Here, we investigate the unstable and auxetic 3 D-periodic structures made of thin beams.
The first difference between 3 D-stable (see [23, Definition 5]) or -quasi stable periodic
structures (see Definition 14) and those 3 D-unstable lies in the Korn inequalities. For 3D-
stable and -quasi-stable periodic structures we have (see [23, Proposition 2])

2
& &
llizs, < C(14+ = )le@lis,y IVl < C=le@llie, ).

while for 3 D-unstable periodic structures, one has (see Proposition 1)

£ £
lullz2s, ) = € lle@liz, ) IVullas, ) = € lle@lirzs, )

where S; , is the structure made of beams.

That is why for 3 D-periodic structures made of “thick” rods (the cross sections being of
the same order as the period r ~ ¢), distinguishing stable structures from unstable ones is
not really useful (see [19]).

Our analysis of the thin structures provides more than these above inequalities, it gives
estimates of the centerline displacements and also of the small rotations of the cross-sections
(see [23, Proposition 2] and Proposition 2 in Sect. 2.3).

The second and most important difference between 3 D-stable and unstable periodic
structures appears in the local behavior of cells. In the stable case we have found the re-
lation

au ~ Iy
g(x,S):R(x,S)/\tl(S), x,S) e 2 xS, U =0 onthe nodes of £2 x S,

where S is the running pointin S, S is the 3 D-periodic cell made of segments, £2 the macro-
scopic domain, A stands for the local displacement of the centerlines of the beams, R for
the rotations of the cross-sections, t; (S) being the direction of a beam-centerline belonging
to S. Both fields { and R are periodic with respect to the second variable belonging to S.
The above relation means that the local displacements are of Bernoulli-Navier type. Then,
the displacement of the nodes is given by the macroscopic displacement.

In the unstable case we have the relation (see Lemma 15)

VUGX) 4 (S) + %_LS{(X’ =R xS At(S), (xSeRxS

where U is the macroscopic displacement, U’ stands for the local displacement of the center-
lines, R’ for the rotations of the cross-sections, t; (S) being the direction of a beam-centerline
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Asymptotic Behavior of 3D Unstable Structures Made of Beams 9

(see (2.1)). Here also, both fields U and R’ are periodic with respect to the second variable.
The above relation means that the local displacements are not of Bernoulli-Navier type. The
macroscopic displacements are subject to the conditions of existence of solutions for the
above equation (see Sect. 3). By way of example, for some auxetic structures we obtain that
the macroscopic displacements satisfy some a priori conditions, e.g.,

ol; Uy

=Kl
0Xx; x|

’

where ;1 > 0, i € {2, 3}, are constant coefficients (see Sect. 14.2).

In [23], we have shown that the asymptotic behavior of a 3 D-periodic stable structure is
given by a classical elasticity problem, the stress tensor is given via the strain tensor and a
6 x 6 matrix whose coefficients depend on the geometry of the 3D cell. The obtained model
is of extensional type, the macroscopic limit displacement is the limit of the extensional
displacements of the set of centerlines S, (it only depends on the stretching-compression of
the small beams). Here, for a 3 D-periodic unstable structure, we show that the macroscopic
limit displacement is of inextensional type. It never depends on the stretching-compression
of the small beams. The limit model is not a classical elasticity problem.

Our analysis relies on decompositions of displacements, as in our previous papers
[19, 23], first for a single beam (see [13—15]) and then for the macroscopic structure. Ac-
cording to these studies, a beam displacement is the sum of an elementary displacement
and a warping. An elementary displacement has two components. The first one is the dis-
placement of the beam centerline while the second stands for the small rotation of the beam
cross-sections (see [13, 15]). The warping takes into account the deformations of the cross
sections. This decomposition has been extended for structures made of a large number of
beams in [14] (see [4] for beam structures in the framework of nonlinear elasticity). Here,
similar displacement decompositions are obtained.

To study the asymptotic behavior of periodic unstable structures and derive the limit
problems we use the periodic unfolding method introduced in [9] and then developed in
[10, 11]. This method has been applied to a large number of different types of problems.
‘We mention only a few of them which deal with periodic structures in the framework of the
linear elasticity (see [5, 16, 18-22, 31]). As general references on the theory of beams or
structures made of beams, we refer to [2, 7, 27, 28, 34, 35].

The paper is organized as follows. Section 2 introduces structures made of segments
(examples of 3D cell S). We recall known results concerning the decomposition of a beam
displacement. This section also gives estimates of the terms appearing in the decomposition
with respect to the L%-norm of the strain tensor. Then, we extend these results to structures
made of beams. Complete estimates of our decomposition terms and Korn-type inequalities
are obtained for general unstable 3 D-periodic structures.

In Sect. 3, we solve the o.d.e. (see (3.1)-(3.2)) posed on the periodic cell S. It plays a
fundamental role for unstable periodic structures. This o.d.e. admits solutions under some
conditions. We will show in the following section that these conditions allow to define the
space of macroscopic admissible displacements. In Sect. 4, several examples of 3 D-periodic
unstable structures are presented. Section 5 is dedicated to some properties of the various
unstable structures introduced in Sect. 4. The statement of the elasticity system is given in
Sect. 6. The scalings of the applied forces are given with respect to & and r. That leads to an
upper bound for the L2-norm of the strain tensor of the solution to the elasticity problem.
Section 7 deals with the unfolding operators (see also [23]).

In Sect. 8, we give the asymptotic behavior of a sequence of displacements and their
strain tensors. Then, in Sect. 9, in order to obtain the limit unfolded problem we split it

@ Springer



10 G. Griso et al.

into three problems: the first involving the limit warpings (these fields are concentrated in
the cross-sections, this step corresponds to the process of dimension reduction), the second
involving the microscopic inextensional limit displacements posed on the periodic cell S
and the third the macroscopic limit problem involving the macroscopic displacements posed
in the whole domain 2.

Section 12 leads to the complete unfolding problem for all types of 3 D-periodic unsta-
ble structures. To do that, different correctors are introduced, they allow to write the limit
homogenized problem. We obtain a linear elasticity problem with constant coefficients cal-
culated using the correctors. In Sect. 13 we apply the previously obtained results in the case
when a periodic 3D beam structure is made of an isotropic and homogeneous material. In
Sect. 14.2, we detail the spaces containing the macroscopic limit displacements for some
structures presented in Sect. 4 (see also Fig. 1).

In the Appendix, some technical results are shown (proof of some lemmas, the way to
build test functions and a new lemma of the periodic unfolding method).

Finally, we give mechanical engineers a translation in their terminology, and explain the
obtained result, i.e. the limit problem in terms of known models for constitutive laws.

We restrict solution ¢ of (6.4) to the mean lines of the rods, i.e. the skeleton of the
structure, S,. Then, we approximate this restricted to the skeleton or graph S, solution by
a piece-wise affine (linear) approximation U € U(S,), (2.2). This space is further decom-
posed on the static elastic vector field, V € Dg(S,), satisfying, e.g., (5.1), and its orthogonal
complement, kinematic field, U — V € D;(S;), see (2.4). In the case, when S, is a stable
structures, this complement is just rigid displacement. (5.1) is the strain equilibrium prob-
lem for a truss-system on S and describes the equilibrium of all axial (tensile) strains (forces
normalized by the Young’s modulus of fibers) in rods, acting on each node of the graph, see
e.g. chapter about trusses in [29]. And after fixing of 3 scalar non-collinear displacements
on one or different nodes, (5.1), will be uniquely solvable on the graph S for almost all x.

In terminology of physicist and dynamical systems, the elasto-static field V satisfies a
Hamiltonian, while the kinematic, U — V, a Lagrangian (see [26, pages 33-34]). We will
call the kinematic field rotations.

Our structure and its skeleton are periodic. In Sect. 3, matrices M denote unit pertur-
bations from 6 standard experiments on the unit periodicity cell of the structure, 3 axial
tensions and 3 shear experiments. System of equations (3.1) is equivalent to the tensile force
balance on a rod- (truss-) system, S, normalized by the elastic property, Young’s modulus,
of rods, for each of such experiments. And (3.2) is equivalent to the moment balance equa-
tion on the same rod-system, also normalized by the tensile elastic property of rods. By (M)
denotes the mean or averaged rotation of each rod (segment), while B (M) is the equivalent
reformulation for the rotation field for a frame of beams, restricted to an edge or beam. In
the frame of beams the angles between beams are fixed, therefor this field vanishes closed
to the nodes (see Chap. about FEM (finite element method) for frames in [29]).

In the limit (cell problems (12.3)) we have on segments, or beams, or elements just four
scalar degrees of freedom (variables), the axial tension, torsion and two bending rotations.
They correspond to the finite element (FE)-interpolation of the frame of beams from [29].
The tensor decomposition for 1D-system on a frame of graph is given by (12.4) and the
1D bilinear form for microscopic fields, u R R is given as a sum of 4 terms, the beam axial
tension, torsion and 2 bending terms (energies). The same 1D bilinear form can be found
in (6.5) of [31], where authors did not pass to the limit with the beam thickness and just
approximated the cell solution, solving it by FEM for frames. Actual paper justifies this step
in [31] mathematically.

While for the stable structures (see [19]), the homogenized macroscopic problem was
pure elastic, corresponding to the first tensile energy, for the unstable case, it is rotation
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Asymptotic Behavior of 3D Unstable Structures Made of Beams 1

dominated, see (12.9). It can be interpreted as micro-polar elasticity, [3], [25] and it was
used in our work [17].

2 Reminders and Notations
2.1 Geometric Setting

In this paper we consider structures made of a large number of segments.

Definition 1 Let S = U ye be a set of segments and K the set of the extremities of these

=1
segments.

S is called structure if

— Sis a connected set,

S is not included in a plane,’

— for any segment y, =AY, B‘] € S, one has (y, \ {A*, B})NK =0,

— for any point of X belonging to only two segments, the directions of these segments are
noncollinear.

Hereinafter, S is called a 3D-structure. The segment y, = [A¢, B‘] € S of length I, is
parameterized by S; € [0, [;] and its direction is given by the unit vector

A‘B*
t(S) =t = — eR%. Q2.1
|A“BY|

So
ve=[A" B 1={SeR’|S=A"+5t, S €l0l]} (A" BHek?

S is the running point of S.
On S we define a space of continuous fields U(S) with values in R? as follows:

ues) = {U € C(S)* | on every segment y; € S, U,,, is an affine function, £ € {1, ..., m}},

2.2)
where C(S) is the set of continuous functions on S.
The space of rigid displacements is denoted by R:
R= {re C'(R¥) |r(x)=a+bAx, VxeR>, (a,b)eR> x ]R3].
On U(S) we consider the semi-norm?
dUu
Ul =] 55 -t . YU EU). 23
Ul e o (S) (2.3)

THere we only want to consider 3D cells, we can easily transpose the results of this paper for planar cells.
dUu U

27 s equal to ——  on every segment y; of S.

ds Tlve
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12 G. Griso et al.

()

(d)

Fig. 1 Periodic cells for unstable 3 D-periodic structures

Denote

. du
D,(S):{UeU(8)|K-t1_O a.e.onS}, e
dU dv '
: —dS:O].

DL(S) = {U € U®) YV €D, (), /sﬁ o

Observe that R € D;(S) and D;(S) NDx(S) =R3.
Below, we remind [23, Definition 2].

Definition 2 A structure S is stable if D;(S) = R. If R is strictly included in D;(S) then S
is unstable.

For p € [1, +o00], we denote?
1, - @
W) =g ec)| L e L),
W2P(S) = {¢ EW'P(S) | ¢y, € W (ye), Le(l,. m}}

This paper is dedicated to unstable structures, examples of which are given in Fig. 1. Stable
structures have been considered in [23].

1S equal to on every segmen O .
/'S2 q S12 | , g Ve
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Asymptotic Behavior of 3D Unstable Structures Made of Beams 13

2.2 Notations

Denote

— (el, e, e3) the usual basis of R3,
— Y = (0, 1)? the open parallelotope associated with this basi_s,4
— 8§ a 3D-structure, in the sense of Definition 1, included in Y.

Definition 3 A structure S is a 3D-periodic structure if for every i € {1,2,3} SU (S +¢;)
is a structure in the sense of Definition 1.

From now on, S is a 3D-periodic structure.

Let £2 be a bounded domain in R? with a Lipschitz boundary and I" be a subset of 352
with non null measure. We assume that there exists an open set £2” with a Lipschitz boundary
suchthat 2 C 2’ and 2'No2 =1

Denote

— 2= {x e RV | dist(x, £2) < 1}, 2" = {x € 22 | dist(x, 382) > 2+/3¢},
- &, 2 {gez* | (a§+eY)mQ¢@}

- =€’ | (5 +eY) C QM

- Bl ={6e€Z | (5 +eY)NQ #0},

- B = {“;‘ € &, | all the vertices of £ + Y belong to ug}

- B ={6€E |E+e B}, ie(1,2,3),

- 2, = mterlor( U (e& + 8Y)) 1nter10r( U (e& + 8Y)) = interior( U (e& +

§el; gcE, tel]
87)),
- Qi iinterior( U (e +z—:7)).
EE "l’“
One has

™

3 3
int - & o) 5 .=5
e C &, C e C el — Mg

The open sets 2, 2/, 2., .@é"’ and 22/ are connected, and satisfy

ﬁénl C Qénl C 0 C Qs C 927 Q\énl C Qénl C S/jg C Qg~
Set
= U ek +eS), S, ={xeR|dist(x,S,) <r},
S = (e€ +&S), S, ={x eR? | dist(x, S) <r},
g5y
Ke= ) (¢€ +¢K)
Eel,

4In this paper, for simplicity we choose the usual orthonormal basis of R3. Of course, one can replace this
basis with another.
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14 G. Griso et al.

The running point of S; is denoted s.

S..» 1s the structure made of beams. The cross-sections of the beams are discs of radius
r and the centerlines of the beams are the segments of S,, it also contains the balls of radius
r centered on the points of KC,. The general beam Pf’ ¢ 18 referred to an orthonormal frame
(e + Al tf, 5, )

P, = [x ER [x =5+ 5t + 5385 = 6f + AL+ 5t + 5,t) + 53t

(Sl,SQ,S3)€(O,SI@)XDr ,SEE&-,ZG{I,...,W[},
Ser = [x e R | dist(x, S) < r] = ( U B(A,i’)) u ( U Opf,e,r)-
AeKe §ei; =1

The structure S, , is included in £2,.
The set of junctions is denoted by 7. There exists ¢y which only depends on S such that

U BA.ncg c | BA. .

AeKg AeKe

The set J; is defined in such a way that S, , \ 7, only consists of distinct straight beams.
The space of all admissible displacements of S, (resp. S;) is denoted V,, (resp.
H[(S,))

Ve, ={ueH'(S.,)* | ' € H'(S,)’ such thatujs, =uandu’' =0
inS,,,\S},
(resp. HA(S,)={® € H'(S,)’ | 3¢’ € H'(S.)’ such that &5, = ® and &' =0
in the cells fully included in S, \ S, }).

It means that the displacements belonging to V., “vanish” on a part I'; , included in 05, , N
082.
For every 3 D-periodic structure S, we denote

U(S,) = [q) e H'(S,)® | @ is an affine function on every segment of Sg},
Up(Se) = Hi(S:)’ NU(S,), 2.5)
. do
D;(S,) = {Cb eUr(Sy) | s -t; =0 on every segment of S, }
S

D, (S,) is the set of inextensional displacements of S, belonging to U (S;).
For p € [1, +00], we denote’

d
whrs)={pecs) d—f e Lf’(ss)],

W2P(S,) = [¢ € WP(S) | Becsey, € WHP(0.20), (E.0) € B, x {1,..., m}}.

sd*U . d?u X
—— isequal to —- on every segment €& + eyy of Se.
ds? ds?

1 lek+eye
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Asymptotic Behavior of 3D Unstable Structures Made of Beams 15

2.3 Displacements Decomposition

In [14] it is shown that every displacement u of a beam structure can be decomposed as
u=U+u

where U¢ is an elementary beam-structure displacement and u is a warping. For the beam-

structure S, , we remind some definition and results.

Definition 4 (see [14]) An elementary beam-structure displacement is a displacement be-
longing to H'(S,,)* whose restriction to each beam is an elementary displacement and
whose restriction to each junction is a rigid displacement:

U‘(x) =US) + R(S) A (5285 + s3t5),
forae. x =s+ sztg + S3t§ =t +eA" + sltf + szté + S3t§ € Poes
(s1,52,53) € (0,¢ly) X D,, £ € By, L€{l,...,m},
U®(x) =U(eE + eAY) + R(e€E + A A (x — & —eAY), forae. x € B(e& + A", cor)

with U, R in H'(S,)>.

