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Abstract
In our previous papers (Griso et al. in J. Elast. 141:181–225, 2020; J. Elast., 2021, https://
doi.org/10.1007/s10659-021-09816-w), we considered thick periodic structures (first paper)
and thin stable periodic structures (second paper) made of small cylinders (length of order
ε and cross-sections of radius r). In the first paper r = κε with κ a fixed constant, ε → 0,
while in the second ε → 0 and r/ε → 0. In this paper, our aim is to give the asymptotic
behavior of thin periodic unstable structures, when ε → 0, r/ε → 0 and ε2/r → 0.

Our analysis is again based on decompositions of displacements. As for stable periodic
structures, Korn type inequalities are proved. Several classes of unstable and auxetic struc-
tures are introduced. The unfolding and limit homogenized problems are really different
of those obtained for the thin stable periodic structures. The limit homogenized operators
are anisotropic, the spaces containing the macroscopic limit displacements depend on the
periodicity cells. It was not the case in the two previous studies. Some examples are given.

Keywords Linear elasticity · Homogenization · Stable structure · Periodic beam structure ·
Periodic unfolding method · Dimension reduction · Korn inequalities

Mathematics Subject Classification (2010) 35B27 · 35J50 · 47H05 · 74B05 · 74K10 ·
74K20

1 Introduction

The aim of this paper is to study the asymptotic behavior of an unstable 3D ε-periodic
structure made of thin beams in the framework of the linear elasticity. The beams have a
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circular cross-section whose radius is r , the periodicity parameter is ε, we assume that r/ε

and ε2/r tend to 0.
Thin elastic reticulated structures were considered, e.g., in [1], [6], [8], [24], [30], [32],

[33], [36].
There are many types of unstable structures or unstable states in structures in all or in

some specific directions. The instabilities can be wished if well understood and modeled,
they can also be used to better design materials or develop new auxetic structures. It is well
known to engineers that for stable structures (wire trusses, lattices) made of very thin beams,
bending dominates the stretching-compression. A contrario, if the same structures are made
of thick beams the stretching-compression dominates. If structures are unstable, they work
on rotation around nodes mostly.

This paper is the continuation of [23] which dealt with the 3D-stable periodic structures.
Here, we investigate the unstable and auxetic 3D-periodic structures made of thin beams.
The first difference between 3D-stable (see [23, Definition 5]) or -quasi stable periodic
structures (see Definition 14) and those 3D-unstable lies in the Korn inequalities. For 3D-
stable and -quasi-stable periodic structures we have (see [23, Proposition 2])

‖u‖L2(Sε,r )
≤ C

(
1 + ε2

r

)
‖e(u)‖L2(Sε,r )

, ‖∇u‖L2(Sε,r )
≤ C

ε

r
‖e(u)‖L2(Sε,r )

,

while for 3D-unstable periodic structures, one has (see Proposition 1)

‖u‖L2(Sε,r )
≤ C

ε

r
‖e(u)‖L2(Sε,r )

, ‖∇u‖L2(Sε,r )
≤ C

ε

r
‖e(u)‖L2(Sε,r )

,

where Sε,r is the structure made of beams.
That is why for 3D-periodic structures made of “thick” rods (the cross sections being of

the same order as the period r ∼ ε), distinguishing stable structures from unstable ones is
not really useful (see [19]).

Our analysis of the thin structures provides more than these above inequalities, it gives
estimates of the centerline displacements and also of the small rotations of the cross-sections
(see [23, Proposition 2] and Proposition 2 in Sect. 2.3).

The second and most important difference between 3D-stable and unstable periodic
structures appears in the local behavior of cells. In the stable case we have found the re-
lation

∂Û
∂S

(x,S) = R̂(x,S) ∧ t1(S), (x,S) ∈ Ω × S, Û = 0 on the nodes of Ω × S,

where S is the running point in S , S is the 3D-periodic cell made of segments, Ω the macro-
scopic domain, Û stands for the local displacement of the centerlines of the beams, R̂ for
the rotations of the cross-sections, t1(S) being the direction of a beam-centerline belonging
to S . Both fields Û and R̂ are periodic with respect to the second variable belonging to S .
The above relation means that the local displacements are of Bernoulli-Navier type. Then,
the displacement of the nodes is given by the macroscopic displacement.

In the unstable case we have the relation (see Lemma 15)

∇U(x) t1(S) + ∂Û ′

∂S
(x,S) = R̂′(x,S) ∧ t1(S), (x,S) ∈ Ω × S

where U is the macroscopic displacement, Û ′ stands for the local displacement of the center-
lines, R̂′ for the rotations of the cross-sections, t1(S) being the direction of a beam-centerline
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(see (2.1)). Here also, both fields Û ′ and R̂′ are periodic with respect to the second variable.
The above relation means that the local displacements are not of Bernoulli-Navier type. The
macroscopic displacements are subject to the conditions of existence of solutions for the
above equation (see Sect. 3). By way of example, for some auxetic structures we obtain that
the macroscopic displacements satisfy some a priori conditions, e.g.,

∂Ui

∂xi

= κi1
∂U1

∂x1
,

where κi1 > 0, i ∈ {2,3}, are constant coefficients (see Sect. 14.2).
In [23], we have shown that the asymptotic behavior of a 3D-periodic stable structure is

given by a classical elasticity problem, the stress tensor is given via the strain tensor and a
6 × 6 matrix whose coefficients depend on the geometry of the 3D cell. The obtained model
is of extensional type, the macroscopic limit displacement is the limit of the extensional
displacements of the set of centerlines Sε (it only depends on the stretching-compression of
the small beams). Here, for a 3D-periodic unstable structure, we show that the macroscopic
limit displacement is of inextensional type. It never depends on the stretching-compression
of the small beams. The limit model is not a classical elasticity problem.

Our analysis relies on decompositions of displacements, as in our previous papers
[19, 23], first for a single beam (see [13–15]) and then for the macroscopic structure. Ac-
cording to these studies, a beam displacement is the sum of an elementary displacement
and a warping. An elementary displacement has two components. The first one is the dis-
placement of the beam centerline while the second stands for the small rotation of the beam
cross-sections (see [13, 15]). The warping takes into account the deformations of the cross
sections. This decomposition has been extended for structures made of a large number of
beams in [14] (see [4] for beam structures in the framework of nonlinear elasticity). Here,
similar displacement decompositions are obtained.

To study the asymptotic behavior of periodic unstable structures and derive the limit
problems we use the periodic unfolding method introduced in [9] and then developed in
[10, 11]. This method has been applied to a large number of different types of problems.
We mention only a few of them which deal with periodic structures in the framework of the
linear elasticity (see [5, 16, 18–22, 31]). As general references on the theory of beams or
structures made of beams, we refer to [2, 7, 27, 28, 34, 35].

The paper is organized as follows. Section 2 introduces structures made of segments
(examples of 3D cell S). We recall known results concerning the decomposition of a beam
displacement. This section also gives estimates of the terms appearing in the decomposition
with respect to the L2-norm of the strain tensor. Then, we extend these results to structures
made of beams. Complete estimates of our decomposition terms and Korn-type inequalities
are obtained for general unstable 3D-periodic structures.

In Sect. 3, we solve the o.d.e. (see (3.1)-(3.2)) posed on the periodic cell S . It plays a
fundamental role for unstable periodic structures. This o.d.e. admits solutions under some
conditions. We will show in the following section that these conditions allow to define the
space of macroscopic admissible displacements. In Sect. 4, several examples of 3D-periodic
unstable structures are presented. Section 5 is dedicated to some properties of the various
unstable structures introduced in Sect. 4. The statement of the elasticity system is given in
Sect. 6. The scalings of the applied forces are given with respect to ε and r . That leads to an
upper bound for the L2-norm of the strain tensor of the solution to the elasticity problem.
Section 7 deals with the unfolding operators (see also [23]).

In Sect. 8, we give the asymptotic behavior of a sequence of displacements and their
strain tensors. Then, in Sect. 9, in order to obtain the limit unfolded problem we split it
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into three problems: the first involving the limit warpings (these fields are concentrated in
the cross-sections, this step corresponds to the process of dimension reduction), the second
involving the microscopic inextensional limit displacements posed on the periodic cell S
and the third the macroscopic limit problem involving the macroscopic displacements posed
in the whole domain Ω .

Section 12 leads to the complete unfolding problem for all types of 3D-periodic unsta-
ble structures. To do that, different correctors are introduced, they allow to write the limit
homogenized problem. We obtain a linear elasticity problem with constant coefficients cal-
culated using the correctors. In Sect. 13 we apply the previously obtained results in the case
when a periodic 3D beam structure is made of an isotropic and homogeneous material. In
Sect. 14.2, we detail the spaces containing the macroscopic limit displacements for some
structures presented in Sect. 4 (see also Fig. 1).

In the Appendix, some technical results are shown (proof of some lemmas, the way to
build test functions and a new lemma of the periodic unfolding method).

Finally, we give mechanical engineers a translation in their terminology, and explain the
obtained result, i.e. the limit problem in terms of known models for constitutive laws.

We restrict solution φ of (6.4) to the mean lines of the rods, i.e. the skeleton of the
structure, Sε . Then, we approximate this restricted to the skeleton or graph Sε solution by
a piece-wise affine (linear) approximation U ∈ U(Sε), (2.2). This space is further decom-
posed on the static elastic vector field, V ∈ DE(Sε), satisfying, e.g., (5.1), and its orthogonal
complement, kinematic field, U − V ∈ DI (Sε), see (2.4). In the case, when Sε is a stable
structures, this complement is just rigid displacement. (5.1) is the strain equilibrium prob-
lem for a truss-system on S and describes the equilibrium of all axial (tensile) strains (forces
normalized by the Young’s modulus of fibers) in rods, acting on each node of the graph, see
e.g. chapter about trusses in [29]. And after fixing of 3 scalar non-collinear displacements
on one or different nodes, (5.1), will be uniquely solvable on the graph S for almost all x.

In terminology of physicist and dynamical systems, the elasto-static field V satisfies a
Hamiltonian, while the kinematic, U − V , a Lagrangian (see [26, pages 33-34]). We will
call the kinematic field rotations.

Our structure and its skeleton are periodic. In Sect. 3, matrices M denote unit pertur-
bations from 6 standard experiments on the unit periodicity cell of the structure, 3 axial
tensions and 3 shear experiments. System of equations (3.1) is equivalent to the tensile force
balance on a rod- (truss-) system, S, normalized by the elastic property, Young’s modulus,
of rods, for each of such experiments. And (3.2) is equivalent to the moment balance equa-
tion on the same rod-system, also normalized by the tensile elastic property of rods. B̂V (M)

denotes the mean or averaged rotation of each rod (segment), while B̂(M) is the equivalent
reformulation for the rotation field for a frame of beams, restricted to an edge or beam. In
the frame of beams the angles between beams are fixed, therefor this field vanishes closed
to the nodes (see Chap. about FEM (finite element method) for frames in [29]).

In the limit (cell problems (12.3)) we have on segments, or beams, or elements just four
scalar degrees of freedom (variables), the axial tension, torsion and two bending rotations.
They correspond to the finite element (FE)-interpolation of the frame of beams from [29].
The tensor decomposition for 1D-system on a frame of graph is given by (12.4) and the
1D bilinear form for microscopic fields, Û, R̂ is given as a sum of 4 terms, the beam axial
tension, torsion and 2 bending terms (energies). The same 1D bilinear form can be found
in (6.5) of [31], where authors did not pass to the limit with the beam thickness and just
approximated the cell solution, solving it by FEM for frames. Actual paper justifies this step
in [31] mathematically.

While for the stable structures (see [19]), the homogenized macroscopic problem was
pure elastic, corresponding to the first tensile energy, for the unstable case, it is rotation
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dominated, see (12.9). It can be interpreted as micro-polar elasticity, [3], [25] and it was
used in our work [17].

2 Reminders and Notations

2.1 Geometric Setting

In this paper we consider structures made of a large number of segments.

Definition 1 Let S =
m⋃

�=1

γ� be a set of segments and K the set of the extremities of these

segments.
S is called structure if

– S is a connected set,
– S is not included in a plane,1

– for any segment γ� = [A�,B�] ∈ S , one has
(
γ� \ {A�,B�})∩K = ∅,

– for any point of K belonging to only two segments, the directions of these segments are
noncollinear.

Hereinafter, S is called a 3D-structure. The segment γ� = [A�,B�] ∈ S of length l� is
parameterized by S1 ∈ [0, l�] and its direction is given by the unit vector

t1(S) = t�1 =
−−−→
A�B�

|−−−→
A�B�|

∈R
3. (2.1)

So

γ� = [A�,B�] = {S ∈ R
3 | S = A� + S1t�1, S1 ∈ [0, l�]

}
(A�,B�) ∈ K2,

S is the running point of S .
On S we define a space of continuous fields U(S) with values in R

3 as follows:

U(S)
.=
{
U ∈ C(S)3 | on every segment γ� ∈ S , U|γ�

is an affine function, � ∈ {1, . . . ,m}
}
,

(2.2)
where C(S) is the set of continuous functions on S .

The space of rigid displacements is denoted by R:

R .=
{

r ∈ C1(R3) | r(x) = a + b ∧ x, ∀x ∈R
3, (a,b) ∈R

3 ×R
3
}
.

On U(S) we consider the semi-norm2

‖U‖E
.=
∥∥∥dU

dS
· t1

∥∥∥
L2(S)

, ∀U ∈ U(S). (2.3)

1Here we only want to consider 3D cells, we can easily transpose the results of this paper for planar cells.
2 dU

dS
is equal to

dU

dS1 |γ�

on every segment γ� of S .
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Fig. 1 Periodic cells for unstable 3D-periodic structures

Denote

DI (S)
.=
{
U ∈ U(S) | dU

dS
· t1 = 0 a.e. on S

}
,

DE(S)
.=
{
U ∈ U(S) | ∀V ∈ DI (S),

∫

S

dU

dS
· dV

dS
dS = 0

}
.

(2.4)

Observe that R ⊂ DI (S) and DI (S) ∩ DE(S) =R
3.

Below, we remind [23, Definition 2].

Definition 2 A structure S is stable if DI (S) = R. If R is strictly included in DI (S) then S
is unstable.

For p ∈ [1,+∞], we denote3

W 1,p(S)
.=
{
φ ∈ C(S) | dφ

dS
∈ Lp(S)

}
,

W 2,p(S)
.=
{
φ ∈ W 1,p(S) | φ|γ�

∈ W 2,p(γ�), � ∈ {1, . . . ,m}
}
.

This paper is dedicated to unstable structures, examples of which are given in Fig. 1. Stable
structures have been considered in [23].

3 d2U

dS2
is equal to

d2U

dS2
1 |γ�

on every segment γ� of S .
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2.2 Notations

Denote

–
(
e1, e2, e3

)
the usual basis of R3,

– Y = (0,1)3 the open parallelotope associated with this basis,4

– S a 3D-structure, in the sense of Definition 1, included in Y .

Definition 3 A structure S is a 3D-periodic structure if for every i ∈ {1,2,3} S ∪ (S + ei

)
is a structure in the sense of Definition 1.

From now on, S is a 3D-periodic structure.
Let Ω be a bounded domain in R

3 with a Lipschitz boundary and Γ be a subset of ∂Ω

with non null measure. We assume that there exists an open set Ω ′ with a Lipschitz boundary
such that Ω ⊂ Ω ′ and Ω ′ ∩ ∂Ω = Γ .

Denote

– Ω1
.= {x ∈R

N | dist(x,Ω) < 1
}
, Ωint

ε = {x ∈ Ω | dist(x, ∂Ω) > 2
√

3ε
}
,

– Ξε
.= {ξ ∈ Z

3 | (εξ + εY ) ∩ Ω �= ∅},
– Ξint

ε

.= {ξ ∈ Z
3 | (εξ + εY ) ⊂ Ωint

ε

}
,

– Ξ ′
ε

.= {ξ ∈ Z
3 | (εξ + εY ) ∩ Ω ′ �= ∅},

– Ξ̂ε
.= {ξ ∈ Ξε | all the vertices of ξ + Y belong to Ξε

}
,

– Ξε,i
.= {ξ ∈ Ξε | ξ + ei ∈ Ξε

}
, i ∈ {1,2,3},

– Ωε
.= interior

( ⋃
ξ∈Ξε

(εξ + εY )
)

, Ω̂ε
.= interior

( ⋃

ξ∈Ξ̂ε

(εξ + εY )
)

, Ω ′
ε

.= interior
( ⋃

ξ∈Ξ ′
ε

(εξ +

εY )
)

,

– Ω̂int
ε

.= interior
( ⋃

ξ∈Ξint
ε

(εξ + εY )
)

.

One has

Ξint
ε ⊂ Ξ̂ε ⊂

3⋂
i=1

Ξε,i ⊂
3⋃

i=1

Ξε,i = Ξε.

The open sets Ωε , Ω ′
ε , Ω̂ε , Ω̂int

ε and Ωint
ε are connected, and satisfy

Ω̂int
ε ⊂ Ωint

ε ⊂ Ω ⊂ Ωε ⊂ Ω ′
ε, Ω̂int

ε ⊂ Ωint
ε ⊂ Ω̂ε ⊂ Ωε.

Set

Sε
.=
⋃
ξ∈Ξε

(
εξ + εS

)
, Sε,r

.= {x ∈R
3 | dist(x,Sε) < r

}
,

S ′
ε

.=
⋃
ξ∈Ξ ′

ε

(
εξ + εS

)
, S ′

ε,r

.= {x ∈R
3 | dist(x,S ′

ε) < r
}
,

Kε
.=
⋃
ξ∈Ξε

(
εξ + εK

)
.

4In this paper, for simplicity we choose the usual orthonormal basis of R3. Of course, one can replace this
basis with another.



14 G. Griso et al.

The running point of Sε is denoted s.
Sε,r is the structure made of beams. The cross-sections of the beams are discs of radius

r and the centerlines of the beams are the segments of Sε , it also contains the balls of radius
r centered on the points of Kε . The general beam Pξ

ε,�,r is referred to an orthonormal frame(
εξ + εA�; t�1, t�2, t�3

)

Pξ

ε,�,r

.=
{
x ∈R

3 | x = s + s2t�2 + s3t�3 = εξ + εA� + s1t�1 + s2t�2 + s3t�3,

(s1, s2, s3) ∈ (0, εl�) × Dr

}
, ξ ∈ Ξε, � ∈ {1, . . . ,m},

Sε,r
.=
{
x ∈R

3 | dist(x,Sε) < r
}

=
( ⋃

A∈Kε

B(A, r)
)

∪
( ⋃

ξ∈Ξε

m⋃
�=1

Pξ

ε,�,r

)
.

The structure Sε,r is included in Ωε .
The set of junctions is denoted by Jr . There exists c0 which only depends on S such that

⋃
A∈Kε

B(A, r) ⊂ Jr ⊂
⋃

A∈Kε

B(A, c0r).

The set Jr is defined in such a way that Sε,r \J r only consists of distinct straight beams.
The space of all admissible displacements of Sε,r (resp. Sε) is denoted Vε,r (resp.

H 1
Γ (Sε))

Vε,r
.= {u ∈ H 1(Sε,r )

3 | ∃u′ ∈ H 1(S ′
ε,r )

3 such that u′
|Sε,r

= u and u′ = 0

in S ′
ε,r ,\Sε,r

}
,

(resp. H 1
Γ (Sε)

.= {Φ ∈ H 1(Sε)
3 | ∃Φ ′ ∈ H 1(S ′

ε)
3 such that Φ|Sε, = Φ and Φ ′ = 0

in the cells fully included in S ′
ε \ Sε

}
).

It means that the displacements belonging to Vε,r “vanish” on a part Γε,r included in ∂Sε,r ∩
∂Ω .

For every 3D-periodic structure S , we denote

U(Sε)
.=
{
Φ ∈ H 1(Sε)

3 | Φ is an affine function on every segment of Sε

}
,

UΓ (Sε)
.= H 1

Γ (Sε)
3 ∩ U(Sε),

DI (Sε)
.=
{
Φ ∈ UΓ (Sε) | dΦ

ds
· t1 = 0 on every segment of Sε

}
.

(2.5)

DI (Sε) is the set of inextensional displacements of Sε belonging to UΓ (Sε).
For p ∈ [1,+∞], we denote5

W 1,p(Sε)
.=
{
φ ∈ C(Sε) | dφ

ds
∈ Lp(Sε)

}
,

W 2,p(Sε)
.=
{
φ ∈ W 1,p(Sε) | φ|eξ+εγ�

∈ W 2,p(0, ε�), (ξ, �) ∈ Ξε × {1, . . . ,m}
}
.

5 d2U

ds2
is equal to

d2U

ds2
1 |εξ+εγ�

on every segment εξ + εγ� of Sε .
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2.3 Displacements Decomposition

In [14] it is shown that every displacement u of a beam structure can be decomposed as

u = Ue + u

where Ue is an elementary beam-structure displacement and u is a warping. For the beam-
structure Sε,r we remind some definition and results.

Definition 4 (see [14]) An elementary beam-structure displacement is a displacement be-
longing to H 1(Sε,r )

3 whose restriction to each beam is an elementary displacement and
whose restriction to each junction is a rigid displacement:

Ue(x) = U(s) +R(s) ∧ (s2t�2 + s3t�3),

for a.e. x = s + s2t�2 + s3t�3 = εξ + εA� + s1t�1 + s2t�2 + s3t�3 ∈ P�,r,

(s1, s2, s3) ∈ (0, εl�) × Dr, ξ ∈ Ξε, � ∈ {1, . . . ,m},
Ue(x) = U(εξ + εA�) +R(εξ + εA�) ∧ (x − εξ − εA�), for a.e. x ∈ B(εξ + εA�, c0r)

with U , R in H 1(Sε)
3.

Ue is the elementary beam-structure displacement and u the warping, they belong to
H 1(Sε,r )

3. Here, the pair (Ue,u) is not uniquely determined. The warping satisfies (see
[14, 15]) the following conditions “outside” the domain Jr :
∫

Dr

u(·, s2, s3) ds2ds3 = 0,

∫

Dr

u(·, s2, s3) ∧ (s2t2 + s3t3) ds2ds3 = 0,

a.e. in Sε \ Sε ∩
⋃

A∈Kε

B(A,2c0r). (2.6)

For every displacement u ∈ H 1(Sε,r )
3, we denote by e the strain tensor (or symmetric gra-

dient)

e(u)
.= 1

2

(
∇u + (∇u)T

)
, eij (u)

.= 1

2

( ∂ui

∂xj

+ ∂uj

∂xi

)
. (2.7)

We have two systems of coordinates: the Cartesian system (x1, x2, x3) related to an orthonor-
mal frame of R

3 and the local beam coordinate systems (s1, s2, s3) related to the frame
(εξ + εA�; t1, t2, t3), � ∈ {1, . . . ,m}, for every beam. The orthonormal transformation ma-
trix is denoted T� = (t1 | t2 | t3

)
, this matrix belongs to SO(3).

