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Abstract
The paper presents a versatile framework for solids which undergo nonisothermal processes
with irreversibly changing microstructure at large strains. It outlines rate-type and incre-
mental variational principles for the full thermomechanical coupling in gradient-extended
dissipative materials. It is shown that these principles yield as Euler equations essentially
the macro- and micro-balances as well as the energy equation. Starting point is the incorpo-
ration of the entropy and entropy rate as canonical arguments into constitutive energy and
dissipation functions, which additionally depend on the gradient-extended mechanical state
and its rate, respectively. By means of (generalized) Legendre transformations, extended
variational principles with thermal as well as mechanical driving forces can be constructed.
On the thermal side, a rigorous distinction between the quantity conjugate to the entropy
and the quantity conjugate to the entropy rate is essential here. Formulations with mechani-
cal driving forces are especially suitable when considering possibly temperature-dependent
threshold mechanisms. With regard to variationally consistent incrementations, we suggest
an update scheme which renders the exact form of the intrinsic dissipation and is highly
suitable when considering adiabatic processes. It is shown that this proposed numerical al-
gorithm has the structure of an operator split. To underline the broad applicability of the
proposed framework, we set up three model problems as applications: Cahn-Hilliard dif-
fusion coupled with temperature evolution, where we propose a new variational principle
in terms of the species flux vector, as well as thermomechanics of gradient damage and
gradient plasticity. In a numerical example we study the formation of a cross shear band.
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1 Introduction

In order to model dissipative size effects in solid materials that are, for example, related
to the width of shear bands or the grain size in polycrystals, nonstandard continuum the-
ories have to be elaborated that are based on characteristic length scale parameters. The
idea is to incorporate at least first-order spatial gradients of micro-structural variables that
describe (possibly in a homogenized sense) the irreversibly evolving microstructure. It is
of great importance here to account for thermomechanical coupling effects such as ther-
mal softening and temperature increase due to intrinsic dissipation. Practical applications
include technological processes like sheet-metal forming or extrusion of metals. Within this
work, we present a unified framework for the fully coupled thermomechanics of gradient-
extended dissipative solids that is applicable to a wide range of model problems such as
diffusion, (crystal) plasticity and damage. The formulation is embedded into the concept
of standard dissipative solids that is characterized by energy and dissipation functions, see
Biot [7], Ziegler [90] and Halphen & Nguyen [33]. In particular, the strongly coupled mul-
tifield problem will exhibit an incremental variational structure which is an extension of
the framework of gradient-extended dissipative solids presented in Miehe [49, 50] towards
nonisothermal processes.

Historically, the consideration of long-range effects via length scales can be traced back
to the work of the brothers Cosserat & Cosserat [13]. They investigated a microstructure
with rigid particles by introducing an additional microrotation governed by three additional
degrees of freedom. Since then, a lot of research has been done on so called micropolar, mi-
cromorphic and microstrain continua, i.e., by Eringen [18], see also Leismann & Mahnken
[38] for a comparative study. The book of Capriz [11] provides a general setting for mate-
rials with microstructure where order parameters are considered as components of elements
of an abstract manifold. Here, we also refer to the work of Mariano [44]. In Maugin [45]
the standard thermodynamic theory of local internal variables is extended by an additional
dependency of the energy function on the first-order spatial gradient of a (not necessarily
scalar) internal variable, see also Maugin & Muschik [47] and Frémond [25]. An important
ingredient of such theories is a proper energetic treatment of the microstructural processes
yielding additional balance-type equations that are coupled with the standard macroscopic
balance equations (mass, linear/angular momentum and energy). For an embedding into the
theory of micro-forces we refer to Gurtin [27].

Typical applications of above mentioned nonlocal theories including additional balance
equations are theories of phase transformation, gradient plasticity and gradient damage. The-
ories of gradient plasticity are dealt with on a phenomenological level in Aifantis [1], Fleck
& Hutchinson [19], Gurtin [27], Forest & Sievert [23], Gurtin & Anand [28] just to name a
few. Gradient damage theories that are basically in the same spirit are considered in Peer-
lings et al. [68], Dimitrijevic & Hackl [17], Pham et al. [71], Frémond [25] among many
others.

An important role in the modeling of dissipative processes in solids is played by incre-
mental variational principles. They offer an elegant way to couple different physical fields,
possess inherent symmetry and require only Jacobian and Hessian matrices of the under-
lying potential density for an implementation into typical finite element codes. In addition,
if a minimization structure is at hand, structural and material stability analysis is possible,
i.e., the formation of complex microstructures can be described. For contributions on the
variational theory of local plasticity we refer to Hill [34], Simo & Honein [78], Hackl [29],
Ortiz & Stainier [67], Ortiz & Repetto [66], Carstensen et al. [12] and Mosler & Bruhns
[58]. The works of Miehe [48], Petryk [70] and Hackl & Fischer [30] deal with general
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inelastic behavior. Extensions towards incorporation of (at least) the first gradient of the in-
ternal variable into constitutive functions can be found in Mühlhaus & Aifantis [59], Fleck
& Willis [20], Mainik & Mielke [43], Nguyen [63], Miehe [50] and Lancioni et al. [36] for
gradient plasticity and in Lorentz & Andrieux [40], Mielke & Roubíček [56], Dimitrijevic
& Hackl [17] and Pham et al. [71] for gradient damage. In addition, we mention the general
formulations of gradient-extended dissipative solids by Svendsen [83], Francfort & Mielke
[24] and Miehe [49]. A gradient plasticity theory that incorporates a fractional derivative of
the plastic strain is presented in Dahlberg & Ortiz [14]. Alternatively, in damage mechanics
one can account for nonlocality by considering the gradient of the total strain measure (in-
stead of the damage variable) in the constitutive functions. Non-smooth (hemi)variational
formulations of such an approach are presented in, e.g., Placidi & Barchiesi [72], Placidi
et al. [74] and Timofeev et al. [85]. Studies comparing these formulations with the gradient
damage approach can be found in Le et al. [37] and Placidi et al. [73]. Note that all works
cited so far in this paragraph deal with dissipative processes under isothermal conditions ex-
cept Hackl [29] in the last section. In the latter work, an original idea of Simo & Miehe [79]
is taken up, namely to introduce a plastic configurational entropy as an additional internal
variable that, as part of the total entropy, leaves the internal energy unchanged. From the
viewpoint of variational principles however, the main difficulty of fully coupled thermome-
chanics is to account for the internal dissipation in the energy equation. The construction of
a single unified potential from which all coupled thermomechanical field equations follow
is outlined in the seminal work of Yang et al. [89]. They introduce a specific integrating
factor that makes the linearized integral expressions, showing up in the fully coupled weak
form, symmetric. This factor is based on distinguishing the equilibrium temperature from
a so-called external temperature. Both temperatures coincide only at equilibrium. With this
variational principle at hand, the fully coupled thermomechanical boundary value problem
can be solved monolithically by a sequence of symmetric algebraic systems. Alternatively,
staggered numerical algorithms were mainly used before which lead to symmetric finite el-
ement stiffness matrices for each subproblem, see Simo & Miehe [79] and Armero & Simo
[3]. In the recent years, the work of Yang et al. [89] has been the basis for further model
developments in thermoplasticity, see Stainier & Ortiz [81], Canadija & Mosler [10], Su
et al. [82], Bartels et al. [5], Mielke [55] and Fohrmeister et al. [21]. In the latter, a specific
phenomenological model of gradient plasticity together with a micromorphic extension in
the sense of Forest [22] is considered. Besides incorporating the first gradient of a generic
internal variable into the energy function, Mielke [55] also discusses in detail the gradient
structure of thermoplasticity. In Bartels et al. [5] special focus is put on the thermodynamic
(in)consistency of the Taylor-Quinney factor. This factor, usually introduced in an ad-hoc
way, takes into account that only a certain amount of the plastic power is transformed into
heat as observed in the experiments of Taylor & Quinney [84], see also Rosakis et al. [75]
and Oliferuk & Raniecki [65].