U°¢ is the elementary beam-structure displacement and u the warping, they belong to
H'(S.,)*. Here, the pair (U¢, %) is not uniquely determined. The warping satisfies (see
[14, 15]) the following conditions “outside” the domain 7, :

/ u(:,s2,53)dsrds3 =0,

ae.inS\S.N | B(A. 2ar). (26)
f u(:,52,53) A (52t + 53t3) dsrds3 =0, AcKe

,

For every displacement u € H'(S, ), we denote by e the strain tensor (or symmetric gra-
dient)

- 1 T ., ;l dui %
e = 2 (Vu+ (V)" ). e = it )- @)

We have two systems of coordinates: the Cartesian system (x, x,, x3) related to an orthonor-
mal frame of R? and the local beam coordinate systems (s, $2, s3) related to the frame
(e€ +eAbty, ty,t3), £ € {1, ..., m}, for every beam. The orthonormal transformation ma-
trix is denoted T¢ = (t1 |t | t3), this matrix belongs to SO (3).

Hence, for every displacement v € H'! (Pf. l,r)3 one has

1 1 1
e(v) = E(va + (qu)T) - ET[(VSU + (st)T)(TZ)T = 3T e() (T,
Jv 1(0v v 1(dv v
m'tl Q(E'tl‘FE'Q) z(m'tl‘i‘ﬁ'b) (2.8)
()= e HE R )
* * ;’Tl; ‘3

The following lemma is proved in [14, Lemma 3.4]:
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16 G. Griso et al.

Lemma 1 Let u be in H'(S,,)>. There exists a decomposition of u = U + u. The terms of
this decomposition satisfy

Il 2, < Crle@llzs,,, IVl < Clle@)l s, ),
H R C|| @l H— At << lleG)l 2
elliL2 ) - 1 < —lle@)lr2s. -
ds 2, = r2 LoSer) ds S = 1 L2(Ser)

The constants do not depend on € and r.

Here, as like as [23], we split the field ¢/ into the sum of two fields U" and U, where
U" coincides with U in the nodes of S, and is affine between two contiguous nodes, U is
the residual part. In the same way, the fields R" and R are introduced. It is obvious, but
important to note that & describes the displacement of the nodes, i.e., the macroscopic
behavior of the structure, whereas I/ stands for the local displacement of the beams.

Lemma2 Foreveryu e H'! (S:.r), one has

Hd CII @) IRl <cs lleG)l|
—|le\u 2 , 2 = — |lelu 2 5
ds li2s,) = 72 L2(Sep) L2(S,) ) L2(Se,r)
du (o — £
— < —|le(m)];2 R U-t <C-|le(u)|,2 R
H as Ulee, =7 le@) 2, ) H 1||L2($£) < rll @l s,
ct u < C—g2 (2.10)

H L2(35> r2 le@)l 2, H ”Lz(sg) =C3 le@)l 2, ,)s .
au" - €

<C—lle(u)|;2 s
H ey =5 le@) Il 2s, )
HdRh H du" C el

. —||e\u 2

Lz(sa 2y = r2 L5Ser):

The constants do not depend on € and r.
Proof The estimates (2.10) are proved in [23, Lemma 6]. O

Observe that since the displacements in V, , are the restrictions of displacements belong-
ing to H' (8;,)3, all the estimates of the above Lemma 2 are valid replacing S, by S.. By
construction, the fields 4", R" are affine on every segment of the structure S (resp. S.) and
they vanish on the segments belonging to S. \ S..

Let u be in H'(S,,,)*. Applying the Poincaré-Wirtinger inequality in £ + ¢S and using
(2.10)g give a piecewise constant function b € L™ (§2,)? (constant in the cell £ + ¢Y) such
that

&
IR =bliz2s,) < Clle@llzs, - .11

Hence

H duh

£
260) =< Cr_2 ||€(M)||L2(sg,,>~
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Asymptotic Behavior of 3D Unstable Structures Made of Beams 17

Again the Poincaré-Wirtinger inequality in €£ + ¢S and the above estimate give another
piecewise constant function a € L>(§2,)? (constant in the cell s£ + ¢Y) such that

Ce?
" =¥l 12s,) < —5lle@) 12, ) (2.12)
r

where r is a rigid displacement in every cell €§ + ¢Y
r(x) =a(e&) + b(eé) A (x — eG — £§), Vxee&+eY.
Now, choose & belongs to =, ;, the domain €§ 4 ¢S U 8(5 + ei) is included in S; (i €

{1, 2,3}). Then, as above, applying the Poincaré-Wirtinger twice (in €§ 4+ ¢S U S(S + e,»)
and e + 8(8 + ei)) lead to (see also [23, Sect. 5])

3 4

&
Z Z |b(g& + ce;) — b(e£)|*e® < C_4||e(”)”iz(s”)’
i=1 €, ; ' )

\ (2.13)
6
> z:Ia@$+s&)—a&€)—ebwé+em)Aed%3§C€%Hduﬂﬁy&ﬂ.

i=1 €&
Set
U(cE) =a(cé), R(e&) =b(e&) forevery & € ..

Now, define U € W (£2,)3 (resp. R € W'*(£2,)%) in the cell (& + Y), & € E,, as the
Q) interpolate of its values on the vertices of this parallelotope.

Proposition 1 For every displacement u € V., (i €{1,2,3})

&€
||V’R'||L2(_Qé““) =< Cr_2 ”e(u) ||L2(Ss.r)’

ou &?
|5 -RAe < C5lle@lizs, (2.14)

oX; Lz(_Qg""’)
1

2
o@D 20y, = €5 le@lizgs, -

Moreover, one has
2 2

& &
”u”[-]l(géiﬂt) = Cr_2 ||€(M)||L2(sg,,)’ ||R||Lz(ggm) =< Cr—2||€(u)||L2(sgv,)- (2.15)

Proof The proof of this proposition is similar to that of [23, Propositions 1 and 2]. First,
from (2.13) and from the definition of the fields R, U we get (2.14); ;. Then, (2.14), gives
(2.14);. Applying [11, Lemma 5.22] or [23, Lemma 7] lead to the Korn inequality (2.15);
in £/ from which and (2.14), we get (2.15),. O

Then, proceeding as [23, Sect. 5] we derive the following macroscopic estimates:
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18 G. Griso et al.

Proposition 2 For every u in V., the following estimates of the elementary displacements
hold:

&
=< Cr_z el 2(s,,)s

£
U112, < € 5l 2gs, - H =

L2(Se)

Rl <€ qle@lig,, | Cole@li,, 210

e) — r2 e, r LZ(Sg) r2 e, r
e € e £
10N 2s,,) = C=lle@ll 2, ) IVU 12, = C=lle@)] 12, ,)-
: - - :
Moreover, one has the following Korn type inequalities:
e e
lullzzs,,) = €2 le@liz,,) IVullias,,) = €2 lle@lias, - (2.17)

The constants are independent of € and r.

Proof Estimates (2.16) are the consequences of those of Proposition 1 and [11, Lemma 5.35]
or [23, Lemma 8]. From (2.16)s5 ¢ and (2.9); » we obtain (2.17). O

3 A Preliminary Result

Denote
H]ﬁgr,O(S)i{¢e W(S)|/¢>dS 0}.

We endow H ;6,’0(3 )3 with the scalar product
au dv
YU, V)eH]), (S xH!, (S u, /— —dS.
( )G LVO( ) X erO( ) < V>S 4s dS

Denote

U, (S)=US)NH!

per0(S)’ D per (8) =D (S) N U, (S).

We define D .., (S) as the orthogonal subspace of Dy ,.,-(S) in U, (S) for the above scalar
product. Observe that since S is a 3 D-periodic structure, one has D; ., (S) "R = {0}.
Set

dA
D) yer(S) = [(A B) € Hyro(S) x Hy (8 | S5 =Bati aeins }

As for [23], we equip Dy pe, (S), with the semi-norm

1A B = | %

L2s)

Since S is 3 D-periodic structure, this semi-norm is a norm equivalent to the usual norm of
the product space H;W,O(S)3 X H;er (S)3.

The elements of Dy ., (S) (resp. the first terms of the pairs in Dy ,.,(S)) are the inexten-
sional displacements.
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Asymptotic Behavior of 3D Unstable Structures Made of Beams 19

Let M be a 3 x 3 constant matrix, equation

dv
V €D per(S), 7S t=—(Mty) -t ae.in S, 3.1
admits at most one solution. Indeed, if we have two solutions then the difference belongs to

I)I ,per (S) .

Denote M (S) the subspace of the 3 x 3 symmetric matrices such that equation (3.1)
admits a solution.

For every M € M (S). We denote V(M) the unique solution to (3.1).

Now, consider the following equation:

per

3.2)

dA .
M e M (S), Mt + 5= BAt ae.in S, (A.B) e H,, (S) x H},.(S).

It will play an important role in this study (see Sect. 8 and the following).
Now, let M be in M;(S), one has

dV(M)) -

7S ae.in S.

(Mtl +

Hence, there exists a field EV (M) defined on S, constant on every segment of S, satisfying

dv (M)

By(M)-t;, =0, Mt, + =By (M) Aty. (3.3)

Remind the following result: the function ¢,, a > 0, defined by
—1 forallzin [0,a/4],

_1+48(t—a/4)(3a/4—t) .
b (1) = a? satisfies / . ()dt = 0. (3.4)
forall 7 in [a/4,3a/4], 0

—1 forallzin [3a/4,al],

We define the field B(M) on the segment y, = [A’, A + [,t], 1 € {1,...,m}, by

BM),,, (S1) = (14, (5)) By M)y, = By, (S)By (M), forall $; € [0,1,] (3.5)

where
0 for all Sy in [0, /,/4],
S —1/4)Bl/4A—S
Py, (S) = 48( ALl )1(2 4 L for all Sy in [1,/4,31,/4], S=A"+Sit;.
¢
0 for all S; in [3[,/4, 1],

(3.6)
By construction, B(M) belongs to H ;er (S)? and vanishes in the neighborhood of every node
of S.
Observe that B(M) — By (M) satisfies

/ (B(M) — By(M))dS; =0  for every segment y; € S.
Ye
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20 G. Griso et al.

Hence, there exits a field Ay (M) € H! (S)? such that

per

d.AV(M)

T (B(M) BV (M)) Aty a.e.onS, ﬁv (M) =0 onevery node of S.

Set A(M) VM) + .AV(M) + C(M) where C(M) € R? is chosen such that / .A(M) dS =

0. By construction A(M) belongs to H ! er0(S )3 and the couple (A(M) B (M)) satisfies (3.2).
Note that in the neighborhood of every node A € K, one has (M € M (S))

Mt + 2 o Aoy s) = A (A) - MG — A) ae.in BA.I) NS,
ds
l 3.7)
lo= ee(l,om) 4

Lemma 3 The map M € M (S) —> (A(M) B(M)) IS Hlero(S)3 H[:e,(S)3 is linear and
one to one.

Moreover, lf(A B) IS Hlero(S)2 Hlﬁer (S)3 is a solution to (3.2) then (,zl\— A(M), B-
B(M)) belongs 10 Dy er (S).

Proof Let (A, B) be in H!

per0(8)3 x H! (S)? asolution to (3.2) then

per

d(A— AM))

S =B-BM) Aty aein S, (A B eH,), (S xH,,(S)

per
which means that (.Zt\— AM), B — g(M)) belongs t0 Dy, per (S). O

Remark 1 If we get another map V' : M (S) — U, (S) such that for every M, the func-
tion V' (M) satisfies
dV' (M)
ds

—(Mt)) - t; ae.in S

then proceeding as above we build a map M — (.Zf/ ™M), B (M)) solution to equation (3.2).
We have

(A(M) — AM), BM) — B(M)) € D per (S).

4 Some Classes of Unstable Structures
4.1 Notations

Denote

1. Ky, K, K3 3 integers greater than or equal to 1 and

K={0,...,K{} x{0,..., K2} x {0, ..., K5} C N°, K" ={keK|k =0},
K={0,....Ki =1} x{0,..., K, =1} x {0,...,Ks — 1}, K?=lkeK|k =0},
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Asymptotic Behavior of 3D Unstable Structures Made of Beams 21

2. &1, & and &3 discrete functions, ¢ is defined on K and ¢, (resp. ¢3) is a function which
only depends on k; (resp. k3) by

0=<810,ka. k3) <--- <8i(K1 — L ko, k3) <1 < §1(K1, ko, k3) = 1+ 61(0, ko, k3),
V(kz,k3) E{O,...,Kz} X {O,...,K3},
0=00) < <n(Ky—1) <1=05(K),

0=00) < - <Kz —1) <1=8(K3),
“4.1)
then these functions are extended such that

C(k+niKiey +nyKre; +n3Kse3) = ¢ (k) +nie + nae; + nses,
V(k,ny,ny,n3, k) €K x 722,

3. K the set of points

3
K= {A(k) eR’|A() = Zé“i(k)ei, ke K},

i=1

4. y® i e{l1,2,3}, the segments

y O k) =[A(K). Ak +e)], keZ’

A(k) is the first extremity of the segment y (V' (k) (resp. y @ (k), y® (k)) while A(k +e,)
(resp. A(k + e,), A(k + e3)) is the second,
RN

5. y®,ie{l1,2,3}, the unit vector®

_
A()A(k + ;)

_ keZ?,
|A(K)A(k + e

-
v =

note that

yOky=e and y?P(k)cRe ®Re;, iec{2, 3},

—
also observe that for every (i, k) € {2,3} x K, y (k) - ¢; > 0,
6. SU the set of segments whose “average” direction is e;, i € {1, 2, 3}

sV = U y Ok +te;),

keK®, 1=0,...,K; —1

note that SV contains only straight lines, the whole 3 D-periodic structure is

3
s=[Js".
i=1

OThis vector is denoted t; in the following sections when structures of type S;, j € {0, 1,2,3,4,5, 6} are
concerned.
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4.2 Some Types of Unstable Structures (see Fig. 2, Fig. 4)

Definition 5 (Structure of type Sy) A 3D-periodic structure S is of type Sy if S =& (see
Fig. 1(a), (b), (c)).

Definition 6 (Structure of type S;) A 3D-periodic structure S C S is of type Sy, if at least
one segment in every line of S is removed in such a way that the remaining segments
form a 3 D-periodic structure (see Fig. 1(d), (e), (f)).

Definition 7 (Structure of type S;) A 3D-periodic structure S C 8 is of type S,, if it is
obtained from a structure of type S; where at least one segment in every “zig-zag” line of
8@ is removed in such a way that the remaining segments form a 3 D-periodic structure.

Definition 8 (Structure of type S;) A 3D-periodic structure S C 8 is of type S;, if it is
obtained from a structure of type S, where at least one segment in every “zig-zag” line of
8® is removed in such a way that the remaining segments form a 3 D-periodic structure.

Definition 9 (“Long” zig-zag line) Let S be a structure of type S;, i € {0, 1, 2, 3}. A “long”
zig-zag line of SU), j € {1, 2, 3} is a sequence of contiguous segments [A, A,], ..., [A,, B]
in SV with A=A(k) and B=A+e;, k €K;.

Definition 10 (“Short” zig-zag line) Let S be a structure of type S;, i € {0, 1, 2, 3}. A “short”
zig-zag line of SU), j € {1, 2, 3} is a sequence of contiguous segments [A, A,], ..., [A,, B]
in SV U (SY) +e;) (with [A, A1] € SV, A, € SY) such that A (resp. B) is the only
extremity of a segment in SY) U (SY) +¢;).

Definition 11 (Structure of type S;) A 3 D-periodic structure S is of type Sy if it results
from a 3 D-periodic structure S’ (stable or not) where we replace every segment [A, B] € S’
by at least a zig-zag line, each made of at least two segments [A, A;], ..., [A,, B] (n > 1)
with two-by-two non-collinear directions and such that Ay, ..., A, are only nodes of two
segments of this line.

Definition 12 (Structure of type Ss) A 3 D-periodic structure S is of type Ss if it is obtained
from a 3 D-periodic structure of type S;, j € {0, 1, 2, 3}, where we replace every node by a
not necessarily regular octahedron’ (see Fig. 3).

Definition 13 (Structure of type S¢) A 3 D-periodic structure S is of type S if for all E €
L?(S) (constant on every segment) there exists V € D, per(S) such that®

g«tle ae.in S.

The structures of type S; or S, are of type S¢ (see Lemmas 6-8). A structure of type Ss
which derives from a structure of type S; is of type S¢ (see Corollary 2).

Definition 14 (Quasi-stable structure) A 3 D-periodic structure S is quasi-stable, if it con-
tains a substructure S’ which is a stable 3 D-periodic structure (see [23, Definition 5]) such
that

(S\S)N((S\8) +e) =0 ie(1,2.3)

70ne can choose other stable structures.