Hence, for every displacement v ∈ H 1(Pξ

ε,�,r )
3 one has

e(v) = 1

2

(
∇xv + (∇xv

)T )= 1

2
T�
(
∇sv + (∇sv

)T )
(T�)T = 1

2
T� es(v) (T�)T ,

es(v) =
⎛
⎜⎝

∂v
∂s1

· t1
1
2

(
∂v
∂s2

· t1 + ∂v
∂s1

· t2

)
1
2

(
∂v
∂s3

· t1 + ∂v
∂s1

· t3

)

∗ ∂v
∂s2

· t2
1
2

(
∂v
∂s3

· t2 + ∂v
∂s2

· t3

)

∗ ∗ ∂v
∂s3

· t3

⎞
⎟⎠ .

(2.8)

The following lemma is proved in [14, Lemma 3.4]:



16 G. Griso et al.

Lemma 1 Let u be in H 1(Sε,r )
3. There exists a decomposition of u = Ue + u. The terms of

this decomposition satisfy

‖u‖L2(Sε,r )
≤ Cr‖e(u)‖L2(Sε,r )

, ‖∇u‖L2(Sε,r )
≤ C‖e(u)‖L2(Sε,r )

,

∥∥∥dR
ds

∥∥∥
L2(Sε)

≤ C

r2
‖e(u)‖L2(Sε,r )

,

∥∥∥dU
ds

−R∧ t1

∥∥∥
L2(Sε)

≤ C

r
‖e(u)‖L2(Sε,r )

.
(2.9)

The constants do not depend on ε and r .

Here, as like as [23], we split the field U into the sum of two fields Uh and U , where
Uh coincides with U in the nodes of Sε and is affine between two contiguous nodes, U is
the residual part. In the same way, the fields Rh and R are introduced. It is obvious, but
important to note that Uh describes the displacement of the nodes, i.e., the macroscopic
behavior of the structure, whereas U stands for the local displacement of the beams.

Lemma 2 For every u ∈ H 1(Sε,r ), one has

∥∥∥dR
ds

∥∥∥
L2(Sε)

≤ C

r2
‖e(u)‖L2(Sε,r )

, ‖R‖L2(Sε)
≤ C

ε

r2
‖e(u)‖L2(Sε,r )

,

∥∥∥dU
ds

· t1

∥∥∥
L2(Sε)

≤ C

r
‖e(u)‖L2(Sε,r )

,
∥∥U · t1

∥∥
L2(Sε)

≤ C
ε

r
‖e(u)‖L2(Sε,r )

,

∥∥∥dU
ds

∥∥∥
L2(Sε)

≤ C
ε

r2
‖e(u)‖L2(Sε,r )

,
∥∥U∥∥

L2(Sε)
≤ C

ε2

r2
‖e(u)‖L2(Sε,r )

,

∥∥∥dUh

ds
−Rh ∧ t1

∥∥∥
L2(Sε)

≤ C
ε

r2
‖e(u)‖L2(Sε,r )

,

∥∥∥dRh

ds

∥∥∥
L2(Sε)

+ 1

r

∥∥∥dUh

ds
· t1

∥∥∥
L2(Sε)

≤ C

r2
‖e(u)‖L2(Sε,r )

.

(2.10)

The constants do not depend on ε and r .

Proof The estimates (2.10) are proved in [23, Lemma 6]. �

Observe that since the displacements in Vε,r are the restrictions of displacements belong-
ing to H 1(S ′

ε,r )
3
, all the estimates of the above Lemma 2 are valid replacing Sε by S ′

ε . By
construction, the fields Uh, Rh are affine on every segment of the structure Sε (resp. S ′

ε) and
they vanish on the segments belonging to S ′

ε \ Sε .
Let u be in H 1(Sε,r )

3. Applying the Poincaré-Wirtinger inequality in εξ + εS and using
(2.10)8 give a piecewise constant function b ∈ L∞(Ωε)

3 (constant in the cell εξ + εY ) such
that

‖Rh − b‖L2(Sε)
≤ C

ε

r2
‖e(u)‖L2(Se,r )

. (2.11)

Hence

∥∥∥dUh

ds
− b ∧ t1

∥∥∥
L2(Sε)

≤ C
ε

r2
‖e(u)‖L2(Sε,r )

.
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Again the Poincaré-Wirtinger inequality in εξ + εS and the above estimate give another
piecewise constant function a ∈ L∞(Ωε)

3 (constant in the cell εξ + εY ) such that

‖Uh − r‖L2(Sε)
≤ Cε2

r2
‖e(u)‖L2(Sε,r )

, (2.12)

where r is a rigid displacement in every cell εξ + εY

r(x) = a(εξ) + b(εξ) ∧ (x − εG − εξ), ∀x ∈ εξ + εY.

Now, choose ξ belongs to Ξε,i , the domain εξ + εS ∪ ε
(
S + ei

)
is included in Sε (i ∈

{1,2,3}). Then, as above, applying the Poincaré-Wirtinger twice (in εξ + εS ∪ ε
(
S + ei

)
and εξ + ε

(
S + ei

)
) lead to (see also [23, Sect. 5])

3∑
i=1

∑
ξ∈Ξε,i

|b(εξ + εei ) − b(εξ)|2ε3 ≤ C
ε4

r4
‖e(u)‖2

L2(Sε,r )
,

3∑
i=1

∑
ξ∈Ξε,i

|a(εξ + εei ) − a(εξ) − εb(εξ + εei ) ∧ ei |2ε3 ≤ C
ε6

r4
‖e(u)‖2

L2(Sε,r )
.

(2.13)

Set

U(εξ) = a(εξ), R(εξ) = b(εξ) for every ξ ∈ Ξε.

Now, define U ∈ W 1,∞(Ω̂ε)
3 (resp. R ∈ W 1,∞(Ω̂ε)

3) in the cell ε(ξ + Y), ξ ∈ Ξ̂ε , as the
Q1 interpolate of its values on the vertices of this parallelotope.

Proposition 1 For every displacement u ∈ Vε,r , (i ∈ {1,2,3})

‖∇R‖L2(Ω ′ int
ε ) ≤ C

ε

r2
‖e(u)‖L2(Sε,r )

,

∥∥∥∂U
∂xi

−R∧ ei

∥∥∥
L2(Ω ′ int

ε )
≤ C

ε2

r2
‖e(u)‖L2(Sε,r )

,

∥∥e(U)
∥∥

L2(Ω ′ int
ε )

≤ C
ε2

r2
‖e(u)‖L2(Sε,r )

.

(2.14)

Moreover, one has

‖U‖H 1(Ω ′ int
ε ) ≤ C

ε2

r2
‖e(u)‖L2(Sε,r )

, ‖R‖L2(Ω ′ int
ε ) ≤ C

ε2

r2
‖e(u)‖L2(Sε,r )

. (2.15)

Proof The proof of this proposition is similar to that of [23, Propositions 1 and 2]. First,
from (2.13) and from the definition of the fields R, U we get (2.14)1,2. Then, (2.14)2 gives
(2.14)3. Applying [11, Lemma 5.22] or [23, Lemma 7] lead to the Korn inequality (2.15)1

in Ω ′ int
ε , from which and (2.14)2 we get (2.15)2. �

Then, proceeding as [23, Sect. 5] we derive the following macroscopic estimates:
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Proposition 2 For every u in Vε,r , the following estimates of the elementary displacements
hold:

‖U‖L2(Sε)
≤ C

ε

r2
‖e(u)‖L2(Sε,r )

,

∥∥∥dU
ds

∥∥∥
L2(Sε)

≤ C
ε

r2
‖e(u)‖L2(Sε,r )

,

‖R‖L2(Sε)
≤ C

ε

r2
‖e(u)‖L2(Sε,r )

,

∥∥∥dR
ds

∥∥∥
L2(Sε)

≤ C
1

r2
‖e(u)‖L2(Sε,r )

,

‖Ue‖L2(Sε,r )
≤ C

ε

r
‖e(u)‖L2(Sε,r )

, ‖∇Ue‖L2(Sε,r )
≤ C

ε

r
‖e(u)‖L2(Sε,r )

.

(2.16)

Moreover, one has the following Korn type inequalities:

‖u‖L2(Sε,r )
≤ C

ε

r
‖e(u)‖L2(Sε,r )

, ‖∇u‖L2(Sε,r )
≤ C

ε

r
‖e(u)‖L2(Sε,r )

. (2.17)

The constants are independent of ε and r .

Proof Estimates (2.16) are the consequences of those of Proposition 1 and [11, Lemma 5.35]
or [23, Lemma 8]. From (2.16)5,6 and (2.9)1,2 we obtain (2.17). �

3 A Preliminary Result

Denote

H 1
per,0(S)

.=
{
φ ∈ H 1

per (S) |
∫

S
φ dS = 0

}
.

We endow H 1
per,0(S)3 with the scalar product

∀(U,V) ∈ H 1
per,0(S)3 × H 1

per,0(S)3, < U,V >S=
∫

S

dU
dS

· dV
dS

dS.

Denote

Uper (S)
.= U(S) ∩ H 1

per,0(S)3, DI,per (S)
.= DI (S) ∩ Uper (S).

We define DE,per (S) as the orthogonal subspace of DI,per (S) in Uper (S) for the above scalar
product. Observe that since S is a 3D-periodic structure, one has DI,per (S) ∩ R = {0}.

Set

DI,per (S)
.=
{
(Â, B̂) ∈ H 1

per,0(S)3 × H 1
per (S)3 | dÂ

dS
= B̂ ∧ t1 a.e. in S

}
.

As for [23], we equip DI,per (S), with the semi-norm

‖(Â, B̂)‖I =
∥∥∥dB̂

dS

∥∥∥
L2(S)

.

Since S is 3D-periodic structure, this semi-norm is a norm equivalent to the usual norm of
the product space H 1

per,0(S)3 × H 1
per (S)3.

The elements of DI,per (S) (resp. the first terms of the pairs in DI,per (S)) are the inexten-
sional displacements.
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Let M be a 3 × 3 constant matrix, equation

V ∈ DE,per (S),
dV

dS
· t1 = −(M t1

) · t1 a.e. in S, (3.1)

admits at most one solution. Indeed, if we have two solutions then the difference belongs to
DI,per (S).

Denote Ms(S) the subspace of the 3 × 3 symmetric matrices such that equation (3.1)
admits a solution.

For every M ∈Ms(S). We denote V (M) the unique solution to (3.1).
Now, consider the following equation:

M ∈ Ms(S), Mt1 + dÂ
dS

= B̂∧ t1 a.e. in S, (Â, B̂) ∈ H 1
per,0(S)3 × H 1

per (S)3.

(3.2)
It will play an important role in this study (see Sect. 8 and the following).

Now, let M be in Ms(S), one has

(
Mt1 + dV (M)

dS

)
· t1 = 0 a.e. in S.

Hence, there exists a field B̂V (M) defined on S , constant on every segment of S , satisfying

B̂V (M) · t1 = 0, Mt1 + dV (M)

dS
= B̂V (M) ∧ t1. (3.3)

Remind the following result: the function φa , a > 0, defined by

φa(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− 1 for all t in [0, a/4],

− 1 + 48
(t − a/4)(3a/4 − t)

a2

for all t in
[
a/4,3a/4],

− 1 for all t in [3a/4, a],

satisfies
∫ a

0
φa(t)dt = 0. (3.4)

We define the field B̂(M) on the segment γ� = [A�,A� + l�t�1], l ∈ {1, . . . ,m}, by

B̂(M)|γ�
(S1) = (1 +φl� (S1)

)
B̂V (M)|γ�

= ΦV |γ�
(S1)B̂V (M)|γ�

, for all S1 ∈ [0, l�] (3.5)

where

ΦV |γ�
(S)

.=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for all S1 in [0, l�/4],

48
(S1 − l�/4)(3l�/4 − S1)

l2
�

for all S1 in [l�/4,3l�/4],

0 for all S1 in [3l�/4, l�],

S = A� + S1t�1.

(3.6)
By construction, B̂(M) belongs to H 1

per (S)3 and vanishes in the neighborhood of every node
of S .

Observe that B̂(M) − B̂V (M) satisfies
∫

γ�

(
B̂(M) − B̂V (M)

)
dS1 = 0 for every segment γ� ∈ S.
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Hence, there exits a field ÂV (M) ∈ H 1
per (S)3 such that

dÂV (M)

dS
= (B̂(M) − B̂V (M)

)∧ t1, a.e. on S, ÂV (M) = 0 on every node of S.

Set Â(M) = V (M)+ ÂV (M)+C(M) where C(M) ∈R
3 is chosen such that

∫

S
Â(M) dS =

0. By construction Â(M) belongs to H 1
per,0(S)3 and the couple (Â(M), B̂(M)) satisfies (3.2).

Note that in the neighborhood of every node A ∈ K, one has (M ∈Ms(S))

Mt1 + dÂ(M)

dS
= 0, Â(M)(S) = Â(M)(A) − M(S − A) a.e. in B(A, l0) ∩ S,

l0 = inf
�∈{1,...,m}

l�

4
.

(3.7)

Lemma 3 The map M ∈ Ms(S) �−→ (
Â(M), B̂(M)

) ∈ H 1
per,0(S)3 × H 1

per (S)3 is linear and
one to one.

Moreover, if (Â, B̂) ∈ H 1
per,0(S)3 × H 1

per (S)3 is a solution to (3.2) then
(
Â− Â(M), B̂ −

B̂(M)
)

belongs to DI,per (S).

Proof Let (Â, B̂) be in H 1
per,0(S)3 × H 1

per (S)3 a solution to (3.2) then

d(Â− Â(M))

dS
= (B̂ − B̂(M)) ∧ t1 a.e. in S, (Â, B̂) ∈ H 1

per,0(S)3 × H 1
per (S)3

which means that
(
Â− Â(M), B̂ − B̂(M)

)
belongs to DI,per (S). �

Remark 1 If we get another map V′ : Ms(S) �−→ Uper (S) such that for every M, the func-
tion V′(M) satisfies

dV′(M)

dS
· t1 = −(M t1

) · t1 a.e. in S

then proceeding as above we build a map M �−→ (
Â′(M), B̂′(M)

)
solution to equation (3.2).

We have

(
Â′(M) − Â(M), B̂′(M) − B̂(M)

) ∈ DI,per (S).

4 Some Classes of Unstable Structures

4.1 Notations

Denote

1. K1, K2, K3 3 integers greater than or equal to 1 and

K .= {0, . . . ,K1} × {0, . . . ,K2} × {0, . . . ,K3} ⊂ N
3, K(i) .= {k ∈ K | ki = 0

}
,

K̂ .= {0, . . . ,K1 − 1} × {0, . . . ,K2 − 1} × {0, . . . ,K3 − 1}, K̂(i) .= {k ∈ K̂ | ki = 0
}
,
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2. ζ1, ζ2 and ζ3 discrete functions, ζ1 is defined on K and ζ2 (resp. ζ3) is a function which
only depends on k2 (resp. k3) by

0 ≤ ζ1(0, k2, k3) < · · · < ζ1(K1 − 1, k2, k3) < 1 ≤ ζ1(K1, k2, k3) = 1 + ζ1(0, k2, k3),

∀(k2, k3) ∈ {0, . . . ,K2} × {0, . . . ,K3},
0 = ζ2(0) < · · · < ζ2(K2 − 1) < 1 = ζ2(K2),

0 = ζ3(0) < · · · < ζ3(K3 − 1) < 1 = ζ3(K3),

(4.1)
then these functions are extended such that

ζ(k + n1K1e1 + n2K2e2 + n3K3e3) = ζ(k) + n1e1 + n2e2 + n3e3,

∀(k, n1, n2, n3, k) ∈ K̂ ×Z
3,

3. K the set of points

K .=
{
A(k) ∈ R

3 | A(k) =
3∑

i=1

ζi(k)ei , k ∈ K
}
,

4. γ (i), i ∈ {1,2,3}, the segments

γ (i)(k) = [A(k),A(k + ei )], k ∈ Z
3

A(k) is the first extremity of the segment γ (1)(k) (resp. γ (2)(k), γ (3)(k)) while A(k + e1)

(resp. A(k + e2), A(k + e3)) is the second,

5.
−→
γ (i), i ∈ {1,2,3}, the unit vector6

−→
γ (i)(k) =

−−−−−−−−−→
A(k)A(k + ei )

|A(k)A(k + ei )| , k ∈ Z
3,

note that

−→
γ (1)(k) = e1 and

−→
γ (i)(k) ∈Re1 ⊕Rei , i ∈ {2,3},

also observe that for every (i, k) ∈ {2,3} × K,
−→
γ (i)(k) · ei > 0,

6. S(i) the set of segments whose “average” direction is ei , i ∈ {1,2,3}

S(i) .=
⋃

k∈K(i), t=0,...,Ki−1

γ (i)(k + tei ),

note that S(1) contains only straight lines, the whole 3D-periodic structure is

S .=
3⋃

i=1

S(i).

6This vector is denoted t1 in the following sections when structures of type Sj , j ∈ {0,1,2,3,4,5,6} are
concerned.
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4.2 Some Types of Unstable Structures (see Fig. 2, Fig. 4)

Definition 5 (Structure of type S0) A 3D-periodic structure S is of type S0 if S = S (see
Fig. 1(a), (b), (c)).

Definition 6 (Structure of type S1) A 3D-periodic structure S ⊂ S is of type S1, if at least
one segment in every line of S(1) is removed in such a way that the remaining segments
form a 3D-periodic structure (see Fig. 1(d), (e), (f)).

Definition 7 (Structure of type S2) A 3D-periodic structure S ⊂ S is of type S2, if it is
obtained from a structure of type S1 where at least one segment in every “zig-zag” line of
S(2) is removed in such a way that the remaining segments form a 3D-periodic structure.

Definition 8 (Structure of type S3) A 3D-periodic structure S ⊂ S is of type S3, if it is
obtained from a structure of type S2 where at least one segment in every “zig-zag” line of
S(3) is removed in such a way that the remaining segments form a 3D-periodic structure.

Definition 9 (“Long” zig-zag line) Let S be a structure of type Si , i ∈ {0,1,2,3}. A “long”
zig-zag line of S(j), j ∈ {1,2,3} is a sequence of contiguous segments [A,A1], . . . , [An,B]
in S(j) with A = A(k) and B = A + ej , k ∈ Kj .

Definition 10 (“Short” zig-zag line) Let S be a structure of type Si , i ∈ {0,1,2,3}. A “short”
zig-zag line of S(j), j ∈ {1,2,3} is a sequence of contiguous segments [A,A1], . . . , [An,B]
in S(j) ∪ (S(j) + ej ) (with [A,A1] ∈ S(j), An ∈ S(j)) such that A (resp. B) is the only
extremity of a segment in S(j) ∪ (S(j) + ej ).

Definition 11 (Structure of type S4) A 3D-periodic structure S is of type S4 if it results
from a 3D-periodic structure S ′ (stable or not) where we replace every segment [A,B] ∈ S ′
by at least a zig-zag line, each made of at least two segments [A,A1], . . ., [An,B] (n ≥ 1)
with two-by-two non-collinear directions and such that A1, . . . ,An are only nodes of two
segments of this line.

Definition 12 (Structure of type S5) A 3D-periodic structure S is of type S5 if it is obtained
from a 3D-periodic structure of type Sj , j ∈ {0,1,2,3}, where we replace every node by a
not necessarily regular octahedron7 (see Fig. 3).

Definition 13 (Structure of type S6) A 3D-periodic structure S is of type S6 if for all E ∈
L2(S) (constant on every segment) there exists V ∈ DE,per (S) such that8

dV

dS
· t1 = E a.e. in S.

The structures of type S3 or S4 are of type S6 (see Lemmas 6-8). A structure of type S5

which derives from a structure of type S3 is of type S6 (see Corollary 2).

Definition 14 (Quasi-stable structure) A 3D-periodic structure S is quasi-stable, if it con-
tains a substructure S ′ which is a stable 3D-periodic structure (see [23, Definition 5]) such
that

(
S \ S ′)∩

((
S \ S ′)+ ei

)
= ∅, i ∈ {1,2,3}.

7One can choose other stable structures.
8This leads to an algebraic characterization of structures of this type.
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Fig. 2 2D-view on periodic structures of type (a) − S0, (b) − S1, (c) − S2, (d) − S4, (e) − S5, (f) − S6

5 Some Properties of Structures of Type Sj , j ∈ {0,3,4,5,6}
5.1 Structures of Type S0

For type S0 structures, we make the following additional assumptions:

– Assumption AB: for every P ∈ Γ there exists (t1, t2, t3) ∈R
3 such that P + tiei ∈ Ω ,

– Assumption AL: every straight line L directed by ei , i ∈ {1,2,3}, meets Γ at most one
point and L ∩ Ω is a connected set,

– Assumption AZ: all the couples of contiguous lines parallel to Re1 ⊕Rei and belonging
to S(1) are connected by a segment in S(i) whose direction is not collinear to ei , i ∈ {2,3}.
For every structure of type S0, we denote (i ∈ {1,2,3})

Ω(i) .=
{
x ∈ Ω | x = P + λei , P ∈ Γ, λ ∈R and [P,x] ⊂ Ω

}
,

Ξ(i)
ε

.=
{
ξ ∈ Ξε | (εξ + εY ) ∩ Γ �= ∅ or εξ + εY ⊂ Ω(i)

}
,

Ω(i)
ε

.= interior
( ⋃

ξ∈Ξ
(i)
ε

(εξ + εY )
)
.

Note that due to Assumption AB the open sets Ω(i), i ∈ {1,2,3} are not empty.

Lemma 4 Let S be a structure of type S0. For all E ∈ L2(Sε) there exists a field V ∈ H 1
Γ (Sε)

3

satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV

ds
· t1 = E a.e. in Sε,

‖V1‖L2(Sε)
+
∥∥∥dV1

ds

∥∥∥
L2(S(1)

ε )
+ ε

∥∥∥dV1

ds

∥∥∥
L2(S(2)

ε ∪S(3)
ε )

≤ C‖E‖
L2(S(1)

ε )
,

3∑
i=2

(
‖Vi‖L2(Sε)

+
∥∥∥dVi

ds

∥∥∥
L2(S(i)

ε )
+ ε

∥∥∥dVi

ds

∥∥∥
L2(S(1)

ε ∪S(5−i)
ε )

)
≤ C

ε
‖E‖L2(Sε)

.