According to the authors’ knowledge, a universal variational framework for the thermo-
mechanics of solids with energetic as well as dissipative gradient extensions is still miss-
ing in literature. The present work outlines a generalization of the versatile framework of
Miehe [49, 50] for gradient-extended dissipative solids towards nonisothermal processes.
Point of departure is the definition of two constitutive functions, namely (i) the internal en-
ergy function that depends on the (gradient-extended) mechanical state and the entropy and
(ii) a (nonsmooth) dissipation potential function that depends on the rates of the (gradient-
extended) mechanical state and the entropy. Then, at current time the rates of the macro-
and micro-motion and the entropy rate are governed by a canonical saddle point principle
in case of an adiabatic process and a canonical minimization principle in case of a process
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including heat conduction. However, since specific forms of both constitutive functions are
difficult to access, (generalized) Legendre transformations of those functions are consid-
ered. Here, the concept of dual variables is rigorously pursued, i.e., the quantity conjugate
to the entropy (the temperature) is distinguished from the quantity conjugate to the entropy
rate (the thermal driving force). Then, the necessary condition of the (generalized) Legendre
transformation of the dissipation potential function must render the structure of the energy
equation in form of an entropy evolution equation. The obtained rate-type variational prin-
ciple is in line with Yang et al. [89] but derived in an alternative way and extended by
an additional long-range micro-motion that accounts for effects related to length scales. In
addition, extended rate-type variational principles are constructed that incorporate dissipa-
tive mechanical driving forces and a temperature-dependent scalar threshold function via a
Lagrange multiplier. By construction of consistent numerical time integration algorithms,
variational principles valid for the time increment under consideration are obtained. Here,
we especially point out a new semi-explicit numerical algorithm that, in contrast to a fully
implicit scheme, evaluates the integration factor of Yang et al. [89] to the value one and,
hence, gives the algorithmically consistent form of the intrinsic dissipation.

In the subsequent sections, the above aspects are carried out in detail and the novel key
contributions of the presented work for the thermomechanics of dissipative multifield prob-
lems are

• a canonical variational principle based on a dissipation potential function that depends on
the entropy rate,

• the construction of rate-type and incremental mixed variational principles via (general-
ized) Legendre transformations, where we propose a new semi-explicit numerical update
scheme that has the structure of an operator split and is highly suitable when considering
adiabatic processes,

• a general and versatile framework for the full thermomechanical coupling in gradient-
extended dissipative continua and

• applications to gradient plasticity, gradient damage and Cahn-Hilliard diffusion, where
for the latter we propose a new minimization structure with respect to the species flux
vector.

The paper is organized as follows: In Sect. 2 we consider as motivating example a very
simple adiabatic thermomechanical material element and derive rate-type as well as incre-
mental variational principles based on the entropy and entropy rate as canonical variables
in the energy and dissipation potential functions. Two update schemes, namely the known
implicit and a new semi-explicit numerical algorithm are presented that govern the time-
discrete evolution of the thermomechanical state. In Sect. 3 we set up general forms of
governing equations for the thermomechanics of gradient-extended dissipative solids in a
three-dimensional large-strain continuum setting. Section 4 shows that this fully coupled
system is related to a variational statement. In addition, we construct extended rate-type
and incremental variational principles that incorporate dissipative mechanical driving forces
and threshold mechanisms that depend on the thermal state. The formulations outlined in
Sect. 4 are general and can be applied to a wide spectrum of problems in thermomechanics.
As examples, we specify in Sect. 5 the developed setting to Cahn-Hilliard diffusion, gradi-
ent damage and (additive) gradient plasticity with strong coupling to temperature evolution.
The former is given a new variational structure in terms of the species flux vector. Finally, to
demonstrate the capability of the newly proposed semi-explicit variational update scheme,
we show a numerical example that is concerned with adiabatic shear band localization in
softening plasticity.
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Fig. 1 Rheological material
element with internal
thermoelastic and dissipative
(viscous) mechanisms, loaded by
an external stress σext(t). The
time-discrete evolution of the
material’s state (ε,q, η) is
described by a finite sequence of
incremental variational principles

2 Variational Principles for Nonisothermal Rheology

2.1 An Adiabatic Thermomechanical Material Element

2.1.1 Constitutive Functions

We consider a very simple rheological material element depicted in Fig. 1 describing a
smooth linear thermo-visco-elastic behavior. The material element is understood to be em-
bedded in a thermal environment characterized by the absolute temperature θ > 0. The
spring exhibits thermoelastic behavior by Hooke’s law coupled with thermal expansion.
The dashpot device characterizes viscous response via Newton’s law. In addition, the mate-
rial element is able to store heat. We have the fundamental constitutive relationships

• Hooke’s law σ e = E [ εe − αT (θ − θ0) ] ,
• Newton’s law σd = Hε̇d ,

• Heat storage eθ = C(θ − θ0) .

Here, σ denotes as usual a stress, ε a strain and e an internal energy. The four involved mate-
rial parameters are Young’s modulus E, the thermal expansion coefficient αT , the viscosity
H and the heat capacity C at constant internal and external deformation. Without loss of
generality, these material parameters are assumed to be constant, i.e., they do not depend
on the temperature. Finally, θ0 stands for a reference temperature. Such a simple model is
able to describe classical thermomechanical coupling effects, such as the Gough-Joule effect
or thermal expansion, as well as heating due to dissipation in the dashpot. The mechanical
state of the rheological device is described by the total strain ε and the internal variable q

characterizing the strain of the inner dashpot.
We summarize these two quantities in the

mechanical state array: c = ( ε,q ) .

Identifying the strain in the spring device by the simple kinematic relationship εe = ε − q,
we define the well known thermoelastic free energy function

̂ψ(c, θ) = 1

2
E(ε − q)2

︸ ︷︷ ︸

=:̂ψe(c)

+EαT (q− ε)(θ − θ0)

︸ ︷︷ ︸

=:̂ψe−θ (c,θ)

+C[(θ − θ0) − θ ln
θ

θ0
]

︸ ︷︷ ︸

=:̂ψθ (θ)

, (1)

that is not defined for nonpositive temperatures and is concave in θ . In addition, we define
the dissipation potential function associated with the two dashpot devices

̂φ(ċ) = 1

2
H1ε̇

2 + 1

2
H2q̇

2 . (2)
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2.1.2 Governing System of Equations

The thermomechanical response of the material element within a time interval T = (0, te) ⊂
R+ is fully governed by the two constitutive functions (1) and (2) and characterized by four
equations (3)–(6). First, on the mechanical side, the equilibrium equation

∂ε
̂ψ + ∂ε̇

̂φ = σext in T (3)

is a relationship between internal and external stresses. Second, the evolving internal strain
state is governed by Biot’s equation

∂q̂ψ + ∂q̇̂φ = 0 in T (4)

and characterizes an internal dissipative mechanism, see Biot [7]. Third, on the thermal side,
the state equation

η = −∂θ
̂ψ in T (5)

determines the current entropy η or in an inverse manner the current temperature θ . Finally,
the evolution of the entropy is governed by a nonnegative dissipation

η̇ = 1

θ
D in T with D = ∂ċ̂φ · ċ≥ 0 . (6)

Equation (6)1 together with the constitutive definition of the dissipation D is a form of the
first law of thermodynamics, i.e., the balance of energy for an adiabatic process under con-
sideration. The inequality (6)2 is the second law of thermodynamics that is ensured a priori
by a dissipation potential function ̂φ(·) that is (i) nonnegative, (ii) zero in the origin ̂φ(0) = 0
and (iii) convex, see, e.g., Frémond [25]. In case of a dissipation potential function that is
positively homogeneous of degree 
, i.e., ̂φ(γ ċ) = γ 


̂φ(ċ) for all γ > 0, the dissipation can
be written alternatively as1 D = 
̂φ(ċ). Aim of the subsequent treatment is the construction
of variational principles that account for the governing equations (3)–(6) of the thermome-
chanical device. Starting point is the definition of a (maybe unusual) dissipation potential
function that depends on the entropy rate.

2.2 Canonical Variational Principle with Entropy Variable

The main difficulty in the formulation of rate-type variational principles in thermo-
mechanics is to account for the full update of the thermal state via (6). For the nonisothermal
case, we start by modeling the internal energy e whose corresponding function naturally
depends on the entropy η. Hence, our investigation of thermomechanics in generalized stan-
dard materials is based on assuming the constitutive functions

e(t) = ê(c, η) and v(t) = v̂(ċ, η̇; c, η) . (7)

The internal energy function ê determines the current internal energy stored in the material
element. The newly introduced dissipation potential function v̂ is assumed to be a func-
tion of the rates (ċ, η̇) and might additionally depend on the current thermomechanical state
(c, η). Alternatively, instead of the current entropy η the dissipation potential function v̂ can

1In case of viscous dissipation we have 
 = 2, see (2).
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depend on the current temperature θ by making use of the constitutive relationship (5). Com-
paring v̂ with the dissipation potential function ̂φ defined in (2), we observe an additional
thermal slot with the dependence on η̇. This assumed dependency is the key ingredient of
the subsequent construction of variational principles in dissipative thermomechanics. Based
on the two constitutive functions (7), we construct the rate-type potential

p̂(ċ, η̇; c, η) = d

dt
ê(c, η) + v̂(ċ, η̇; c, η) (8)

at given thermomechanical state (c, η), that accounts for energetic as well as dissipative
mechanisms. Next, we define an external load function

p̂ext(ε̇; t) = σext(t)ε̇

depending on the given external stress σext, that loads the material element, see Fig. 1. Then,
the rate of the thermomechanical state at current time t under adiabatic conditions is deter-
mined by the canonical saddle point principle