8This leads to an algebraic characterization of structures of this type.
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(a) (c)

(®)

Fig.2 2D-view on periodic structures of type (a) — Sg, (b) — S1, (¢) — Sy, (d) — S4, () — S5, (f) — Sg

5 Some Properties of Structures of TypeS;, j € {0, 3,4, 5, 6}
5.1 Structures of Type Sy

For type Sy structures, we make the following additional assumptions:

— Assumption Ag: for every P € I there exists (1), tr, t3) € R3 such that P + t;e; € £2,

— Assumption Ay : every straight line L directed by e;, i € {1,2,3}, meets I" at most one
point and L N §2 is a connected set,

— Assumption Ay: all the couples of contiguous lines parallel to Re, @ Re; and belonging
to SU are connected by a segment in S whose direction is not collinear to e;, i € {2, 3}.

For every structure of type Sy, we denote (i € {1, 2, 3})
Q(i)i{xe.(ﬂ x=P+ie, Pel, 1eR and[P,x]C.Q],
g0 = {g €& |(sE+eY)NT £0 or es+sYc9<">},

0= interior( U (€ + e?)).

EeEg(i)
Note that due to Assumption Ag the open sets 2@, i € {1,2, 3} are not empty.

Lemma4 Let S be a structure of type So. For all E € L*(S;) there exists a field V € H-(S;)?
satisfying

d_V -ti=E ae.in S,
ds ’
v ) )
ez + H ds llz2sh)y + 8’ ds l12(s@us®) = ClEll 250, 5.1
(Wit + |25, e 20 )< Sigl
P iL2(se) ds llz2s®) ds lr2s®PustN) ~ ¢ L2(5e):
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If S contains only straight lines then the solution to (5.1); satisfies

3
av;
Vil + |52
— Il ds

The constant does not depend on ¢.

sy = CIEls,) (5.2)

Proof From equality (5.1);, we first get

dv,
d_l =E onevery lineof S.
s

Consider a line in SV, if one extremity of this line belongs to £2’ \ 2, we choose V; =0
on this extremity then we solve the above equation. If both extremities are not in £\ £2,
we choose the solution to the above equation, the mean value of which on this line vanishes.
Since £2 is bounded, the Poincaré and Poincaré-Wirtinger inequalities give

IVill = CIE|

1 1.
L2sY) L2stY)

The constant is independent of . Since the values of V; are defined for every node of K.,
one extends this function in an element affine on every small segment of S U S® still
denoted V. It satisfies

Villz2s, = ClIIVAl < CIE|

L2(5(1>) = Lz(ngw),

1%

s = Wil = 1Bz,

Hence (5.1),.
Now, consider a zig-zag line in S, on this line, equation (5.1); becomes

A% dv .
d—;(ez-t1)+ d—sl(el t)=E ae.in S?. (53)
Hence, one has to solve

ds _ez-tl

dvV. 1 dv
-2 (E - —l(el tl)) a.e.in S?.

Again as for V,, if one extremity of the zig-zag line belongs to £2'\ §2, we choose V, = 0 on
this extremity then we determine V, using the above equality. If both extremities are not in
2 \5, we choose the solution whose mean value on this line vanishes. Then, one extends
this function in an element affine on every small segment of S’ U S® still denoted V5.
Again, the Poincaré and Poincaré-Wirtinger inequalities and the above estimate lead to the
L? norm of V,.

From the above equality (5.3) and the estimate (5.1),, we get

v dv, 1dVa dVv, E
IVallzas,) + H ‘ 12(s?) _’ ds ‘ L2(S(I)US(3)) (H ‘ 12(8?) +IElL 3(2))>
Proceeding in the same way gives V3 and then its estimates. O
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Proposition 3 Let S be a structure of type Sy. For every U € U (S,) there exist V € Ur(S;)
satisfying

v du .
ti=— -t ae.inS,
ds ds
3 5.4)
dv; dUu
Wilis +e 3 (Vitezesy + | G | s =€) 0] e
The constants do not depend on €.
Moreover, one has
U -V eDi(S,).
Proof The results of this proposition are the immediate consequences of Lemma 4. a
Remark 2 In the above lemma, since U — V € D, (S,), one has
- U1 = Vl in 9(1) ﬂS
du; dVv;
- —=—aein2PNSY,iec{23}
ds ds
Hence
3
op dUu
16 ||L2(9<1)m5 T H 2@PnsMy te ; H ds LZ(Q‘”ms“)) H "2y
(5.5)
If S contains only straight lines then we obtain
3
dU;
Z (”U 2 2nsy T H ds Lz(fz;”nsé"))) ” R L2(Sp) (5.6)

i=1
5.2 Structures of Type S3

Lemma 5 Let S be a structure of type Ss. For all E € L*(S,) there exists V € H,L (S.)3
satisfying

dv
Ts ti=E ae. inS, Vi, < CellEll 2, (5.7

The constant does not depend on €.

Proof The “short” straight lines of S, (’), i €{1,2,3}, have a length of order . We solve

dVv, . . . .
—— =E on every “short” line of S choosing the solution whose mean value is equal to 0

ds
on every “short” line (possibly we set V; = 0 if an extremity of the “short” line belongs to

£2'N Q). Hence, we get

dv,
IVillzas,) +e H ds llL2s®y — = CelEll 50, = HE 12(s2us?) (5.8)
c .
E ; ” Vl ||L2(Sf;) E CllEllLZ(Sél))'
Then, we proceed as in the proof of Lemma 4. O
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Lemma 6 Let S be a structure of type Ss. For all E € L*(S) (constant on every segment)
there exists a unique field V € Dg p..(S) satisfying

av tt=E inS 5.9
s b= ae.inS. .

Proof We proceed as in the proof of Lemma 5. 0
Lemma 7 Let S be a structure of type S; then
dim(M(S)) =6, Vr(2,8) = H.(2)*.

Proof 1t is an immediate consequence of Lemma 6 since for every 3 x 3 symmetric matrix
problem (3.1) admits a unique solution. ]

Proposition4 Let S be a structure of type S3. For every U € Up(S,) there exists V € Ur(S;)
satisfying

dUu
U=VeDiS).  IVils, = CellVie=Ce| 2=t

(5.10)

L2(Se)

The constant does not depend on .
5.3 Structures of Type Sy

Lemma 8 Let S be a structure of type Sy. For all E € L*(S), there exists V € Hlier (S)?
satisfying
dv

—g 0=E acinS.  |Vins =CIE|re) (5.11)

Proof First, consider two segments [A, A;] and [A;, B] with non-collinear directions. We
define W a continuous function on these two segments by ((a, b) € R?)

S
WA+ S1a;) = </ E|[A,A1]dt)a] +aSb;
0

—_—

. AA,
ae. in[AA(], S €[0,]i], a=—-,
|[AA|

N

W(A, + $ia) = (/

)

Ejj4,.5 df)a'l +b(l, — S)b]

|

A
ae.in[A;,B], S €[0.h], a,=—,

1B

Iz

ES
S

— — .
where [y = |AA;|, [, =|A; B| and where b; and b/ are determined such that
I 0
b-ay=0, b-a =0, W(A)= (/ E”A,Aljdt)al—i—llb] = (/ Eja, 5 dt)a/,-i—lgb/l.
0 13
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There is at least a solution (only one if we choose b; and b| € Ra; @ Ra)).
Second, now consider three segments [A, A{], [A;, A;] and [A,, B] with two by two
non-collinear directions. On these three segments we define a by

N
W(A+ Sia;) = (f E,[A,Alldz>a1 + 8b,
0

ae in[A, A2],  Si1€[0,b], a)=—=;

N
W(A2+Sla/l’ = (/ E\[AZ,B] dt)a’{+(l3 —Sl)b/{
I3

—
AB

ae.in[A, Bl, S$1€[0,53], af=—%,
|AB|

— —_— — .
where [| = |AA,|, L =|A A;|, I3 =|A,B| and where by, b, b] and b are determined to get

a;-b; =0, allbllzo, all,'b/l/:07
I

W(Al) == (/ E‘[A,Al]d[>al +llbl =b,
0

123 I3
W(Az) =b+ ([ E\[A].Az] dt)a’l +12b/1 = —(/ E\[AZ,B] dl‘)a,{ +l3b,1/
0 0

There is at least a solution (only one if a;, aj, a} are independent).

Observe that in these two situations above, one has W(A) = W(B) =0.

Now, consider n+ 1 segments [A, A1], ..., [A,, B] (n > 1) with two by two non-collinear
directions. Combining the two cases above, we can build a field W satisfying

aw
W(A)=W(B)=0, . t;=E  ae. inevery segment,
where t; stands for a unit vector in the direction of the segments. O

Corollary 1 If S is a 3D-periodic structure of type Sy then
dim(M(S)) =6, V(2,8 =H}.(2).

Proof 1t is an immediate consequence of Lemma 8 since for every 3 x 3 symmetric matrix
problem (3.1) admits a unique solution. ]

Lemma 9 Let S be a 3D-periodic structure of type Sy. For all E € L*(S,), there exists
Ve H}- (S.)? satisfying

dv ,
—t=E acinS.  |Viges, < CelEl s, (5.12)
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Fig.3 Octahedron O(A?),
Al e K, K: set of nodes of S

The constant does not depend on €.
Proof The proof of this lemma is a direct consequence of Lemmas 8 and 4. ]

Lemma 10 Ler S be a structure of type Sy. For every U € Up(S,) there exists V € Ur(S,)
such that

du
U—VeDiS,)., IV < CellVlier =€ -t . 5.13
1(Se) Il ||L2(sg) <Ce||[V]er = ds 1 1250) ( )
The constant C is independent of ¢.
Proof This lemma is a direct consequence of Lemma 9. O

5.4 Structures of Type S5

Lemma 11 Let S be a structure of type Ss deriving from a structure S’ of type S;, j €
{0, 1,2,3}. For all E € L*(S,) there exists V H,L(Sg)3 satisfying

dv .
— -ty =E a.e.inS,. (5.14)
ds

The estimates of V depends on the type of the structure S'. One has
— the estimates of V are the same as those in (5.1) if S’ is of type S,

— the estimates of V are the same as those in (5.7) if S’ is of type S;.

Proof For simplicity, we assume E constant on every segment of S,.

The lines Aa, Bb, Cc, Dd, Ee and F f intersect at the point O.

Let A’ be a node of S’. Consider the octahedron & + sO(AY), £ € B,, A® € K, see
Fig. 3.

There exists a unique field V¢ € Dg (O(A[)) (see (2.4)) solution to

dV e .
d—g ty =B .0t ae. in O(AY),

Vi) -e,=0, Vy(a)Lles, Vyu(f)Le.
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One has
1 Vaell2coatyy < CellEl L2¢se1e0048))-

— = = = — — . .
Observe that the vectors Oa, Bb, Oc, Od, Oe and Of are collinear to the corresponding
. — —> — — — =

vectors t; of the segments in S’ (Oa, Od € Re; @ Re,, Ob, Oe € Re; and Of, Oc €
]Rel D Reg)

Now, we proceed as to prove the Lemma 4. One first determine the component V; of the
solution to (5.14).

Consider the segment [A*, B¢] € S’ (if it exists) whose direction is collinear to e,. If
Vi(e€ + gAY 4 ¢B) is known, then one has V; (¢ + e A’ + eb) = V,(¢€ + A’ + &B). We

' s—e& —cA’
set Vierco8t)(S) = Vi(e§ + A" +eb) + (VAz <f) . e1>e1. In such a way that
Vi(eE +eAl 4 ge), V(e + A’ + ¢E) and also V(& + sA® + ea), Vi(¢& + A + ef),

Vi(e€E + A + ed) and V, (e + e A® + gc) are known.
If the segment [A¢, BY] € &’ (always whose direction is collinear to e;) does not belong

, B s— ek —eAl '
to §'. We set V) s1.050)(S) = | Var — ~e1)e1. Hence Vi (e§ + A" + ce),

Vi(ek + A’ + ¢E) and also V(s& + e A + ea), Vi(e& + A  + &f), Vi(c& + e A + ed)
and V| (¢& + ¢A® + ec) are known. We extend V; as an affine function in the segments
joining two contiguous octahedra. The estimates of V; are similar to those obtained in the
Lemma 4.

Now we determine V,. Consider the segment [A¢, B*] € S’ (if it exists) whose direction is
collinear to t; € Re; ®Re,. If V(£ + A’ 4+ A) is known, then we first determine V, (£ +
g A + ea) using (5.14) and the fact that V| is known everywhere. We set Vo108 (S) =

' s—e& —cA’ .
Vo(e€é + eA” + €a) + (‘Cﬂ(f) -e2>e2. In such a way V,(¢€ + ¢A* + ed),
Vo(ek + At + eD) and also V(& + e AL 4 6b), Vo(eE + eAb + f), Vo(ek + Al + ge)
and V, (g€ 4+ ¢ A* + ec) are known.
If the segment [A®, B‘] € &' (always whose direction belongs to Re; @ e;) does not
belong to S’, we proceed as above.
We determine V3 in the same way. ]

Corollary 2 If S is a 3D-periodic structure of type Ss and deriving from a structure S’
of type S then for all E € L*(S) (constant on every segment) there exists a unique field
V € Dg per (S) satisfying

av ti=E inS (5.15)
s b= ae.inS. .

Moreover, one has
dim(M(S)) =6, V(2,8 =H}.(2).

Proof The fact that equation (5.15) admits a unique solution is an immediate consequence
of Lemma 11.
The second statement is an immediate consequence of the first of this lemma. ]
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Proposition 5 Let S be a structure of type Ss deriving from a structure S’ of type Sy or Ss.
For every U € U (S;) there exists V € Up(S,) such that

U -V eD(S,). (5.16)

The estimates of V depends on the type of the substructure S’ (see the corresponding cases
in Propositions 3 or 4).

5.5 Structures of Type S¢
Lemma 12 If S is a 3D-periodic structure of type S¢ then
dim(M,(8)) =6,  Vr(2,8)=H.(2)".

Proof This lemma is an immediate consequence of the definition of the structures of type
Se. d

5.6 Quasi-Stable Structures

Lemma 13 If S is a 3D-periodic stable structure or quasi-stable structure then
dim(M,(S)) = 0.

Proof Suppose S stable, if M belongs to M (S) then, the function s — V (M)(s) + Ms
is an inextensional displacement, hence it is a rigid displacement r(s) =a+b As (s € S).
Since V(M) is periodic, this leads to

—Me; +bAe =0, ie{l,2,3}.

Remind that M is a 3 x 3 symmetric matrix, thus M =0 and b =0.
If S is a 3D-periodic quasi-stable structure then it contains a 3 D-periodic stable struc-
ture. Applying above gives the result. ]

Proposition 6 Let S be a quasi-stable structure. For every U € Up(S,) there exists V €
Ur(S;) such that

dUu
U=VeDiS). IVl <ClIVIe=C| 5=t (5.17)

L2(Se)

The constant C is independent of ¢.