(5.1)
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If S contains only straight lines then the solution to (5.1)1 satisfies

‖V ‖L2(Sε)
+

3∑
i=1

∥∥∥dVi

ds

∥∥∥
L2(S(i)

ε )
≤ C‖E‖L2(Sε)

. (5.2)

The constant does not depend on ε.

Proof From equality (5.1)1, we first get

dV1

ds
= E on every line of S(1)

ε .

Consider a line in S(1)
ε , if one extremity of this line belongs to Ω ′ \ Ω , we choose V1 = 0

on this extremity then we solve the above equation. If both extremities are not in Ω ′ \ Ω ,
we choose the solution to the above equation, the mean value of which on this line vanishes.
Since Ω is bounded, the Poincaré and Poincaré-Wirtinger inequalities give

‖V1‖L2(S(1)
ε )

≤ C‖E‖
L2(S(1)

ε )
.

The constant is independent of ε. Since the values of V1 are defined for every node of Kε ,
one extends this function in an element affine on every small segment of S2)

ε ∪ S(3)
ε still

denoted V1. It satisfies

‖V1‖L2(Sε)
≤ C‖V1‖L2(S(1)

ε )
≤ C‖E‖

L2(S(1)
ε )

,

∥∥∥dV1

ds

∥∥∥
L2(S(2)

ε ∪S(3)
ε )

≤ C

ε
‖V1‖L2(Sε)

≤ C

ε
‖E‖

L2(S(1)
ε )

.

Hence (5.1)2.
Now, consider a zig-zag line in S(2)

ε , on this line, equation (5.1)1 becomes

dV2

ds
(e2 · t1) + dV1

ds
(e1 · t1) = E a.e. in S(2)

ε . (5.3)

Hence, one has to solve

dV2

ds
= 1

e2 · t1

(
E − dV1

ds
(e1 · t1)

)
a.e. in S(2)

ε .

Again as for V1, if one extremity of the zig-zag line belongs to Ω ′ \Ω , we choose V2 = 0 on
this extremity then we determine V2 using the above equality. If both extremities are not in
Ω ′ \ Ω , we choose the solution whose mean value on this line vanishes. Then, one extends
this function in an element affine on every small segment of S1)

ε ∪ S(3)
ε still denoted V2.

Again, the Poincaré and Poincaré-Wirtinger inequalities and the above estimate lead to the
L2 norm of V2.

From the above equality (5.3) and the estimate (5.1)2, we get

‖V2‖L2(Sε)
+
∥∥∥dV2

ds

∥∥∥
L2(S(2)

ε )
+ 1

ε

∥∥∥dV2

ds

∥∥∥
L2(S(1)

ε ∪S(3)
ε )

≤ C
(∥∥∥dV1

ds

∥∥∥
L2(S(2)

ε )
+ ‖E‖

L2(S(2)
ε )

)
.

Proceeding in the same way gives V3 and then its estimates. �
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Proposition 3 Let S be a structure of type S0. For every U ∈ UΓ (Sε) there exist V ∈ UΓ (Sε)

satisfying
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dV

ds
· t1 = dU

ds
· t1 a.e. in Sε,

‖V1‖L2(Sε)
+ ε

3∑
i=2

(
‖Vi‖L2(Sε)

+
∥∥∥dVi

ds

∥∥∥
L2(S(i)

ε )

)
≤ C

∥∥∥dU

ds
· t1

∥∥∥
L2(Sε)

.

(5.4)

The constants do not depend on ε.
Moreover, one has

U − V ∈ DI (Sε).

Proof The results of this proposition are the immediate consequences of Lemma 4. �

Remark 2 In the above lemma, since U − V ∈ DI (Sε), one has

– U1 = V1 in Ω(1)
ε ∩ Sε ,

–
dUi

ds
= dVi

ds
a.e. in Ω(1)

ε ∩ S(i)
ε , i ∈ {2,3}.

Hence

‖U1‖L2(Ω
(1)
ε ∩Sε)

+
∥∥∥dU1

ds

∥∥∥
L2(Ω

(1)
ε ∩S(1)

ε )
+ ε

3∑
i=2

∥∥∥dUi

ds

∥∥∥
L2(Ω

(1)
ε ∩S(i)

ε )
≤ C

∥∥∥dU

ds
· t1

∥∥∥
L2(Sε)

.

(5.5)
If S contains only straight lines then we obtain

3∑
i=1

(
‖Ui‖L2(Ω

(i)
ε ∩Sε)

+
∥∥∥dUi

ds

∥∥∥
L2(Ω

(i)
ε ∩S(i)

ε )

)
≤ C

∥∥∥dU

ds
· t1

∥∥∥
L2(Sε)

. (5.6)

5.2 Structures of Type S3

Lemma 5 Let S be a structure of type S3. For all E ∈ L2(Sε) there exists V ∈ H 1
Γ (Sε)

3

satisfying

dV

ds
· t1 = E a.e. in Sε, ‖V ‖L2(Sε)

≤ Cε‖E‖L2(Sε)
. (5.7)

The constant does not depend on ε.

Proof The “short” straight lines of S(i)
ε , i ∈ {1,2,3}, have a length of order ε. We solve

dV1

ds
= E on every “short” line of S(1)

ε choosing the solution whose mean value is equal to 0

on every “short” line (possibly we set V1 = 0 if an extremity of the “short” line belongs to
Ω ′ ∩ Ω). Hence, we get

‖V1‖L2(Sε)
+ ε

∥∥∥dV1

ds

∥∥∥
L2(S(1)

ε )
≤ Cε‖E‖

L2(S(1)
ε )

=⇒
∥∥∥dV1

ds

∥∥∥
L2(S(2)

ε ∪S(3)
ε )

≤ C

ε
‖V1‖L2(Sε)

≤ C‖E‖
L2(S(1)

ε )
.

(5.8)

Then, we proceed as in the proof of Lemma 4. �
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Lemma 6 Let S be a structure of type S3. For all E ∈ L2(S) (constant on every segment)
there exists a unique field V ∈ DE,per (S) satisfying

dV

dS
· t1 = E a.e. in S. (5.9)

Proof We proceed as in the proof of Lemma 5. �

Lemma 7 Let S be a structure of type S3 then

dim
(
Ms(S)

)= 6, VΓ (Ω,S) = H 1
Γ (Ω)3.

Proof It is an immediate consequence of Lemma 6 since for every 3 × 3 symmetric matrix
problem (3.1) admits a unique solution. �

Proposition 4 Let S be a structure of type S3. For every U ∈ UΓ (Sε) there exists V ∈ UΓ (Sε)

satisfying

U − V ∈ DI (Sε), ‖V ‖L2(Sε)
≤ Cε‖V ‖ε,E = Cε

∥∥∥dU

ds
· t1

∥∥∥
L2(Sε)

. (5.10)

The constant does not depend on ε.

5.3 Structures of Type S4

Lemma 8 Let S be a structure of type S4. For all E ∈ L2(S), there exists V ∈ H 1
per (S)3

satisfying

dV

dS
· t1 = E a.e. in S, ‖V ‖H 1(S) ≤ C‖E‖L2(S). (5.11)

Proof First, consider two segments [A,A1] and [A1,B] with non-collinear directions. We
define W a continuous function on these two segments by ((a, b) ∈ R

2)

W(A + S1a1) =
(∫ S1

0
E|[A,A1] dt

)
a1 + aS1b1

a.e. in [AA1], S1 ∈ [0, l1], a1 =
−−→
AA1

|−−→AA1|
,

W(A1 + S1a′
1) =

(∫ S1

l2

E|[A1,B] dt
)

a′
1 + b(l2 − S1)b′

1

a.e. in [A1,B], S1 ∈ [0, l2], a′
1 =

−−→
A1B

|−−→A1B|
,

where l1 = |−−→AA1|, l2 = |−−→A1B| and where b1 and b′
1 are determined such that

b1 ·a1 = 0, b′
1 ·a′

1 = 0, W(A1) =
(∫ l1

0
E|[A,A1] dt

)
a1 + l1b1 =

(∫ 0

l2

E|[A1,B] dt
)

a′
1 + l2b′

1.
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There is at least a solution (only one if we choose b1 and b′
1 ∈Ra1 ⊕Ra′

1).
Second, now consider three segments [A,A1], [A1,A2] and [A2,B] with two by two

non-collinear directions. On these three segments we define a by

W(A + S1a1) =
(∫ S1

0
E|[A,A1] dt

)
a1 + S1b1

a.e. in [AA1], S1 ∈ [0, l1], a1 =
−−→
AA1

|−−→AA1|
;

W(A1 + S1a′
1) = b +

(∫ S1

0
E|[A1,A2] dt

)
a′

1 + S1b′
1

a.e. in [A1,A2], S1 ∈ [0, l2], a′
1 =

−−−→
A1A2

|−−−→
A1A2|

;

W(A2 + S1a′′
1) =

(∫ S1

l3

E|[A2,B] dt
)

a′′
1 + (l3 − S1)b′′

1

a.e. in [A2,B], S1 ∈ [0, l3], a′′
1 =

−−→
A2B

|−−→A2B|
,

where l1 = |−−→AA1|, l2 = |−−−→
A1A2|, l3 = |−−→A2B| and where b1, b′

1, b′′
1 and b are determined to get

a1 · b1 = 0, a′
1 · b′

1 = 0, a′′
1 · b′′

1 = 0,

W(A1) =
(∫ l1

0
E|[A,A1] dt

)
a1 + l1b1 = b,

W(A2) = b +
(∫ l2

0
E|[A1,A2] dt

)
a′

1 + l2b′
1 = −

(∫ l3

0
E|[A2,B] dt

)
a′′

1 + l3b′′
1.

There is at least a solution (only one if a1, a′
1, a′′

1 are independent).
Observe that in these two situations above, one has W(A) = W(B) = 0.
Now, consider n+1 segments [A,A1], . . ., [An,B] (n ≥ 1) with two by two non-collinear

directions. Combining the two cases above, we can build a field W satisfying

W(A) = W(B) = 0,
dW

dS
· t1 = E a.e. in every segment,

where t1 stands for a unit vector in the direction of the segments. �

Corollary 1 If S is a 3D-periodic structure of type S4 then

dim
(
Ms(S)

)= 6, VΓ (Ω,S) = H 1
Γ (Ω)3.

Proof It is an immediate consequence of Lemma 8 since for every 3 × 3 symmetric matrix
problem (3.1) admits a unique solution. �

Lemma 9 Let S be a 3D-periodic structure of type S4. For all E ∈ L2(Sε), there exists
V ∈ H 1

Γ (Sε)
3 satisfying

dV

ds
· t1 = E a.e. in Sε, ‖V ‖L2(Sε)

≤ Cε‖E‖L2(Sε)
. (5.12)
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Fig. 3 Octahedron O(A�),
A� ∈ K′, K′: set of nodes of S ′

The constant does not depend on ε.

Proof The proof of this lemma is a direct consequence of Lemmas 8 and 4. �

Lemma 10 Let S be a structure of type S4. For every U ∈ UΓ (Sε) there exists V ∈ UΓ (Sε)

such that

U − V ∈ DI (Sε), ‖V ‖L2(Sε)
≤ Cε‖V ‖ε,E ≤ C

∥∥∥dU

ds
· t1

∥∥∥
L2(Sε)

. (5.13)

The constant C is independent of ε.

Proof This lemma is a direct consequence of Lemma 9. �

5.4 Structures of Type S5

Lemma 11 Let S be a structure of type S5 deriving from a structure S ′ of type Sj , j ∈
{0,1,2,3}. For all E ∈ L2(Sε) there exists V ∈ H 1

Γ (Sε)
3 satisfying

dV

ds
· t1 = E a.e. in Sε. (5.14)

The estimates of V depends on the type of the structure S ′. One has

– the estimates of V are the same as those in (5.1) if S ′ is of type S0,
– the estimates of V are the same as those in (5.7) if S ′ is of type S3.

Proof For simplicity, we assume E constant on every segment of Sε .
The lines Aa, Bb, Cc, Dd , Ee and Ff intersect at the point O .
Let A� be a node of S ′. Consider the octahedron εξ + εO(A�), ξ ∈ Ξε , A� ∈ K′, see

Fig. 3.
There exists a unique field VA� ∈ DE

(
O(A�)

)
(see (2.4)) solution to

dVA�

dS
· t1 = εE|εξ+εO(A�) a.e. in O(A�),

VA�(b) · e1 = 0, VA�(a) ⊥ e3, VA�(f ) ⊥ e2.
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One has

‖VA�‖L2(O(A�)) ≤ Cε‖E‖L2(εξ+εO(A�)).

Observe that the vectors
−→
Oa,

−→
Bb,

−→
Oc,

−→
Od ,

−→
Oe and

−→
Of are collinear to the corresponding

vectors t1 of the segments in S ′ (
−→
Oa,

−→
Od ∈ Re1 ⊕ Re2,

−→
Ob,

−→
Oe ∈ Re1 and

−→
Of ,

−→
Oc ∈

Re1 ⊕Re3).
Now, we proceed as to prove the Lemma 4. One first determine the component V1 of the

solution to (5.14).
Consider the segment [A�,B�] ∈ S ′ (if it exists) whose direction is collinear to e1. If

V1(εξ + εA� + εB) is known, then one has V1(εξ + εA� + εb) = V1(εξ + εA� + εB). We

set V1|εξ+εO(B�)(s) = V1(εξ + εA� + εb) +
(
VA�

( s − εξ − εA�

ε

)
· e1

)
e1. In such a way that

V1(εξ + εA� + εe), V1(εξ + εA� + εE) and also V1(εξ + εA� + εa), V1(εξ + εA� + εf ),
V1(εξ + εA� + εd) and V1(εξ + εA� + εc) are known.

If the segment [A�,B�] ∈ S ′ (always whose direction is collinear to e1) does not belong

to S ′. We set V1|εξ+εO(B�)(s) =
(
VA�

( s − εξ − εA�

ε

)
· e1

)
e1. Hence V1(εξ + εA� + εe),

V1(εξ + εA� + εE) and also V1(εξ + εA� + εa), V1(εξ + εA� + εf ), V1(εξ + εA� + εd)

and V1(εξ + εA� + εc) are known. We extend V1 as an affine function in the segments
joining two contiguous octahedra. The estimates of V1 are similar to those obtained in the
Lemma 4.

Now we determine V2. Consider the segment [A�,B�] ∈ S ′ (if it exists) whose direction is
collinear to t1 ∈Re1 ⊕Re2. If V2(εξ +εA� +εA) is known, then we first determine V2(εξ +
εA� + εa) using (5.14) and the fact that V1 is known everywhere. We set V2|εξ+εO(B�)(s) =
V2(εξ + εA� + εa) +

(
VA�

( s − εξ − εA�

ε

)
· e2

)
e2. In such a way V2(εξ + εA� + εd),

V2(εξ + εA� + εD) and also V2(εξ + εA� + εb), V2(εξ + εA� + εf ), V2(εξ + εA� + εe)

and V2(εξ + εA� + εc) are known.
If the segment [A�,B�] ∈ S ′ (always whose direction belongs to Re1 ⊕ e2) does not

belong to S ′, we proceed as above.
We determine V3 in the same way. �

Corollary 2 If S is a 3D-periodic structure of type S5 and deriving from a structure S ′

of type S3 then for all E ∈ L2(S) (constant on every segment) there exists a unique field
V ∈ DE,per (S) satisfying

dV

dS
· t1 = E a.e. in S. (5.15)

Moreover, one has

dim
(
Ms(S)

)= 6, VΓ (Ω,S) = H 1
Γ (Ω)3.

Proof The fact that equation (5.15) admits a unique solution is an immediate consequence
of Lemma 11.

The second statement is an immediate consequence of the first of this lemma. �
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Proposition 5 Let S be a structure of type S5 deriving from a structure S ′ of type S0 or S3.
For every U ∈ UΓ (Sε) there exists V ∈ UΓ (Sε) such that

U − V ∈ DI (Sε). (5.16)

The estimates of V depends on the type of the substructure S ′ (see the corresponding cases
in Propositions 3 or 4).

5.5 Structures of Type S6

Lemma 12 If S is a 3D-periodic structure of type S6 then

dim
(
Ms(S)

)= 6, VΓ (Ω,S) = H 1
Γ (Ω)3.

Proof This lemma is an immediate consequence of the definition of the structures of type
S6. �

5.6 Quasi-Stable Structures

Lemma 13 If S is a 3D-periodic stable structure or quasi-stable structure then
dim

(
Ms(S)

)= 0.

Proof Suppose S stable, if M belongs to Ms(S) then, the function s −→ V (M)(s) + Ms
is an inextensional displacement, hence it is a rigid displacement r(s) = a + b ∧ s (s ∈ S).
Since V (M) is periodic, this leads to

−Mei + b ∧ ei = 0, i ∈ {1,2,3}.
Remind that M is a 3 × 3 symmetric matrix, thus M = 0 and b = 0.

If S is a 3D-periodic quasi-stable structure then it contains a 3D-periodic stable struc-
ture. Applying above gives the result. �

Proposition 6 Let S be a quasi-stable structure. For every U ∈ UΓ (Sε) there exists V ∈
UΓ (Sε) such that

U − V ∈ DI (Sε), ‖V ‖L2(Sε)
≤ C‖V ‖ε,E = C

∥∥∥dU

ds
· t1

∥∥∥
L2(Sε)

. (5.17)

The constant C is independent of ε.

Proof First observe that due to the definition of quasi-stable structures, the set DI (S) of
inextensional displacements is

DI (S) = R ⊕ DI,0S′(S),

where

DI,0S′(S)
.=
{
Φ ∈ DI (S) | Φ = 0 in S ′

}
.

Every element of DI,0S′(S) is extended by 0 outside S . As a consequence

DI (Sε) = R ⊕ DI,0S′
ε
(Sε),
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where

DI,0S′
ε
(Sε)

.=
{
V ∈ DI (Sε) | S ∈ S �−→ V (εξ + εS) ∈ DI,0S′(S) for all ξ ∈ Ξε

}
.

Now, let U be in H 1
Γ (Sε)

3. Since S ′
ε is a stable 3D-periodic stable structure, we know (see

[23, Proposition 1]) that

‖U‖H 1(S′
ε)

≤ C

∥∥∥dU

ds
· t1

∥∥∥
L2(S′

ε)
.

The constant does not depend on ε.
Besides, for every ξ ∈ Ξε , applying the above result to the displacement φξ (S) = U(εξ +

S) gives a couple (rξ ,Vξ ) ∈ R × DI,0S′(S), (rξ (x) = aξ + bξ (x − εξ), (aξ ,bξ ) ∈ R
3 × R

3)
such that φξ = rξ + Vξ . Hence, due to [23, Proposition 1] and after ε-scaling, we have

‖Vξ‖L2(εξ+εS′) = ‖U − rξ‖L2(εξ+εS′) ≤ Cε

∥∥∥dU

ds
· t1

∥∥∥
L2(εξ+εS′)

.

Then, the above two estimates lead to

∑
ξ∈Ξε

‖rξ‖2
L2(εξ+εS′) ≤ C

∑
ξ∈Ξε

∥∥∥dU

ds
· t1

∥∥∥
2

L2(εξ+εS′)
.

A straightforward calculation gives

∑
ξ∈Ξε

(
ε3|aξ |2 + ε6|bξ |2

)≤ C
∑
ξ∈Ξε

∥∥∥dU

ds
· t1

∥∥∥
2

L2(εξ+εS′)
≤ C

∑
ξ∈Ξε

∥∥∥dU

ds
· t1

∥∥∥
2

L2(εξ+εS)

which in turn yields

∑
ξ∈Ξε

‖rξ‖2
L2(εξ+εS)

≤ C
∑
ξ∈Ξε

∥∥∥dU

ds
· t1

∥∥∥
2

L2(εξ+εS)

and finally

∥∥U − V
∥∥

L2(Sε)
≤ C

∥∥∥dU

ds
· t1

∥∥∥
L2(Sε)

, where V (s) =
∑
ξ∈Ξε

Vξ

( s − εξ

ε

)
for a.e. s ∈ Sε.

By construction V belongs to H 1
Γ (Sε)

3. The constant does not depend on ε. �

6 Statement of the Problem

6.1 Elasticity Problem

Let aε
ijkl ∈ L∞(Sε,r ), (i,j,k,l) ∈ {1,2,3}4, be the components of the elasticity tensor, these

functions satisfy the usual symmetry and positivity conditions

– aε
ijkl = a

ε,r
j ikl = a

ε,r
klij a.e. in Sε,r ;
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– for any τ ∈ M3
s , where M3

s is the space of 3 × 3 symmetric matrices, there exists C0 > 0
(independent of ε and r) such that

aε
ijklτij τkl ≥ C0τij τij a.e. in Sε,r . (6.1)

The constitutive law for the material occupying the domain Sε,r is given by the relation
between the linearized strain tensor and the stress tensor

σij (u)
.= aε

ijkl es,kl(u), ∀u ∈ Vε,r . (6.2)

We assume that every beam is made of an orthotropic material, in the reference frame of the
beams one has
⎛
⎜⎜⎜⎜⎜⎜⎝

σs,11(u)

σs,22(u)

σs,33(u)

σs,12(u)

σs,13(u)

σs,23(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

E11

(
s
ε

)
E12

(
s
ε

)
E13

(
s
ε

)
0 0 0

E12
(

s
ε

)
E22
(

s
ε

)
E23
(

s
ε

)
0 0 0

E13

(
s
ε

)
E23

(
s
ε

)
E33

(
s
ε

)
0 0 0

0 0 0 G12

(
s
ε

)
0 0

0 0 0 0 G13

(
s
ε

)
0

0 0 0 0 0 G23
(

s
ε

)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

es,11(u)

es,22(u)

es,33(u)

es,12(u)

es,13(u)

es,23(u)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

The coefficients aε
ijkl of the above 6 × 6 matrix are functions in L∞(Sε)

aε
ijkl(x) = aε

ijkl(s) = aijkl

( s
ε

)
, aijkl ∈ L∞

per (S),

for a.e. x = s + s2t�2 + s3t�3 = εξ + εA� + s1t�1 + s2t�2 + s3t�3 in Pξ

ε,�,r ,

� ∈ {1, . . . ,m}, ξ ∈ Ξε.