{ċ, η̇} = Arg{ inf
ċ

sup
η̇

[ p̂(ċ, η̇; c, η) − p̂ext(ε̇; t) ] } . (9)

Note that the saddle point structure of this variational principle is governed by an assumed
concavity of the dissipation potential function v̂ with respect to η̇, see Sect. 2.3.2 and Foot-
note 2. Taking the first derivative of the potential (8) yields as necessary conditions of the
variational principle (9) three Euler equations for the rate of the thermomechanical state of
the material element at current time t , namely

1. Evolving external state ∂ε̇p̂ ≡ ∂εê + ∂ε̇v̂ = σext ,

2. Evolving internal state ∂q̇p̂ ≡ ∂qê + ∂q̇v̂ = 0 ,

3. Evolving thermal state ∂η̇p̂ ≡ ∂ηê + ∂η̇v̂ = 0 .

The first equation determines the rate ε̇ of the external strain state and is a form of the stress
equilibrium (3) without inertia terms. The second equation governs the rate q̇ of the inter-
nal variable and is identical to (4). Finally, the third equation is a form of the balance of
energy, i.e., the first law of thermodynamics (6) combined with an inverse representation of
(5), which determines the rate η̇ of the entropy. However, this is a quite unusual representa-
tion. The main difficulty in this canonical setting is the formulation of the two constitutive
functions ê and v̂ in terms of the entropy η and entropy rate η̇, respectively.2 Hence, a for-
mulation in terms of the temperature is more convenient.

2For a single linear viscous dashpot with current temperature θ and entropy η, respectively, and rates (ε̇, η̇),
the internal energy function ê and the dissipation potential function v̂ take, by evaluating the partial Legendre
transformations (10) and (12), the nonintuitive forms

ê(η) = Cθ0(eη/C − 1) and v̂(ε̇, η̇; θ) = − θ2

2H

(

η̇

ε̇

)2
.
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2.3 Mixed Variational Principle with Temperature Variable

For practical applications, the above canonical variational principle is transformed into a
mixed saddle point principle that incorporates the temperature as a primary variable. This
transformation is achieved within two steps.

2.3.1 Variable Dual to Entropy

First, we define the internal energy function occurring in the rate-type potential (8) by a
partial Legendre transformation

ê(c, η) = sup
θ

[ ̂ψ(c, θ) + θη ] , (10)

where ̂ψ is the free energy function depending on the thermal variable θ . The necessary
optimality condition of this Legendre transformation defines the entropy

η = −∂θ
̂ψ(c, θ) (11)

in terms of the thermal variable θ . The latter is the dual quantity to the entropy η, i.e., the
temperature of the material element.

2.3.2 Variable Dual to Entropy Rate

In a second step, we define the dissipation potential function v̂ occurring in the rate-type
potential (8) by a partial Legendre transformation

v̂(ċ, η̇; c, η) = inf
T

[˜φ(ċ, T ; c, θ) − T η̇ ] (12)

in terms of the dissipation potential function ˜φ, that depends on the thermal variable T and,
by making use of (11), is defined at current state (c, θ). The necessary condition of this
Legendre transformation defines the evolution of the entropy

η̇ = ∂T
˜φ(ċ, T ; c, θ) (13)

in terms of the thermal variable T . We identify T as the quantity dual to the entropy rate η̇

and call it the thermal driving force that, up to this point, is rigorously distinguished from
the temperature θ of the material element. For the adiabatic case under consideration, (13)
must have the form of the balance of energy (6) and we identify

∂T
˜φ

!= 1

θ
∂ċ̂φ · ċ . (14)

This relationship restricts the form of the functional dependence of the dissipation potential
function ˜φ and is fulfilled if a multiplicative dependence on the thermal driving force T is
assumed

˜φ(ċ, T ; c, θ) = ̂φ(
T

θ
ċ; c, θ) . (15)

To arrive at (14), we use the result that at equilibrium the thermal driving force T can be
identified with the temperature θ , which is an outcome of the mixed variational principle
(17) below. The scaling factor T/θ first arised via a symmetry argument as integrating factor
in the seminal work of Yang et al. [89].
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2.3.3 Mixed Variational Principle

Starting from the rate-type potential (8), the two partial Legendre transformations (10) and
(12) motivate the definition of a mixed rate-type potential3

π̂(ċ, η̇, θ̇ , T ) = d

dt
̂ψ(c, θ) + (θ − T )η̇ + ηθ̇ + ̂φ(

T

θ
ċ) (16)

at given thermomechanical state (c, η, θ) in terms of the two constitutive functions ̂ψ and
̂φ. Inserting the necessary condition (11) on the given thermomechanical state yields the
reduced mixed rate-type potential

π̂red(ċ, η̇, T ) = ∂ĉψ · ċ+ (θ − T )η̇ + ̂φ(
T

θ
ċ)

at given thermomechanical state (c, η, θ). Based on this definition, we obtain the mixed
saddle point principle

{ċ, η̇, T } = Arg{ inf
ċ

sup
η̇

inf
T

[ π̂red(ċ, η̇, T ) − p̂ext(ε̇; t) ] } , (17)

that determines at current time t the rates of the external strain, internal variable and entropy
as well as the thermal driving force. The Euler equations of this saddle point principle are

1. Evolving external state ∂ε̇π̂red ≡ ∂ε
̂ψ + ∂ε̇

̂φ = σext ,

2. Evolving internal state ∂q̇π̂red ≡ ∂q̂ψ + ∂q̇̂φ = 0 ,

3. Thermal driving force ∂η̇π̂red ≡ T − θ = 0 ,

4. Evolving thermal state ∂T π̂red ≡ −η̇ + ∂T
̂φ = 0 .

(18)

Again, the first equation represents the stress equilibrium and the second one Biot’s equation.
The third relationship identifies the thermal driving force with the given temperature as
reported in Yang et al. [89]. The last equation represents the first law of thermodynamics
in the form of an evolution equation for the entropy. Clearly, within this mixed setting the
entropy rate η̇ plays the role of a Lagrange multiplier. With known rates (ċ, η̇) of mechanical
state and entropy, the temperature rate at current time t can be computed by taking the time
derivative of (5). A constrained minimization formulation dual to the variational principle
(9) is obtained by commuting the order of the infimum and the supremum in (17) (which we
assume to be possible) such that

inf
ċ

sup
η̇

inf
T

[ π̂red(ċ, η̇, T ) − p̂ext(ε̇; t) ] = inf
ċ

inf
T ∈(18)3

[ ∂ĉψ · ċ+ ̂φ(
T

θ
ċ) − p̂ext(ε̇; t) ] .

For a general discussion of constructing mixed and dual variational principles we refer to
the books Maugin [46], Nguyen [62] and Berdichevsky [6].

2.4 Incremental Variational Principles

We consider a finite time interval [tn, tn+1] ⊂ T with step length τ := tn+1 − tn > 0 and
assume all thermomechanical state quantities at time tn to be known. The goal is then to de-
termine all the approximate state quantities at time tn+1 based on variational principles valid

3To keep notation short, we subsequently do not write explicitly the dependence of functions on given states.
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for the time increment under consideration. Subsequently, all variables without subscript are
understood to be evaluated at time tn+1.

2.4.1 Mixed Variational Principle

A mixed variational principle associated with the finite time interval [tn, tn+1] is based on
the incremental potential

π̂ τ (c, η, θ, T ) = Algo{
∫ tn+1

tn

π̂ (ċ, η̇, θ̇ , T )dt } (19)

in terms of the continuous rate-type potential π̂ defined in (16). Here, Algo stands for a nu-
merical integration algorithm in time within the interval [tn, tn+1]. The incremental potential
π̂ τ is understood to be defined at given thermomechanical state (cn, ηn, θn) at time tn. Then,
the finite-step sized incremental mixed variational principle

{c, η, θ, T } = Arg{ inf
c

sup
η,θ

inf
T

[ π̂ τ (c, η, θ, T ) − σext(tn+1)ε ] } (20)

determines the mechanical state, the entropy, the temperature and the thermal driving force
at current time tn+1. The Algo operator is constructed such that the incremental variational
principle (20) yields as Euler equations consistent algorithmic counterparts of the Euler
equations (18) stemming from the rate-type variational principle (17). In what follows two
different forms of the Algo operator are discussed.

2.4.2 Implicit Variational Update

As a first approach, we consider a numerical algorithm that performs an exact incrementa-
tion of the internal energy

∫ tn+1

tn

d

dt
[ ̂ψ(c, θ) + θη ]dt = ̂ψ(c, θ) + θη − ̂ψ(cn, θn) − θnηn (21)

and an incrementation of the dissipative term according to a backward Euler scheme

∫ tn+1

tn

[−T η̇ + ̂φ(
T

θ
ċ) ]dt ≈ −T (η − ηn) + τ̂φ(

T

θn

ċτ ) , (22)

see Yang et al. [89]. Here, ċτ = (c− cn)/τ denotes an algorithmic expression of the rate of
the mechanical state. The incremental potential (19) takes the form

π̂ τ (c, η, θ, T ) = ̂ψ(c, θ) − ̂ψ(cn, θn) + θη − θnηn − T (η − ηn) + τ̂φ(
T

θn

ċτ ) .