Proof First observe that due to the definition of quasi-stable structures, the set D;(S) of
inextensional displacements is

D;(8) =R®Dys(S),
where
Dy os(S) = {cp eD;(S)|®=0 in s’].
Every element of D; os/(S) is extended by 0 outside S. As a consequence

D;(S:) =R ® Dy 0s,(S),
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where

Dy s, (Se) = {V eD;(S)|SeS+——> V(eE +&S) eDj s/ (S) forall & € &, }

Now, let U be in H } (S.)3. Since S is a stable 3 D-periodic stable structure, we know (see
[23, Proposition 1]) that

dUu
1Ullg1sp < CH s -t s
The constant does not depend on ¢.
Besides, for every & € =, applying the above result to the displacement ¢: (S) = U (¢§ +
S) gives a couple (r¢, Vi) € R x Dy os/(S), (rs(x) = ag + bs (x — &), (ag, bs) € R? x RY)
such that ¢: =r: + V. Hence, due to [23, Proposition 1] and after e-scaling, we have

dU
V 2 n=||U —r, 2 /<C8”—t .
1VellL2(egtes = | el 2 resy < as U eeres)
Then, the above two estimates lead to
Z ”r§”L2(5§+F$) - c Z H 1 L2(5§+£S/

§el
A straightforward calculation gives

dUu
2 (el etel) ¢ 3| G

§€Be

1 =
LZ(SE+FS’ Z H

L2(sk+eS)

which in turn yields

Z [Irz ”L2(s$+6‘5) ¢ Z ”

iz, L2(55+e$)
and finally
||U—V|| CH where V(s)—ZV(S_‘ES)forae ses
1280 = LZ(SS)’ —&: § -C e
By construction V belongs to H}(S,)*. The constant does not depend on . O

6 Statement of the Problem
6.1 Elasticity Problem

Let a; i € L*>(S:), (k] € {1, 2, 3}4, be the components of the elasticity tensor, these
functions satisfy the usual symmetry and positivity conditions

& __ & __ _&T . .
- 4y =a;y =ay; ae.in Sers
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— forany T € M2, where M is the space of 3 x 3 symmetric matrices, there exists Co > 0
(independent of ¢ and r) such that

. .
alyTiita = Cotijt;  ae.in S . (6.1)

The constitutive law for the material occupying the domain S, , is given by the relation
between the linearized strain tensor and the stress tensor

01 (u) = afyyy e @), VueVe,. 6.2)

We assume that every beam is made of an orthotropic material, in the reference frame of the
beams one has

os,11(u) El](f) E|2(§) EH(S) 0 0 0 es11(u)
05,2 () Ein(%) Exn(®) Ex(®) 0 0 0 es (1)
os3) | _ | Eis(}) Exn(?) Es(®) 0 0 0 es33(u)
os2(u) | 0 0 0 Gia(2) 0 0 es,12(u)
0s,13(u) 0 0 0 0 Gi3(%) 0 es13(u)
05,23 () 0 0 0 0 0 G(%) es 23 (1)

The coefficients afj « of the above 6 x 6 matrix are functions in L*°(S,)
& _ & _ S 00
a,‘jkl(x) = aijkl(s) =daijkl g ) Aijkl € Lper(S),
forae. x =s+ sztg + S3t§ =gtk +eAl+ slt‘lZ + sztg + S3t§ in Pf_“,

te{l,...,m}, &Eebk,.
The unknown displacement’ u, : S, , — R? is the solution to the linearized elasticity system:

V'G(us)=_fa in S&.r,
u, =0 on [;,NJS,, (6.3)
o(ug)ve =0 on 0S.,\I%,,

where v, is the outward normal vector to 9S; , \ I:,, f. is the density of volume forces.
The variational formulation of problem (6.3) is

Find u, € V,, such that,

(6.4)
/ o(ug):e(v)dx = fe-vdx, YveV,,.
Ss,r

Se.r

6.2 Force Assumptions and Apriori Estimates of the Solution to (6.4)

As in [23], we distinguish two types of applied forces, the first ones are applied between the
junctions and the second ones in the junctions.

90f course, the solution to this problem depends on ¢ and r, but for simplicity, we omit the index . The same
holds for the applied forces f; and for every function which in fact depends on both indexes.
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Fig.4 3D-periodic structures of type Sg and S| (see Sect. 4)

Let (f, F, G) bein C(2)° andu € V.
The applied forces f, € L®(S,,)* are

2
o= Z [ F(A)+ G(A)/\(x —A)]13<A nt o fis, 6.5)

AeK,

where 154, is the characteristic function of the ball B(A, r).

The last term f|s, stands for the applied forces in the set of beams U U o.0.r Lhese
e, (=1
forces are constant in the cross-sections.

Proceeding as in [23] and using the estimates of Proposition 2 give

2
,

fe 'de‘ = C;("f”LO"(Q) + IFll (@) + [Glle@) le @)l s, ) Vu €V,,.

(6.6)

’ Se,r
The constant does not depend on ¢ and r.

Lemma 14 The solution u. of problem (6.4) satisfies

2
r
le(ue)ll2s,,) = C;(IIfIILoo(m + IFll o) + 1Glle2))- 6.7)

Proof In order to obtain a priori estimate of u,, we test (6.4) with v = u,. From (6.6), one
obtains

2
r
le@a)l7s, ) < S—Z(IIflle(m + IF @) + 1G oo ()) llee)ll s,

which leads to (6.7). O

7 The Unfolding Operators
The classical unfolding operator 7, was developed in [10, 11]. As in [23], in this work

we use unfolding operators for structures made of thin beams. One for the centerlines and
another for the cross-sections of the beams.
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Let us recall their definitions, for their properties we refer the reader to [23, Sect. 6].

X
In the definitions below (see Definitions 15, 16), 8[—] represents a macroscopic coordi-
e
nate (the same coordinate for all the points in the cell e[f] + &Y) while S is the coordinate
e
of a point belonging to S. Hence, ¢ [f] + &8 represents the coordinate of a point belonging
e

x .
to S;. In order to get a map (x,S) —> 8[—] + &S one to one, we need to eliminate some

segments of S. This is why from now on, to introduce the unfolding operator, in lieu of S we
consider the set

SN0, 1)°3.

For simplicity we will still refer to them as S. The set of nodes is always denoted K, the
number of beams of S will be still denoted m.

Definition 15 (Centerlines unfolding) For ¢ measurable function on S;, the unfolding op-
erator 7.5 is defined as follows:

X
&

7;$(¢)(xvs):¢(8|: ]—I—SS) for a.e. (x,S) € 2, x S.

Definition 16 (Beams unfolding) For u measurable function on S, ,, the unfolding operator
T2 is defined as follows:

T2 (u)(x. S, Sy, S3) = u (s[%] +eA Sty +rSit +rSit )
for a.e. (x, 81,5, S3) € 2, x (0,1;) x D
where S = A + S§;t; and remind y, = [A¢, B].
Let ¢ be measurable on S, if S belongs to the segment y;, then we have
TS (¢)(x, S) = ¢>(s[§] +68) = ¢>(g[§] +eA St ) =T ($)(x,8,0,0)
fora.e. (x,S) € 2, x S.

Below we recall two of the main properties of these operators. For every ¢ € L*(S,) (resp.
¥ in L%(S.,)) one has

S
||7:.~ (¢)||L2(.ngs) = 5”¢”L2(55)»

(esp. [ T2 O | oy = CEIIWIle@s@_,) forall £ € {1,...,m}). b
For more properties we refer to [23, Lemma 12].
8 Asymptotic Behaviors
From now on, we assume that
(r.e)— (0,0)  and g 0. (8.1)
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If the structure is of type S;, j € {0, 1,2}, we also assume that

2

£ o (82)

lim
(r,e)—>(0,0) r
8.1 Asymptotic Behavior of a Sequence of Displacements
In this section we consider a sequence {u,}. of displacements belonging to V., and satisfy-
ing
2

r
le@all 2, ,) < C§~ (8.3)

Lemma 15 (Weak limits of the unfolded fields) Let {u.}. be a sequence of displacements
belonging to V., and satisfying (8.3). For a subsequence of {¢}, still denoted {¢}, one has
(i) there exist U € H-(2)*, R' € L*(2: H),,(5)", U € L*(2; H),, ,(S) N H*(S))’ such
that

nglggm — U weakly in L2(.Q)3,
VU1 g — VU weakly in LX($2),

TEWU) ~U  weaklyin L*(2; H'(S))*, (8.4)

-~
7

dau, ou
7;S<d—ss> = VUt + 7S weakly in L*(2 x S)’,

TS(R,) =R weaklyin L*(82; H'(S)) .

The fields U, U and R’ satisfy

oS =R At ae.in 2x8. (8.5)

VUt +

If the structure is of type Sy one has
Uy=0 ae in2, (8.6)
moreover, if it contains only straight lines then, one has
U=0 ae. inf?, ie{l,2,3}, (8.7)

(i) there exists Z € L*(2 x 8)* such that

du,
Srs < o R /\t1> ~Z weaklyin L*$2 xS), (8.8)
r S

(iii) there exists U € L*(£2 x S; H'(D))? such that (€ =1, ..., m)
£ bl N 77 kly i 2 0 . 1 3
r—27; (u;) ~u weaklyin L=(82 x yg; H (D))",
(8.9)

10
;ﬁﬂb‘((ﬁa) —0 weaklyin L*(£2 X y; x D)S_
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Proof Below, every convergence is up to a subsequence of {¢} still denoted {¢}.

(1) From (8.3) and the estimates (2.14), (2.16), one obtains

1
”us”Hl(Qéfm) <C, ||Z/{a||H1(3é) =< Cg-

Lemma 8 in [19] gives a field U € H}-(§2)* such that (8.4), holds. Then, (8.4); 4 are the

consequences of [23, Lemma 14].
Estimates (2.16) and (8.3) give

C
< —

R |l H —
R +e .
FILAS:) ds 2~ ¢

Thus, there exists a function R e L?(2; H! (8))? (see [23, Lemma 13]) such that (8.4)s

per
holds.
From estimate (2.9)4 and (8.3), we have
’ du; R At T
ds 0 M sy T 2

Thus, using (7.1) on the one hand we get

du, .

7;3 < 7 - — R, /\t1> —> 0 strongly in L*(2 x 8)3,
S

and on the other hand from convergences (8.4)4 5 we have

~
’

du, du, au
T2 < —Re /\t1> =T7° (—) —TE(Re) Aty — VUL + 35

ds ds
weakly in L*(£2 x 8)3,

which in turn with the above convergence (8.10) leads to (8.5).
From (8.3), (5.5), (2.9)4 and (2.16), one has

,
”u&‘.l ||L2(Q(l)ﬁ$8) < Cg_2
As a consequence we get
75 Ue1) — 0 strongly in L*(2V; H'(S)),

which gives (8.6).
Equalities (8.7) are the immediate consequences of (5.6).
(ii) Besides, again from (2.9)4 and (7.1) one has

dau,
7;5 < dss —Re /\t1>

dU;,

=¢
L2(2xS)

—R: A

L2(Se) €

Hence, there exists a field Z € L2(£2 x S)? such that convergences (8.8) hold.
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(iii) Taking into account (2.9), , (8.3) and the properties of ’7;“ (see (7.1) and [23, Lemma
12]), we have

2

<c=, e
L2(2xy;x D) &

— 8 .
172 @l 2@y + H gﬁb’[(ug)
J

Hence, up to a subsequence, there exists # € L?(2 x S; H' (D))S, such that (8.9); holds.
In order to show convergence (8.9),, note that from (2.9), and (8.1) it follows that

<Cr.
L2(2xyyxD)

T (@)

I3
aS
Therefore, convergence (8.9), follows. O
Denote
Vr(2,8) = {v € HM(2)? [ e(V)(x) € M(S) forae. x € 9}
S a 3 D-periodic unstable structure.

This space is a closed subspace of H}(£2)3. Note that if S is of type Sy, it is an immediate
consequence of this definition to get I/} =0 a.e. in 2110

Corollary 3 Under the assumptions of Lemma 15, one has

PO ~ o o 1 ~
U=Ale)+U, R =B(VU)+R=DB(eW))+ Seurl U) + R,
U.R) € L*(2: D1,per(5))-

SoU eV (82,S) and

dA(eU))

eU)t + S

=B(e@) Aty ae.in 2 x S. (8.12)
Proof This result is an immediate consequence of (8.5), Lemma 3 and the equality
1
VUt =eU)t, —I—Ecurl(U)/\tl. O
.dU . . - .
Remark 3 Since Is -t; is smaller than I, it should be noted that the limit macroscopic field
s

du
U does not depend on the limit of d—F - t;. This last term takes into account the stretching-
s

compression of the small beams.

101f & is of type Sg and contains only straight lines then

Vr(R,8)= {VG HL(2)? [e(V)(x) € M (S) forae. x € 2 and U; =0ae. in 20, i €(1,2,3) }
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8.2 Asymptotic Behavior of the Strain Tensor

For every @ € Vi (22,8), Zo € L2(2 x S), (A, B) € L*(2; Dy e (S)) and ¢ €
L*(2 xS HI(D))3 we define the symmetric tensors &, S(g), Ep by

P A(e(d))
——— (St +S5t) x x
987
. 3B(e(®
£(P) = _EM.tl o «|.
2 a8
S, 3B(e(®
5 98(@) 0 0
R
)~
Zp— —— (St St * %k
@ 952 (Az 2+ S53t3)
~ 9
£9 (20, A B) = _598 0 x|,
2 35
S, 98
227 0 0
298,
0 * *
N 194 3
Ep(p) = EE.U Na—Sz'bN N ae.in 2 xS x D,
1 36 1,00 3 3
i (==t .t
298 2(as3 SRS 3) 3S;

(8.13)
where (.Z(V(D), B(V®)) is the solution to (3.2) build from the solution V (V®) of (3.1).

Proposition 7 Under the assumptions of Lemma 15, the following convergence holds:
T2 ue) — U weakly in L*(2 x yi; H'(D))>. (8.14)
Moreover

¢ 7£b’l(es(u€)) -~ &) +£§g>(zu,u, R)+ Ep(u) weakly in 1,2(52 X Yo X l))3X3.
r
(8.15)

Proof Below, we give the asymptotic behavior of the sequence {7;”(148)} as ¢ »> 0 and
r/e — 0. One has

To we) = TV + T @)
From (8.9) we have
%7?‘@) —~ 7 weaklyin L2(82 x y;; H(D))'.
From Definition 4 we have

TEHU =TS U) + TS (Re) A (Satr + Ssts), ace.in 2 x y, x D.
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The convergences (8.4) yield
TPHU?) — U weakly in L*(2 x y,; H'(D))*.

Hence, convergence (8.14) holds.
Now we consider the asymptotic behavior of the strain tensors ’7;“ (es(ug))

T s (ue)) = T (es (@) + T (es (U)).

From (8.9), we get (¢ € [1,...,m])
3 — — . 3
;ﬁb'[(es(ua)) — &Ep(u) weakly in L*(£2 x Ve X D)3X?.

Then, from the convergences (8.4)-(8.8) and Corollary 3 we obtain

o (S2ts + Sst3)
- * %
u 352 2t + 3383
e . 1 S; 0R
T UN = EW+| 24—y 0 %
r 2 298
1 S R
“Z-t4+—-—-t 00
27 P TS
weakly in L322 x Ve X D)3X3.
We set
Zy=Z-t;, U=u+S5(Z t)ti+S(Z-t)t; aein 2xSxD.
Hence, taking into account Corollary 3, (8.15) holds. O
Remark 4 Due to (2.6), the warping u satisfies
/ u(-, 82, 83)dS$2dS; =0,
b ae.in 2 x8. (8.16)

/ u(-, S2, 83) A (Sath + S3t5) dS»d S; =0,
D
Denote

Dy = (@1, . ) € (D | [ (5372052, 52) = (52, 59) d 52 =0,
D
(8.17)
/ Bi(S. S3)dS2dSs =0, i € {1,2, 3}].
D
Thanks to the conditions (8.16) satisfied by u and the definition of #, one obtains
U= (ﬁ . tl)tl + (ﬁ . t2)t2 + (ﬁ . t3)t3 is such that (;[ . tl, u- tz, u- t3) € LZ(Q X S; Dw)
For the sake of simplicity, if U belongs to L>(2 x S; H'(D)?) and is such that
T=@ t)t + @ )t + ¥ t3)t satisfies (V-4,7- 6,7 t3) € L*(2 x S; D,y),

then we will write that ¥ belongs to L*>(2 x S; D).
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9 First Steps to the Limit Unfolded Problem

In this section we assume that S is a 3D-periodic structure neither quasi-stable nor stable
(see Definitions 3, 14 and 2 or [23, Definitions 2 and 5]).

To obtain the limit of the rescale LHS of (6.4), we only want to compute the unfolded
limit of this term. To do so, we will choose test displacements v, in V., whose contribution
in the junction domain 7, goes to 0. Using (6.7), since we have

82 d m
"’_2/55_,0(148) re(vg)dx — ;/

P r .
aijir =T (esij (ue)) =T (€5 u(v:)) dxdS
2xyexD r &

82 82 r2
<[5 [ owriewrdr] <5 S lewliag, < Cle@liag,
TIr

.1
we must get
li B =0. 9.2
e lle(a)llz2 s, 9.2)
9.1 The Limit Unfolded Problem Involving the Warpings
Lemma 16 Forevery l € {1,..., m}, one has
/ i (EU) + £ (20, U, R) + Ep@) ; (Ep®@)),, dx dS =0,
2xyyxD (93)

V7 e L322 x y;; H'(D))®.

Proof Set
T.00) =W (s) V* (z) @ (Sr—2 srl)

fora.e. x = 85 -f“";‘Aé + 51t + st + s3ts3, (S],Sz, S3) € (0, 6‘15) X D,, S (S ES

where W € D(2), V¢ e D(yy), ¢ € H'(D)’. Since V* belongs to D(y;) and r/e tends to
0, the support of the above test-displacement is only included in the beams whose centerlines
are ¢ + ey, £ € E.. By construction, this displacement vanishes in the junction domain
T

Choosing U, as a test function in (6.4), and then proceeding as in [23], we obtain

/ i (EU) + EF (Zu, U, R) + Ep@) ;W V! (En(9)),, dx dS =0.
RxygxD

Since the space D(2) @ D(y;) @ H' (D)’ is dense in L2(22 x y¢; H'(D))® we obtain (9.3).
O
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9.2 The Limit Unfolded Problem Involving the Inextensional Displacements

Lemma 17 One has

ij

f aiju(EU) +ES (Zu, U R) + Ep@) ,;(£8(0, A, B)),, dxdS
N2x8xD

9.4)
4 ~ ~
= ?” G- (Y B(.A))dx, V(A B) € L*(2: D1 per(S).
2 Aek
Proof Let ¢ be in D(£2) and (.Zl\, Z/S\) € Dy per(S). We assume that
B is constant in the neighborhood of every node of S. 9.5)

Step 1. Preliminary results.