The unknown displacement9 uε : Sε,r →R
3 is the solution to the linearized elasticity system:

⎧⎪⎨
⎪⎩

∇ · σ(uε) = −fε in Sε,r ,

uε = 0 on Γε,r ∩ ∂Sε,r ,

σ (uε) νε = 0 on ∂Sε,r \ Γε,r ,

(6.3)

where νε is the outward normal vector to ∂Sε,r \ Γε,r , fε is the density of volume forces.
The variational formulation of problem (6.3) is

⎧
⎪⎨
⎪⎩

Find uε ∈ Vε,r such that,
∫

Sε,r

σ (uε) : e(v) dx =
∫

Sε,r

fε · v dx, ∀v ∈ Vε,r .
(6.4)

6.2 Force Assumptions and Apriori Estimates of the Solution to (6.4)

As in [23], we distinguish two types of applied forces, the first ones are applied between the
junctions and the second ones in the junctions.

9Of course, the solution to this problem depends on ε and r , but for simplicity, we omit the index r . The same
holds for the applied forces fε and for every function which in fact depends on both indexes.
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Fig. 4 3D-periodic structures of type S0 and S1 (see Sect. 4)

Let (f, F, G) be in C(Ω)9 and u ∈ Vε,r .
The applied forces fε ∈ L∞(Sε,r )

3 are

fε
.=
∑
A∈Kε

[ r
ε

F(A) + 1

rε
G(A) ∧ (x − A)

]
1B(A,r) + r2

ε2
f|Sε (6.5)

where 1B(A,r) is the characteristic function of the ball B(A, r).

The last term f|Sε stands for the applied forces in the set of beams
⋃
ξ∈Ξε

m⋃
�=1

Pξ

ε,�,r . These

forces are constant in the cross-sections.
Proceeding as in [23] and using the estimates of Proposition 2 give

∣∣∣
∫

Sε,r

fε · udx

∣∣∣≤ C
r2

ε2

(‖f‖L∞(Ω) + ‖F‖L∞(Ω) + ‖G‖L∞(Ω)

)‖e(u)‖L2(Sε,r )
, ∀u ∈ Vε,r .

(6.6)
The constant does not depend on ε and r .

Lemma 14 The solution uε of problem (6.4) satisfies

‖e(uε)‖L2(Sε,r )
≤ C

r2

ε2

(‖f‖L∞(Ω) + ‖F‖L∞(Ω) + ‖G‖L∞(Ω)

)
. (6.7)

Proof In order to obtain a priori estimate of uε , we test (6.4) with v = uε . From (6.6), one
obtains

‖e(uε)‖2
L2(Sε,r )

≤ C
r2

ε2

(‖f‖L∞(Ω) + ‖F‖L∞(Ω) + ‖G‖L∞(Ω)

)‖e(uε)‖L2(Sε,r )

which leads to (6.7). �

7 The Unfolding Operators

The classical unfolding operator Tε was developed in [10, 11]. As in [23], in this work
we use unfolding operators for structures made of thin beams. One for the centerlines and
another for the cross-sections of the beams.
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Let us recall their definitions, for their properties we refer the reader to [23, Sect. 6].

In the definitions below (see Definitions 15, 16), ε
[x
ε

]
represents a macroscopic coordi-

nate (the same coordinate for all the points in the cell ε
[x
ε

]
+ εY ) while S is the coordinate

of a point belonging to S . Hence, ε
[x
ε

]
+ εS represents the coordinate of a point belonging

to Sε . In order to get a map (x,S) �−→ ε
[x
ε

]
+ εS one to one, we need to eliminate some

segments of S . This is why from now on, to introduce the unfolding operator, in lieu of S we
consider the set

S ∩ [0,1)3.

For simplicity we will still refer to them as S . The set of nodes is always denoted K, the
number of beams of S will be still denoted m.

Definition 15 (Centerlines unfolding) For φ measurable function on Sε , the unfolding op-
erator T S

ε is defined as follows:

T S
ε (φ)(x,S) = φ

(
ε
[x
ε

]
+ εS

)
for a.e. (x,S) ∈ Ωε × S.

Definition 16 (Beams unfolding) For u measurable function on Sε,r , the unfolding operator
T b,�

ε is defined as follows:

T b,�
ε (u)(x,S, S2, S3) = u

(
ε
[x
ε

]
+ εA� + εS1t1 + rS2t2 + rS3t3

)

for a.e. (x, S1, S2, S3) ∈ Ωε × (0, l�) × D

where S = A� + S1t1 and remind γ� = [A�,B�].
Let φ be measurable on Sε , if S belongs to the segment γ� then we have

T S
ε (φ)(x,S) = φ

(
ε
[x
ε

]
+ εS

)
= φ

(
ε
[x
ε

]
+ εA� + εS1t1

)
= T b,�

ε (φ)(x,S,0,0)

for a.e. (x,S) ∈ Ωε × S.

Below we recall two of the main properties of these operators. For every φ ∈ L2(Sε) (resp.
ψ in L2(Sε,r )) one has

‖T S
ε (φ)‖L2(Ωε×S) = ε‖φ‖L2(Sε)

,

(resp.
∥∥T b,�

ε (ψ)
∥∥

L2(Ωε×γ�×D)
≤ C

ε

r
‖ψ‖L2(Sε,r )

for all � ∈ {1, . . . ,m}).
(7.1)

For more properties we refer to [23, Lemma 12].

8 Asymptotic Behaviors

From now on, we assume that

(r, ε) → (0,0) and
r

ε
→ 0. (8.1)
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If the structure is of type Sj , j ∈ {0,1,2}, we also assume that

lim
(r,ε)→(0,0)

ε2

r
= 0. (8.2)

8.1 Asymptotic Behavior of a Sequence of Displacements

In this section we consider a sequence {uε}ε of displacements belonging to Vε,r and satisfy-
ing

‖e(uε)‖L2(Sε,r )
≤ C

r2

ε2
. (8.3)

Lemma 15 (Weak limits of the unfolded fields) Let {uε}ε be a sequence of displacements
belonging to Vε,r and satisfying (8.3). For a subsequence of {ε}, still denoted {ε}, one has

(i) there exist U ∈ H 1
Γ (Ω)3, R̂′ ∈ L2(Ω;H 1

per (S))
3
, Û ′ ∈ L2(Ω;H 1

per,0(S) ∩ H 2(S))
3

such
that

U ε1Ωint
ε

⇀ U weakly in L2(Ω)
3
,

∇U ε1Ωint
ε

⇀ ∇U weakly in L2(Ω)
9
,

T S
ε (Uε) ⇀ U weakly in L2(Ω;H 1(S))3,

T S
ε

(dUε

ds

)
⇀ ∇U t1 + ∂Û ′

∂S
weakly in L2(Ω × S)

3
,

T S
ε (Rε) ⇀ R̂′ weakly in L2(Ω;H 1(S))

3
.

(8.4)

The fields U , Û ′ and R̂′ satisfy

∇U t1 + ∂Û ′

∂S
= R̂′ ∧ t1 a.e. in Ω × S. (8.5)

If the structure is of type S0 one has

U1 = 0 a.e. in Ω(1), (8.6)

moreover, if it contains only straight lines then, one has

Ui = 0 a.e. in Ω(i), i ∈ {1,2,3}, (8.7)

(ii) there exists Z ∈ L2(Ω × S)3 such that

ε

r
T S

ε

(
dUε

ds
−Rε ∧ t1

)
⇀ Z weakly in L2(Ω × S)

3
, (8.8)

(iii) there exists u ∈ L2(Ω × S;H 1(D))3 such that (� = 1, . . . ,m)

ε

r2
T b,�

ε (uε) ⇀ u weakly in L2(Ω × γ�;H 1(D))
3
,

1

r

∂

∂S
T b,�

ε (uε) ⇀ 0 weakly in L2(Ω × γ� × D)
3
.

(8.9)
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Proof Below, every convergence is up to a subsequence of {ε} still denoted {ε}.
(i) From (8.3) and the estimates (2.14), (2.16), one obtains

‖U ε‖H 1(Ω ′ int
ε ) ≤ C, ‖Uε‖H 1(S′

ε)
≤ C

1

ε
.

Lemma 8 in [19] gives a field U ∈ H 1
Γ (Ω)3 such that (8.4)1,2 holds. Then, (8.4)3,4 are the

consequences of [23, Lemma 14].
Estimates (2.16) and (8.3) give

‖Rε‖L2(Sε)
+ ε

∥∥∥dRε

ds

∥∥∥
L2(Sε)

≤ C

ε
.

Thus, there exists a function R̂′ ∈ L2(Ω;H 1
per (S))3 (see [23, Lemma 13]) such that (8.4)5

holds.
From estimate (2.9)4 and (8.3), we have

∥∥∥dUε

ds
−Rε ∧ t1

∥∥∥
L2(Sε)

≤ C
r

ε2
.

Thus, using (7.1) on the one hand we get

T S
ε

(
dUε

ds
−Rε ∧ t1

)
−→ 0 strongly in L2(Ω × S)3, (8.10)

and on the other hand from convergences (8.4)4,5 we have

T S
ε

(
dUε

ds
−Rε ∧ t1

)
= T S

ε

(
dUε

ds

)
− T S

ε (Rε) ∧ t1 ⇀ ∇U t1 + ∂Û ′

∂S
− R̂′ ∧ t1

weakly in L2(Ω × S)3,

which in turn with the above convergence (8.10) leads to (8.5).
From (8.3), (5.5), (2.9)4 and (2.16), one has

‖Uε,1‖L2(Ω(1)∩Sε)
≤ C

r

ε2
.

As a consequence we get

T S
ε (Uε,1) −→ 0 strongly in L2(Ω(1);H 1(S)), (8.11)

which gives (8.6).
Equalities (8.7) are the immediate consequences of (5.6).

(ii) Besides, again from (2.9)4 and (7.1) one has

∥∥∥∥T S
ε

(
dUε

ds
−Rε ∧ t1

)∥∥∥∥
L2(Ω×S)

= ε

∥∥∥∥
dUε

ds
−Rε ∧ t1

∥∥∥∥
L2(Sε)

≤ C
r

ε
.

Hence, there exists a field Z ∈ L2(Ω × S)3 such that convergences (8.8) hold.
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(iii) Taking into account (2.9)1,2, (8.3) and the properties of T b,�
ε (see (7.1) and [23, Lemma

12]), we have

‖T b,�
ε (uε)‖L2(Ω×γ�×D) +

∥∥∥ ∂

∂Sj

T b,�
ε (uε)

∥∥∥
L2(Ω×γ�×D)

≤ C
r2

ε
, j ∈ {2,3}.

Hence, up to a subsequence, there exists u ∈ L2(Ω × S;H 1(D))
3
, such that (8.9)1 holds.

In order to show convergence (8.9)2, note that from (2.9)2 and (8.1) it follows that

∥∥∥ ∂

∂S
T b,�

ε (uε)

∥∥∥
L2(Ω×γ�×D)

≤ Cr.

Therefore, convergence (8.9)2 follows. �

Denote

VΓ (Ω,S)
.=
{
V ∈ H 1

Γ (Ω)3 | e(V)(x) ∈ Ms(S) for a.e. x ∈ Ω
}

S a 3D-periodic unstable structure.

This space is a closed subspace of H 1
Γ (Ω)3. Note that if S is of type S0, it is an immediate

consequence of this definition to get U1 = 0 a.e. in Ω(1).10

Corollary 3 Under the assumptions of Lemma 15, one has

Û ′ = Â
(
e(U)

)+ Û, R̂′ = B̂
(∇U

)+ R̂ = B̂
(
e(U)

)+ 1

2
curl (U) + R̂,

(Û, R̂) ∈ L2(Ω;DI,per (S)).

So U ∈ VΓ (Ω,S) and

e(U) t1 + ∂Â
(
e(U)

)

∂S
= B̂

(
e(U)

)∧ t1 a.e. in Ω × S. (8.12)

Proof This result is an immediate consequence of (8.5), Lemma 3 and the equality

∇U t1 = e(U) t1 + 1

2
curl(U) ∧ t1. �

Remark 3 Since
dUε

ds
·t1 is smaller than Uε , it should be noted that the limit macroscopic field

U does not depend on the limit of
dUε

ds
· t1. This last term takes into account the stretching-

compression of the small beams.

10If S is of type S0 and contains only straight lines then

VΓ (Ω,S)
.=
{
V ∈ H 1

Γ (Ω)3 | e(V)(x) ∈ Ms (S) for a.e. x ∈ Ω and Ui = 0 a.e. in Ω(i), i ∈ {1,2,3}
}
.
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8.2 Asymptotic Behavior of the Strain Tensor

For every Φ ∈ VΓ (Ω,S), ZΦ ∈ L2(Ω × S), (Â, B̂) ∈ L2(Ω;DI,per (S)) and φ̃ ∈
L2(Ω × S;H 1(D))

3
we define the symmetric tensors E, E (g)

S , ED by

E(Φ)
.=

⎛
⎜⎜⎜⎜⎜⎜⎝

−∂2Â
(
e(Φ)

)

∂S2
1

· (S2 t2 + S3 t3) ∗ ∗

−S3

2

∂B̂
(
e(Φ)

)

∂S1
· t1 0 ∗

S2

2

∂B̂
(
e(Φ)

)

∂S1
· t1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

E (g)
S (ZΦ, Â, B̂)

.=

⎛
⎜⎜⎜⎜⎜⎜⎝

ZΦ − ∂2Â
∂S2

1

· (S2 t2 + S3 t3) ∗ ∗

−S3

2

∂B̂
∂S1

· t1 0 ∗
S2

2

∂B̂
∂S1

· t1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

ED(φ̃)
.=

⎛
⎜⎜⎜⎜⎝

0 ∗ ∗
1

2

∂φ̃

∂S2
· t1

∂φ̃

∂S2
· t2 ∗

1

2

∂φ̃

∂S3
· t1

1

2

( ∂φ̃

∂S3
· t2 + ∂φ̃

∂S2
· t3

) ∂φ̃

∂S3
· t3

⎞
⎟⎟⎟⎟⎠

a.e. in Ω × S × D,

(8.13)
where

(
Â(∇Φ), B̂(∇Φ)

)
is the solution to (3.2) build from the solution V (∇Φ) of (3.1).

Proposition 7 Under the assumptions of Lemma 15, the following convergence holds:

T b,�
ε (uε) ⇀ U weakly in L2(Ω × γ�;H 1(D))3. (8.14)

Moreover

ε

r
T b,�

ε (es(uε)) ⇀ E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u) weakly in L2(Ω × γ� × D)
3×3

.

(8.15)

Proof Below, we give the asymptotic behavior of the sequence {T b,�
ε (uε)} as ε → 0 and

r/ε → 0. One has

T b,�
ε (uε) = T b,�

ε (Ue
ε ) + T b,�

ε (uε).

From (8.9) we have

ε

r2
T b,�

ε (uε) ⇀ u weakly in L2(Ω × γ�;H 1(D))
3
.

From Definition 4 we have

T b,�
ε (Ue

ε ) = T S
ε (Uε) + rT S

ε (Rε) ∧ (S2t2 + S3t3), a.e. in Ω × γ� × D.
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The convergences (8.4) yield

T b,�
ε (Ue

ε ) ⇀ U weakly in L2(Ω × γ�;H 1(D))3.

Hence, convergence (8.14) holds.
Now we consider the asymptotic behavior of the strain tensors T b,�

ε (es(uε))

T b,�
ε (es(uε)) = T b,�

ε (es(uε)) + T b,�
ε (es(U

e
e )).

From (8.9), we get (� ∈ [1, . . . ,m])
ε

r
T b,�

ε (es(uε)) ⇀ ED(u) weakly in L2(Ω × γ� × D)
3×3

.

Then, from the convergences (8.4)-(8.8) and Corollary 3 we obtain

ε

r
T b,�

ε (es(U
e
ε )) ⇀ E(U) +

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ZU − ∂2Û
∂S2

1

· (S2t2 + S3t3) ∗ ∗
1

2
Z · t2 − S3

2

∂R̂
∂S1

· t1 0 ∗
1

2
Z · t3 + S2

2

∂R̂
∂S1

· t1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

weakly in L2(Ω × γ� × D)
3×3

.

We set

ZU = Z · t1, ũ = u + S2
(
Z · t2

)
t1 + S3

(
Z · t3

)
t1 a.e. in Ω × S × D.

Hence, taking into account Corollary 3, (8.15) holds. �

Remark 4 Due to (2.6), the warping u satisfies
∫

D

u(·, S2, S3) dS2dS3 = 0,

∫

D

u(·, S2, S3) ∧ (S2t�2 + S3t�3) dS2dS3 = 0,

a.e. in Ω × S. (8.16)

Denote

Dw =
{
(w̃1, w̃2, w̃3) ∈ H 1(D)3 |

∫

D

(
S3w̃2(S2, S3) − S2w̃3(S2, S3)

)
dS2dS3 = 0,

∫

D

w̃i(S2, S3) dS2dS3 = 0, i ∈ {1,2,3}
}
.

(8.17)

Thanks to the conditions (8.16) satisfied by u and the definition of ũ, one obtains

ũ = (̃u · t1)t1 + (̃u · t2)t2 + (̃u · t3)t3 is such that
(̃
u · t1, ũ · t2, ũ · t3

) ∈ L2(Ω × S;Dw).

For the sake of simplicity, if ṽ belongs to L2(Ω × S;H 1(D)3) and is such that

ṽ = (̃v · t1)t1 + (̃v · t2)t2 + (̃v · t3)t3 satisfies
(̃
v · t1, ṽ · t2, ṽ · t3

) ∈ L2(Ω × S;Dw),

then we will write that ṽ belongs to L2(Ω × S;Dw).
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9 First Steps to the Limit Unfolded Problem

In this section we assume that S is a 3D-periodic structure neither quasi-stable nor stable
(see Definitions 3, 14 and 2 or [23, Definitions 2 and 5]).

To obtain the limit of the rescale LHS of (6.4), we only want to compute the unfolded
limit of this term. To do so, we will choose test displacements vε in Vε,r whose contribution
in the junction domain Jr goes to 0. Using (6.7), since we have

∣∣∣ε
2

r2

∫

Sε,r

σ (uε) : e(vε) dx −
m∑

�=1

∫

Ω×γ�×D

aijkl

ε

r
T b,�

ε (es,ij (uε))
r

ε
T b,�

ε (es,kl(vε)) dxdŜ

∣∣∣

≤
∣∣∣ε

2

r2

∫

Jr

σ (uε) : e(vε) dx

∣∣∣≤ C
ε2

r2

r2

ε2
‖e(v)‖L2(Jr )

≤ C‖e(v)‖L2(Jr )
,

(9.1)
we must get

lim
(ε,r)→(0,0)

‖e(vε)‖L2(Jr )
= 0. (9.2)

9.1 The Limit Unfolded Problem Involving the Warpings

Lemma 16 For every � ∈ {1, . . . ,m}, one has

∫

Ω×γ�×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij

(
ED(̃v)

)
kl

dx dŜ = 0,

∀ ṽ ∈ L2(Ω × γ�;H 1(D))3.

(9.3)

Proof Set

ṽε(x) = εW(s)V �
( s

ε

)
ϕ
( s2

r
,
s3

r

)

for a.e. x = εξ + εA� + s1t1 + s2t2 + s3t3, (s1, s2, s3) ∈ (0, εl�) × Dr, ξ ∈ Ξε

where W ∈ D(Ω), V � ∈ D(γ�), ϕ ∈ H 1(D)
3
. Since V � belongs to D(γ�) and r/ε tends to

0, the support of the above test-displacement is only included in the beams whose centerlines
are εξ + εγ�, ξ ∈ Ξε . By construction, this displacement vanishes in the junction domain
Jr .

Choosing ṽε as a test function in (6.4), and then proceeding as in [23], we obtain

∫

Ω×γ�×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij
W V �

(
ED(ϕ)

)
kl

dx dŜ = 0.

Since the space D(Ω)⊗D(γ�)⊗H 1(D)
3

is dense in L2(Ω × γ�;H 1(D))
3

we obtain (9.3).
�
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9.2 The Limit Unfolded Problem Involving the Inextensional Displacements

Lemma 17 One has
∫

Ω×S×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij

(
E (g)
S
(
0, Â, B̂

))
kl

dx dŜ

= 4π

5

∫

Ω

G ·
(∑

A∈K
B̂
(·,A)

)
dx, ∀(Â, B̂) ∈ L2(Ω;DI,per (S)).

(9.4)

Proof Let φ be in D(Ω) and (Â, B̂) ∈ DI,per (S). We assume that

B̂ is constant in the neighborhood of every node of S . (9.5)

Step 1. Preliminary results.

Set Âε(s)
.= φ[2]

ε (s) Â
( s

ε

)
and B̂ε(s)

.= φ[2]
ε (s) B̂

( s
ε

)
in εξ + εγ�, s = εξ + εA� +

s1t�1, s1 ∈ (0, εl�), ξ ∈ Ξε . In this segment one has

dÂε

ds
= dφ[2]

ε

ds
Â
( ·

ε

)
+ 1

ε
φ[2]

ε

∂Â
dS

( ·
ε

)
,

dB̂ε

ds
= dφ[2]

ε

ds
B̂
( ·

ε

)
+ 1

ε
φ[2]

ε

∂B̂
dS

( ·
ε

)

and the convergences (i ∈ {2,3})
T S

ε (B̂ε) −→ φB̂ strongly in L2(Ω × S)3,

εT S
ε

(∂B̂ε

∂s1

)
−→ φ

dB̂
dS

strongly in L2(Ω × S)3,

T S
ε (Âε) −→ φÂ strongly in L2(Ω × S)3,

εT S
ε

(∂Âε

∂s1

)
−→ φ

dÂ
dS

= φB̂ ∧ t1 strongly in L2(Ω × S)3.

(9.6)

Step 2. The test displacement.

We define vε in the beam whose centerline is εξ + εγ� by

vε(x) = ε3

r2
Âε(s) + ε2

r2
B̂ε(s) ∧ (s2t�2 + s3t�3)

for a.e. x = εξ + εA� + s1t�1 + s2t�2 + s3t�3, (s1, s2, s3) ∈ (0, εl�) × Dr, ξ ∈ Ξε.

By construction vε belongs to Vε since for every x in B(εξ + εA, c0r) ∩ Sε,r we get

vε(x) = φ(εξ + εA)
[ε3

r2
Â
(
A
)+ ε2

r2
B̂
(
A
)∧ (x − εξ − εA)

]
.