Then, the incremental saddle point principle (20) gives the Euler equations

1. Update external state ∂επ̂
τ ≡ ∂ε

̂ψ + τ∂ε
̂φ = σext ,

2. Update internal state ∂qπ̂
τ ≡ ∂q̂ψ + τ∂q̂φ = 0 ,

3. Thermal driving force ∂ηπ̂
τ ≡ T − θ = 0 ,

4. Current thermal state ∂θ π̂
τ ≡ ∂θ

̂ψ + η = 0 ,

5. Update entropy ∂T π̂ τ ≡ −(η − ηn) + τ∂T
̂φ = 0 .

(23)
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The fifth equation represents a time-discrete form of the energy equation and governs the
update of the entropy η. On the thermal side, the key equations are (23)4 and (23)5

η = −∂θ
̂ψ(c, θ) , η = ηn + τ

θ

̂φ(

θ

θn

ċτ ) , (24)

where T has been eliminated by (23)3 and a positively homogeneous dissipation potential
function ̂φ of degree 
 is assumed. By inserting (24)1 into (24)2 an update equation for
the temperature θ is obtained that includes contributions from thermoelastic heating and
heating due to dissipation. The last term in (24)2 contains the algorithmic counterpart of
the dissipation (6)2. However, the argument of the dissipation potential function ̂φ in (24)2

is scaled by a factor θ/θn which is a consequence of the implicit variational update. The
same scaling factor arises in the dissipative terms of the Euler equations (23)1 and (23)2.
Again, we refer to Yang et al. [89]. Finally, we observe that the incremental updates of the
mechanical and thermal variables are fully coupled.

2.4.3 Semi-Explicit Variational Update

For the construction of a variational update alternative to the above implicit approach, we
propose an approximate incrementation of the internal energy

∫ tn+1

tn

d

dt
[ ̂ψ(c, θ) + θη ]dt ≈ ̂ψ(c, θ) − ̂ψ(cn, θn) + (θ − θn)ηn + (η − ηn)θn (25)

based on an explicit integration of the second thermal term in the integrand. Note that η

and θ are given quantities in the above rate-type formulation and as such, they are frozen
in the (approximate) evaluation of the integral. By (25) and the incrementation (22) of the
dissipative term, the incremental potential (19) takes the form

π̂ τ (c, η, θ, T ) = ̂ψ(c, θ) − ̂ψ(cn, θn) + (θ − θn)ηn + (θn − T )(η − ηn) + τ̂φ(
T

θn

ċτ ) .

(26)

As pointed out in Sect. 2.4.4, this potential contains an intrinsic operator split. The incre-
mental saddle point principle (20) gives the Euler equations

1. Update external state ∂επ̂
τ ≡ ∂ε

̂ψ + τ∂ε
̂φ = σext ,

2. Update internal state ∂qπ̂
τ ≡ ∂q̂ψ + τ∂q̂φ = 0 ,

3. Thermal driving force ∂ηπ̂
τ ≡ T − θn = 0 ,

4. Current thermal state ∂θ π̂
τ ≡ ∂θ

̂ψ + ηn = 0 ,

5. Update entropy ∂T π̂ τ ≡ −(η − ηn) + τ∂T
̂φ = 0 .

(27)

Comparing this set of equations with (23), we observe essential modifications in (27)3 and
(27)4. These equations identify the current thermal driving force T with the given temper-
ature θn at time tn and define the current temperature θ in terms of the current mechanical
state c and the given entropy ηn at time tn. The key equations (27)4 and (27)5 on the thermal
side can be recast into

∂θ
̂ψ(c, θ) = −ηn , η = ηn + τ

θn


̂φ(ċτ ) , (28)
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where T has been eliminated by (27)3 and again a positively homogeneous dissipation po-
tential function ̂φ of degree 
 is assumed. One observes, that in sharp contrast to the gov-
erning equation (24)2 stemming from the implicit variational approach, equation (28)2 does
not contain the scaling factor. Hence, by the explicit variational update the algorithmically
consistent form 
̂φ(ċτ ) of the dissipation (6)2 is obtained. Furthermore, also the dissipative
terms in the stress equilibrium (27)1 and Biot’s equation (27)2 do not have the scaling factor.
Finally, we observe that as a consequence of the temperature update (28)1 for given entropy
ηn, a decoupled incremental formulation is at hand.

2.4.4 Operator Split

The two update equations (28) characterize a variational-based staggered algorithmic treat-
ment of dissipative thermomechanics based on the potential π̂ τ defined in (26): (i) update
the mechanical state c as well as the temperature θ at frozen entropy ηn and given (predicted)
thermal driving force T = θn, and (ii) update the entropy η as well as the thermal driving
force T which turns out to be identical to the predicted one. Hence, the semi-explicit vari-
ational update in the time interval [tn, tn+1] can be seen as a composition of two fractional
steps

Algo = Algoη,T ◦ Algoc,θ ,

which are both variational. This numerical algorithm falls under the category of incremen-
tally isentropic operator splits, a specific form of which is considered in Armero & Simo
[3]. Within the isentropic predictor step we first solve the variational sub-problem

(Algoc,θ ) : {c∗, θ∗} = Arg{ inf
c

sup
θ

[ π̂ τ (c, ηn, θ, θn) − σext(tn+1)ε ] } , (29)

that gives the mechanical state and the temperature at time tn+1. The resulting optimality
conditions are the equations (27)1−2 and (27)4. Within a second step, the entropy corrector,
the entropy as well as the thermal driving force at time tn+1 are obtained via the variational
sub-problem

(Algoη,T ) : {η∗, T ∗} = Arg{ sup
η

inf
T

π̂ τ (c∗, η, θ∗, T ) }

for given mechanical state c∗ and temperature θ∗ stemming from the isentropic predictor
(29). The resulting optimality conditions are the equations (27)3 and (27)5.

3 Thermomechanics of Gradient-Extended Dissipative Solids

In this section, we shortly summarize the basic constitutive framework for the thermome-
chanics of gradient-extended dissipative solids in an abstract setting and adopt the notion
of Miehe [49, 50]. Let B ⊂ R

d with d ∈ {2,3} be the reference placement (d-manifold) of
a material body B into the Euclidean space with smooth boundary ∂B. We study the ther-
momechanical behavior of the body under mechanical as well as thermal loadings in a time
interval T = (0, te) ⊂ R+. To this end, we focus on a multiscale viewpoint in the sense that
we relate dissipative effects at (X, t) ∈ B × T to changes in the microstructure (besides
the dissipative effect stemming from heat conduction). In the phenomenological context,
we account for these microstructural mechanisms by micro-motion fields that generalize
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the classical concept of internal variables. The evolution of the related dissipative system is
considered to be nonsmooth and therefore the governing equations are written as differential
inclusions. Without loss of generality, we assume within our treatment homogeneous solids
only, i.e., material properties do not depend on the position X ∈ B. In what follows, we de-
note by ˙(·) = ∂

∂t
(·)(X, t) the material time derivative and by ∇(·)(X, t) the gradient on the

reference manifold B. In addition, to keep notation short, we understand the operation a · b
either as duality product between a vector and a one-form a · b = ac bc or as inner product
between two vectors a · b = ac bd δcd and two one-forms a · b = ac bd δcd , respectively. The
Kronecker deltas δab and δab represent the coefficients of the metric and inverse metric ten-
sor in a Cartesian coordinate system, respectively. Finally, we give the usual definition of
a double contraction between two second-order tensors, e.g., for two mixed-variant tensors
A : B = Ac

d Bc
d .

3.1 Basic Fields of a Solid with Microstructural Changes

3.1.1 Macro-Motion of a Body

Within the geometrically nonlinear theory, the macroscopic motion of the body is described
by the macro-motion field

ϕ :
{

B × T → R
d

(X, t) �→ x = ϕ(X, t) ,
(30)

which maps at time t ∈ T points X ∈ B of the reference configuration B to points x ∈ ϕt (B)

of the current configuration ϕt (B). Let G = δABEA ⊗ EB and g = δabe
a ⊗ eb denote the

Euclidean metric tensors associated with the reference and current configuration, where the
Kronecker symbols refer to Cartesian coordinate systems on both manifolds. The deforma-
tion gradient F = Dϕ(X, t) is defined as the tangent corresponding to the macro-motion
(30). Next, the convected current metric C = F T gF is introduced, that is often denoted as
the right Cauchy-Green tensor. The macro-motion (30) is constrained by a positive Jacobian
J = √

detC > 0 that rules out penetration of matter. With respect to mechanical loading of
the solid, the boundary of the reference configuration is decomposed into nonoverlapping
parts ∂Bϕ and ∂Bt such that ∂B = ∂Bϕ ∪ ∂Bt . We prescribe the macro-motion (Dirichlet
boundary condition)

ϕ(X, t) = ϕ̄(X, t) on ∂Bϕ × T (31)

and the macro-tractions (Neumann boundary condition) on ∂Bt ×T as specified in Sect. 3.3
below.