Set A.(s) = ¢'2(s) X(z) and Bu(s) = ¢!2(s) z?(z) in & + ey, 8 = 6k + cAl +

sltf, s1 € (0,¢ely), & € E,.In this segment one has

DAY g 22, gy Ly 08

and the convergences (i € {2, 3})
7;5(3;) — ¢§ strongly in L2(2 x S)?,
81/3;)
8S|
7;5(.;1\8) — pA strongly in L2(£2 x S)3,
dA,
aS]

JB
87;5( — ¢>£ strongly in L*(2 x S)*,

9.6)

dA
87;8( ) — ¢% =¢B At stronglyin L?(2 x S)°.

Step 2. The test displacement.
We define v, in the beam whose centerline is €€ + ¢y, by
et ~ e~ ¢ ¢
Ve (x) = r_zAs (s) + r_zBs(S) A (Sth + S3t3)

forae. x =& +eA" +51t] +5ot5 + 535, (51,52,53) € (0,¢ely) x D,, £ € &..

By construction v, belongs to V., since for every x in B(e€ + €A, cor) N S, we get
e &2
Ve (x) = ¢ (e& + gA)[r—zA(A) + 5 B(A) A (x — o6 — sA)].

Hence e(v,) =0 a.e. in J,. This test displacement satisfies the condition (9.2).
In the beam whose center line is ¢§€ + £y, one has

e & deP /- &2 dA /- &2 9B,
L) SR
sy r? ds + rzd) dsS r2 ds; (528, +5383)
v,

o5

& &

& ~
=B At, ie€{2,3}.
;
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Hence
v e de? /- &2 (9B,
T <_).t/é _( t>~tl,
dsy ' r? ds A ;) ht e s, 2 k)4
v v e dep? ~/. ¢ /0B,
Ctt = = (—>t¢ —( t) € {2,3},
as; ‘+as1 Yor? ds As ’+r2 s 2+ st reizd
a a
a_';%.tf. aji.tfzo, (i, j) € {2.3)%.
i j

Then, the above convergence and those in (9.6) lead to the following strong convergence in
L*(2 x yp x D)¥3:

2A
_¢as2 (SaotS + S5t} * %

-
_ﬁh’l(es(vs)) — ——¢— f 0 *
e 2708

S, B ¢

Zp— 0 0

2‘1’331 !

Hence
T”(e ) — ¢ EL (0,4 B) stronglyin L3 (2 xy x D). (9.7)

Step 3. Contribution to the unfolded limit problem.

Choosing v, as a test function in (6.4), then unfolding the LHS of (6.4) and passing to
the limit gives
&2
/ o (ue):e(ve)dx

lim
(.1—(0,0) 12

m

= dim S [ I LT v dvaS
(e.r)—(0,0) @xyexp T e

= / i (EQU) + E€ (2, U, R) + Ep(D), ¢ (£€(0, A, B)),, dx dS.
N2x8SxD ’

Now, we consider the RHS of (6.4) with v = v,

82

r_2 . fe - vedx

:Z/ ( F(A) + — G(A)/\(x—A)) vedx+ Y / £ v, dx,

Aekc, ¥ B(AD) £€Ee e, ..m)
3

= Z/ (5 3F(A) A(A) + 5(G(A)A(X—A)).(E(A)A(;C—A)))qsgzl(s)dx
Ack, ¥ B(AD) re
+ Z / f-v,dx.

Eele Lell,...,
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Proceeding as in [23], we obtain

2 4 N
= [ vdi ?”/Q¢G-(ZB(A))dx. 9.8)

Aek

Due to (9.3), [23, Lemma 23], the set of couples (.Zf, g) € Dy, per(S) such that B satis-
fies (9.5) is a dense subspace of D; ,.,(S). Moreover, the density of D(§2) @ Dy e, (S) in
L*(£2; Dy per (S)) leads to (9.4). O

9.3 The Limit Unfolded Problem Involving the Macroscopic Displacements
Lemma 18 One has

ij

/ aiju (EU) + ES (Zu U R) + Ep@)),,(EV)),, dx dS
2xSxD (99)

4n|k
”3' |/F-de+|8|n/ f-Vdx, YVeVr(2,S).
2 2

Proof LetV be in D(R*)? NV (£2,S) such that V=01in 2\ 2.
Step 1. The test displacement.

We define the test displacement v,, in the beam whose centerline is €& + eyy, (§,¢) €
Z. x{1,...,m}, by

&2 & s\ &/ s . .
.06 = V() + r—zA(e(V)(x))(g) + r—z(BV (e(V)(x))fbv(g)) A (s2th + s3th)
2
o (teurl ()126s) = curl (V) ) A (o2t + 558
forae. x =s+ sztg + 53t§ =&+ At + sltf + sztg + 53t§, (s1,52,53) €(0,ely) x D,.
v, is an admissible test displacement since one has (see (3.7))

g? g? &3 g?
ve(x) = V(& +£A) + =51 VV(eE + e At + 5 A(e(V) () (A) — s1e(V) (1) 1]
r r r r
2 2
_ %(Curl(V)(x))(sztg +s53t5) + %(curl(V)(sz} +&A)) (5215 + s3t5)

2 2 3
=5—2V(8§ +eA)+ %(VV(es +eA))(x —e& —eA) + S—QE(e(V)(x)) (A)
r r r

82
- r—z(VV(x))(x —s& —¢cA)

a.e.in B(e€& + €A, cor) NS, for every & € Z, and every node A € K. Moreover, one has

r
lle@e)llzz(z,) = C Vw2 ms).-
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Step 2. Limit of the strain tensor.

This test displacement satisfies (see estimates (A.12))

3

dve  e2dVB g2 dA(e(V)) . &
(;) A (5285 + 53t5) + 0<r—2),

eV dd
as, 2 ds +r2 ds ( >+ 738y (e) ds

v, P &3
oo ()t of%)
&3
where O (—2> stands for terms whose L°°-norm is bounded by a constant (independent of
r

& and r) multiply by 8—2 Therefore
r

@ge_iyﬂ” é&ﬁ@<;]e
sy 4 ds; t s <g> 4
3

(E) A (52t} +S3t§)) t+ O(i_z)

., v, 2rdV dA(eW) (N1 o, (a S\ 0\ .
le .ti + 85‘,‘ ‘tl o I’_2|: dSl + dS (E)] .ti + I’_Z(BV(E(V))‘pV(g) /\ti) .tl

£ ~ dd
n (r—sz (e(V) dSV

3

. &
(;) A bt std) €+ 0(5).

E [~ dd
+ = (Brlem) =5

o, , v, &3
Bs,- ']+ aSj ! r2

Remind that from Sect. 3 and (A.12) one has

e(V)tf %(8) Bv(e(V))¢V< ) /\tf a.e.in £2 X yy X D,,

de
< Cr||V|lw2.oow3y-
H HLOC(SS) - Vllw =®)

Hence
dB(e(V
ST epn (v) — (% (Sot} + Sst )) -t stronglyin L*(2 x y, x D),
e
1dB(e(V
57’”(65 12(v€)) — ——M& -t¢ stronglyin L*(£2 x y; x D),
€ 2 dS
1dB(e(V
7; (6‘3 n(vg)) — 5%52 . t‘f strongly in  L2(£2 X y; x D),

m N ™Y

T (es1j(ve)) —> 0 stronglyin  L*(£2 x y; x D).
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Then, going to the limit in the strain tensor gives

d*Ale(V)
# (Sztg—i—Sgtx) ko ok
i’];h*z(es(vs)) — _%M -t 0 0 | strongly in L2(£2 x y; x D)3X3
e
dB(e(V

2 dS
Step 3. Contribution to the unfolded limit problem.

Choosing v, as a test function in (6.4), then unfolding the LHS of (6.4) and passing to
the limit, we get

2
o e(vadx—z [ ity S e dxdS
r Se.r Qxyng

= Da,,kl(e(u)+5gg)(z U,R) +Ep@),, (EV)),, dx dS.

Now, we consider the RHS of (6.4) with v = v,.. As in [23], we easily prove that

2 4nIK
S B MLl |/F-de+|8|n/ f-Vdx.
3 2 2

2
r~Js,

Since the space of functions V in D(R*)* NV (2, S) such that V =0 in £’ \ £2 is dense in
Vr(£2,S) we obtain

YV eVr(2,8), / aiju(EQU) + E (20 U R) + Ep@),,(EV)), dx dS
N2xSxD
4 |K
_4l |/F-de+n|8|/ £ Vdx.
3 0 2

Hence, (9.9) is proved. O

10 Expression of Z,

For every structure S of type Sy, we set (i € {1, 2, 3})

LZF(.Q,B,-,S)i{q)eLZ(Q; per (S)) | d’ eL £2x38), 8_¢>_0 ae.in 2 x SO,

¢=0ae.onl" xS and/ D(,S)dx; =0

L;

for a.e. line L; directed by e; which does not meet I”

andforallSeS},

3
- L}(2,9,8) =@ L1205, S)e;,
i=1
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L2, a)_[cpeL @) 2% -

e L*(£2), ® =0a.e. onFand/ Ddx; =0
1 Xi

L;
for a.e. line L; directed by e; which does not meet I” },

~ 120, 8) = {q) eL? .rz<”)| eLz(.Q(”) ® =0ae.on r]
3

L7.(2,0) =@ L7(2.9)e; CLL(2,0.S),
i=1

- Hi(SD) = {¢ e H'(SD) | p(A(k)) =¢p(Ak) +e) =0, Vke K® }

and

HOI‘,C(S) = [d) € H'(S) | ¢ vanishes on every node ],
(10.1)
HY(S) = [cp EH' (S} |d=¢t;, ¢eH. (S }

For the structures of type Sy or S¢ we set
D per (S) =D por (S) B HY (S,

where Dg ., (S) is the orthogonal subspace of D; ,,(S) in U, (S) (see Sect. 3). A field @
in D per(S) satisfies

@ At is an affine function on every segment of S.

We endow

- LZF(.Q, d;, §) with the semi-norm (i € {1, 2, 3})

VO e L1(2,8,8), | _” .
F2.0,8), Neleas= |50 L
One has
Vo € L1.(2,9;,5), 1Pl 20xs) < ClPla.s.s,
- L%- (82, 9;) with the semi-norm (i € {1, 2, 3})
0P
VO € L2(2,9), H— .
r( ) 0x; 1L2(2)
One has
Vo e L2(2,3), || <CH82
PRz s L@ = Ax; ez’

pye to Assumption Ay, this space is in fact

9

{¢>6L2(.Q)| eLz(Q) $=0ae. in2 \.Qand/ =0

Ly

for a.e. line L directed by e; which does not meet I" }

Same remark concerning L% (£2,9;,85).
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— Dg per(S) with the semi-norm

do
el =] s
ds L2(S)

which is a norm equivalent to the usual norm of the space H p'W,O(S )3

Remark 5

e Given K, K3 functions ¢, k € K| belonging to L2 (82, 81) we can easily build and el-
ement @ € L%(Q a1, S) such that CD( ,A(k)) brs Vk € Kl Same remark for the space
L3(£2,9),1 €{2,3}.

e Let S be a 3D-periodic structure of type SO Observe that every f function @ in H,,.(SV)
can be extended in a function belonging to H m
belonging to S\ S?, i € {1, 2, 3} and one has

(S), still denoted ¢ affine on the segments

16115y < Cllpll 1 sy (10.2)

Lemma 19 Let S be a structure of type Sy. For every Z in L*>(2 x S) there exists a unique
couple (V, V) € L%(.Q, 3,S) x L*(£2; DE, per(S)) such that

s~ ~
aV; EAY . no
z;} :7,( t;)2 +3g t, aein N2x89, ie{1,23}. (10.3)

Moreover, we have

Z H ax;

Proof There exists a unique couple (Vl, Vl) eL? (82,01, 8) x L%(£2; H (SMYy) (V1 being

the restriction of an element belonging to L?(£2; H ;e, (S)) also denoted Vl) such that

L2@xs) + IVl22.n1s) = ClIZl 2 @xs)- (10.4)

W, v .
= a—] + a—S] ae. in 2 xSV,
X1
and we have
H Vv, H 8V1 —z0p
0x, L2(9x8<'>) L2(2x8M) L2 &2xsMy’
Hence,
8\71 = 1
Ha—xl L2@xs) + Vil 2@ misy < C| 2 )”LZ(QXS(”)' (10.5)

Now, we claim that there exists a unique couple Vi, V) el? 2.(82,9;,8) x L2(9 H} (S))
(V being the restriction of a function in L?(£2; H ;e, (S)), still denoted V) such that (i e
2.3}

Z=

vl 2 891 2 ai/\l 8‘71 . .
Pt ——(e; -t —(e; -t —(e; -t e.in 2 x8?
e -t)" + o (er-t)" + 7S (e -t)) + S (e;-t;) ae.in £ x
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or, equivalently, satisfying

Wi v, 1 (z v, @ - t)? v o -t )) .
€ — —(ey - — e a.e.in £2 x .
ax; S et ax, Y T s
. d . . . . ; aV;
Sincee; - t; = — (e,- -8), integrating over each zig-zag line of S® allows to define and
Xi

therefore V; € L%-(.Q 3;, S). Then, we determine V; € L2(£2; Hj (8")) as a primitive of the
difference. It is the restriction of an element in L>(§2; H ]18, (S)) still denoted V Estimate
(10.5) and the above equality lead to

C(1Z122xsm) + 121 22 xs))- (10.6)

H ax; 1L2(@2xs®) L2(.Q><S(‘))

The field V = Vie; + Vse, + Vse; belongs to L2(£2; H,le, (S))3, its projection on L?(£2;

De, per(S)) is denoted V. Estimates (10.5) and (10.6) yield (10.4). O

Proposition 8 Let S be of type Sy. There exist Ue L%- (£2,0,8) andU € L($2; DE per(S))
such that

3 ~ o~
O ; o .
Zuzza—{(e_,-t1)2+£ t a.ein 2x8Y, ie{l,23). (10.7)
j=1 Ot
Moreover
fﬁs(u&llml)) U, weaklyin L* (27 x S). (10.8)

Furthermore, under the assumption Az (see Sect. 5.1) one has a,|9<1>xs IS LZF 20, 3).
Remark 6 Note that if S contains only straight lines then
T (Ueilgn) = U; weaklyin L*(R2? xS), ie{l,2,3}.

Proof Equality (10.7) is the immediate consequence of Lemma 19.
Now, from Lemma 3, there exists V., € U (S;) satisfying

ave _du!
ds ' ds

ae.inS;,

dV,;
(10.9)

Vel +2 Z (Vestzzesy + | 5 o)

du"

C <C r
1250 — 7||€(Ms)||L2(55,,) = 8_2

Observe that by construction, V, ; =", on every straight line of S{" which meets I". Then,
since V; is an affine function on every segment of S,, we have

22\\ o
L2(Se)

r

L2(ss) g2’

|
ds
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Besides, (2.10) gives (we recall that Z/, vanishes on every node)

— au,
lU: -ty ||L2(S;i)) +e|l—-t ||€(us)||L2(5€,) = C_ (10.10)

H ds

LZ(S(”) -

Then, up to a subsequence Lemma 29 in the Appendix gives 91 € LZF (£2,0,S), \71 €
L*(2: H,,,(S)) and U € L*(2; Hy ,-(S)) such that (i € {2,3})

STS(Wa) = V) weaklyin L2(€2; H'(S)),
p

e s(dVery Vi 0V o, o

rTs ( s ) o + S weakly in  L°(£2 x S'),

5 . -~ (10.11)
3 ,1 1 . i .

7’7?( d; ) — 3 weakly in L*(2 x 8, ie{2,3),

1 — — .

- U, -t)) =~ U  weaklyin L*(£2; Hy (S)).