Hence e(vε) = 0 a.e. in Jr . This test displacement satisfies the condition (9.2).
In the beam whose center line is εξ + εγ�, one has

∂vε

∂s1
=ε3

r2

dφ[2]
ε

ds
Â
( ·

ε

)
+ ε2

r2
φ

dÂ
dS

( ·
ε

)
+ ε2

r2

∂B̂ε

∂s1
∧ (s2t�2 + s3t�3),

∂vε

∂si

=ε2

r2
B̂ε ∧ t�i , i ∈ {2,3}.
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Hence

∂vε

∂s1
· t�1 = ε3

r2

dφ[2]
ε

ds
Â
( ·

ε

)
· t�1 + ε2

r2

(∂B̂ε

∂s1
∧ (s2t�2 + s3t�3)

)
· t�1,

∂vε

∂si

· t�1 + ∂vε

∂s1
· t�i = ε3

r2

dφ[2]
ε

ds
Â
( ·

ε

)
t�i + ε2

r2

(∂B̂ε

∂s1
∧ (s2t�2 + s3t�3)

)
· t�i , i ∈ {2,3},

∂vε

∂si

· t�j + ∂vε

∂sj

· t�i = 0, (i, j) ∈ {2,3}2.

Then, the above convergence and those in (9.6) lead to the following strong convergence in
L2(Ω × γ� × D)3×3:

r

ε
T b,�

ε (es(vε)) −→

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−φ
∂2Â
∂S2

1

· (S2t�2 + S3t�3) ∗ ∗

−S3

2
φ

∂B̂
∂S1

· t�1 0 ∗
S2

2
φ

∂B̂
∂S1

· t�1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence

r

ε
T b,�

ε (es(vε)) −→ φ E (g)
S
(
0, Â, B̂

)
strongly in L2(Ω × γ� × D)

3×3
. (9.7)

Step 3. Contribution to the unfolded limit problem.

Choosing vε as a test function in (6.4), then unfolding the LHS of (6.4) and passing to
the limit gives

lim
(ε,r)→(0,0)

ε2

r2

∫

Sε

σ (uε) : e(vε) dx

= lim
(ε,r)→(0,0)

m∑
�=1

∫

Ω×γ�×D

ε

r
T b,�

ε (σs(uε)) : r

ε
T b,�

ε (es(vε)) dx dŜ

=
∫

Ω×S×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij
φ
(
E (g)
S
(
0, Â, B̂

))
kl

dx dŜ.

Now, we consider the RHS of (6.4) with v = vε

ε2

r2

∫

Sε

fε · vε dx

=
∑
A∈Kε

∫

B(A,r)

(ε

r
F (A) + ε

r3
G(A) ∧ (x − A)

)
· vε dx +

∑
ξ∈Ξε,�∈{1,...,m}

∫

Pξ
ε,�,r

f · vε dx,

=
∑
A∈Kε

∫

B(A,r)

(ε4

r3
F(A) · Â(A)+ ε3

r5

(
G(A) ∧ (x − A)

) · (B̂(A)∧ (x − A)
))

φ[2]
ε (s) dx

+
∑

ξ∈Ξε,�∈{1,...,m}

∫

Pξ
ε,�,r

f · vε dx.
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Proceeding as in [23], we obtain

ε2

r2

∫

Sε

fε · vε dx → 4π

5

∫

Ω

φ G ·
(∑

A∈K
B̂
(
A
))

dx. (9.8)

Due to (9.3), [23, Lemma 23], the set of couples (Â, B̂) ∈ DI,per (S) such that B̂ satis-
fies (9.5) is a dense subspace of DI,per (S). Moreover, the density of D(Ω) ⊗ DI,per (S) in
L2(Ω;DI,per (S)) leads to (9.4). �

9.3 The Limit Unfolded Problem Involving the Macroscopic Displacements

Lemma 18 One has
∫

Ω×S×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij

(
E(V)

)
kl

dx dŜ

= 4π |K|
3

∫

Ω

F · V dx + |S|π
∫

Ω

f · V dx, ∀V ∈VΓ (Ω,S).

(9.9)

Proof Let V be in D(R3)3 ∩VΓ (Ω,S) such that V = 0 in Ω ′ \ Ω .

Step 1. The test displacement.

We define the test displacement vε , in the beam whose centerline is εξ + εγ�, (ξ, �) ∈
Ξε × {1, . . . ,m}, by

vε(x) = ε2

r2
V [3]

ε (s) + ε3

r2
Â
(
e(V)(x)

)( s
ε

)
+ ε2

r2

(
B̂V

(
e(V)(x)

)
ΦV

( s
ε

))
∧ (s2t�2 + s3t�3)

+ ε2

2r2

(
[curl

(
V
)][2]

ε (s) − curl
(
V(x)

))∧ (s2t�2 + s3t�3)

for a.e. x = s + s2t�2 + s3t�3 = εξ + εA� + s1t�1 + s2t�2 + s3t�3, (s1, s2, s3)∈ (0, εl�)×Dr.

vε is an admissible test displacement since one has (see (3.7))

vε(x) =ε2

r2
V(εξ + εA) + ε2

r2
s1∇V(εξ + εA)t�1 + ε3

r2
Â (e(V)(x)) (A) − ε2

r2
s1e(V)(x) t�1

− ε2

2r2

(
curl(V )(x)

)
(s2t�2 + s3t�3) + ε2

2r2

(
curl(V )(εξ + εA)

)
(s2t�2 + s3t�3)

=ε2

r2
V(εξ + εA) + ε2

r2

(∇V(εξ + εA)
)
(x − εξ − εA) + ε3

r2
Â (e(V)(x)) (A)

− ε2

r2

(∇V(x)
)
(x − εξ − εA)

a.e. in B(εξ + εA, c0r) ∩ Sε,r for every ξ ∈ Ξε and every node A ∈ K. Moreover, one has

‖e(vε)‖L2(Jr )
≤ C

r

ε
‖V‖W2,∞(R3).
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Step 2. Limit of the strain tensor.

This test displacement satisfies (see estimates (A.12))

∂vε

∂s1
= ε2

r2

dV [3]
ε

ds1
+ ε2

r2

dÂ
(
e(V)

)

dS

( ·
ε

)
+ ε

r2
B̂V

(
e(V)

)dΦV

dS

( ·
ε

)
∧ (s2t�2 + s3t�3) + O

(ε3

r2

)
,

∂vε

∂si

= ε2

r2
B̂V

(
e(V)

)
ΦV

( s
ε

)
∧ t�i + O

(ε3

r2

)
,

where O
(ε3

r2

)
stands for terms whose L∞-norm is bounded by a constant (independent of

ε and r) multiply by
ε3

r2
. Therefore

∂vε

∂s1
· t�1 = ε2

r2

[dV [3]
ε

ds1
+ dÂ

(
e(V)

)

dS

( ·
ε

)]
· t�1

+
( ε

r2
B̂V

(
e(V)

)dΦV

dS

( ·
ε

)
∧ (s2t�2 + s3t�3)

)
· t�1 + O

(ε3

r2

)
,

∂vε

∂s1
· t�i + ∂vε

∂si

· t�1 = ε2

r2

[dV [3]
ε

ds1
+ dÂ

(
e(V)

)

dS

( ·
ε

)]
· t�i + ε2

r2

(
B̂V

(
e(V)

)
ΦV

( s
ε

)
∧ t�i

)
· t�1

+ ε

r2

(
B̂V

(
e(V)

)dΦV

dS

( ·
ε

)
∧ (s2t�2 + s3t�3)

)
· t�i + O

(ε3

r2

)
,

∂vε

∂si

· t�j + ∂vε

∂sj

· t�i = O
(ε3

r2

)
.

Remind that from Sect. 3 and (A.12) one has

e(V) t�1 + dÂ
(
e(V)

)

dS

( ·
ε

)
= B̂V

(
e(V)

)
ΦV

( ·
ε

)
∧ t�1 a.e. in Ω × γ� × Dr,

∥∥∥dV [3]
ε

ds
− ∇V t1

∥∥∥
L∞(Sε)

≤ Cr‖V‖W2,∞(R3).

Hence

r

ε
T b,�

ε

(
es,11(vε)

)−→
(dB̂(e(V))

dS
∧ (S2t�2 + S3t�3)

)
· t�1 strongly in L2(Ω × γ� × D),

r

ε
T b,�

ε

(
es,12(vε)

)−→ −1

2

dB̂
(
e(V)

)

dS
S3 · t�1 strongly in L2(Ω × γ� × D),

r

ε
T b,�

ε

(
es,13(vε)

)−→ 1

2

dB̂
(
e(V)

)

dS
S2 · t�1 strongly in L2(Ω × γ� × D),

r

ε
T b,�

ε

(
es,ij (vε)

)−→ 0 strongly in L2(Ω × γ� × D).
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Then, going to the limit in the strain tensor gives

r

ε
T b,�

ε

(
es(vε)

)→

⎛
⎜⎜⎜⎜⎜⎜⎝

−d2Â
(
e(V)

)

dS2
· (S2t2 + S3t3) ∗ ∗

−S3

2

dB̂
(
e(V)

)

dS
· t�1 0 0

S2

2

dB̂
(
e(V)

)

dS
· t�1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

strongly in L2(Ω × γ� × D)
3×3

.

Step 3. Contribution to the unfolded limit problem.

Choosing vε as a test function in (6.4), then unfolding the LHS of (6.4) and passing to
the limit, we get

ε2

r2

∫

Sε,r

σ (uε) : e(vε) dx =
m∑

�=1

∫

Ω×γ�×D

ε

r
T b,�

ε (σs(uε)) : r

ε
T b,�

ε (es(vε)) dx dŜ

⇀

∫

Ω×S×D

aijkl

(
E(U) + E (g)

S (Z, Û, R̂) + ED(̃u)
)
ij

(
E(V)

)
kl

dx dŜ.

Now, we consider the RHS of (6.4) with v = vε . As in [23], we easily prove that

ε2

r2

∫

Sε,r

fε · vε dx → 4π |K|
3

∫

Ω

F · V dx + |S|π
∫

Ω

f · V dx.

Since the space of functions V in D(R3)3 ∩VΓ (Ω,S) such that V = 0 in Ω ′ \ Ω is dense in
VΓ (Ω,S) we obtain

∀V ∈VΓ (Ω,S),

∫

Ω×S×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij

(
E(V)

)
kl

dx dŜ

=4π |K|
3

∫

Ω

F · V dx + π |S|
∫

Ω

f · V dx.

Hence, (9.9) is proved. �

10 Expression of ZU

For every structure S of type S0, we set (i ∈ {1,2,3})

–

L2
Γ (Ω,∂i,S)

.=
{
φ ∈ L2(Ω;Hper(S)) | ∂φ

∂xi

∈ L2(Ω × S),
∂φ

∂S
= 0 a.e. in Ω × S(i),

φ = 0 a.e. on Γ × S and
∫

Li

Φ(·,S)dxi = 0

for a.e. line Li directed by ei which does not meet Γ

and for all S ∈ S
}
,

– L2
Γ (Ω,∂,S)

.=
3⊕

i=1

L2
Γ (Ω,∂i,S)ei ,
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– 11

L2
Γ (Ω,∂i)

.=
{
Φ ∈ L2(Ω) | ∂Φi

∂xi

∈ L2(Ω), Φ = 0 a.e. on Γ and
∫

Li

Φdxi = 0

for a.e. line Li directed by ei which does not meet Γ
}
,

– L2
Γ (Ω(1), ∂1)

.=
{
Φ ∈ L2(Ω(1)) | ∂Φi

∂x1
∈ L2(Ω(1)), Φ = 0 a.e. on Γ

}
,

– L2
Γ (Ω,∂)

.=
3⊕

i=1

L2
Γ (Ω,∂i)ei ⊂ L2

Γ (Ω,∂,S),

– H 1
0 (S(i))

.=
{
φ ∈ H 1(S(i)) | φ(A(k)

)= φ
(
A(k) + ei

)= 0, ∀k ∈ K̂(i)
}

and

H 1
0,K(S)

.=
{
φ ∈ H 1(S) | φ vanishes on every node

}
,

H1
0,K(S)

.=
{
Φ ∈ H 1(S)3 | Φ = φ t1, φ ∈ H 1

0,K(S)
}
.

(10.1)

For the structures of type S0 or S6 we set

DE,per (S)
.= DE,per (S

)⊕H1
0,K(S),

where DE,per (S) is the orthogonal subspace of DI,per (S) in Uper (S) (see Sect. 3). A field Φ

in DE,per (S) satisfies

Φ ∧ t1 is an affine function on every segment of S.

We endow

– L2
Γ (Ω,∂i,S) with the semi-norm (i ∈ {1,2,3})

∀Φ ∈ L2
Γ (Ω,∂i,S), ‖Φ‖Ω,∂,S

.=
∥∥∥∂Φ

∂xi

∥∥∥
L2(Ω×S)

.

One has

∀Φ ∈ L2
Γ (Ω,∂i,S), ‖Φ‖L2(Ω×S) ≤ C‖Φ‖Ω,∂,S,

– L2
Γ (Ω,∂i) with the semi-norm (i ∈ {1,2,3})

∀Φ ∈ L2
Γ (Ω,∂i),

∥∥∥∂Φ

∂xi

∥∥∥
L2(Ω)

.

One has

∀Φ ∈ L2
Γ (Ω,∂i), ‖Φ‖L2(Ω) ≤ C

∥∥∥∂Φ

∂xi

∥∥∥
L2(Ω)

,

11Due to Assumption AZ, this space is in fact

{
φ ∈ L2(Ω ′) | ∂φ

∂x1
∈ L2(Ω ′), φ = 0 a.e. in Ω ′ \ Ω and

∫

L1

Φ = 0

for a.e. line L1 directed by e1 which does not meet Γ
}
.

Same remark concerning L2
Γ (Ω,∂i ,S).
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– DE,per (S) with the semi-norm

‖Φ‖ =
∥∥∥dΦ

dS
· t1

∥∥∥
L2(S)

which is a norm equivalent to the usual norm of the space H 1
per,0(S)3.

Remark 5
• Given K2K3 functions φk , k ∈ K̂1 belonging to L2

Γ (Ω,∂1), we can easily build and el-
ement Φ ∈ L2

Γ (Ω,∂1,S) such that Φ
(·,A(k)

) = φk , ∀k ∈ K̂1. Same remark for the space
L2

Γ (Ω,∂i), i ∈ {2,3}.
• Let S be a 3D-periodic structure of type S0. Observe that every function φ̂ in H 1

per (S(i))

can be extended in a function belonging to H 1
per (S), still denoted φ̂, affine on the segments

belonging to S \ S(i), i ∈ {1,2,3} and one has

‖φ̂‖H 1(S) ≤ C‖φ̂‖H 1(S(i)). (10.2)

Lemma 19 Let S be a structure of type S0. For every Z in L2(Ω × S) there exists a unique
couple

(
Ṽ, V̂

) ∈ L2
Γ (Ω,∂,S) × L2(Ω;DE,per (S)) such that

Z =
3∑

j=1

∂Ṽj

∂xj

(ej · t1)
2 + ∂V̂

∂S
· t1 a.e. in Ω × S(i), i ∈ {1,2,3}. (10.3)

Moreover, we have

3∑
i=1

∥∥∥∂Ṽ i

∂xi

∥∥∥
L2(Ω×S)

+ ‖V̂‖L2(Ω;H 1(S)) ≤ C‖Z‖L2(Ω×S). (10.4)

Proof There exists a unique couple (Ṽ1, V̂1) ∈ L2
Γ (Ω,∂1,S) × L2(Ω;H 1

0 (S(1))) (V̂1 being
the restriction of an element belonging to L2(Ω;H 1

per (S)) also denoted V̂1) such that

Z = ∂Ṽ1

∂x1
+ ∂V̂1

∂S
a.e. in Ω × S(1),

and we have

∥∥∥∂Ṽ1

∂x1

∥∥∥
2

L2(Ω×S(1))
+
∥∥∥∂V̂1

∂S

∥∥∥
2

L2(Ω×S(1))
= ‖Z (1)‖2

L2(Ω×S(1))
.

Hence,

∥∥∥∂Ṽ1

∂x1

∥∥∥
L2(Ω×S)

+ ‖V̂1‖L2(Ω;H 1(S)) ≤ C‖Z(1)‖L2(Ω×S(1)). (10.5)

Now, we claim that there exists a unique couple (Ṽ i , V̂i ) ∈ L2
Γ (Ω,∂i,S)×L2(Ω;H 1

0 (S(i)))

(V̂i being the restriction of a function in L2(Ω;H 1
per (S)), still denoted V̂i ) such that (i ∈

{2,3})

Z = ∂Ṽ i

∂xi

(ei · t1)
2 + ∂Ṽ1

∂x1
(e1 · t1)

2 + ∂V̂1

∂S
(e1 · t1) + ∂V̂i

∂S
(ei · t1) a.e. in Ω × S(i)
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or, equivalently, satisfying

∂Ṽ i

∂xi

(ei · t1) + ∂V̂i

∂S
= 1

ei · t1

(
Z − ∂Ṽ1

∂x1
(e1 · t1)

2 − ∂V̂1

∂S
(e1 · t1)

)
a.e. in Ω × S(i).

Since ei · t1 = d

dS
(ei · S), integrating over each zig-zag line of S(i) allows to define

∂Ṽ i

∂xi

and

therefore Ṽ i ∈ L2
Γ (Ω,∂i,S). Then, we determine V̂i ∈ L2(Ω;H 1

0 (S(i))) as a primitive of the
difference. It is the restriction of an element in L2(Ω;H 1

per (S)), still denoted V̂i . Estimate
(10.5) and the above equality lead to

∥∥∥∂Ṽ i

∂xi

∥∥∥
L2(Ω×S(i))

+
∥∥∥∂V̂i

∂S

∥∥∥
L2(Ω×S(i))

≤ C
(‖Z‖L2(Ω×S(1)) + ‖Z‖L2(Ω×S(i))

)
. (10.6)

The field V̂ = V̂1e1 + V̂2e2 + V̂3e3 belongs to L2(Ω;H 1
per (S))3, its projection on L2(Ω;

DE,per (S)) is denoted V̂ . Estimates (10.5) and (10.6) yield (10.4). �

Proposition 8 Let S be of type S0. There exist Ũ ∈ L2
Γ (Ω,∂,S) and Û ∈ L2(Ω;DE,per (S))

such that

ZU =
3∑

j=1

∂Ũ j

∂xj

(ej · t1)
2 + ∂Û

∂S
· t1 a..e. in Ω × S(i), i ∈ {1,2,3}. (10.7)

Moreover

ε

r
T S

ε

(
Uε,11

Ω
(1)
ε

)
⇀ Ũ1 weakly in L2(Ω(1) × S). (10.8)

Furthermore, under the assumption AZ (see Sect. 5.1) one has Ũ1|Ω(1)×S ∈ L2
Γ (Ω(1), ∂1).

Remark 6 Note that if S contains only straight lines then

ε

r
T S

ε

(
Uε,i1Ω

(i)
ε

)
⇀ Ũ i weakly in L2(Ω(i) × S), i ∈ {1,2,3}.

Proof Equality (10.7) is the immediate consequence of Lemma 19.
Now, from Lemma 3, there exists Vε ∈ UΓ (Sε) satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dVε

ds
· t1 = dUh

ε

ds
· t1 a.e. in Sε,

‖Vε,1‖L2(Sε)
+ ε

3∑
i=2

(
‖Vε,i‖L2(Sε)

+
∥∥∥dVε,i

ds

∥∥∥
L2(S(i)

ε )

)

≤ C

∥∥∥dUh
ε

ds
· t1

∥∥∥
L2(Sε)

≤ C

r
‖e(uε)‖L2(Sε,r )

≤ C
r

ε2
.

(10.9)

Observe that by construction, Vε,1 = Uh
ε,1 on every straight line of S(1)

ε which meets Γ . Then,
since Vε is an affine function on every segment of Sε , we have

ε

∥∥∥dVε,1

ds

∥∥∥
L2(Sε)

+ ε2
3∑

i=2

∥∥∥dVε,i

ds

∥∥∥
L2(Sε)

≤ C
r

ε2
.
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Besides, (2.10) gives (we recall that U ε vanishes on every node)

‖U ε · t1‖L2(S(i)
ε )

+ ε

∥∥∥dU ε

ds
· t1

∥∥∥
L2(S(i)

ε )
≤ C

ε

r
‖e(uε)‖L2(Sε,r )

≤ C
r

ε
. (10.10)

Then, up to a subsequence, Lemma 29 in the Appendix gives Ṽ1 ∈ L2
Γ (Ω,∂1,S), V̂1 ∈

L2(Ω;H 1
per (S)) and U ∈ L2(Ω;H 1

0,K(S)) such that (i ∈ {2,3})
ε

r
T S

ε

(
Vε,1

)
⇀ Ṽ1 weakly in L2(Ω;H 1(S)),

ε

r
T S

ε

(dVε,1

ds

)
⇀

∂Ṽ1

∂x1
+ ∂V̂1

∂S
weakly in L2(Ω × S(1)),

ε2

r
T S

ε

(dVε,1

ds

)
⇀

∂Ṽ1

∂S
weakly in L2(Ω × S(i)), i ∈ {2,3},

1

r
T S

ε

(
U ε · t1

)
⇀ U weakly in L2(Ω;H 1

0,K(S)).

(10.11)

As a consequence of the above convergences, one gets

ε

r
T S

ε

(dUε,1

ds

)
⇀

∂Ṽ1

∂x1
+ ∂

∂S

(
V̂1 + U

)= ∂Ũ1

∂x1
+ ∂Û1

∂S
weakly in L2(Ω × S(1)).

From the above equality, we obtain
∂Ṽ1

∂x1
= ∂Ũ1

∂x1
in Ω(1) and then Ṽ1 = Ũ1 in Ω(1) and

convergence (10.8) holds true.
Now, remind that (see Remark 2)

dUh
ε,i

ds
= dVε,i

ds
a.e. in Ω(1)

ε ∩ S(i)
ε .

Then, the estimates (2.10)7, (10.9) and assumption (8.2) yield (i ∈ {2,3})
3∑

i=2

∥∥∥dUh
ε,i

ds

∥∥∥
L2(Ω

(1)
ε ∩S(i)

ε )
≤ C

ε
and then

3∑
i=2

∥∥∥dVε,i

ds

∥∥∥
L2(Ω

(1)
ε ∩S(i)

ε )
≤ C

ε
.