3.1.2 Micro-Motion of a Body

Microstructural dissipative changes of the body are described by additional fields related to
the concept of internal variables. These variables are assembled in the micro-motion field of
the solid

q :
{

B × T → R
δ

(X, t) �→ q(X, t) .

The array q with in total δ scalar valued entries may contain internal variables of any ten-
sorial rank that describe in a homogenized sense the micro-motion of the material due to
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Fig. 2 Primary fields in thermomechanics of gradient-extended dissipative solids. At time t , the macro-
motion field ϕ(X, t) is constrained by Dirichlet and Neumann boundary conditions ϕ = ϕ̄ on ∂Bϕ and
P n0 � t̄ on ∂Bt . The long-range micro-motion field ql (X, t) is at time t restricted by the conditions
ql = q̄l (X) on ∂Bq and H l n0 � 0 on ∂BH . Finally, for a heat conducting solid the thermal driving force
field T (X, t) is at time t constrained by the conditions T = T̄ on ∂BT and q · n0 = q̄ on ∂Bq

structural changes on lower scales. Classical examples for members of q are damage vari-
ables, plastic strains or phase fractions. In addition, we assume all tensorial elements of q
to be Lagrangian objects, i.e., they are not affected by rigid body macro-motions superim-
posed on the current configuration ϕt (B). Like in Miehe [49, 50], we distinguish between
long-range variables ql (order parameters) that are governed by PDEs in form of additional
balance equations and connected to given length scale parameters, and short-range vari-
ables qs that are determined by ODEs and represent the standard concept of local internal
variables. We summarize both, long- as well as short-range variables in the array

q = (qs ,ql ) .

For the treatment of each long-range micro-motion field, we decompose the boundary of the
reference configuration into nonoverlapping parts ∂Bq and ∂BH such that ∂B = ∂Bq ∪ ∂BH .
We prescribe the micro-motion (Dirichlet boundary condition)

ql (X, t) = q̄l (X) on ∂Bq × T (32)

and the micro-tractions (Neumann boundary condition) on ∂BH × T as specified in
Sect. 3.2.2 below. Note that the given micro-motion (32) on the Dirichlet boundary is con-
sidered to be independent of time. This is because we assume these variables to be “passive”
in the sense that the deformation process cannot be driven by externally applying them.

3.1.3 Thermal Driving Force

As a third primary field in the thermomechanics of dissipative materials, we introduce the
(macroscopic) thermal driving force field

T :
{

B × T → R+
(X, t) �→ T (X, t) .

As outlined in the motivating Sect. 2.3.2, the thermal driving force appears as the dual quan-
tity to the entropy rate and is identified as the temperature. It is governed by the generalized
Legendre transformation (48) introduced below. With respect to thermal loading of a heat
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conducting solid, we decompose the boundary of the reference configuration into nonover-
lapping parts ∂BT and ∂Bq such that ∂B = ∂BT ∪ ∂Bq . We prescribe the thermal driving
force (Dirichlet boundary condition)

T (X, t) = T̄ (X, t) on ∂BT × T (33)

and the heat flux (Neumann boundary condition) on ∂Bq ×T as specified in Sect. 3.3 below.
The primary fields, namely the macro-motion, the long-range micro-motion and, in case of
heat conduction, the thermal driving force are depicted in Fig. 2.

3.2 Constitutive Framework to Thermomechanics of Gradient-Extended Solids

3.2.1 Free Energy Function

The free energy storage in continua is governed by a free energy function. We specify it by
focusing on simple materials of grade one, i.e., we include as arguments the first gradients
of the micro- and macro-motions4

ψ(X, t) = ̂ψ(c, θ) with c= (C,q,∇q) (34)

defining the mechanical constitutive state. Together with the temperature, this state is invari-
ant under any rigid body macro-motion superimposed on the current configuration ϕt (B),
i.e., the function (34)1 is objective. We define the energetic contribution to the (contravari-
ant) first Piola-Kirchhoff stress tensor P as

P e = 2F ∂C
̂ψ ,

and the well known Clausius-Planck inequality takes the form

Dint = gP d : Ḟ − ∂q̂ψ · q̇− ∂∇q
̂ψ · ∇q̇≥ 0 . (35)

Here, P d = P − P e denotes the dissipative part of the first Piola-Kirchhoff stress tensor.

3.2.2 Dissipation Potential Functions

Dissipative mechanisms are described by dissipation potential functions. First, we take me-
chanical effects into account via an objective intrinsic dissipation potential function

φint(X, t) = ̂φint(ċ; c, θ) (36)

at given thermomechanical state (c, θ). For generality, we assume in this abstract set-
ting ̂φint to be nonsmooth with respect to ċ, e.g., positively homogeneous of degree one,
̂φint(γ ċ; c, θ) = γ̂φint(ċ; c, θ) for all γ > 0, which characterizes in the adiabatic case a rate-
independent evolution, see also Footnote 7. With the intrinsic dissipation potential function
at hand, we define the dissipative stress

P d = 2F ∂Ċ
̂φint ,

4For the seek of a compact notation, we assume from now on the presence of long-range variables q =
ql only. In case of short-range variables qs , the corresponding gradients vanish and no micro-mechanical
boundary conditions are prescribed.
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that arises in the reduced Clausius-Planck inequality (35). As suggested in Miehe [50], we
assume the evolution equations5 for the micro-motions together with the Neumann boundary
conditions

δq̂ψ + δq̇̂φint � 0 in B × T with [ ∂∇q
̂ψ + ∂∇q̇

̂φint ]n0 � 0 on ∂BH × T . (37)

In view of the nonsmoothness of the dissipation potential function (36), we write the micro-
and macroscopic balance equations (37) and (40) as differential inclusions, i.e., ∂ċ(·) is
understood as subdifferential. Considering the global form of (35), doing integration by parts
two times and taking into account the homogeneous rate-type Dirichlet boundary condition
q̇ = 0 on ∂Bq according to (32), yields the alternative representation

Dint = ∂ċ̂φint · ċ ≥ 0 (38)

for the intrinsic dissipation, see again Miehe [50]. Note that the micro-force balance (37)1

and the homogeneous Neumann boundary condition (37)2 are outcomes of the variational
principle (59) set up below.6

As a second contribution to entropy production, we take into account heat conduction via
an objective dissipation potential

φcon(X, t) = ̂φcon(g; c, θ) with g = −∇θ/θ

at given thermomechanical state (c, θ). With such a function at hand, we define the material
heat flux vector

q = ∂ĝφcon ,

and the well known Fourier inequality takes the form

Dcon = ∂ĝφcon · g ≥ 0 . (39)

The inequalities (38) and (39) serve as fundamental physically-based constraints on the
dissipation potential functions ̂φint and ̂φcon. These two conditions are satisfied a priori for
dissipation potential functions that are (i) nonnegative ̂φ(· ; c, θ) ≥ 0, (ii) zero in the origin
̂φ(0; c, θ) = 0 and (iii) convex in ċ and g , respectively.

3.3 Governing Equations for Thermomechanics of Gradient-Extended Solids

We now summarize the governing equations for the thermomechanics of gradient-extended
dissipative solids undergoing large deformations. First, we have the balance of linear mo-
mentum

δϕ
̂ψ + δϕ̇

̂φint � gγ̄ in B × T with 2F [ ∂C
̂ψ + ∂Ċ

̂φint ]n0 � t̄ on ∂Bt × T , (40)

5Variational Derivative. Throughout this text, we use the notation of variational derivatives

δzŷ(z,∇z) = ∂zŷ(z,∇z) − Div[∂∇zŷ(z,∇z) ] .