As a consequence of the above convergences, one gets

du, Ay au, U ,
i7;5(—1) V +—(V1+U) it ad) weakly in  L2(£2 x SV).

r ds S dxy oS
vl 8171 . (1 ot ~ . 1)
From the above equality, we obtain s B in 20 and then V| =U; in 2O and
X1 X1
convergence (10.8) holds true.
Now, remind that (see Remark 2)
dul; — dve,

=% 2e.in2PVNsH,
ds ds ¢ ¢

Then, the estimates (2.10)7, (10.9) and assumption (8.2) yield (i € {2, 3})

u h C

1 =
2@2Pns ~ e

C dv,
0. o <— andthen H el
22Pnsh ~ e

r dV,
< C—, equality — -
g2 quatty ds

-t <
ds 12ePnsy

3
dy
Under assumption Az (see Sect. 5.1), since Z ” £
i=2
dVe; dy
(e ty) + ——

t =
: ds ds

Lier 1) in SO, i € {2, 3} leads to

|7 ()

where y is a segment belonging to S® whose direction is not collinear to €;, i € {2,3}. As a

2

=
L2(2M xy) r

)

a ~ ~
consequence BLSI =0ae.in 2% x y. Hence, V| = U, does not depend on S in 2. O
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Lemma 20 Let S be a 3D-periodic structure S is of type S¢. There exists Ue L?(£2;

D per(S)) such that

Z = = tl .Q S
a.e.in X .

Proof We decompose Z,, in the following way:

Zu=§u+2u, zu, 2MEL2(QX8)

(10.12)

Whgre éu (x, -) is constant on every segment of S for a.e. x € £2 and vﬂlere the mean value
of Z,(x, -) is equal to zero on every segment of S for a.e. x € 2. Set U € L?(£2; H(}’,C(S))

as the solution to

and U € L2(£2; Dg per (S)) as the solution to

dU =2 in 2x8
— -t = a.e.in 2 x S.
s h u
The field U = U + Ut, belongs to L*(82; D per(S)) and satisfies (10.12). O
Remark 7 Let S be a 3 D-periodic structure and E a field in L?(S,) such that
/ Eds; =0 V(E, 0 e B x{1,...,m}.
s+eve
There exists ¢, a function belonging to H'(S,) satisfying
do .
Is =E, ae. in S, ¢ = 0 on every node of S;.
s
The field @ = ¢ t; belongs to H'(S,)? and satisfies
do
— -t =E, .e.inS,.
ds 1 a.c. 1mn
One has
1Dl 25,y < CellEllL2s,)-
The constant does not depend on ¢.
Set
- WY .
9%, V, A B) = gv( V.V oA B) ae.in2 xS, ief{l,2,3),
3)6,‘ oS
VY e (9 3,5), YV, A B)eL*2;D,.(S), Softype S,
BV, A B) = 5}?( A E) ae.in2 xS, YW, AB)eL2: D, (S))

in other cases.
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Lemma 21 For every type of structure, one has

/ i (EU) +EE (20, U, R) + Ep@)),, (£5'(V,0,0)),, dxdS =0,
Q2x8xD (10.13)

VY € L}(2: Dr. per (S)).
Proof Let ¢ be in D(§2) and VeH per (8)*. We assume Y constant in the neighborhood of

every node of S.
Consider the field

It belongs to H}-(S,)*. One has

dv.

49
t1) qb—v -t;  strongly in L?(£2 x S).

(G 7S

In the beam whose center line is €& + €y, the test displacement v, is defined by

ve(x) = 87\75(5),

fora.e. x = S+Szt§ +S3t§ = 85 +8A€ +Sltf +52t§ +S3t§, (S],Sz, S3) (S (0, 81[) X Dr,

Ee&,.
(10.14)
By construction v, belongs to V. since for every x in B(¢& 4+ €A, cor) N Se.»
g2 ~
Ve (x) = 7¢(ss +cA)V(A).
In the beam whose center line is €€ + €y, one has
e & dV o £ dd)izl .
-t ¢ = .t
8S1 = S]
v, , v ., (€ dTJ 0 & d¢[2]
.t ¢t = (__ [2] € )
as; 1+8s1 ! rde)S r ds s, Y
avs + % . tf = 0.
as; s
Hence, passing to the limit in the rescaled stain tensor gives
dv
— -t * *
as. 1 ¢
Z7’;”‘5(@(1)8)) — ld_v ‘o O * strongly in L322 x S)3X3
€ 2 dS
1dV
—— -t 0 0
2as B?
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Thus

BAY, .
Crbtie, () — €9 <¢_a: 1,,0, 0) +Ep®) stronglyin  L2(2 x 8D,
&

where

. dV
V= <E (St + S3t3)> -ty

Now, unfolding the LHS of (6.4), passing to the limit and taking into account the above
convergence together with (9.3)-(9.4) give

2 m
= f o) e(w)dx =Y / ST 0y ) s =T ey (v)) dx dS
s =1 Y% €

xwxDr

SYPEP AP % ~
- aiju(EU) + €5 (2, U R) + Ep(@) ;0 (&5 (hg 11,0,0)), dxdS.

2xSxD
Then, we obtain

82

- ferv.dx — 0.
’
Se

Finally, a density argument followed by a projection on L>($2; D ., (S)) allows to replace

@V by any function V € L*(2; D per (S)). O

Lemma 22 Suppose the structure of type Sy. One has

/ i (EU) + €S (20, U, R) + Ep@),, (€5 (P, 0,0,0)),, dxdS =0,
2x8xD

(10.15)
VY e LL(£2,9).

Proof Let V be in D(R?)3, we assume Y vanishes in £2’ \ 2.
Step 1. Preliminary considerations.
In 2 x 89, i €{2, 3}, one has

v, IV, v,
)2+ (22 S ey -t e )+ (e - )2
(e; - ty) +<8x1 + ox, )(e e -t + or (e -ty)

- v,
(VW) -t =

i

One has
d e ) cB)
el-tl—g(el-S) ae. in S¥Y USY.

The function S — (e, - S) belongs to H Ile,. (S® U S®) We extend it as an affine function on

every segment of S belonging to H,,,(S). Denote € this function.
Set

W, S) = ((Z—% + 88—1}21>62 + (aa—? + 2—2)%)66) ae.in £ xS.
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It belongs to L>(£2; H! (S))*. Hence

per

~ v, .
(VVt) -t = 5y aein 2 x8WY,

X1
- AV v oW , ;
(VV) -t = —(e; - t1) 2+ —— (e, - t1)* + — -t, ae.in 2 xS?, ie{2 3}
Bx,» 8)(1 oS
(10.16)
Step 2. The test displacement.
Consider the field (see Sect. A.5 in the Appendix) \78 = \73], it belongs to H ,1- (S:)?. One
has
S dv. 5 ) 3
T, ( s )—)VV-tl strongly in L°(£2 x S)°.

In the beam whose center line is €€ + €y, the test displacement v, is defined by
&~
Vg (X) = ;vs (5)7

fora.e. x = S+S2t§ +S3t§ = 85 +8A[ +Sltf +52t§ +S3t§, (S],Sz, S3) € (0, 81@) X Dr,

Ee&,.
(10.17)
By construction v, belongs to V. since for every x in B(¢§ 4+ €A, cor) N Se.,
E ~
Ve (x) = ;V(s& +eA).
In the beam whose center line is €€ + €y, one has
v, , edV, ,
— == -t
a5 r ds
dv. , v, , edV, ,
e dH==Z -t
as; ' ds; 1 rds;
e g e e
83,- 4 8Sj
Hence, passing to the limit in the rescaled stain tensor gives
VVt) -t x %
1 _~
i'7;”'Z(es(vs)) — E(Vth) ‘b 0 * strongly in L2(£2 x 8)3X3.
€

.
Thus, due to (10.16)
T bt 101 (53 . 2 3x3
D0 ey (0s)) —> €L (v,o,o,o) +Ep@) stronglyin L2(2 x S)
&
where

7= ((vWh)- (Sit+ St ) - .
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Now, unfolding the LHS of (6.4), passing to the limit and taking into account the above
convergence together with (9.3) give

2 m
= / o) e(w)dr =Y / ST oy W) s =T ey (v)) dx dS
s =1 Y% 2

xwxDr

- i (EU) + €S (20, U, R) + Ep@),,6(£5"(V,0,0,0)),, dx dS.
N2x8xD

Then, we obtain

82

- fe-vedx — 0.
,
Se

Eventually, a density argument ends the proof. |

11 The Limit Unfolded Problem
Denote
1 00 010 0 0 1
M'={0 0 0], M?=M"=|1 0 0], M*=M"=|0 0 0
0 00 0 0 O 1 00
We remind (see [23, Lemma 25]) that for every ¥ € D,, C H'(D)? and every ¢ € R*, there
exists a strictly positive constant C such that
~ ~ 2
12+ 1911 ) < c[D 1E0(3) + M, [ dS:d 5. (a1
where M, = (1 + S3¢3 — S:0)M' — SsM" + S, M.

Lemma 23 There exists a strictly positive constant C such that

VVeVr(2,5), Y(A B)eL 2:D; u(S)),

R R 5 (11.2)
Vi + M2 o + 1Bliziam oy = €| 55 Blew) +B)| , .
Proof We equip M(S) X Dy, p.r(S) with the semi-norm
. S d o~
VM, A, B) € M,(S) X Dy yor(S), M, 4, :H—BM B .
( ) € M(S) X Dy per (S) [I( I dS( ( )+A) )

First observe that (see Lemma 3)
Y(M, A, B) € M(S) X D per (),

d - o~ -
Mtl+%(A(M)+A)=(B(M)+B)/\t1 ae.in §.
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Now, if |||(M, A, g)lll = 0 then, g(M) + Bis a constant field. Hence, there exists B € R3
such that

d ~ ~
E(A(M) +A)=—-Mt +BAt ae.in S.

Thus, taking into account the fact that A\(M) +AecH ;er‘0(8)3, there exists another constant
vector C € R3 such that

(AM) + A)(S)=C—-MS+BAS  aein S.
Since .Z(M) +Aisa periodic function, this leads to
—Me; + BAre =0, Vi € {2,3}.

Since M is a symmetric matrix, this implies that M = 0 and B = 0. As a consequence we
get A(M) = B(M) = 0. Hence B =0 and then A = 0 since A € leer,0(8)3' The semi-norm
is a norm.

By contradiction, as in [23, Lemma 16] we easily show that this norm is equivalent to the
following:

IM| + [ All g1y + 1Bl 1 ¢s)-

The space of 3 x 3 matrices is equipped with the Froebinius norm.
Since x € §2 is a parameter, we get

leW)lz2i0) + IAll22;m1(s)) + 1Bl 20211 (s)) = CH 3S B(e(V)) + B) L22x8)

Finally, inequality (11.2) holds true thanks to the Korn inequality. a

Theorem 1 Let u, be the solution to (6.4). The fields and functions introduced in Lemma 15
and its corollary satisfy

e if S is a 3D-periodic unstable structure then, there exist € V (82, 8), Zy € L*(2xS),
U, R) € L*(2; Dy, per(S)) and i € L*(2 x S; Dy,) such that (U, Zy, U, R, i) satisfies

l/ i (EU) + € (Zu, U, R) + Ep@),,(EV) + £ (0, A, B) + Ep (@), dx dS
2

v xSxD

/ (ZB d +4—/F Vdx +|8|/f Vdx,

VVeVr(2,8), Y(A B) €L 2:D,)u(S), Vel (2xS;D,).
(11.3)
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o if S is of type Sy then, there exist U € V(2,8), 2y € L*(2 x S), U.R) €
L*(82; D per(S)) and i € L*(82 x S; D,,) such that (U, Zy,U, R, ) satisfies

1

— / aiju (EQU) + ES (2, U, R) + Ep (@),
T JaxsxD

X (EWV) +EFV.V. 4. B) + &), dx dS

/ (ZB dx +4—|/F de+|8|/f Vdx, (11.4)

AeK

VVeVr(2,8), YWeLk(2,8), VYV, A B)eL*(2:Dp(S)),
VU e L322 x S; Dy).

~ au
e if S is of type Sg then, there exists U € L*(£2; De, per(S)) such that Zy = S -ty ae.in
2 x S. Now, (Z/l, UuU, R, ﬁ) is the unique solution to the following unfolded problem:

1 ~ o~ —~
— / i (EU) + EE'UUR) + Ep @), (EV) + EE'V, A, B) + £p(@)),, dx dS
N2xSxD

T
/ (ZB d +4—/F de+|S|/f Vdx,

Aek

~

VYV e H}(.Q) , \7’(9, .Z B) € LZ(.Q; Dper(S)), YU e LZ(Q x S;Dy).
(11.5)
Furthermore, for all £ € {1, ..., m} one has

87—5[;,@( S( )) s(u) g (A, A’ A) SD("") sl‘r()l’lgly ln 1, ( X yé X D)3><3
r S u SZ

Proof This theorem summarizes the results of Lemmas 16-17-18, 22 and 21.
We prove the coercivity of problem (11.5). From (11.1) and (11.2), one has

V(V.V, A, B,7) € H}-(2)’ x L*(2: Dper(S)) x L*(2 x §; D),

H oy
s L2(2x8)
<Clew) +E8'W. A.B) + &),

+ IWVllue) + 1Al 2@ m1 sy + 1Bll22: w1 sy + 101 2@ xs: 11 )

(2x8xD)"

The inequality above ensures the coercivity of problem (11.5). Then, since this problem
admits a unique solution, the whole sequences in Lemma 15 and Proposition 7 (with u, the
solution to problem (6.4)) converge to their limits.

Now, we prove the strong convergence (11.6).

First, due to the inclusion of 7, in U B(A, cor), the portions of beams which cor-

AeKe

respond to S| € (2cor, Iy — 2cpr) are all disjoint. Furthermore, since o (u,) : e(u.) is non-
negative, one has

m

4
&
Z / _Tb Z(O's(us)) (eé (e) L acor et - 2t<)r)) dxdS =3 o (ue) - e(ug) dx.
=1 J2xyxD T r Js.,
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From (8.15) and the fact that r /e goes to 0 the following convergence holds (£ € {1, ..., m}):
& ol 25 77 A ~
T (s )L et —2e0n) = EQU) + £ ULUR) + Ep (@)

weakly in  L%(£2 X y; x D)3X3-

Hence, choosing u, as a test function in (6.4) and using the weak lower semi-continuity of
convex functionals, one obtains

/ i (EQU) + ES' U R) + Ep(@),, (EU) + ES' AU, R) + Ep (i), dx dS
N2xSxD

m

£ € —~
< liminf T2 (al ) = T2 (e5.ij e)) = T (e u1 () egret, —2cor)) dX dS
_(5,1‘/8)*)(0,0); /[\ZXWXD e ( ,jk])r e (A,lj( 8))7‘ P (.s.kl( e) (cqr,ely 2L(]V))

4 4
. & . £
< liminf i o(ue):e(u)dx < limsup - o(ug):e(uy)dx
©r/o=0071"Js,, @r/o—>0,0 1" Js,,
. et
= limsup — Sfe - u.dx

(e.r/e)—> (0,00 I JSg

4 ~ 4 |KC
=?’T QG~<ZR)(-,A))dx+ ”3| |/9F~L{dx+|$|n/ﬂf~udx,
Aek

ij

= / i (EU) + EX WU, R) + Ep(), (EU) + EE' U U, R) + Ep(@)),, dx dS.
2x8xD
Thus, all inequalities above are equalities and

4

lim - o(ug):e(uy)dx
(e,r/e)—(0,0) 1 Ser

= / i (EU) + €' AU R) + Ep(D),, (EU) + E5' T U, R) + Ep (D)), dx dS,
2

xSxD

which in turn leads to the strong convergence (11.6). a

12 The Limit Homogenized Problem
Denote (M, ..., Mp), 3 < P <6, abasis of M,(S). One has

dAOR,)

t
Myt + 7S

=BOM,)At, aein S, pefl,...,P}. (12.1)

12.1 Expression of the Warping u

As in [23, Sect. 9.1], we introduce the four warping-correctors (see Sect. A.l in the
Appendix). They belong to L*(S; D,,). We have

- ~ o 0B(e@))  ARN | .
u=quE+Z(T+K)-thq ae.in2x8SxD. (122

q=1
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12.2 Expression of the Microscopic Fields URr

In this subsection we give the expression of the microscopic fields U, R in terms of U. To

this end, we use the formulation (11.4).