Under assumption AZ (see Sect. 5.1), since
3∑

i=2

∥∥∥dVε

ds
· t1

∥∥∥
L2(Ω

(1)
ε ∩S(i)

ε )
≤ C

r

ε2
, equality

dVε

ds
·

t1 = dVε,i

ds
(ei · t1) + dVε,1

ds
(e1 · t1) in S(i)

ε , i ∈ {2,3} leads to

∥∥∥ε2

r
T S

ε

(dVε,1

ds

)∥∥∥
L2(Ω(1)×γ )

≤ C
ε2

r
,

where γ is a segment belonging to S(i) whose direction is not collinear to ei , i ∈ {2,3}. As a

consequence
∂Ṽ1

∂S
= 0 a.e. in Ω(1) × γ . Hence, Ṽ1 = Ũ1 does not depend on S in Ω(1). �
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Lemma 20 Let S be a 3D-periodic structure S is of type S6. There exists Û ∈ L2(Ω;
DE,per (S)) such that

ZU = ∂Û
∂S

· t1 a.e. in Ω × S. (10.12)

Proof We decompose ZU in the following way:

ZU = Z̃U + ẐU , Z̃U , ẐU ∈ L2(Ω × S)

where Z̃U (x, ·) is constant on every segment of S for a.e. x ∈ Ω and where the mean value
of ẐU (x, ·) is equal to zero on every segment of S for a.e. x ∈ Ω . Set Û ∈ L2(Ω;H 1

0,K(S))

as the solution to

dÛ

dS
= ẐU a.e. in Ω × S

and Ũ ∈ L2(Ω;DE,per (S)) as the solution to

dŨ

dS
· t1 = Z̃U a.e. in Ω × S.

The field Û = Ũ + Û t1 belongs to L2(Ω;DE,per (S)) and satisfies (10.12). �

Remark 7 Let S be a 3D-periodic structure and E a field in L2(Sε) such that
∫

εξ+εγ�

Eds1 = 0 ∀(ξ, �) ∈ Ξε × {1, . . . ,m}.

There exists φ, a function belonging to H 1(Sε) satisfying

dφ

ds
= E, a.e. in Sε, φ = 0 on every node of Sε.

The field Φ = φ t1 belongs to H 1(Sε)
3 and satisfies

dΦ

ds
· t1 = E, a.e. in Sε.

One has

‖Φ‖L2(Sε)
≤ Cε‖E‖L2(Sε)

.

The constant does not depend on ε.

Set

E [0]
S
(
Ṽ, V̂, Â, B̂

) .= E (g)
S

(∂Ṽ
∂xi

+ ∂V̂
∂S

· t1 , Â, B̂
)

a.e. in Ω × S(i), i ∈ {1,2,3},

∀Ṽ ∈ L2
Γ (Ω,∂,S), ∀(V̂, Â, B̂) ∈ L2(Ω;Dper (S)), S of type S0,

E [g]
S
(
V̂, Â, B̂

) .= E (g)
S

(∂V̂
∂S

· t1 , Â, B̂
)

a.e. in Ω × S, ∀(V̂, Â, B̂) ∈ L2(Ω;Dper (S))

in other cases.
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Lemma 21 For every type of structure, one has

∫

Ω×S×D

aijkl

(
E(U) + E (g)

S
(
ZU , Û, R̂

)+ ED(̃u)
)
ij

(
E [g]
S
(
V̂,0,0

))
kl

dx dŜ = 0,

∀V̂ ∈ L2(Ω;DE,per (S)).

(10.13)

Proof Let φ be in D(Ω) and V̂ ∈ H 1
per (S)3. We assume V̂ constant in the neighborhood of

every node of S .
Consider the field

V̂ε
.= V̂

( ·
ε

)
φ[1]

ε .

It belongs to H 1
Γ (Sε)

3. One has

T S
ε

(dV̂ε

ds
· t1

)
−→ φ

∂V̂
∂S

· t1 strongly in L2(Ω × S).

In the beam whose center line is εξ + εγ�, the test displacement vε is defined by

vε(x) = ε2

r
V̂ε

( s
ε

)
,

for a.e. x = s + s2t�2 + s3t�3 = εξ + εA� + s1t�1 + s2t�2 + s3t�3, (s1, s2, s3) ∈ (0, εl�) × Dr,

ξ ∈ Ξε.

(10.14)
By construction vε belongs to Vε since for every x in B(εξ + εA, c0r) ∩ Sε,r

vε(x) = ε2

r
φ
(
εξ + εA

)
V̂(A).

In the beam whose center line is εξ + εγ�, one has

∂vε

∂s1
· t�1 = ε

r

dV̂
dS

· t�1φ
[2]
ε + ε2

r

dφ[2]
ε

ds1
V̂ · t�1,

∂vε

∂si

· t�1 + ∂vε

∂s1
· t�i =

(ε

r

dV̂
dS

φ[2]
ε + ε2

r

dφ[2]
ε

ds1
V̂
)

· t�i ,

∂vε

∂si

· t�j + ∂vε

∂sj

· t�i = 0.

Hence, passing to the limit in the rescaled stain tensor gives

r

ε
T b,�

ε (es(vε)) −→

⎛
⎜⎜⎜⎜⎜⎜⎝

dV̂
dS

· t1 φ ∗ ∗
1

2

dV̂
dS

· t2 φ 0 ∗
1

2

dV̂
dS

· t3 φ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

strongly in L2(Ω × S)
3×3

.
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Thus

r

ε
T b,�

ε (es(vε)) −→ E (g)
S

(
φ

∂V̂
∂S

· t1,0,0
)

+ ED(̃v) strongly in L2(Ω × S(i))
3×3

,

where

ṽ =
(dV̂

dS
· (S2t2 + S3t3)

)
· t1.

Now, unfolding the LHS of (6.4), passing to the limit and taking into account the above
convergence together with (9.3)-(9.4) give

ε2

r2

∫

Sε

σ (uε) : e(vε) dx =
m∑

�=1

∫

Ω×γ�×D

ε

r
T b,�

ε (σs(uε)) : r

ε
T b,�

ε (es(vε)) dx dŜ

⇀

∫

Ω×S×D

aijkl

(
E(U) + E (g)

S
(
ZU , Û, R̂

)+ ED(̃u)
)
ij
φ
(
E (g)

S

(
φ

∂V̂
∂S

· t1,0,0
))

kl
dx dŜ.

Then, we obtain

ε2

r2

∫

Sε

fε · vε dx −→ 0.

Finally, a density argument followed by a projection on L2(Ω;DE,per (S)) allows to replace
φV̂ by any function V̂ ∈ L2(Ω;DE,per (S)). �

Lemma 22 Suppose the structure of type S0. One has
∫

Ω×S×D

aijkl

(
E(U) + E (g)

S
(
ZU , Û, R̂

)+ ED(̃u)
)
ij

(
E [0]
S
(
Ṽ,0,0,0

))
kl

dx dŜ = 0,

∀Ṽ ∈ L2
Γ (Ω,∂).

(10.15)

Proof Let Ṽ be in D(R3)3, we assume Ṽ vanishes in Ω ′ \ Ω .

Step 1. Preliminary considerations.

In Ω × S(i), i ∈ {2,3}, one has

(∇Ṽ t1) · t1 = ∂Ṽ i

∂xi

(ei · t1)
2 +

(∂Ṽ i

∂x1
+ ∂Ṽ1

∂xi

)
(ei · t1)(e1 · t1) + ∂Ṽ1

∂x1
(e1 · t1)

2.

One has

e1 · t1 = d

S
(e1 · S) a.e. in S(2) ∪ S(3).

The function S → (e1 · S) belongs to H 1
per (S(2) ∪ S(3)) We extend it as an affine function on

every segment of S(1) belonging to H 1
per (S). Denote ê1 this function.

Set

Ŵ (·,S) =
((∂Ṽ2

∂x1
+ ∂Ṽ1

∂x2

)
e2 +

(∂Ṽ3

∂x1
+ ∂Ṽ1

∂x3

)
e3

)
ê1(S) a.e. in Ω × S.
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It belongs to L2(Ω;H 1
per (S))3. Hence

(∇Ṽ t1) · t1 = ∂Ṽ i

∂x1
a.e. in Ω × S(1),

(∇Ṽ t1) · t1 = ∂Ṽ i

∂xi

(ei · t1)
2 + ∂Ṽ1

∂x1
(e1 · t1)

2 + ∂Ŵ

∂S
· t1 a.e. in Ω × S(i), i ∈ {2,3}.

(10.16)
Step 2. The test displacement.

Consider the field (see Sect. A.5 in the Appendix) Ṽε
.= Ṽ [2]

ε , it belongs to H 1
Γ (Sε)

3. One
has

T S
ε

(dṼε

ds

)
−→ ∇Ṽ · t1 strongly in L2(Ω × S)3.

In the beam whose center line is εξ + εγ�, the test displacement vε is defined by

vε(x) = ε

r
Ṽε

(
s
)
,

for a.e. x = s + s2t�2 + s3t�3 = εξ + εA� + s1t�1 + s2t�2 + s3t�3, (s1, s2, s3) ∈ (0, εl�) × Dr,

ξ ∈ Ξε.

(10.17)
By construction vε belongs to Vε since for every x in B(εξ + εA, c0r) ∩ Sε,r

vε(x) = ε

r
Ṽ
(
εξ + εA

)
.

In the beam whose center line is εξ + εγ�, one has

∂vε

∂s1
· t�1 = ε

r

dṼε

ds1
· t�1,

∂vε

∂si

· t�1 + ∂vε

∂s1
· t�i = ε

r

dṼε

ds1
· t�i ,

∂vε

∂si

· t�j + ∂vε

∂sj

· t�i = 0.

Hence, passing to the limit in the rescaled stain tensor gives

r

ε
T b,�

ε (es(vε)) −→

⎛
⎜⎜⎜⎜⎝

(∇Ṽ t1) · t1 ∗ ∗
1

2
(∇Ṽ t1) · t2 0 ∗

1

2
(∇Ṽ t1) · t3 0 0

⎞
⎟⎟⎟⎟⎠

strongly in L2(Ω × S)
3×3

.

Thus, due to (10.16)

r

ε
T b,�

ε (es(vε)) −→ E [0]
S

(
Ṽ,0,0,0

)
+ ED(̃v) strongly in L2(Ω × S)

3×3

where

ṽ =
((∇Ṽ t1

) · (S2t2 + S3t3)
)

· t1.
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Now, unfolding the LHS of (6.4), passing to the limit and taking into account the above
convergence together with (9.3) give

ε2

r2

∫

Sε

σ (uε) : e(vε) dx =
m∑

�=1

∫

Ω×γ�×D

ε

r
T b,�

ε (σs(uε)) : r

ε
T b,�

ε (es(vε)) dx dŜ

⇀

∫

Ω×S×D

aijkl

(
E(U) + E (g)

S
(
ZU , Û, R̂

)+ ED(̃u)
)
ij
φ
(
E [0]

S

(
Ṽ,0,0,0

))
kl

dx dŜ.

Then, we obtain

ε2

r2

∫

Sε

fε · vε dx −→ 0.

Eventually, a density argument ends the proof. �

11 The Limit Unfolded Problem

Denote

M11 =
⎛
⎝

1 0 0
0 0 0
0 0 0

⎞
⎠ , M12 = M21 =

⎛
⎝

0 1 0
1 0 0
0 0 0

⎞
⎠ , M13 = M31 =

⎛
⎝

0 0 1
0 0 0
1 0 0

⎞
⎠ .

We remind (see [23, Lemma 25]) that for every ṽ ∈ Dw ⊂ H 1(D)3 and every ζ ∈ R
4, there

exists a strictly positive constant C such that

|ζ |2 + ‖̃v‖2
H 1(D)

≤ C

∫

D

∣∣ED

(̃
v
)+ Mζ

∣∣2 dS2dS3, (11.1)

where Mζ = (ζ1 + S3ζ3 − S2ζ4

)
M11 − S3M12 + S2M13.

Lemma 23 There exists a strictly positive constant C such that

∀V ∈VΓ (Ω,S), ∀(Â, B̂) ∈ L2(Ω;DI,per (S)),

‖V‖H 1(Ω) + ‖Â‖L2(Ω;H 1(S)) + ‖B̂‖L2(Ω;H 1(S)) ≤ C

∥∥∥ ∂

∂S

(
B̂
(
e(V)

)+ B̂
)∥∥∥

L2(Ω×S)
.

(11.2)

Proof We equip Ms(S) ×DI,per (S) with the semi-norm

∀(M, Â, B̂) ∈Ms(S) ×DI,per (S), |||(M, Â, B̂)||| =
∥∥∥ d

dS

(
B̂
(
M
)+ B̂

)∥∥∥
L2(S)

.

First observe that (see Lemma 3)

∀(M, Â, B̂) ∈Ms(S) ×DI,per (S),

Mt1 + d

dS
(Â(M) + Â) = (B̂(M) + B̂) ∧ t1 a.e. in S.
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Now, if |||(M, Â, B̂)||| = 0 then, B̂(M) + B̂ is a constant field. Hence, there exists B ∈ R
3

such that

d

dS
(Â(M) + Â) = −Mt1 +B ∧ t1 a.e. in S.

Thus, taking into account the fact that Â(M)+ Â ∈ H 1
per,0(S)3, there exists another constant

vector C ∈R
3 such that

(
Â(M) + Â

)
(S) = C − M S +B ∧ S a.e. in S.

Since Â(M) + Â is a periodic function, this leads to

−Mei +B ∧ ei = 0, ∀i ∈ {2,3}.

Since M is a symmetric matrix, this implies that M = 0 and B = 0. As a consequence we
get Â(M) = B̂(M) = 0. Hence B̂ = 0 and then Â = 0 since Â ∈ H 1

per,0(S)3. The semi-norm
is a norm.

By contradiction, as in [23, Lemma 16] we easily show that this norm is equivalent to the
following:

|M| + ‖Â‖H 1(S) + ‖B̂‖H 1(S).

The space of 3 × 3 matrices is equipped with the Froebinius norm.
Since x ∈ Ω is a parameter, we get

‖e(V)‖L2(Ω) + ‖Â‖L2(Ω;H 1(S)) + ‖B̂‖L2(Ω;H 1(S)) ≤ C

∥∥∥ ∂

∂S

(
B̂
(
e(V)

)+ B̂
)∥∥∥

L2(Ω×S)
.

Finally, inequality (11.2) holds true thanks to the Korn inequality. �

Theorem 1 Let uε be the solution to (6.4). The fields and functions introduced in Lemma 15
and its corollary satisfy

• if S is a 3D-periodic unstable structure then, there exist U ∈VΓ (Ω,S), ZU ∈ L2(Ω ×S),
(Û, R̂) ∈ L2(Ω;DI,per (S)) and ũ ∈ L2(Ω × S;Dw) such that

(
U,ZU , Û, R̂, ũ

)
satisfies

1

π

∫

Ω×S×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij

(
E(V) + E (g)

S (0, Â, B̂) + ED(̃v)
)
kl

dx dŜ

= 4

5

∫

Ω

G ·
(∑

A∈K
B̂
(·,A)

)
dx + 4

|K|
3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx,

∀V ∈ VΓ (Ω,S), ∀(Â, B̂) ∈ L2(Ω;DI,per (S)), ∀ṽ ∈ L2(Ω × S;Dw).

(11.3)
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• if S is of type S0 then, there exist U ∈ VΓ (Ω,S), ZU ∈ L2(Ω × S), (Û, R̂) ∈
L2(Ω;DI,per (S)) and ũ ∈ L2(Ω × S;Dw) such that

(
U,ZU , Û, R̂, ũ

)
satisfies

1

π

∫

Ω×S×D

aijkl

(
E(U) + E (g)

S (ZU , Û, R̂) + ED(̃u)
)
ij

× (E(V) + E [0]
S (Ṽ, V̂, Â, B̂) + ED(̃v)

)
kl

dx dŜ

= 4

5

∫

Ω

G ·
(∑

A∈K
B̂
(·,A)

)
dx + 4

|K|
3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx,

∀V ∈ VΓ (Ω,S), ∀Ṽ ∈ L2
Γ (Ω,∂), ∀(V̂, Â, B̂) ∈ L2(Ω;Dper (S)),

∀ṽ ∈ L2(Ω × S;Dw).

(11.4)

• if S is of type S6 then, there exists Û ∈ L2(Ω;DE,per (S)) such that ZU = ∂Û
∂S

· t1 a.e. in

Ω × S . Now,
(
U, Û, Û, R̂, ũ

)
is the unique solution to the following unfolded problem:

1

π

∫

Ω×S×D

aijkl

(
E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)
)
ij

(
E(V) + E [g]

S (V̂, Â, B̂) + ED(̃v)
)
kl

dx dŜ

= 4

5

∫

Ω

G ·
(∑

A∈K
B̂
(·,A)

)
dx + 4

|K|
3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx,

∀V ∈ H 1
Γ (Ω)3, ∀(V̂, Â, B̂) ∈ L2(Ω;Dper (S)), ∀ṽ ∈ L2(Ω × S;Dw).

(11.5)
Furthermore, for all � ∈ {1, . . . ,m} one has

ε

r
T b,�

ε (es(uε)) −→ E(U) + E [g]
S (Û, Û, R̂) + ED(̃u) strongly in L2(Ω × γ� × D)

3×3
.

(11.6)

Proof This theorem summarizes the results of Lemmas 16-17-18, 22 and 21.
We prove the coercivity of problem (11.5). From (11.1) and (11.2), one has

∀(V, V̂, Â, B̂, ṽ
) ∈ H 1

Γ (Ω)3 × L2(Ω;Dper (S)) × L2(Ω × S;Dw),

∥∥∥∂V̂
∂S

· t1

∥∥∥
L2(Ω×S)

+ ‖V‖H 1(Ω) + ‖Â‖L2(Ω;H 1(S)) + ‖B̂‖L2(Ω;H 1(S)) + ‖̃v‖L2(Ω×S;H 1(D))

≤ C
∥∥E(V) + E [g]

S (V̂, Â, B̂) + ED(̃v)
∥∥

L2(Ω×S×D)
.

The inequality above ensures the coercivity of problem (11.5). Then, since this problem
admits a unique solution, the whole sequences in Lemma 15 and Proposition 7 (with uε the
solution to problem (6.4)) converge to their limits.

Now, we prove the strong convergence (11.6).
First, due to the inclusion of Jr in

⋃
A∈Kε

B(A, c0r), the portions of beams which cor-

respond to S1 ∈ (2c0r, l� − 2c0r) are all disjoint. Furthermore, since σ(uε) : e(uε) is non-
negative, one has

m∑
�=1

∫

Ω×γ�×D

ε

r
T b,�

ε

(
σs(uε)

) : ε

r
T b,�

ε

(
es(uε)1(2c0r,εl�−2c0r)

)
dx dŜ ≤ ε4

r4

∫

Sε,r

σ (uε) : e(uε) dx.
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From (8.15) and the fact that r/ε goes to 0 the following convergence holds (� ∈ {1, . . . ,m}):
ε

r
T b,�

ε

(
es(uε)1(2c0r,εl�−2c0r)

)
⇀ E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)

weakly in L2(Ω × γ� × D)
3×3

.

Hence, choosing uε as a test function in (6.4) and using the weak lower semi-continuity of
convex functionals, one obtains
∫

Ω×S×D

aijkl

(
E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)
)
ij

(
E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)
)
kl

dx dŜ

≤ lim inf
(ε,r/ε)→(0,0)

m∑
�=1

∫

Ω×γ�×D

T b,�
ε

(
aε

ijkl

)ε
r
T b,�

ε

(
es,ij (uε)

)ε
r
T b,�

ε

(
es,kl(uε)1(2c0r,εl�−2c0r)

)
dx dŜ

≤ lim inf
(ε,r/ε)→(0,0)

ε4

r4

∫

Sε,r

σ (uε) : e(uε) dx ≤ lim sup
(ε,r/ε)→(0,0)

ε4

r4

∫

Sε,r

σ (uε) : e(uε) dx

= lim sup
(ε,r/ε)→(0,0)

ε4

r4

∫

Sε,r

fε · uεdx

=4π

5

∫

Ω

G ·
(∑

A∈K
R̂
)(·,A)

)
dx + 4π |K|

3

∫

Ω

F · U dx + |S|π
∫

Ω

f · U dx,

=
∫

Ω×S×D

aijkl

(
E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)
)
ij

(
E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)
)
kl

dx dŜ.

Thus, all inequalities above are equalities and

lim
(ε,r/ε)→(0,0)

ε4

r4

∫

Sε,r

σ (uε) : e(uε) dx

=
∫

Ω×S×D

aijkl

(
E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)
)
ij

(
E(U) + E [g]

S (Û, Û, R̂) + ED(̃u)
)
kl

dx dŜ,

which in turn leads to the strong convergence (11.6). �

12 The Limit Homogenized Problem

Denote
(
M1, . . . ,MP

)
, 3 ≤ P ≤ 6, a basis of Ms(S). One has

Mpt1 + dA(Mp)

dS
= B(Mp) ∧ t1 a.e. in S, p ∈ {1, . . . ,P }. (12.1)

12.1 Expression of the Warping ũ

As in [23, Sect. 9.1], we introduce the four warping-correctors (see Sect. A.1 in the
Appendix). They belong to L∞(S;Dw). We have

ũ = ZU χ̃E +
3∑

q=1

(∂B̂
(
e(U)

)

∂S
+ ∂R̂

∂S

)
· tq χ̃q a.e. in Ω × S × D. (12.2)
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12.2 Expression of the Microscopic Fields ̂U , ̂R

In this subsection we give the expression of the microscopic fields Û , R̂ in terms of U . To
this end, we use the formulation (11.4).

Taking ṽ = 0 in (11.4) and then replacing ũ by its expression (12.2), we obtain the fol-
lowing problem:

∫

Ω×S
A

⎛
⎜⎝

⎛
⎜⎝

0
. . .

∂B̂(e(U))

∂S

⎞
⎟⎠+

⎛
⎜⎝

ZU
. . .

∂R̂
∂S

⎞
⎟⎠

⎞
⎟⎠ ·
⎛
⎜⎝

⎛
⎜⎝

0
. . .

∂B̂(e(V))

∂S

⎞
⎟⎠+

⎛
⎜⎝
ZV
. . .

∂B̂
∂S

⎞
⎟⎠

⎞
⎟⎠ dx dS

= 4

5

∫

Ω

G ·
(∑

A∈K
B̂
(·,A)

)
dx + 4

|K|
3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx,

∀V ∈VΓ (Ω,S), ∀(Â, B̂) ∈ L2(Ω;DI,per (S)), ZV ∈ L2(Ω × S).

(12.3)

Here,

⎛
⎜⎝
ZV
. . .