6In the external power functional (56), we assume vanishing micro-tractions. The reason for that is in the
same line as for the Dirichlet boundary condition (32), i.e., we do not consider an external driving of the
deformation process by the micro-motion and its force-like quantities, respectively.
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where γ̄ (X, t) and t̄(X, t) are prescribed body force and nominal surface traction fields.
The balance of angular momentum PF T = FP T is a priori satisfied by the objectivity
of the free energy function (34) and the dissipation potential function (36). The evolving
micro-motion is governed by the micro-force balance equation

δq̂ψ + δq̇̂φint � 0 in B × T with [ ∂∇q
̂ψ + ∂∇q̇

̂φint ]n0 � 0 on ∂BH × T (41)

as already given in (37). On the thermal side, the entropy is defined by the local state equa-
tion

η = −∂θ
̂ψ(c, θ) in B × T . (42)

Finally, the evolution of the entropy is governed by the energy equation

−η̇ + 1

θ
∂ċ̂φint · ċ− δθ

̂φcon = − r̄

θ
in B × T with

1

θ
∂ĝφcon · n0 = q̄

θ
on ∂Bq × T , (43)

where r̄(X, t) and q̄(X, t) are prescribed heat source and material surface heat flux fields.
Note that if ̂φint(· ; c, θ) is positively homogeneous of degree one,7 ∂ċ̂φint is a set, but the
expression ∂ċ̂φint · ċ, which represents the intrinsic dissipation, evaluates to a unique value
since it coincides with ̂φint(ċ; c, θ), see also Sect. 2.1.2. The equations (40)–(43) generalize
the ODEs (3)–(6) for the rheological device to the large-strain continuum setting and include
intrinsic gradient-type dissipative effects as well as heat conduction.

4 Variational Principles for Thermomechanics of Gradient-Extended
Solids

We now discuss the variational structure of thermomechanics of gradient-extended dissi-
pative solids undergoing large deformations, whose Euler equations were summarized in
Sect. 3.3. Again, the starting point is the definition of canonical energy and dissipation po-
tential functions. By means of (generalized) Legendre transformations, different rate-type
and incremental mixed formulations are derived.

4.1 Canonical Energy and Dissipation Potential Functionals

We generalize the variational framework for the rheological model presented in Sect. 2 to
the large-strain continuum setting of gradient-extended dissipative solids. To this end, based
on the internal energy and dissipation potential functions

e(X, t) = ê(c, η) and v(X, t) = v̂(ċ, η̇; c, η,X, t) , (44)

we introduce the energy and dissipation potential functionals

E(ϕ,q, η) =
∫

B
ê(c, η)dV and V (ϕ̇, q̇, η̇;ϕ,q, η, t) =

∫

B
v̂(ċ, η̇; c, η,X, t)dV . (45)

7Since ̂φint(· ;c, θ) is assumed to be nonnegative and convex, positive homogeneity of degree one implies
that this function is either nonsmooth at ċ = 0 or zero everywhere.
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E represents the internal energy stored in the entire body B due to coupled micro-macro
deformations and thermal effects. The introduced functional V is related to intrinsic dissi-
pative mechanisms and entropy production due to heat conduction. In analogy to (7), the
entropy η as well as the entropy rate η̇ are used as canonical thermal variables. On the
mechanical side, the constitutive functions (44) are assumed to depend on the constitutive
state array c defined in (34)2 that makes those functions a priori objective. Note, that the
dissipation potential function v̂ in general depends on the current state (c, η) as well as ex-
plicitly on position and time (X, t) ∈ B × T stemming from a possible inhomogeneous and
time-dependent thermal loading, see below.

4.2 Energy and Dissipation Functionals in Terms of Temperature

For practical modeling, we transform the above energy and dissipation potential function-
als into functionals that depend additionally on the temperature. This we do in analogy to
Sect. 2.3.

4.2.1 Variable Dual to Entropy

First, we define the internal energy functional (45)1 by the Legendre transformation

E(ϕ,q, η) = sup
θ

E+(ϕ,q, η, θ) (46)

in terms of the mixed internal energy functional

E+(ϕ,q, η, θ) =
∫

B
ê+(c, η, θ)dV with ê+ = ̂ψ(c, θ) + θη . (47)

The necessary optimality condition of (46) is the statement (42) which identifies the thermal
state variable θ as the dual quantity to the entropy η, i.e., as the temperature.

4.2.2 Variable Dual to Entropy Rate

In a second step, we define at time t the dissipation potential functional by a generalized
Legendre transformation8

V (ϕ̇, q̇, η̇;ϕ,q, η, t) = sup
T

[V +(ϕ̇, q̇, η̇, T ;ϕ,q, θ) − P T
ext(T ; θ, t) ] (48)

in terms of the mixed dissipation potential functional

V +(ϕ̇, q̇, η̇, T ;ϕ,q, θ) =
∫

B
v̂+(ċ, η̇, T ,∇T ; c, θ)dV with v̂+ = ˜φ(ċ, T ,∇T ; c, θ) − T η̇

(49)
governed by a dissipation potential function ˜φ and the thermal load functional

P T
ext(T ; θ, t) =

∫

B
̂bT (T ; θ,X, t)dV +

∫

∂Bq

ŝT (T ; θ,X, t)dA . (50)

Note that by use of the local state equation (42), the mixed dissipation potential functional
V + depends on the current temperature. The maximization in (48) at time t is performed

8The generalized Legendre transformation is conceptually in line with Miehe et al. [52].
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under the constraint T = T̄ on ∂BT and defines as necessary condition the evolution of the
entropy along with a thermal boundary condition

η̇ = δT
˜φ − ∂T

̂bT in B and ∂∇T
˜φ · n0 = ∂T ŝT on ∂Bq . (51)

These equations generalize the local statement (13) for the rheological device to a large-
strain continuum setting including intrinsic gradient-type dissipative effects as well as heat
conduction. As in Sect. 2.3.2, we call T the thermal driving force that is dual to the entropy
rate η̇. The entropy evolution (51)1 must have the form (43)1 and we identify

δT
˜φ

!= 1

θ
∂ċ̂φint · ċ− δθ

̂φcon and ∂T
̂bT

!= − r̄

θ
. (52)

The first of these conditions is fulfilled for T = θ in B if the dissipation potential function is
specified as

˜φ(ċ, T ,∇T ; c, θ) = ̂φint(
T

θ
ċ; c, θ) − ̂φcon(− 1

T
∇T ; c, θ) , (53)

which is in line with Yang et al. [89], but derived in an alternative way. The second condition
(52)2 is satisfied for a volumetric thermal loading function

̂bT (T ; θ,X, t) = −T

θ
r̄(X, t) . (54)

It remains to find an expression for the thermal surface load function ŝT . Note that
−∂∇T

̂φcon = 1/θ ∂ĝφcon for T = θ in B and we identify from (43)2

∂T ŝT
!= q̄

θ
,

which is fulfilled for a thermal surface load function

ŝT (T ; θ,X, t) = T

θ
q̄(X, t) . (55)

4.2.3 Load Functionals

Besides the mixed energy and dissipation potential functionals (47) and (49), we have an
external thermomechanical load functional

Pext(ϕ̇, T ; θ, t) = P
ϕ
ext(ϕ̇; t) + P T

ext(T ; θ, t)

with decoupled mechanical and thermal contributions. On the mechanical side, we define
the load functional

P
ϕ
ext(ϕ̇; t) =

∫

B
γ̄ (X, t) · ϕ̇ dV +

∫

∂Bt

t̄(X, t) · ϕ̇ dA (56)

in terms of a given body force field γ̄ and nominal surface traction field t̄ . The thermal load
functional (50) attains with the identifications (54) and (55) the form

P T
ext(T ; θ, t) = −

∫

B

T

θ
r̄(X, t)dV +

∫

∂Bq

T

θ
q̄(X, t)dA

in terms of a given heat source field r̄ and material surface heat flux q̄ .
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4.3 Fundamental Mixed Variational Principle for Thermomechanics

4.3.1 Rate-Type Formulation

Based on the internal energy and dissipation potential functionals E+ and V + and the ther-
momechanical load functional Pext, we define at current time t the rate-type potential9

�+(ϕ̇, q̇, η̇, θ̇ , T ) = d

dt
E+(ϕ,q, η, θ) + V +(ϕ̇, q̇, η̇, T ) − Pext(ϕ̇, T )

with given state (ϕ,q, η, θ). We write this potential with its internal and external contribu-
tions

�+(ϕ̇, q̇, η̇, θ̇ , T ) =
∫

B
π̂+(ċ, η̇, θ̇ , T ,∇T )dV − Pext(ϕ̇, T ) (57)

in terms of the internal potential density

π̂+(ċ, η̇, θ̇ , T ,∇T ) = d

dt
ê+(c, η, θ) + v̂+(ċ, η̇, T ,∇T ) .