Taking ¥'= 0 in (11.4) and then replacing & by its expression (12.2), we obtain the fol-

lowing problem:

0 Zy 0 Z,
fﬁ?s‘ aBew)) | t| oR aBew)) |t a5 || 9xdS
oS oS S oS
4 (12.3)
=§/G-(ZB(-, d +4—/ Vdx +|3|/ Vdx,
2 AeK
VVeVr(R2,8), V(A B) €L (2;D1,pu(S), Zvel*(2xS).
Zy ~ ~ ~ 0
H ~ ds for the col 2z, B35 3B ) i B0
ere, % stan, SfOl'l e column ( v % L % %) % . 3) , while 8B(€(V))
oS R R R oS
aB(e(V aBe(V aBe(V T
stands for the column (0 (ae; ) -t (e()) -t (aeé ) -t3> , Zy belongs to
L*(£2 x S).
The matrix 2 is
QIEO(S) 0 0 0 A (S) 0 0
A= 0 A(S) with A = 0 AL (S) AWK (S)
0 0 AL (S) AWK (S)
(12.4)
One has
Eyn Ep Ej
det(€&) -
2Ap = EoEn B C=|En Exn Exn|,
2533 E3 Eiz Ex Es

1 0
Q[/11 = —/ [G|2< X1
4 D 8S

05,
(=1)"Ss_; (—1)78s_;
1 dXi2 X2
ij:;/D[@ 95> 982
9Xis X3
053 053
+%(8Z‘2 3)7[3)(3&2_’_3)(/3
4 \ 983 05, 053 95,

0 0 0
— 5 )(ﬁ - S%) + G13< ATy Sz)(ﬁ + Sz)]dszd&,

953 953

)]dSzdS3, G, ]) € (2,3)

As in [23], the symmetric matrix 2( belongs to L>®(S)*** and it satisfies

3Cy > 0 such that V¢ e R?,
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Hence, (12.3) becomes

/ Q[E Zu Zvdde:O,
2x8

[ R 5 (R g avas =1 [ 6 (St

Aek

K ~
+4|3—| F~de+|$|/f—de, YV eVr(£2,8), V(A,B)ELZ(Q;DLPH(S)).
2

(12.6)
Now, we introduce the correctors to solve the problem (12.6),. They are the solutions to the
following variational problems:

x'=(x".3" e Prper(®). pedlicee P,

dBOM,)  ax” -~
/m( ) ”)+L) Bis=0 VDB eD,u(S),
S

3S 3S / 8S
o , (12.7)
x[”=(x“],x“]>e1>,.per(3>, Jjel1,2,3},
33‘([/] PN
/ A= ej- > B(A)  YV.B) €D ,u(S),
s AeK
T T T
wheree; =(1 0 0)",e,=(0 1 0) ande3=(0 0 1) .
Hence,
ﬁﬁ Ze,,(bl)x”+— ZGX a.e.in 2 xS, (12.8)

3
where G = Z Ge;.

i=1
12.3 Now, Let’s Go to the Homogenized Problem
First, observe that from (12.7) we have

[0 (T o,
s 8s \3S 3S

)dS:O.

Hence, in problems (12.3), we replace (17, 7/3\) by (12.8) and we choose (.Zl\, E) =
P

Z e, (V) x?. Taking into account the above equality, we obtain
q=1

P —~ A —~
/ ax” 86(931 ) X! aB(sm )
/ﬂxsm ;e,,(l/{) <¥ )| Zeq(V)< oS )| dxas

K
fzzeq(wx A)dx +% F-de+|8|/9f~l)dx.

Aek g=1
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The above equality leads to the homogenized problem

/%hame(uye(wdxzf ¢hong . (V)dx+—/F de+|$|/ f-Vdx,
2 2

(12.9)
where e()) stands for the column (el V) ... e p(V))T and where B/ is a symmetric
P x P matrix (¢ € R?)

~ P —~
=1

aS

»
= Z blz@szﬂfq

p.q=1
(12.10)
with
axr  AB(M,)\ 0% 9BOM,)
ol = | 20 =) (S ) ds ) efl,.... P
ra /5 B T oS 3s T a8 (P et )
(12.11)
In the RHS of (12.9) ¢"*" is a P x 3 matrix, with entries c'l';‘l?m:
h”"’: Zx” -ei i, p)e{l,2,3} x{1,..., P}. (12.12)
AeIC
Lemma 24 The bilinear forms B"" satisfies the following properties:
— symmetry,
— coercivity, namely there exists C¢ > 0 such that for every { € R”, one has
Bhome o> Chle (12.13)
Proof The symmetry of B/°™ is the consequence of the symmetry of the matrix 2.
Now we prove (12.13). From equality (12.10) and (12.5) we have
2
" d
B> C —= (X7 +B(EN,))| dSs.
ce=cof Yt g5 (" + Bn)
Now, we claim that the map
2
" a .
CERP|—>|§|: / ngﬁ(il’_l_[i(f)ﬁp)) ds
s
p=1
P
is a norm. Indeed, first it is a semi-norm. Now, if || = O then Z ¢p (5(\” + B(Dﬁp)) =Ce
p=1
R?. Then, proceeding as in the proof of Lemma 23 we obtain ¢ »=0,pefl,..., P}. The

semi-norm is a norm. As a consequence, there exists Cj > 0 such that

v eRP,  ®BMme.c>CrlclR
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The coercivity follows. O

Theorem 2 (The homogenized limit problem) If S is a 3D-periodic unstable structure
then, the limit field U € V (82, S) is the unique solution to the homogenized problem

/ Bromed) - e(V)dx = / ¢homG . e(V)dx
2
K
+% F-de+|8|/ f-Vdx, YV eV(£2,S8),
2

(12.14)
where B"" is given by (12.10) and €™ by (12.12).

12.4 Determination of Z;, in the Case S of Type Sg
Lemma 25 Let S be a structure of type Sg then Z;, = 0.

. U
Proof Since S is of type S, there exists U € L2(£2; Dg,per(S)) such that Zy, = 7S -t a.e.
in £2 x S (see Lemma 20). Now (12.6) becomes

U v S 2.
/ms Q[E(as tl)(ﬁ-tl)dxds_o, VY € LX(2: D per (c9)).

Hence Z;, =0. O

13 The Case of an Isotropic and Homogeneous Material

In the case of an isotropic and homogeneous material the stress tensor is given by
o) =ATr(e(w) Iz +2ue(u)

where I is the unit 3 x 3 matrix. A and p are the material Lamé constants.
The correctors )?q € L*®(S;Dy), q € {1,2,3,4} are those obtained in [23] (see also
[13]).

Hence, we have

_ 82 Ale) 2 82
=] - 2y (Sﬂﬁ—f—&tﬁ)—l—(%%— 882) t(>2 . L+ 5,58

02 Ae)) . . 8382, _
+< st T 8S2> t; (5253t += t)] ae.in2xy xD, £e{l,...,m},

A . . .
where v = T is the Poisson coefficient.

The matrix 2 becomes

o o o M
o o NlTo
oS Ao o
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3A+2
where E = w is the Young’s modulus.

+u
As a consequence, we first get (5(\”,5(\”) € Dy per(S) (see Sect. A.2) for every p €

{,.... P}
13.1 Determination of 11 in 2V in the Case S,

First, remind that ¢; = 0 in 2D, This is why we need to determine the component in the
direction e, of the limit displacement in 2.

In this paper we have not introduced applied forces which act with the extensional macro-
scopic displacements. In fact, this type of displacements is not really important for unstable
structures because this only happens for structures of type Sy with the component of direc-
tion e, in the open set 21 .12

Based on Remark 2, for structures of type Sy we can add to the applied forces given by
(6.5) the following:

r

f. (EIQS(U)‘SéUeI, fiec@m),

&

without changing the estimate (6.7).
Below we revisit (12.6);.

We assume the structure made of an isotropic and homogeneous material.'> (see
Sect. 13).

Taking into account Proposition 8, Lemmas 21-22, we see that equation (12.6); becomes:

Find U € L2(£2,0,S), U € L*(£2; D per(S)), such that

oty oV o, oV
/ EZL idmrs+/ gLV s
oxs®  0x; 0x oxs® 0S 38

3 3 5l il SPLYS o
+§/ﬂxsm E(;Wjj(ef'tl)“rﬁ'tl)(gﬁ;(ej't1)2+a—s~t1)dxds

=f fiVidx, YVelX(2,3), VYV eLX2;Dg pu(S)).
20 x50 ’

(13.1)
Now, we choose as test functions

V=0, V,=V;=0, V,€L%£,9;) suchthat ¥V, =0aein 2\20.
That gives:

Find U, € L2.(2",3;) such that

o, oY o~ -
E/ Ll ax=|  fAVidx, VY, eLli (2D, 0).
20 0x1 0x) o0

1211 S contains only straight lines, we can also consider such forces acting in the whole domains 20nSs,,
i €{1,2,3}. We leave this case to the reader.

BWe can proceed in a similar way if 2 g is constant on every line of S M,
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14 Conclusion
14.1 Approximate Solution to Problem (6.4)

For our e-periodic r-thin unstable structure, the solution to the linearized elasticity problem
can be reconstructed in the following form:

1o (x) ~ Ux) + s(ﬁ(e(U)(x))(Z) +a(x, S))
+ (@(VU(}C))(Z) +R(x, z)) A (52 + s3t8) + 0(1—2)
forae. x =s+st5 + S3t§ =gt + A" +5itl +5ot5 + S3t§, (s1, 52, 83) € (0, elp) x D,.
The first term in the above writing gives the macroscopic displacement of the structure. The

third term represents the small rotations of the cross-sections while the fourth and last term
2

r .
(0] (—) stands for the deformations of the cross-sections.
£

Now, we pay attention to the second term, it represents the main part of the local displace-
ment of the centerlines of the beams. Consider a cell ¢ + ¢S; we focus on the points of this
cell. In the unfolding transformation, forgetting the macroscopic displacement, a point S of
this cell is transformed to give

S+ S+ eA(e@)(e8))(S) + eld(e£, S).

The couple (ﬁ, ﬁ) is given by (12.8). It belongs to L%(£2; Dy per(S)). The map S —
S+elU (8%‘, S) is of inextensional type, it means that under this transformation the lengths of
the centerlines are not modified (neither stretching or compression). Near a node A, we get

S=A+Am,
— —_— ~ ~ — ~ —
A+ Ami—> A+ Am +eU(eg, A)(S) =A+¢eU(A) + Am + e R(¢€, A) A Am, meS.

It means that near a node, this transformation is approximatively a rotation. As a result, the
angles between the centerlines are preserved. Now, let’s take a look at the transformation

S+ S+ eA(eU)(e8))(S).

For simplicity, we replace the symmetric matrix e((/) (&) by M. In Sect. 3 we have shown
that

AM) = V(M) + Ay (M) + C(M),

where C(M) € R3. Let y, be a segment of S. The components of the restriction to this
segment of the associated displacement are

8.24\(M) o) - tf =eVIM)(S) - tf +eCM) - tf polynomial function of degree less than 1,
it gives the stretching-compression of yy,
eAM)(S) - t! =V M)(S) - t' + Ay (M) -t
+CM) -t polynomial function of degree less than 3,

it gives the local bending, i € {2, 3}.
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Near a node A, we get
—> — — —>
S=A+ Am, A+Am+— A+ Am+¢(VIM)(A) + CM)) —sMAm, meS.

As a consequence, the angle between two contiguous segments is generally not preserved.
The local behavior of the structure is mainly determined by the knowledge of the matrices
M (thus of the space M (S)) and the corresponding solution V(M) to equation (3.1). But
the character of the structure (auxetic or not) cannot be deduced from the local behavior
since the map S — .Zf(e(bl)(sé))(S) + 17(85, S) is periodic.

In our work, we have considered several basic types of unstable structures, some of
these structures are auxetic. Remember, that auxetics are structures or materials that have
a negative Poisson’s ratio. When stretched, they become thicker perpendicular to the ap-
plied forces. This occurs due to their peculiar internal structure and how it deforms when
the sample is uniaxially loaded, e.g., if we have simultaneously both inequalities in £2:

%ZO, %ZO a.e.in £2.

8)61 8)62
In our different types of unstable structures, we distinguish two main kinds, the first which
may or may not be “a priori” auxetic: some among those of types S;, i € {0, 1,2} (see
Fig. 1(a), (b), (c) (non-auxetic), Fig. 1(e) (auxetic) and Fig. 1(f) (partially auxetic)). By “a
priori” it is meant that the auxetic character of these structures only depend on the space
Vr(£2,S) of the macroscopic displacements. The second are or are not auxetic “a posteri”
(some of types S;, i € {3, 4,5, 6}); it depends on the applied forces since the space V(£2, S)
of the macroscopic displacements is H}(£2)3.

14.2 Examples of Cells and Spaces V- (£2, S)

1. Type Sy:
— cell S of Fig. 1(a)(b)

o, o ou
dim(M,(S)) =3, Vp(2,8) = {u eHL(2P | L = T2 %5 0 aein :2}
8)61 sz 3X3

the matrix B is of size 3 x 3,
— cell § of Fig. 5(b)(a) in planes parallel to Re; @ Re, and (b) in planes parallel to
Rel D Re3
81/{1 auj; }

dim(M,(S)) =4, V(2,8 = {u CHM@P|5t=2"=0 acin @
1 3

the matrix $B/°" is of size 4 x 4,
— cell S of Fig. 1(c)

i,
ax

dim(M,(S)) = 5, VF(Q,S):{LIGH}(Qfl ]

=0 a.e.in .Q},

the matrix 8" is of size 5 x 5.

2. Type S;:
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|
(@) (b) © @

Fig.5 Front views of cells of 3 D-periodic structures

— cell S of Fig. 1(d)

oy o U
dim(M,(S)) =3, V(2,8) = [u eH.(2)P® | T T2 %8 _ 0 aein 9]
0x; x> 0x3
the matrix B is of size 3 x 3,
— cell S of Fig. 1(e)
dim(M,(5)) =4,
. o u
VF(Q,S):{UeH;(Q)H—zzm—‘, BT aein .(z}
0x> 0x; 0x3 0x;

where k15 < 0 and x5 < 0. These coefficients depend on the slopes of the oblique
segments and their signs mean that the Poisson’s ratios in planes parallel to Re; & Re,
and Re; @ Res are positive. We also get

82/[3 _ K13 3“2

= , a.e.in £2.
8)(3 K12 aXZ

This relation means that the structure is auxetic in planes parallel to Re, & Res. The
matrix 8" is of size 4 x 4,
— cell S of Fig. 1(f)

dim(M (5)) = 4,

. U au
Vr(9,$)=[u6H;(9)3| At . !

— , Kj3—, a.e.in Q},
8x2 8)61 aX3 axl

where k1, > 0 and «13 > 0. These coefficients depend on the slopes of the oblique
segments and their signs mean that the Poisson’s ratios in planes parallel to Re; & Re,,
Re; @ Re; and Re, @ Re; are negative, the matrix B"°" is of size 4 x 4. This structure
is completely auxetic,
— cell S of Fig. 5(f) in planes parallel to Re; & Re, and Re; & Re;
. 1 3 8Z/[1 .
dim(M,(S)) =5, Vr(2,8) = [u €HN@' |51 =0 aein .(z},

the matrix B is of size 5 x 5.
3. Type S;:
— the cell S is such that in planes parallel to Re; @ Re, we get only non convex hexagons
like Fig. 5(c)
ol ou

1 .
—— ae.in .Q}

dim(M(8)) =5, V(82,8 = {U €HM(2)’ | PPt
2 1
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where k1, > 0. This coefficient depends on the slopes of the oblique segments, the
matrix B"" is of size 5 x 5.

14.3 Concluding Remark Concerning the Mechanical Impact

We recall the solution procedure, to compute the cell problems and find the homogenized
elastic coefficients.

First, as explained in Sect. 3, we determine the conditions for which equation (3.1) admits
solutions. This gives M, (S) and then a basis {91,, i =1,..., P}. The knowledge of M (S)
takes into account the relations between the matrices M, My, M33 and of course the &;; if
they are defined.

After that we get Ev(zm,,), p €{l,..., P}; we modify them in order to have g(i)ﬁ,,),
p €{l,..., P} and then use them to solve (12.7) by means of the Galerkin method, using
(A.4) as test functions.

We also want to draw the attention on the mechanical impact of the paper. Since we want
to stay in the linear elasticity regime, we need to choose forces, such that the right-hand side
functional is bounded in the same order, as the elastic energy. In [19], we gave the order of
each single loading component, i.e., the externally applied nodal forces F(A), the moments
G(A), and the constant in the cross-section axial expansion forces, fis,, in the set of beams

m
U U Pf’ ¢.r» that does not violate the linear elasticity for the stable structures. This scaling
£e5, =1
is the following:

&? ) &
fe= A; [ﬁF(A) +3GAA (= A)]IB(A,r) Tt _i_szf\SsluégssuT:,Pf“’ (14.1)

where (f, F, G) € (C (5)3)3 and 1, is the characteristic function of the set . This scaling
realizes

‘ fe-udx| < C(|Ifllo@) + | Flizow@) + 1Glle@) le@ll 2, ). Vi € Ve,

SEJ‘
(14.2)
For the unstable structures, applied forces should be smaller to realize a linear elastic regime
in the structure of thin beams,

2
r
[ g udx| <5 (181@) + IFlm) + 16 ]e@) le@ s, ) Vue Ve
Ss,r
(14.3)
This requires the following component scaling:
. r 1 r?
o= Y[R + —G) A G = )| Lpn + Sfis.. (14.4)
e re e

AeK,

In Examples in Sect. 14.2 of this paper, we mean “locking” under the applied loading
range. However, the unstable structures with long zig-zag lines, mentioned as “locked” in
a certain direction in Sect. 14.2, are stable for the loading in this direction and so, the ax-
ial forces on beams can be chosen larger in their projection to this direction. Le., for the
structure of type Sy axial forces can be chosen as

~ r

f. (ﬁl_()y))‘sg) e, fiecm),

&
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without changing the estimate below ((6.7) in this paper),

2
r
lle(ell iz, ) = C;(”f”LW(Q) + IFllz@) + [1Gllix@)- (14.5)

This criteria on the applied forces, can be used to design structures, i.e., to find a correct
proportion between r and €, in order to stay in the linear elastic regime under certain required
loading.