∂B̂
∂S

⎞
⎟⎠ stands for the column

(
ZV

∂B̂
∂S

· t1
∂B̂
∂S

· t2
∂B̂
∂S

· t3

)T

, while

⎛
⎜⎝

0
. . .

∂B̂(e(V))

∂S

⎞
⎟⎠

stands for the column
(

0
∂B̂(e(V))

∂S
· t1

∂B̂(e(V))

∂S
· t2

∂B̂(e(V))

∂S
· t3

)T

, ZV belongs to

L2(Ω × S).
The matrix A is

A=

⎛
⎜⎜⎝
AE(S) 0 0 0

0
0 A′(S)

0

⎞
⎟⎟⎠ with A

′ =
⎛
⎝
A′

11(S) 0 0
0 A′

22(S) A′
23(S)

0 A′
22(S) A′

23(S)

⎞
⎠ .

(12.4)
One has

AE = det(E)

E22E33 − E2
23

, E=
⎛
⎝

E11 E12 E13

E12 E22 E23

E13 E23 E33

⎞
⎠ ,

A
′
11 = 1

4π

∫

D

[
G12

(∂χT

∂S2
− S3

)(∂χT

∂S2
− S3

)
+ G13

(∂χT

∂S3
+ S2

)(∂χT

∂S3
+ S2

)]
dS2dS3,

A
′
ij = 1

π

∫

D

[
E

⎛
⎜⎜⎜⎜⎝

(−1)iS5−i

∂χ̃i2

∂S2

∂χ̃i3

∂S3

⎞
⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎝

(−1)jS5−j

∂χ̃j2

∂S2

∂χ̃j3

∂S3

⎞
⎟⎟⎟⎟⎠

+ G23

4

(∂χ̃i2

∂S3
+ ∂χ̃i3

∂S2

)(∂χ̃j2

∂S3
+ ∂χ̃j3

∂S2

)]
dS2dS3, (i, j) ∈ {2,3}2.

As in [23], the symmetric matrix A belongs to L∞(S)4×4 and it satisfies

∃C0 > 0 such that ∀ζ ∈R
4, A ζ · ζ ≥ C0|ζ |2. (12.5)
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Hence, (12.3) becomes
∫

Ω×S
AE ZU ZV dxdS = 0,

∫

Ω×S
A

′
(∂B̂(e(U))

∂S
+ ∂R̂

∂S

)
·
(∂B̂(e(V))

∂S
+ ∂B̂

∂S

)
dx dS = 4

5

∫

Ω

G ·
(∑

A∈K
B̂
(·,A)

)
dx

+ 4
|K|
3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx, ∀V ∈VΓ (Ω,S), ∀(Â, B̂) ∈ L2(Ω;DI,per (S)).

(12.6)
Now, we introduce the correctors to solve the problem (12.6)2. They are the solutions to the
following variational problems:

χp .= (χ̂p, χ̂p) ∈ DI,per (S), p ∈ {1, . . . ,P },
∫

S
A

′
(∂B̂(Mp)

∂S
+ ∂χ̂p

∂S

)
· ∂B̂
∂S

dS = 0 ∀(V̂, B̂) ∈ Dper (S),

χ [j ] .= (χ̂ [j ], χ̂ [j ]) ∈ DI,per (S), j ∈ {1,2,3},
∫

S
A

′ ∂χ̂ [j ]

∂S
· ∂B̂
∂S

= ej ·
∑
A∈K

B̂
(
A
) ∀(V̂, B̂) ∈ DI,per (S),

(12.7)

where e1 = (1 0 0
)T

, e2 = (0 1 0
)T

and e3 = (0 0 1
)T

.
Hence,

(
Û, R̂

)=
P∑

p=1

ep(U)χp + 4π

5

3∑
i=1

Giχ
[i], a.e. in Ω × S, (12.8)

where G =
3∑

i=1

Giei .

12.3 Now, Let’s Go to the Homogenized Problem

First, observe that from (12.7) we have

∫

S
A

′ ∂χ̂ [j ]

∂S
·
(∂χ̂p

∂S
+ ∂B̂(Mp)

∂S

)
dS = 0.

Hence, in problems (12.3), we replace (Û, R̂) by (12.8) and we choose (Â, B̂) =
P∑

q=1

eq(V)χq . Taking into account the above equality, we obtain

∫

Ω×S
A

′

⎛
⎝

P∑
p=1

ep(U)
(∂χ̂p

∂S
+ ∂B̂(Mp)

∂S

)⎞⎠ ·
⎛
⎝

P∑
q=1

eq(V)
(∂χ̂q

∂S
+ ∂B̂(Mp)

∂S

)⎞⎠ dx dS

=4

5

∫

Ω

∑
A∈K

P∑
q=1

eq(V)χq
(·,A)dx + 4|K|

3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx.
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The above equality leads to the homogenized problem
∫

Ω

B
home(U) · e(V) dx =

∫

Ω

C
homG · e(V) dx + 4|K|

3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx,

(12.9)
where e(V) stands for the column

(
e1(V) . . . eP (V)

)T
and where Bhom is a symmetric

P × P matrix (ζ ∈ R
P )

B
homζ · ζ =

∫

S
A

′

⎛
⎝

P∑
p=1

ζp

(∂χ̂p

∂S
+ ∂B̂(Mp)

∂S

)
⎞
⎠ ·
⎛
⎝

P∑
q=1

ζq

(∂χ̂q

∂S
+ ∂B̂(Mq)

∂S

)
⎞
⎠ dS

=
P∑

p,q=1

b
hom
pq ζpζq

(12.10)
with

b
hom
pq =

∫

S
A

′
(∂χ̂p

∂S
+ ∂B̂(Mp)

∂S

)
·
(∂χ̂q

∂S
+ ∂B̂(Mq)

∂S

)
dS (p, q) ∈ {1, . . . ,P }2.

(12.11)
In the RHS of (12.9) Chom is a P × 3 matrix, with entries chom

pi :

c
hom
pi = 4

5

∑
A∈K

χp
(·,A) · ei (i,p) ∈ {1,2,3} × {1, . . . ,P }. (12.12)

Lemma 24 The bilinear forms Bhom satisfies the following properties:

– symmetry,
– coercivity, namely there exists C∗

0 > 0 such that for every ζ ∈ R
P , one has

B
homζ · ζ ≥ C∗

0 |ζ |2. (12.13)

Proof The symmetry of Bhom is the consequence of the symmetry of the matrix A.
Now we prove (12.13). From equality (12.10) and (12.5) we have

B
homζ · ζ ≥ C0

∫

S

∣∣∣∣∣∣
P∑

p=1

ζp

d

dS

(
χ̂p + B̂(Mp)

)
∣∣∣∣∣∣

2

dS.

Now, we claim that the map

ζ ∈R
P �−→ |ζ | =

√√√√√
∫

S

∣∣∣∣∣∣
P∑

p=1

ζp

d

dS

(
χ̂p + B̂(Mp)

)
∣∣∣∣∣∣

2

dS

is a norm. Indeed, first it is a semi-norm. Now, if |ζ | = 0 then
P∑

p=1

ζp

(
χ̂p + B̂(Mp)

)= C ∈

R
3. Then, proceeding as in the proof of Lemma 23 we obtain ζp = 0, p ∈ {1, . . . ,P }. The

semi-norm is a norm. As a consequence, there exists C∗
0 > 0 such that

∀ζ ∈R
P , B

homζ · ζ ≥ C∗
0 |ζ |2.
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The coercivity follows. �

Theorem 2 (The homogenized limit problem) If S is a 3D-periodic unstable structure
then, the limit field U ∈VΓ (Ω,S) is the unique solution to the homogenized problem

∫

Ω

B
home(U) · e(V) dx =

∫

Ω

C
homG · e(V) dx

+ 4|K|
3

∫

Ω

F · V dx + |S|
∫

Ω

f · V dx, ∀V ∈V(Ω,S),

(12.14)
where Bhom is given by (12.10) and Chom by (12.12).

12.4 Determination of ZU in the Case S of Type S6

Lemma 25 Let S be a structure of type S6 then ZU = 0.

Proof Since S is of type S6, there exists Û ∈ L2(Ω;DE,per (S)) such that ZU = ∂Û
∂S

· t1 a.e.

in Ω × S (see Lemma 20). Now (12.6) becomes

∫

Ω×S
AE

(∂Û
∂S

· t1

)(∂V̂
∂S

· t1

)
dxdS = 0, ∀V̂ ∈ L2(Ω;DE,per (cS)).

Hence ZU = 0. �

13 The Case of an Isotropic and Homogeneous Material

In the case of an isotropic and homogeneous material the stress tensor is given by

σ(u) = λTr(e(u)) I3 + 2μe(u)

where I3 is the unit 3 × 3 matrix. λ and μ are the material Lamé constants.
The correctors χ̃q ∈ L∞(S;Dw), q ∈ {1,2,3,4} are those obtained in [23] (see also

[13]).
Hence, we have

ũ =ν
[
−ZU

(
S2t�2 + S3t�3

)+
(∂2Â

(
e(U)

)

∂S2
+ ∂2Û

∂S2

)
· t�2
(S2

2 − S2
3

2
t�2 + S2S3t�3

)

+
(∂2Â

(
e(U)

)

∂S2
+ ∂2Û

∂S2

)
· t�3
(
S2S3t�2 + S2

3 − S2
2

2
t�3
)]

a.e. in Ω × γ� × D, � ∈ {1, . . . ,m},

where ν = λ

2(μ + λ)
is the Poisson coefficient.

The matrix A becomes

A=

⎛
⎜⎜⎜⎜⎜⎜⎝

E 0 0 0

0
μ

2
0 0

0 0
E

4
0

0 0 0
E

4

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where E = μ(3λ + 2μ)

λ + μ
is the Young’s modulus.

As a consequence, we first get
(
χ̂p, χ̂p

) ∈ DI,per (S) (see Sect. A.2) for every p ∈
{1, . . . ,P }.

13.1 Determination of ˜U1 in Ω(1) in the Case S0

First, remind that U1 = 0 in Ω(1). This is why we need to determine the component in the
direction e1 of the limit displacement in Ω(1).

In this paper we have not introduced applied forces which act with the extensional macro-
scopic displacements. In fact, this type of displacements is not really important for unstable
structures because this only happens for structures of type S0 with the component of direc-
tion e1 in the open set Ω(1).12

Based on Remark 2, for structures of type S0 we can add to the applied forces given by
(6.5) the following:

f̃ε = r

ε

(
f̃11

Ω
(1)
ε

)
|S(1)

ε
e1, f̃1 ∈ C(Ω(1)),

without changing the estimate (6.7).
Below we revisit (12.6)1.

We assume the structure made of an isotropic and homogeneous material.13 (see
Sect. 13).

Taking into account Proposition 8, Lemmas 21-22, we see that equation (12.6)1 becomes:

Find Ũ ∈ L2
Γ (Ω,∂,S), Û ∈ L2(Ω;DE,per (S)), such that

∫

Ω×S(1)

E
∂Ũ1

∂x1

∂Ṽ1

∂x1
dxdS +

∫

Ω×S(1)

E
∂Û1

∂S
∂V̂1

∂S
dxdS

+
3∑

i=2

∫

Ω×S(i)

E
( 3∑

j=1

∂Ũ j

∂xj

(ej · t1)
2 + ∂Û

∂S
· t1

)( 3∑
j=1

∂Ṽj

∂xj

(ej · t1)
2 + ∂V̂

∂S
· t1

)
dxdS

=
∫

Ω(1)×S(1)

f̃1 Ṽ1 dx, ∀Ṽ ∈ L2
Γ (Ω,∂), ∀V̂ ∈ L2(Ω;DE,per (S)).

(13.1)
Now, we choose as test functions

V̂ = 0, Ṽ2 = Ṽ3 = 0, Ṽ1 ∈ L2(Ω, ∂1) such that Ṽ1 = 0 a.e in Ω \ Ω(1).

That gives:

Find Ũ1 ∈ L2
Γ (Ω(1), ∂1) such that

E

∫

Ω(1)

∂Ũ1

∂x1

∂Ṽ1

∂x1
dx =

∫

Ω(1)

f̃1 Ṽ1 dx, ∀Ṽ1 ∈ L2
Γ (Ω(1), ∂1).

12If S contains only straight lines, we can also consider such forces acting in the whole domains Ω(i) ∩ Sε ,
i ∈ {1,2,3}. We leave this case to the reader.
13We can proceed in a similar way if AE is constant on every line of S(1) .
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14 Conclusion

14.1 Approximate Solution to Problem (6.4)

For our ε-periodic r-thin unstable structure, the solution to the linearized elasticity problem
can be reconstructed in the following form:

uε(x) ≈ U(x) + ε
(
Â
(
e(U)(x)

)( s
ε

)
+ Û

(
x,

s
ε

))

+
(
B̂
(∇U(x)

)( s
ε

)
+ R̂

(
x,

s
ε

))
∧ (s2t�2 + s3t�3) + O

( r2

ε

)

for a.e. x = s + s2t�2 + s3t�3 = εξ + εA� + s1t�1 + s2t�2 + s3t�3, (s1, s2, s3) ∈ (0, εl�) × Dr.

The first term in the above writing gives the macroscopic displacement of the structure. The
third term represents the small rotations of the cross-sections while the fourth and last term

O
( r2

ε

)
stands for the deformations of the cross-sections.

Now, we pay attention to the second term, it represents the main part of the local displace-
ment of the centerlines of the beams. Consider a cell εξ + εS; we focus on the points of this
cell. In the unfolding transformation, forgetting the macroscopic displacement, a point S of
this cell is transformed to give

S �−→ S + εÂ
(
e(U)(εξ)

)
(S) + εÛ

(
εξ,S

)
.

The couple (Û, R̂) is given by (12.8). It belongs to L2(Ω;DI,per (S)). The map S �−→
S+ε Û

(
εξ,S

)
is of inextensional type, it means that under this transformation the lengths of

the centerlines are not modified (neither stretching or compression). Near a node A, we get

S = A + −→
Am,

A + −→
Am �−→ A + −→

Am + ε Û
(
εξ,A

)
(S) = A + ε Û(A) + −→

Am + ε R̂
(
εξ,A

)∧ −→
Am, m ∈ S.

It means that near a node, this transformation is approximatively a rotation. As a result, the
angles between the centerlines are preserved. Now, let’s take a look at the transformation

S �−→ S + εÂ
(
e(U)(εξ)

)
(S).

For simplicity, we replace the symmetric matrix e(U)(εξ) by M. In Sect. 3 we have shown
that

Â(M) = V (M) + ÂV (M) + C(M),

where C(M) ∈ R
3. Let γ� be a segment of S . The components of the restriction to this

segment of the associated displacement are

εÂ(M)(S) · t�1 = εV (M)(S) · t�1 + εC(M) · t�1 polynomial function of degree less than 1,

it gives the stretching-compression of γ�,

εÂ(M)(S) · t�i = εV (M)(S) · t�i + εÂV (M) · t�i

+ C(M) · t�i polynomial function of degree less than 3,

it gives the local bending, i ∈ {2,3}.
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Near a node A, we get

S = A + −→
Am, A + −→

Am �−→ A + −→
Am + ε

(
V (M)(A) + C(M)

)− εM
−→
Am, m ∈ S.

As a consequence, the angle between two contiguous segments is generally not preserved.
The local behavior of the structure is mainly determined by the knowledge of the matrices
M (thus of the space Ms(S)) and the corresponding solution V (M) to equation (3.1). But
the character of the structure (auxetic or not) cannot be deduced from the local behavior
since the map S �−→ Â

(
e(U)(εξ)

)
(S) + Û

(
εξ,S

)
is periodic.

In our work, we have considered several basic types of unstable structures, some of
these structures are auxetic. Remember, that auxetics are structures or materials that have
a negative Poisson’s ratio. When stretched, they become thicker perpendicular to the ap-
plied forces. This occurs due to their peculiar internal structure and how it deforms when
the sample is uniaxially loaded, e.g., if we have simultaneously both inequalities in Ω :

∂U1

∂x1
≥ 0,

∂U2

∂x2
≥ 0 a.e. in Ω.

In our different types of unstable structures, we distinguish two main kinds, the first which
may or may not be “a priori” auxetic: some among those of types Si , i ∈ {0,1,2} (see
Fig. 1(a), (b), (c) (non-auxetic), Fig. 1(e) (auxetic) and Fig. 1(f) (partially auxetic)). By “a
priori” it is meant that the auxetic character of these structures only depend on the space
VΓ (Ω,S) of the macroscopic displacements. The second are or are not auxetic “a posteri”
(some of types Si , i ∈ {3,4,5,6}); it depends on the applied forces since the space VΓ (Ω,S)

of the macroscopic displacements is H 1
Γ (Ω)3.

14.2 Examples of Cells and Spaces VΓ (Ω,S)

1. Type S0:

– cell S of Fig. 1(a)(b)

dim(Ms(S)) = 3, VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U1

∂x1
= ∂U2

∂x2
= ∂U3

∂x3
= 0 a.e. in Ω

}
,

the matrix Bhom is of size 3 × 3,
– cell S of Fig. 5(b)(a) in planes parallel to Re1 ⊕ Re2 and (b) in planes parallel to
Re1 ⊕Re3

dim(Ms(S)) = 4, VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U1

∂x1
= ∂U3

∂x3
= 0 a.e. in Ω

}
,

the matrix Bhom is of size 4 × 4,
– cell S of Fig. 1(c)

dim(Ms(S)) = 5, VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U1

∂x1
= 0 a.e. in Ω

}
,

the matrix Bhom is of size 5 × 5.

2. Type S1:
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Fig. 5 Front views of cells of 3D-periodic structures

– cell S of Fig. 1(d)

dim(Ms(S)) = 3, VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U1

∂x1
= ∂U2

∂x2
= ∂U3

∂x3
= 0 a.e. in Ω

}
,

the matrix Bhom is of size 3 × 3,
– cell S of Fig. 1(e)

dim(Ms(S)) = 4,

VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U2

∂x2
= κ12

∂U1

∂x1
,

∂U3

∂x3
= κ13

∂U1

∂x1
, a.e. in Ω

}
,

where κ12 < 0 and κ13 < 0. These coefficients depend on the slopes of the oblique
segments and their signs mean that the Poisson’s ratios in planes parallel to Re1 ⊕Re2

and Re1 ⊕Re3 are positive. We also get

∂U3

∂x3
= κ13

κ12

∂U2

∂x2
, a.e. in Ω.

This relation means that the structure is auxetic in planes parallel to Re2 ⊕ Re3. The
matrix Bhom is of size 4 × 4,

– cell S of Fig. 1(f)

dim(Ms(S)) = 4,

VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U2

∂x2
= κ12

∂U1

∂x1
,

∂U3

∂x3
= κ13

∂U1

∂x1
, a.e. in Ω

}
,

where κ12 > 0 and κ13 > 0. These coefficients depend on the slopes of the oblique
segments and their signs mean that the Poisson’s ratios in planes parallel to Re1 ⊕Re2,
Re1 ⊕Re3 and Re2 ⊕Re3 are negative, the matrix Bhom is of size 4×4. This structure
is completely auxetic,

– cell S of Fig. 5(f) in planes parallel to Re1 ⊕Re2 and Re1 ⊕Re3

dim(Ms(S)) = 5, VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U1

∂x1
= 0 a.e. in Ω

}
,

the matrix Bhom is of size 5 × 5.

3. Type S2:

– the cell S is such that in planes parallel to Re1 ⊕Re2 we get only non convex hexagons
like Fig. 5(c)

dim(Ms(S)) = 5, VΓ (Ω,S) =
{
U ∈ H 1

Γ (Ω)3 | ∂U2

∂x2
= κ12

∂U1

∂x1
a.e. in Ω

}
,
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where κ12 > 0. This coefficient depends on the slopes of the oblique segments, the
matrix Bhom is of size 5 × 5.

14.3 Concluding Remark Concerning the Mechanical Impact

We recall the solution procedure, to compute the cell problems and find the homogenized
elastic coefficients.

First, as explained in Sect. 3, we determine the conditions for which equation (3.1) admits
solutions. This gives Ms(S) and then a basis

{
Mp, i = 1, . . . ,P

}
. The knowledge of Ms(S)

takes into account the relations between the matrices M11, M22, M33 and of course the κij if
they are defined.

After that we get B̂V (Mp), p ∈ {1, . . . ,P }; we modify them in order to have B̂(Mp),
p ∈ {1, . . . ,P } and then use them to solve (12.7) by means of the Galerkin method, using
(A.4) as test functions.

We also want to draw the attention on the mechanical impact of the paper. Since we want
to stay in the linear elasticity regime, we need to choose forces, such that the right-hand side
functional is bounded in the same order, as the elastic energy. In [19], we gave the order of
each single loading component, i.e., the externally applied nodal forces F(A), the moments
G(A), and the constant in the cross-section axial expansion forces, f|Sε , in the set of beams
⋃
ξ∈Ξε

m⋃
�=1

Pξ

ε,�,r , that does not violate the linear elasticity for the stable structures. This scaling

is the following:

fε =
∑
A∈Kε

[ε2

r2
F(A) + ε

r3
G(A) ∧ (x − A)

]
1B(A,r) + ε

r + ε2
f|Sε 1∪ξ∈Ξε ∪m

�=1P
ξ
ε�,r

, (14.1)

where (f, F, G) ∈ (C(Ω)3
)3

and 1O is the characteristic function of the set O. This scaling
realizes
∣∣∣
∫

Sε,r

fε · udx

∣∣∣≤ C
(‖f‖L∞(Ω) + ‖F‖L∞(Ω) + ‖G‖L∞(Ω)

)‖e(u)‖L2(Sε,r )
, ∀u ∈ Vε,r .

(14.2)
For the unstable structures, applied forces should be smaller to realize a linear elastic regime
in the structure of thin beams,

∣∣∣
∫

Sε,r

fε · udx

∣∣∣≤ C
r2

ε2

(‖f‖L∞(Ω) + ‖F‖L∞(Ω) + ‖G‖L∞(Ω)

)‖e(u)‖L2(Sε,r )
, ∀u ∈ Vε,r .