Recalling the mixed functions (47)2 and (49)2 together with (53) and inserting the neces-
sary condition (42) on the given thermomechanical state, yields a reduced internal potential
density of the form

π̂+
red(ċ, η̇, T ,∇T ) = ∂ĉψ · ċ+ (θ − T )η̇ + ̂φint(

T

θ
ċ) − ̂φcon(− 1

T
∇T ) . (58)

Then, the rates of the macro- and the micro-motion as well as the rate of the entropy and the
thermal driving force at current time t are governed by the variational principle10

{ϕ̇, q̇, η̇, T } = Arg{ inf
ϕ̇,q̇,η̇

sup
T

[
∫

B
π̂+

red(ċ, η̇, T ,∇T )dV − Pext(ϕ̇, T ) ] } . (59)

Here, one has to account for the rate forms of the Dirichlet boundary conditions (31) and
(32) for the macro- and micro-motions, i.e.,

ϕ̇ = ˙̄ϕ on ∂Bϕ and q̇ = 0 on ∂Bq (60)

as well as for the Dirichlet boundary condition (33) for the thermal driving force. The vari-
ational principle (59) is as stated in Yang et al. [89], but extended by a long-range micro-
motion field. By the first variation of the functional (57), we have the necessary optimality
conditions

δϕ̇�+ + δq̇�+ + δη̇�
+ ≥ 0 , δT �+ ≤ 0

9To keep notation short, we subsequently do not write explicitly the dependence of functions and correspond-
ing functionals on given quantities.
10Note carefully that in case of an adiabatic process, the potential is optimized by minimizing with respect to
T and maximizing with respect to η̇, see the motivating Sect. 2.3.3.
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for all admissible test functions δη̇ and (δϕ̇, δq̇, δT ) fulfilling homogeneous forms of the
Dirichlet boundary conditions. We get the Euler equations

1. Evolving macro-motion δϕ̇π̂+
red ≡ δϕ

̂ψ + δϕ̇
̂φint � gγ̄ ,

2. Evolving micro-motion δq̇π̂+
red ≡ δq̂ψ + δq̇̂φint � 0 ,

3. Thermal driving force ∂η̇π̂
+
red ≡ T − θ = 0 ,

4. Evolving thermal state δT π̂+
red ≡ −η̇ + ∂T

̂φint − δT
̂φcon = −r̄/θ

(61)

in B along with the Neumann boundary conditions

2F [ ∂C
̂ψ + T

θ
∂ T

θ
Ċ
̂φint ]n0 � t̄ , [ ∂∇q

̂ψ + T
θ
∂ T

θ
∇q̇

̂φint ]n0 � 0 , −∂∇T
̂φcon · n0 = q̄/θ

(62)
on ∂Bt , ∂BH and ∂Bq , respectively. In contrast to (18), the equations are now exclusively
governed by variational derivatives of the reduced potential density π̂+

red defined in (58).
The central three field equations are the quasi-static mechanical equilibrium

δϕ̇π̂+
red

∣

∣

T =θ
≡ −Div[2F (∂C

̂ψ + ∂Ċ
̂φint(ċ))] � γ̄ ,

that governs the rate ϕ̇ of the macro-motion, the micro-force balance

δq̇π̂+
red

∣

∣

T =θ
≡ [ ∂q̂ψ + ∂q̇̂φint(ċ) ] − Div[∂∇q

̂ψ + ∂∇q̇
̂φint(ċ)] � 0 (63)

determining the rate q̇ of the micro-motion and the energy equation

δT π̂+
red

∣

∣

T =θ
≡ −η̇ + 1

θ
∂ċ̂φint(ċ) · ċ− 1

θ
Div[∂ĝφcon(g)] = − r̄

θ

for the evolution η̇ of the entropy.

4.3.2 Incremental Formulation

Consider a finite time interval [tn, tn+1] ⊂ T with step length τ = tn+1 − tn > 0 and assume
all thermomechanical field variables at time tn to be known. The goal is then to determine
all the approximate fields at time tn+1 based on variational principles valid for the time
increment under consideration. Subsequently all variables without subscript are understood
to be evaluated at time tn+1. We may formulate the incremental potential

�+τ (ϕ,q, η, θ, T ) = E+τ (ϕ,q, η, θ) + V +τ (ϕ,q, η, T ) − P τ
ext(ϕ, T ) ,

where E+τ , V +τ and P τ
ext are incremental energy, dissipation and load functionals associated

with the time interval [tn, tn+1]. These functionals are defined at given state (ϕn,qn, ηn, θn)

at time tn. In analogy to the rate-type formulation (57), we rewrite the incremental potential

�+τ (ϕ,q, η, θ, T ) =
∫

B
π̂+τ (c, η, θ, T ,∇T )dV − P τ

ext(ϕ, T ) (64)

in terms of an incremental internal potential density π̂+τ which is defined at given state
(cn, ηn, θn). Such a function is obtained by a numerical integration algorithm

π̂+τ (c, η, θ, T ,∇T ) = Algo{
∫ tn+1

tn

π̂+(ċ, η̇, θ̇ , T ,∇T )dt } , (65)
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that has to be constructed in such a way that the subsequent incremental variational principle
gives consistent algorithmic counterparts of the Euler equations (61). In what follows, we
construct an implicit as well as a semi-explicit numerical integration algorithm, compare
Sect. 2.4. As a typical example we consider an integration using the approximations of the
rates of state quantities

ċτ = (c− cn)/τ , η̇τ = (η − ηn)/τ , θ̇ τ = (θ − θn)/τ (66)

and the incremental internal potential density

π̂+τ = ̂ψ(c, θ) + τ [ (θk − T )η̇τ + ηnθ̇
τ + ̂φint(

T

θn

ċτ ; cn, θn) − ̂φcon(− 1

T
∇T ; cn, θn) ]

(67)

with k = n + 1 for an implicit numerical integration algorithm according to (21) and k = n

for a semi-explicit numerical integration algorithm according to (25). In (67) we dropped
terms that are associated with previous time tn. Then, defining the incremental load func-
tional

P τ
ext(ϕ, T ;ϕn, θn, tn+1) = P

ϕ
ext(ϕ − ϕn; tn+1) + τP T

ext(T ; θn, tn+1) (68)

the incremental variational principle

{ϕ,q, η, θ, T } = Arg{ inf
ϕ,q,η

sup
θ,T

�+τ (ϕ,q, η, θ, T ) }

determines all thermomechanical fields at time tn+1. Note, that the optimization has to be
done considering the Dirichlet boundary conditions (31), (32) and (33) at time tn+1. The
corresponding Euler equations read

1. Update macro-motion δϕπ̂+τ ≡ δϕ
̂ψ + τδϕ

̂φint � gγ̄ ,

2. Update micro-motion δqπ̂+τ ≡ δq̂ψ + τδq̂φint � 0 ,

3. Thermal driving force ∂ηπ̂
+τ ≡ T − θk = 0 ,

4. Current temperature ∂θ π̂
+τ ≡ ∂θ

̂ψ + ηk = 0 ,

5. Update entropy δT π̂+τ ≡ −(η − ηn) + τ∂T
̂φint − τδT

̂φcon = −τ r̄/θn

(69)

in B along with the Neumann boundary conditions

2F [ ∂C
̂ψ + T

θn
∂ T

θn
Ċ

τ ̂φint ]n0 � t̄ , [ ∂∇q
̂ψ + T

θn
∂ T

θn
∇q̇τ

̂φint ]n0 � 0 , −∂∇T
̂φcon · n0 = q̄

θn

(70)

on ∂Bt , ∂BH and ∂Bq , respectively. As a fundamental difference to the fully implicit nu-
merical algorithm, a semi-explicit update identifies the thermal driving force with the given
temperature at time tn. Hence, the scaling factor results in T/θn = 1 in B such that the algo-
rithmically consistent form of the intrinsic dissipation defined in (35) and reformulated in
(38) is obtained. Especially, the incremental energy equation reads

η = ηn + τ

θn

∂ċτ ̂φint(ċ
τ ) · ċτ + τ

θn

(r̄ − Div[∂− 1
T

∇T
̂φcon]

∣

∣

T =θn
) .
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Additionally, also the dissipative terms in the quasi-static equilibrium (69)1, micro-force
balance (69)2 and the boundary conditions (70)1−2 do not contain the scaling factor. How-
ever, there are two issues that arise when using the proposed semi-explicit update for a heat
conduction process: (i) on the thermal side it might be restricted to homogeneous Neumann
boundary conditions (70)3 on the whole boundary, i.e., q̄ = 0 on ∂B and (ii) the Courant-
Friedrichs-Lewy (CFL) condition gives, depending on the mesh size associated with the
spatial discretization, an upper bound for the time step size τ in order to obtain a stable
numerical solution.11 Note that the semi-explicit update can be seen as an incrementally
isentropic operator split that consists of two fractional steps

Algo = Algoη,T ◦ Algoϕ,q,θ .

First, in the isentropic predictor step we optimize the incremental potential (64) with respect
to the macro- and micro-motions ϕ and q as well as the temperature θ , i.e.,

(Algoϕ,q,θ ) : {ϕ∗,q∗, θ∗} = Arg{ stat
ϕ,q,θ

�+τ (ϕ,q, ηn, θ, θn) } ,

where the entropy is frozen. Then, the entropy η and the thermal driving force T are updated
via the entropy corrector step

(Algoη,T ) : {η∗, T ∗} = Arg{ stat
η,T

�+τ (ϕ∗,q∗, η, θ∗, T ) } .