Appendix

Lemma 26 Let S be a 3D-periodic structure of type S;. If S contains at least a straight line
of direction e;, i € {1, 2, 3}, then a necessary condition to solve (3.1) is

M;; =0. (A1)

Proof Let V be a solution to (3.1). Since V is periodic, integrating along a straight line of
direction e; leads to M;; = 0. The condition (A.1) is required. O

Lemma 27 Let S be a structure of type S;, i € {0, 1,2, 5}. Then, a sufficient condition to
solve (3.1) is

M| =My =M;; =0. (A2)
Proof Let M be a matrix satisfying (A.2). We define W € U, (S) by
W(S)=—-26(S)Me; +C, VSeS, CeR’.

The derivative of W is

dW

5= _2(31 .tl)Mel ae.in S.

Hence, due to assumption (A.2)

dw
Kil=—2(e1-tl)(Mel)-t1=—(Mt1)~t1 ae.in S.
We project W over Dg .. (S) which gives V (M), the solution to (3.1). O

Denote M 5 the space of 3 x 3 symmetric matrices.
One can prove the following lemma:

Lemma 28 Let S be a structure of type S;, j € {0, 1,2}. There exist linear forms L; s :
Mg 3 — R and functions g; € H;er (S) satisfying

dgi
as

0 ae.in SV, ie{l,2,3)

such that for every M € My 3 the following problem admits a unique solution:

dW(M)
s

W) € Dg .- (S), ti=—Mt) t;+ L, sMg on SV, iefl,23}.
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For every matrix M € M 3, we have:
if S is of type

— So then Ly s(M) =My,
— S then Ll’S(M) =0,
- S, then LI,S(M) = Lz,s(M) =0.

Hence
M (S) = {M €M | Ly s(M) =Ly s(M) =L3; s(M) =01}

As a consequence of the above lemma, regarding the dimension of M (S), one has:

— if S is of type S then dim(M(S)) € {3, 4, 5}, all the dimensions are possible,

—if S is of type S; then dim(M,(S)) € {3,4,5,6}, in this case it would seem that
dim(M (S)) = 6 is not possible,

— if S is of type S, then dim(Ms(S)) € {5, 6}.

A.1 The Warping-Correctors

The four warping-correctors are the solutions to the following cell problems:

Xe(S, ) €Dy, X4(S,) €Dy, qei{l,2,3},

/ aiju(S) (Ep(Xe)(S, ) + Mll),-j (Ep(@)),, dS2dS3 =0,
D

/ aiju(®) (Ep(F(S. ) + HMP — M), (Ep()),, dSadSy =0, ~ forae.Sins.
D

YveD,.
/ aiju(S) (Ep(X) (S, ) + S3M11)I-J- (Ep(@)),,d$2dS; =0,
D
/ aiju(S) (Ep(X3)(S, ) — SzM”)l-J- (Ep()),,d$dS; =0,
’ (A3)

We easily obtain

EpnEy; — EEn EpnEy — EExn
- — St + 3
ExnEy — Ej; ExnEs; — Exp

XE= S3t3, X = xrti,

where xr € L>®(S; H'(D)) is the solution to the variational problem
[ x7dSdS3; =0,
D
B ad 0 ad
/ G12<£—Sz)—¢+Gl3<£+52>—¢d52d53=0, V¢ € H' (D).
D

LAY AR 953 053
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The correctors ¥; € L*®(S; H'(D))3, i e {2, 3} are the solutions to
Xi1 =0, / (53%2—527(1'3)d52d53=/ Xid$2dS; =0,
D D

X2 9%23\ 0> X2 323\ 03
EnS Er,— +E —)— (E S Ervs—— + E —)—
/I;[( 1293 + Ex 25, + Ex3 35, 852+ 1393 + Eo3 852+ 33 35, ) 38,

Gy ()22 | X3\ (02 = O3 ] 1/ 02
/(= 4 =)=+ —==)|dS»dS;=0 Y(¢ps, e H (D),
1 (8S3+BSZ)(8S3+BS2) »d S3 (¢2, P3) (D)
332 333\ 3¢ 932 933\ 03
—EnS Eyy—— 4+ Exs——— | — — E 38 Eyy——+ E —
/D[( 1292 + 22852+ 23 853)8Sz+< 1392 + En3 8S2+ 33 8S3)BS3
Gn (3)732 3%33)(3052 3¢3>] 12
Tn (0 CXBN (092 L OOV 16 dSs =0 V(. ds) € H' (D).
+ 7 s, T s, ) s, + 75 »d S3 (92, 93) (D)

Observe that due to the symmetries of D,
X22, X33 are odd with respect to Sy and S3,  X23, X32 are even with respect to S, and S;.
A.2 The Spaces Dy, yer(S), Dy, per(S) and Dy, per (S)

Let A be an inextensional displacement belonging to D; ,.(S). There exists B € L*(S)
constant on every segment of S and satisfying B - t; = 0 a.e. on S such that

dA
ﬁzl’)’/\tl a.e.in S.

Proceeding in the same way as to build the couple (A(M), B(M)), we obtain (A, B) €
Dy, per (S) such that

A=A and B=0 on every node of S and

on every segment y C S g‘y is a polynomial function of degree less than 2.

The map A € D; ., (S) — (.Z E) € Dy per(S) is one to one.
Now, let B be in U, (S ).NWe recall the following result: Let i be a function affine on
[a, b], a < b. Then function i defined by

N t—a (t—a)t=b)
VO =@y =+ VO = 3@ +yB) = o in a. b,

, (A4)
satisfies / U (t)dt =0, V(@) =¥ (a), U(b)=vb).

With the help of this function, we build a couple (A, B) € D, - (S) such that'

A=0 and B=B oneverynode of S and

on every segment y C S, EW is a polynomial function of degree less than 2.

s1(s1 =0
12

140ny =[A, B] we get B(s;) = B(A)FTSI +B(B)S71 +3(B(A)+B(B)) .51 €[0,1],1=|AB|.
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The map B € U, (S) —> (A, B) € D, per (S) is one to one.
Denote ;. (S) the subspace of D ., (S) containing the sums (A, B) + (A, B). This
space is isomorphic to D; .- (S) x U, (S).

A.3 The Test Function ¢[1]

To every ¢ in H'(S;), we associate the function ¢!'! defined by:

— ¢!l is constant in the neighborhood of every node,
— in the segment [¢€ + eA* — cort!, e€ + B  +cort!], yy =[AY, B, 6 € B, v C S

¢(£.§ + SAZ) for all s; € [—cor, cor],
#!'1(s) = { polynomial function of degree less than 1 for all s € [cor, ely — cor],
¢(e& +B") for all s, € [el, — cor, &lp + cor]

where the polynomial function is defined for all 51 € [cor, €l; — cor] by

ely — cor — sy — cor

¢l (s) = (e85 +eA") +p(e& + B

81[ — 2C()r 81@ — 2(,‘07‘

¢} belongs to W (e& + A" — cort], e& + e B + cort)).

In that way, we obtain a function belonging to W'*(S,), constant in the neighborhood of ev-
ery node. That allows to extend it as an element, still denoted ¢}, belonging to W' (S, ,),
constant in every domain B(e§ + €A, cor) NS:,, A € K, and also constant in every cross-

section of the beams. This function satisfies

( g€ +eBY) — (e + A’
jl)s (s) = d)( § v ) 2¢c)(rs ) for all s; € [cor, €l — cor],
¢ — 2Cp
A5
(1 ce|9® del) "
— < 2
”¢5,r ¢||L2(Sg) - . dS L2( 5@) H dS L2(Sp H LZ(SF,)'

The constant does not depend on ¢ and r. Moreover, if ¢ belongs to W (£2), one has
75 (o)) — ¢ strongly in L*(22 x S),

dgl! (A.6)
7; ( ) —> V¢ -t; strongly in L2(£2 x S).
A.4 The Test Function ¢£2]

To every ¢ in H'(S.), we associate the function ¢!?! defined by:

— ¢!? is constant in the neighborhood of every node,
— in the segment [¢€ + A" — cort!, e& + eB' +cort{], yy =AY, B',E € E., o C S

P(e& +eAY) for all s, € [—cor, cor],
¢£2] (s) = { polynomial function of degree less than 3  for all s; € [cor, €ly — cor],
¢(e& +&B") for all s; € [el, — cor, €ly + cor],
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where the polynomial function is defined for all s, € [cor, €l; — cor] by

) (51— elp + cor)*(el, — dcor + 251)
(ely — 2¢or)3

P (s) = p(e8 + A’

) (s1 — cor)*(3ely — 4eor — 2s1)
(81@ — 26’07‘)3

+ ¢(e& + B

#? belongs to W2 (e& + e A — cort!, €& + e B" + cort}).

In that way, we obtain a function belonging to W'*°(S,), constant in the neighborhood of ev-
ery node. That allows to extend it as an element, still denoted ¢!?!, belonging to W!*°(S, ,),
constant in every domain B(e§ + ¢A, cor) NS, », A € K, and also constant in every cross-
section of the beams. This function satisfies

degtl o _ et +eBY) — §(e +eA") 651 = cor)(ele — cor —51)

ds - el, — 2cor (ely — 2cor)?

for all s; € [cor, €l; — cor],

A7)
d¢ dgP (
||¢£2]_¢”L2(S)§C8Hd_ 28, H 2 H 280)
e s lz2(sy) L2(S) — L2(Se)
£, <12
ds? s, — ds 2y’

The constant does not depend on & and r. Moreover, if ¢ belongs to W' (£2), one has

N (¢l21) — ¢ strongly in L*(£2 x S),

(2]
75( d’s ) — Vo110 strongly in LX(2 x 5), (A8)

d*¢? dd
87’8$< df; ) —> V¢ - tlﬁ strongly in L2(2 x S),

where @ belongs to H(}’ «(S) and in y, C S itis defined by

Sile — S1)
17

d(S) = for all S, € [0, [,]. (A9)

A.5 The Test Function ¢£3]

To every ¢ in W2 (R?), we associate the function ¢! € W2*°(S,) defined by:
o $B is affine in the neighborhood of every node,
o fors=s& + A  +51t, 51 € [—cor, ely + cor], ye =[AY, B, E € B, y, C S, we set

P(e& +eAY) + 5, Vp(ek +cA") -t for all s; € [—cor, cor],
see (A.10) for all sy € [cor, 2¢cor],
PP(s) = { #(s) for all 51 € [2¢cor, ely — 2cor],
see (A.10) for all s, € [el, — 2cqr, €l — cor],
P(e& +eBY) + (51 — el)Vp(e& +eBY) - t|  forall sy € [el, — cor, &l + cor],
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where for all s; € [cor, 2cor]

(s — 260r)2(2(s| —cor) + cor)

PP1(s) =(p(c& + £A") + cor V(€ + £AY) - t!)

(cor)3
2 _
+V¢(e.§+8A) tz(sl cor)*(sy — cor)
(cor)?
(A.10)
- —2(s1 —2 +c
+ ¢(8.§ +eAl+ 2c0rtf) (51 = cor) ( (51 cor) cor)
(cor)?
(s1 — cor)*(sy — 2cor)
+ V(& + A" + 2cort]) - t] )
We easily check that
Vp(ek +eA") -t for all s, € [—cor, cor],
see (A.11) for all s; € [cor, 2¢or],
dgl
d—;(s) =1Vo(s) -t for all s; € [2¢or, &, — 2cor],
see (A.11) for all s; € [el, — 2¢or, €ly — cor],
V(e& +eBY) -t for all s; € [el, — cor, &y + cor],

where for all s; € [el, — 2cor, elp — cor]

[3]
¢ —f _(s) = <¢(sg +eA") + corVe(eg +eA”) - t] — p(s& + A" + 2cort))

>6(Sl — 2cor)(s1 — cor)
(cor)?

s1 — 2cor

+ % [Vo (et +2A”) + V(e& + e A" + 2crt])] -t

§1—Co

+ Vg (e& + A" + 2cort]) -t L Vo(sk +54Y) -t

Ccor
(A.11)

The function ¢! satisfies

[3] ¢[3]
H¢ ¢”Loo($) Cr ||¢||W2°°(]R3)7

~Vo-t| <c gty (A2
-t L(50) rléllwe (R3)+ ( )

The constant does not depend on ¢ and r.

A.6 A Lemma of the Periodic Unfolding Method

Denote

Ar(S) = {(D € H} (Se) | @ is an affine function on every segment},

Ay (S)= [q) € H;,er (S) | @ is an affine function on every segment},

Hol,icg (Se) = [d) € H'(S,) | ¢ vanishes on every node ]
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Lemma 29 Let S be a 3D-periodic structure of type S;, i € {0, 1,2} and {¢.}. a sequence
of functions belonging to H-(S,), satisfying

do. c

2 + H ’
1Pell L2(s.) (sg”> e

S3Es
et

Then, up to a subsequence still denoted {e}, there exist $ € LZF(Q,83,S) and 5 €
L*(£2; H! (S)) such that (i € {1,2})

per

7;5(4)5) - (}5 weakly in  L*(2; HY(S)),

do. I . ;
S N 2 (i)
e, ( s ) 7S weaklyin L°(£2 x S'"), (A.13)
de, ¢ ap .
S N 2 3)
] ( s ) o + 7S weakly in L°($2 x S').

Proof Step 1. We decompose ¢, as

b=+ ). P EANS). ¢l € Hyy (So).

The assumptions on {¢.}. imply that

C

(sg”> g’

161,305 + | o

ZH i
L2(Sé3’>

2

de¢?
0 . £
) Z (19202 0, + 2| o

1 0 d¢0
gl|¢s Iz s0 + H ds

C
=€
128 e

Then, up to a subsequence still denoted {&}, there exists 50 € L*(22: Hy ,.(87)) (see (10.1))
such that

TS(¢°) =~ ¢°  weaklyin L2(82; H) (SD)), i (1,2},

1 ~
—TE(¢?) = ¢°  weaklyin L*(2; Hy (SP)),
8 il

dgdN\ 990 _
S & o7 . 2 o .
¢ ( ds ) 38 weakly in  L7(£2 x §), i €{l,2},

dg¢? 2 )
S 2 3)
A ( s )—\ oS weakly in  L°(£2 x S').

Step 2. Limit of the sequence {7;‘S (@) }5'

The assumptions on {¢,.}. imply that

ae;

10125 + 6| ==

f'llﬁ

Lz(sa
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Then, up to a subsequence still denoted {¢}, there exists ¢N“ e L*(2; A per(S)) such that

TS(¢f) = ¢*  weaklyin L*(2; H'(S)),

a v A.14)
d¢£ a¢a . (
67;5( s ) - S weakly in L*(£2 x S).
Hence

d 9 04 fa )

87;5( (’55) LD eakyin L2 x SO), i e{1.2).

ds oS

Since ¢ < C, wehave 9% =0 a.e.on 2 x SO,
L2

d
Step 3. Limit of the sequence [’7;5( d¢s
s

)} in L2(2 x 8.
We decompose the restriction of ¢¢ to the zig-zag lines of S as

P =P+,

a

where d—g is constant on every zig-zag line in £ + £¢S® and where ¥ ¢ vanishes on all
s

the extremities of the zig-zag lines in £& 4+ £S®. One has

dv? C

< —

a
121l st =8

d@s
e T H ds Iz el s, + ”
Then, up to a subsequence still denoted {g}, there exist ®¢ e L2 +(£2,05,S) and d)“
L?(£2; Ag\e, (S®)) (see (2.5)s5) extended in a function belonging to L?(£2; A, (S)) still

denoted ¢¢ such that (see [12, Lemma 6.8])

728(@:) — @ =<I;;’ weakly in LZ(Q; H1($(3))),

do? 0P
7’85(—8> — —— weakly in L2(2 x 8D,
ds 3)63

I _
~TS (lp) ~$" weaklyin L2(£2; H'(SP)).
&

This ends the proof of the lemma setting ¢ ¢0 + (j)“ ae.in 2 xSV, ie{l,2}, ¢ ¢“
ae.in 2 x S® and ¢ = @0 + ¢% ae. in 2 x SO. O
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