(14.3)
This requires the following component scaling:

fε
.=
∑
A∈Kε

[ r

ε
F(A) + 1

rε
G(A) ∧ (x − A)

]
1B(A,r) + r2

ε2
f|Sε . (14.4)

In Examples in Sect. 14.2 of this paper, we mean “locking” under the applied loading
range. However, the unstable structures with long zig-zag lines, mentioned as “locked” in
a certain direction in Sect. 14.2, are stable for the loading in this direction and so, the ax-
ial forces on beams can be chosen larger in their projection to this direction. I.e., for the
structure of type S0 axial forces can be chosen as

f̃ε = r

ε

(
f̃11

Ω
(1)
ε

)
|S(1)

ε
e1, f̃1 ∈ C(Ω(1)),
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without changing the estimate below ((6.7) in this paper),

‖e(uε)‖L2(Sε,r )
≤ C

r2

ε2

(‖f‖L∞(Ω) + ‖F‖L∞(Ω) + ‖G‖L∞(Ω)

)
. (14.5)

This criteria on the applied forces, can be used to design structures, i.e., to find a correct
proportion between r and ε, in order to stay in the linear elastic regime under certain required
loading.

Appendix

Lemma 26 Let S be a 3D-periodic structure of type Si . If S contains at least a straight line
of direction ei , i ∈ {1,2,3}, then a necessary condition to solve (3.1) is

Mii = 0. (A.1)

Proof Let V be a solution to (3.1). Since V is periodic, integrating along a straight line of
direction ei leads to Mii = 0. The condition (A.1) is required. �

Lemma 27 Let S be a structure of type Si , i ∈ {0,1,2,5}. Then, a sufficient condition to
solve (3.1) is

M11 = M22 = M33 = 0. (A.2)

Proof Let M be a matrix satisfying (A.2). We define W ∈ Uper (S) by

W(S) = −2ê1(S)M e1 + C, ∀S ∈ S, C ∈R
3.

The derivative of W is

dW
dS

= −2
(
e1 · t1

)
M e1 a.e. in S.

Hence, due to assumption (A.2)

dW
dS

· t1 = −2
(
e1 · t1

)(
M e1

) · t1 = −(M t1

) · t1 a.e. in S.

We project W over DE,per (S) which gives V (M), the solution to (3.1). �

Denote MS,3 the space of 3 × 3 symmetric matrices.
One can prove the following lemma:

Lemma 28 Let S be a structure of type Sj , j ∈ {0,1,2}. There exist linear forms Li,S :
MS,3 →R and functions gi ∈ H 1

per (S) satisfying

dgi

dS
= 0 a.e. in S(i), i ∈ {1,2,3}

such that for every M ∈MS,3 the following problem admits a unique solution:

W(M) ∈ DE,per (S),
dW(M)

dS
· t1 = −(M t1) · t1 + Li,S(M)gi on S(i), i ∈ {1,2,3}.
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For every matrix M ∈MS,3, we have:
if S is of type

– S0 then L1,S(M) = M11,
– S1 then L1,S(M) = 0,
– S2 then L1,S(M) = L2,S(M) = 0.

Hence

Ms(S) = {M ∈MS,3 | L1,S(M) = L2,S(M) = L3,S(M) = 0
}
.

As a consequence of the above lemma, regarding the dimension of Ms(S), one has:

– if S is of type S0 then dim
(
Ms(S)

) ∈ {3,4,5}, all the dimensions are possible,
– if S is of type S1 then dim

(
Ms(S)

) ∈ {3,4,5,6}, in this case it would seem that
dim

(
Ms(S)

)= 6 is not possible,
– if S is of type S2 then dim

(
Ms(S)

) ∈ {5,6}.

A.1 The Warping-Correctors

The four warping-correctors are the solutions to the following cell problems:

χ̃E(S, ·) ∈ Dw, χ̃q(S, ·) ∈ Dw, q ∈ {1,2,3},
∫

D

aijkl(S)
(
ED(χ̃E)(S, ·) + M11

)
ij

(
ED(̃v)

)
kl

dS2dS3 = 0,

∫

D

aijkl(S)
(
ED(χ̃1)(S, ·) + S2M13 − S3M12

)
ij

(
ED(̃v)

)
kl

dS2dS3 = 0,

∫

D

aijkl(S)
(
ED(χ̃2)(S, ·) + S3M11

)
ij

(
ED(̃v)

)
kl

dS2dS3 = 0,

∫

D

aijkl(S)
(
ED(χ̃3)(S, ·) − S2M11

)
ij

(
ED(̃v)

)
kl

dS2dS3 = 0,

for a.e. S in S,

∀ ṽ ∈ Dw.

(A.3)
We easily obtain

χ̃E = −E12E33 − E13E23

E22E33 − E2
23

S2t2 + E12E23 − E13E22

E22E33 − E2
23

S3t3, χ̃1 = χT t1,

where χT ∈ L∞(S;H 1(D)) is the solution to the variational problem

∫

D

χT dS2dS3 = 0,

∫

D

G12

(∂χT

∂S2
− S3

) ∂φ

∂S2
+ G13

(∂χT

∂S3
+ S2

) ∂φ

∂S3
dS2dS3 = 0, ∀φ ∈ H 1(D).
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The correctors χ̃i ∈ L∞(S;H 1(D))3, i ∈ {2,3} are the solutions to

χ̃i1 = 0,

∫

D

(
S3χ̃i2 − S2χ̃i3

)
dS2dS3 =

∫

D

χ̃idS2dS3 = 0,

∫

D

[(
E12S3 + E22

∂χ̃22

∂S2
+ E23

∂χ̃23

∂S3

)∂φ2

∂S2
+
(
E13S3 + E23

∂χ̃22

∂S2
+ E33

∂χ̃23

∂S3

)∂φ3

∂S3

+ G23

4

(∂χ̃22

∂S3
+ ∂χ̃23

∂S2

)(∂φ2

∂S3
+ ∂φ3

∂S2

)]
dS2dS3 = 0 ∀(φ2, φ3) ∈ H 1(D)2,

∫

D

[(
− E12S2 + E22

∂χ̃32

∂S2
+ E23

∂χ̃33

∂S3

)∂φ2

∂S2
+
(

− E13S2 + E23
∂χ̃32

∂S2
+ E33

∂χ̃33

∂S3

)∂φ3

∂S3

+ G23

4

(∂χ̃32

∂S3
+ ∂χ̃33

∂S2

)(∂φ2

∂S3
+ ∂φ3

∂S2

)]
dS2dS3 = 0 ∀(φ2, φ3) ∈ H 1(D)2.

Observe that due to the symmetries of D,

χ̃22, χ̃33 are odd with respect to S2 and S3, χ̃23, χ̃32 are even with respect to S2 and S3.

A.2 The Spaces DI,per (S), DI,per (S) and DI,per (S)

Let A be an inextensional displacement belonging to DI,per (S). There exists B ∈ L∞(S)

constant on every segment of S and satisfying B · t1 = 0 a.e. on S such that

dA
dS

= B ∧ t1 a.e. in S.

Proceeding in the same way as to build the couple
(
Â(M), B̂(M)

)
, we obtain

(
Ã, B̃

) ∈
DI,per (S) such that

Ã = A and B̃ = 0 on every node of S and

on every segment γ ⊂ S B̃|γ is a polynomial function of degree less than 2.

The map A ∈ DI,per (S) −→ (
Ã, B̃

) ∈ DI,per (S) is one to one.
Now, let B be in Uper (S). We recall the following result: Let ψ be a function affine on

[a, b], a < b. Then function ψ̃ defined by

ψ̃(t) = ψ(a)
b − t

b − a
+ ψ(b)

t − a

b − a
+ 3
(
ψ(a) + ψ(b)

) (t − a)(t − b)

(b − a)2
in [a, b],

satisfies
∫ b

a

ψ̃(t)dt = 0, ψ̃(a) = ψ(a), ψ̃(b) = ψ(b).

(A.4)

With the help of this function, we build a couple
(
A, B

) ∈ DI,per (S) such that14

A = 0 and B = B on every node of S and

on every segment γ ⊂ S, B|γ is a polynomial function of degree less than 2.

14On γ = [A,B] we get B(s1) =B(A)
l − s1

l
+B(B)

s1

l
+3
(
B(A)+B(B)

) s1(s1 − l)

l2
, s1 ∈ [0, l], l = |AB|.
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The map B ∈ Uper (S) −→ (
A, B

) ∈ DI,per (S) is one to one.
Denote DI,per (S) the subspace of DI,per (S) containing the sums

(
Ã, B̃

)+ (A, B
)
. This

space is isomorphic to DI,per (S) × Uper (S).

A.3 The Test Function φ
[1]
ε,r

To every φ in H 1(Sε), we associate the function φ[1]
ε,r defined by:

– φ[1]
ε,r is constant in the neighborhood of every node,

– in the segment [εξ + εA� − c0rt�1, εξ + εB� + c0rt�1], γ� = [A�,B�], ξ ∈ Ξε , γ� ⊂ S

φ[1]
ε,r (s) =

⎧⎪⎪⎨
⎪⎪⎩

φ
(
εξ + εA�

)
for all s1 ∈ [−c0r, c0r],

polynomial function of degree less than 1 for all s1 ∈ [c0r, εl� − c0r],
φ
(
εξ + εB�

)
for all s1 ∈ [εl� − c0r, εl� + c0r]

where the polynomial function is defined for all s1 ∈ [c0r, εl� − c0r] by

φ[1]
ε,r (s) = φ

(
εξ + εA�

)εl� − c0r − s1

εl� − 2c0r
+ φ

(
εξ + εB�

) s1 − c0r

εl� − 2c0r
.

φ[1]
ε,r belongs to W 1,∞(εξ + εA� − c0rt�1, εξ + εB� + c0rt�1).

In that way, we obtain a function belonging to W 1,∞(Sε), constant in the neighborhood of ev-
ery node. That allows to extend it as an element, still denoted φ[1]

ε,r , belonging to W 1,∞(Sε,r ),
constant in every domain B(εξ + εA, c0r) ∩ Sε,r , A ∈ K, and also constant in every cross-
section of the beams. This function satisfies

dφ[1]
ε,r

ds
(s) = φ

(
εξ + εB�

)− φ
(
εξ + εA�

)

εl� − 2c0r
for all s1 ∈ [c0r, εl� − c0r],

∥∥φ[1]
ε,r − φ

∥∥
L2(Sε)

≤ Cε

∥∥∥dφ

ds

∥∥∥
L2(Sε)

,

∥∥∥dφ[1]
ε,r

ds

∥∥∥
L2(Sε)

≤ C

∥∥∥dφ

ds

∥∥∥
L2(Sε)

.

(A.5)

The constant does not depend on ε and r . Moreover, if φ belongs to W 1,∞(Ω), one has

T S
ε

(
φ[1]

ε,r

)−→ φ strongly in L2(Ω × S),

T S
ε

(dφ[1]
ε,r

ds

)
−→ ∇φ · t1 strongly in L2(Ω × S).

(A.6)

A.4 The Test Function φ
[2]
ε

To every φ in H 1(Sε), we associate the function φ[2]
ε defined by:

– φ[2]
ε is constant in the neighborhood of every node,

– in the segment [εξ + εA� − c0rt�1, εξ + εB� + c0rt�1], γ� = [A�,B�], ξ ∈ Ξε , γ� ⊂ S

φ[2]
ε (s) =

⎧⎪⎪⎨
⎪⎪⎩

φ
(
εξ + εA�

)
for all s1 ∈ [−c0r, c0r],

polynomial function of degree less than 3 for all s1 ∈ [c0r, εl� − c0r],
φ
(
εξ + εB�

)
for all s1 ∈ [εl� − c0r, εl� + c0r],
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where the polynomial function is defined for all s1 ∈ [c0r, εl� − c0r] by

φ[2]
ε (s) = φ

(
εξ + εA�

) (s1 − εl� + c0r)
2(εl� − 4c0r + 2s1)

(εl� − 2c0r)3

+ φ
(
εξ + εB�

) (s1 − c0r)
2(3εl� − 4c0r − 2s1)

(εl� − 2c0r)3
.

φ[2]
ε belongs to W 2,∞(εξ + εA� − c0rt�1, εξ + εB� + c0rt�1).

In that way, we obtain a function belonging to W 1,∞(Sε), constant in the neighborhood of ev-
ery node. That allows to extend it as an element, still denoted φ[2]

ε , belonging to W 1,∞(Sε,r ),
constant in every domain B(εξ + εA, c0r) ∩ Sε,r , A ∈ K, and also constant in every cross-
section of the beams. This function satisfies

dφ[2]
ε

ds
(s) = φ

(
εξ + εB�

)− φ
(
εξ + εA�

)

εl� − 2c0r

6(s1 − c0r)(εl� − c0r − s1)

(εl� − 2c0r)2

for all s1 ∈ [c0r, εl� − c0r],
∥∥φ[2]

ε − φ
∥∥

L2(Sε)
≤ Cε

∥∥∥dφ

ds

∥∥∥
L2(Sε)

,

∥∥∥dφ[2]
ε

ds

∥∥∥
L2(Sε)

≤ C

∥∥∥dφ

ds

∥∥∥
L2(Sε)

,

∥∥∥d2φ[2]
ε

ds2

∥∥∥
L2(Sε)

≤ C

ε

∥∥∥dφ

ds

∥∥∥
L2(Sε)

.

(A.7)

The constant does not depend on ε and r . Moreover, if φ belongs to W 1,∞(Ω), one has

T S
ε

(
φ[2]

ε

)−→ φ strongly in L2(Ω × S),

T S
ε

(dφ[2]
ε

ds

)
−→ ∇φ · t1Φ strongly in L2(Ω × S),

εT S
ε

(d2φ[2]
ε

ds2

)
−→ ∇φ · t1

dΦ

dS
strongly in L2(Ω × S),

(A.8)

where Φ belongs to H 1
0,K(S) and in γ� ⊂ S it is defined by

Φ(S) = S1(l� − S1)

l2
�

for all S1 ∈ [0, l�]. (A.9)

A.5 The Test Function φ
[3]
ε

To every φ in W 2,∞(R3), we associate the function φ[3]
ε ∈ W 2,∞(Sε) defined by:

• φ[3]
ε is affine in the neighborhood of every node,

• for s = εξ + εA� + s1t�1, s1 ∈ [−c0r, εl� + c0r], γ� = [A�,B�], ξ ∈ Ξε , γ� ⊂ S , we set

φ[3]
ε (s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
(
εξ + εA�

)+ s1∇φ
(
εξ + εA�

) · t�1 for all s1 ∈ [−c0r, c0r],
see (A.10) for all s1 ∈ [c0r,2c0r],
φ(s) for all s1 ∈ [2c0r, εl� − 2c0r],
see (A.10) for all s1 ∈ [εl� − 2c0r, εl� − c0r],
φ
(
εξ + εB�

)+ (s1 − εl�)∇φ
(
εξ + εB�

) · t�1 for all s1 ∈ [εl� − c0r, εl� + c0r],
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where for all s1 ∈ [c0r,2c0r]

φ[3]
ε (s) =(φ(εξ + εA�

)+ c0r∇φ
(
εξ + εA�

) · t�1
) (s1 − 2c0r)

2
(
2(s1 − c0r) + c0r

)

(c0r)3

+ ∇φ
(
εξ + εA�

) · t�1
(s1 − 2c0r)

2(s1 − c0r)

(c0r)2

+ φ
(
εξ + εA� + 2c0rt�1

) (s1 − c0r)
2
(− 2(s1 − 2c0r) + c0r

)

(c0r)3

+ ∇φ
(
εξ + εA� + 2c0rt�1

) · t�1
(s1 − c0r)

2(s1 − 2c0r)

(c0r)2
.

(A.10)

We easily check that

dφ[3]
ε

ds
(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇φ
(
εξ + εA�

) · t�1 for all s1 ∈ [−c0r, c0r],
see (A.11) for all s1 ∈ [c0r,2c0r],
∇φ(s) · t�1 for all s1 ∈ [2c0r, εl� − 2c0r],
see (A.11) for all s1 ∈ [εl� − 2c0r, εl� − c0r],
∇φ
(
εξ + εB�

) · t�1 for all s1 ∈ [εl� − c0r, εl� + c0r],

where for all s1 ∈ [εl� − 2c0r, εl� − c0r]
dφ[3]

ε

ds
(s) =

(
φ
(
εξ + εA�

)+ c0r∇φ
(
εξ + εA�

) · t�1 − φ
(
εξ + εA� + 2c0rt�1

)

+ c0r

2

[∇φ
(
εξ + εA�

)+ ∇φ
(
εξ + εA� + 2c0rt�1

)] · t�1
)6(s1 − 2c0r)(s1 − c0r)

(c0r)3

+ ∇φ
(
εξ + εA� + 2c0rt�1

) · t�1
s1 − c0r

c0r
− ∇φ

(
εξ + εA�

) · t�1
s1 − 2c0r

c0r
.

(A.11)
The function φ[3]

ε satisfies

∥∥φ[3]
ε −φ

∥∥
L∞(Sε)

≤ Cr2‖φ‖W2,∞(R3),

∥∥∥dφ[3]
ε

ds
−∇φ · t1

∥∥∥
L∞(Sε)

≤ Cr‖φ‖W2,∞(R3). (A.12)

The constant does not depend on ε and r .

A.6 A Lemma of the Periodic Unfolding Method

Denote

AΓ (S)
.=
{
Φ ∈ H 1

Γ (Sε) | Φ is an affine function on every segment
}
,

Aper (S)
.=
{
Φ ∈ H 1

per (S) | Φ is an affine function on every segment
}
,

H 1
0,Kε

(Sε)
.=
{
φ ∈ H 1(Sε) | φ vanishes on every node

}
.
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Lemma 29 Let S be a 3D-periodic structure of type Si , i ∈ {0,1,2} and {φε}ε a sequence
of functions belonging to H 1

Γ (Sε), satisfying

‖φε‖L2(Sε)
+
∥∥∥dφε

ds

∥∥∥
L2(S(3)

ε )
+ ε

2∑
i=1

∥∥∥dφε

ds

∥∥∥
L2(S(i)

ε )
≤ C

ε
.

Then, up to a subsequence still denoted {ε}, there exist φ̃ ∈ L2
Γ (Ω,∂3,S) and φ̂ ∈

L2(Ω;H 1
per (S)) such that (i ∈ {1,2})

T S
ε

(
φε

)
⇀ φ̃ weakly in L2(Ω;H 1(S)),

εT S
ε

(dφε

ds

)
⇀

∂φ̃

∂S
weakly in L2(Ω × S(i)),

T S
ε

(dφε

ds

)
⇀

∂φ̃

∂x3
+ ∂φ̂

∂S
weakly in L2(Ω × S(3)).

(A.13)

Proof Step 1. We decompose φε as

φε = φa
ε + φ0

ε , φa
ε ∈ AΓ (Sε), φ0

ε ∈ H 1
0,Kε

(Sε).

The assumptions on {φε}ε imply that

‖φa
ε ‖L2(Sε)

+
∥∥∥dφa

ε

ds

∥∥∥
L2(S(3)

ε )
+ ε

2∑
i=1

∥∥∥dφa
ε

ds

∥∥∥
L2(S(i)

ε )
≤ C

ε
,

1

ε
‖φ0

ε‖L2(S(3)
ε )

+
∥∥∥dφ0

ε

ds

∥∥∥
L2(S(3)

ε )
+

2∑
i=1

(
‖φ0

ε‖L2(S(i)
ε )

+ ε

∥∥∥dφ0
ε

ds

∥∥∥
L2(S(i)

ε )

)
≤ C

ε
.

Then, up to a subsequence still denoted {ε}, there exists φ̃0 ∈ L2(Ω;H 1
0,K(S(i))) (see (10.1))

such that

T S
ε

(
φ0

ε

)
⇀ φ̃0 weakly in L2(Ω;H 1

0,K(S(i))), i ∈ {1,2},
1

ε
T S

ε

(
φ0

ε

)
⇀ φ̃0 weakly in L2(Ω;H 1

0,K(S(3))),

εT S
ε

(dφ0
ε

ds

)
⇀

∂φ̃0

∂S
weakly in L2(Ω × S(i)), i ∈ {1,2},

T S
ε

(dφ0
ε

ds

)
⇀

∂φ̃0

∂S
weakly in L2(Ω × S(3)).

Step 2. Limit of the sequence
{
T S

ε (φa
ε )
}

ε
.

The assumptions on {φε}ε imply that

‖φa
ε ‖L2(Sε)

+ ε

∥∥∥dφa
ε

ds

∥∥∥
L2(Sε)

≤ C

ε
.
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Then, up to a subsequence still denoted {ε}, there exists φ̃a ∈ L2(Ω;Aper (S)) such that

T S
ε

(
φa

ε

)
⇀ φ̃a weakly in L2(Ω;H 1(S)),

εT S
ε

(dφa
ε

ds

)
⇀

∂φ̃a

∂S
weakly in L2(Ω × S).

(A.14)

Hence

εT S
ε

(dφε

ds

)
⇀

∂(φ̃0 + φ̃a)

∂S
weakly in L2(Ω × S(i)), i ∈ {1,2}.

Since ε

∥∥∥dφa
ε

ds

∥∥∥
L2(S(3)

ε )
≤ C, we have ∂S φ̃a = 0 a.e. on Ω × S(3).

Step 3. Limit of the sequence
{
T S

ε

(dφε

ds

)}
ε

in L2(Ω × S(3)).

We decompose the restriction of φa
ε to the zig-zag lines of S(3)

ε as

φa
ε = Φa

ε + Ψ a
ε ,

where
dΦa

ε

ds
is constant on every zig-zag line in εξ + εS(3) and where Ψ a

ε vanishes on all

the extremities of the zig-zag lines in εξ + εS(3). One has

‖Φa
ε ‖

L2(S(3)
ε )

+
∥∥∥dΦa

ε

ds

∥∥∥
L2(S(3)

ε )
+ ε‖Ψ a

ε ‖
L2(S(3)

ε )
+
∥∥∥dΨ a

ε

ds

∥∥∥
L2(S(3)

ε )
≤ C

ε
.

Then, up to a subsequence still denoted {ε}, there exist Φa ∈ L2
Γ (Ω,∂3,S) and φ̂a ∈

L2(Ω;Aper (S(3))) (see (2.5)5) extended in a function belonging to L2(Ω;Aper (S)) still
denoted φ̂a such that (see [12, Lemma 6.8])

T S
ε

(
Φa

ε

)
⇀ Φa = φ̃a weakly in L2(Ω;H 1(S(3))),

T S
ε

(dΦa
ε

ds

)
⇀

∂Φa

∂x3
weakly in L2(Ω × S(3)),

1

ε
T S

ε

(
Ψ a

ε

)
⇀ φ̂a weakly in L2(Ω;H 1(S(3))).

This ends the proof of the lemma setting φ̃ = φ̃0 + φ̃a a.e. in Ω × S(i), i ∈ {1,2}, φ̃ = φ̃a

a.e. in Ω × S(3) and φ̂ = φ̃0 + φ̂a a.e. in Ω × S(3). �
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