4.4 Mixed Variational Principle with Mechanical Driving Forces

We now put the focus on mixed variational principles for the thermomechanics of gradient-
extended dissipative continua, where not only the microstructural variables, but also the
corresponding local driving forces are taken into account and considered as additional vari-
ables. Following Miehe [49, 50], we consider the equivalent representation of the intrinsic
dissipation (38)

Dint = ∂ċ̂φint(ċ; c, θ) · ċ ⇐⇒ Dint = f · ∂f̂φ∗
int(f; c, θ)

by the dual intrinsic dissipation potential function ̂φ∗
int depending on the mechanical driving

forces

f= (m,d,g) conjugate to c= (C,q,∇q) . (71)

The Legendre transformation

̂φint(ċ; c, θ) = sup
f

[ f · ċ− ̂φ∗
int(f; c, θ) ] (72)

motivates the definition of an extended mixed dissipation potential functional

V ∗(ϕ̇, q̇, η̇, T , f;ϕ,q, θ) =
∫

B
v̂∗(ċ, η̇, T ,∇T , f; c, θ)dV (73)

11A derivation of the CFL condition for the suggested semi-explicit update scheme in case of a heat conduc-
tion process is beyond the scope of this paper. For a stability analysis of fractional step methods in thermo-
mechanics we refer to Armero & Simo [3].
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in terms of the mixed dissipation potential function

v̂∗ = T

θ
f · ċ− T η̇ − ̂φ∗

int(f; c, θ) − ̂φcon(− 1

T
∇T ; c, θ) , (74)

which governs the subsequent extended mixed variational principle. The necessary condition
of (72) reads12

ċ ∈ ∂f̂φ
∗
int(f; c, θ) .

4.4.1 Rate-Type Formulation

Based on the internal energy and dissipation potential functionals E+ in (47) and V ∗ in (73),
we are in the position to formulate a mixed rate-type variational principle that accounts for
the mechanical driving forces f. We define at current time t the rate-type potential13

�∗(ϕ̇, q̇, η̇, θ̇ , T , f) = d

dt
E+(ϕ,q, η, θ) + V ∗(ϕ̇, q̇, η̇, T , f) − Pext(ϕ̇, T )

with given state (ϕ,q, η, θ). We write this potential with its internal and external contribu-
tions

�∗(ϕ̇, q̇, η̇, θ̇ , T , f) =
∫

B
π̂∗(ċ, η̇, θ̇ , T ,∇T , f)dV − Pext(ϕ̇, T ) (77)

in terms of the extended internal potential density

π̂∗(ċ, η̇, θ̇ , T ,∇T , f) = d

dt
ê+(c, η, θ) + v̂∗(ċ, η̇, T ,∇T , f) .

12Perzyna-type dual dissipation potential function. An important example of a smooth intrinsic dual dissipa-
tion potential function is

̂φ∗
int(f;c, θ) = 1

2ηf
〈 ̂f (f;c, θ) 〉2+ (75)

in terms of a function ̂f (· ;c, θ) that differs from a gauge just by an additive constant and serves as a threshold
function in the (adiabatically) rate-independent setting considered in Sect. 4.5 below. ηf > 0 is a material

parameter and 〈·〉+ : R → R+ , x �→ 1
2 (|x| + x) the ramp function. Note carefully that ̂φ∗

int(· ;c, θ) defined in
(75) is not a homogeneous function and its dual ̂φint(· ;c, θ) is still nonsmooth in general, i.e.,

ċ= ∂f̂φ
∗
int but δϕ ̂ψ + δϕ̇̂φint � gγ̄ and δq̂ψ + δq̇̂φint � 0 . (76)

We can write (76)1 in the particular form

ċ = λ∂f ̂f with λ = 1

ηf
〈 ̂f 〉+ ,

which regularizes the rate-independent structure (90)–(91) to be discussed later in Sect. 4.5. This rate-
dependent setting is in line with the formulation of visco-plasticity according to Perzyna [69].
13To keep notation short, we subsequently do not write explicitly the dependence of functions and corre-
sponding functionals on given states.
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Recalling the mixed functions (47)2 and (74) and inserting the necessary condition (42) on
the given thermomechanical state, yields a reduced internal potential density of the form

π̂∗
red(ċ, η̇, T ,∇T , f) = ∂ĉψ · ċ+ (θ − T )η̇ + T

θ
f · ċ− ̂φ∗

int(f) − ̂φcon(− 1

T
∇T ) . (78)

Then, the rates of the macro- and micro-motion as well as the rate of the entropy and the
thermal and mechanical driving forces at current time t are governed by the variational
principle

{ϕ̇, q̇, η̇, T , f} = Arg{ inf
ϕ̇,q̇,η̇

sup
T ,f

[
∫

B
π̂∗

red(ċ, η̇, T ,∇T , f)dV − Pext(ϕ̇, T ) ] } .

Like in (59), one has to account for the Dirichlet boundary conditions (60) and (33). By the
first variation of the functional (77), we have the necessary optimality conditions

δϕ̇�∗ + δq̇�∗ + δη̇�
∗ ≥ 0 , δT �∗ + δf�

∗ ≤ 0

for all admissible test functions (δη̇, δf) and (δϕ̇, δq̇, δT ) fulfilling homogeneous forms of
the Dirichlet boundary conditions. We obtain the Euler equations

1. Evolving macro-motion δϕ̇π̂∗
red ≡ δϕ

̂ψ + δϕ̇( T
θ
f · ċ) = gγ̄ ,

2. Evolving micro-motion δq̇π̂∗
red ≡ δq̂ψ + δq̇( T

θ
f · ċ) = 0 ,

3. Thermal driving force ∂η̇π̂
∗
red ≡ T − θ = 0 ,

4. Evolving thermal state δT π̂∗
red ≡ −η̇ + ∂T ( T

θ
f · ċ) − δT

̂φcon = −r̄/θ ,

5. Mechanical driving forces ∂fπ̂
∗
red ≡ T

θ
ċ− ∂f̂φ

∗
int � 0

(79)
in B along with the Neumann boundary conditions

2F [ ∂C
̂ψ + T

θ
m ]n0 = t̄ , [ ∂∇q

̂ψ + T
θ
g ]n0 = 0 , −∂∇T

̂φcon · n0 = q̄/θ (80)

on ∂Bt , ∂BH and ∂Bq , respectively. The central three field equations are the quasi-static
equilibrium

δϕ̇π̂∗
red

∣

∣

T =θ
≡ −Div[2F (∂C

̂ψ +m) ] = γ̄ , (81)

the micro-force balance

δq̇π̂∗
red

∣

∣

T =θ
≡ [ ∂q̂ψ + d ] − Div[ ∂∇q

̂ψ + g ] = 0 (82)

and the energy equation

δT π̂∗
red

∣

∣

T =θ
≡ −η̇ + 1

θ
f · ċ− 1

θ
Div[ ∂ĝφcon(g) ] = −r̄/θ . (83)

They are complemented by the inverse definitions (79)5 of the mechanical driving forces
which split into three evolution equations

Ċ ∈ ∂m̂φ∗
int , q̇ ∈ ∂d̂φ∗

int , ∇q̇ ∈ ∂ĝφ∗
int , (84)

as already given in Miehe [50], where the identity T = θ in B from (79)3 has been used.
Note carefully that the driving forces f are variables and the variational derivatives in (79)1−2

with respect to ϕ̇ and q̇ are understood in the ordinary sense. Hence, (79)1−2 as well as the
boundary conditions (80)1−2 do not represent differential inclusions.
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4.4.2 Incremental Formulation

Within a time interval [tn, tn+1] ⊂ T a variational principle can be constructed by the same
avenue as outlined in Sect. 4.3.2. Using the algorithmic approximations (66) of rates of state
quantities, we get the incremental internal potential density

π̂∗τ = ̂ψ(c, θ)+τ [(θk − T )η̇τ +ηnθ̇
τ + T

θn

f · ċτ − ̂φ∗
int(f; cn, θn) − ̂φcon(− 1

T
∇T ; cn, θn)],

(85)

where again k = n + 1 corresponds to a fully implicit and k = n to a semi-explicit update.
In addition, we dropped terms that are associated with previous time tn. Then, with the use
of the incremental load functional (68) the incremental variational principle

{ϕ,q, η, θ, T , f} = Arg{ inf
ϕ,q,η

sup
θ,T ,f

[
∫

B
π̂∗τ (c, η, θ, T ,∇T , f)dV − P τ

ext(ϕ, T ) ] } (86)

determines all thermomechanical fields at time tn+1. The corresponding Euler equations in B
are time-discrete forms of (79) together with (69)4 stemming from the variation with respect
to the temperature θ . As before, the proposed semi-explicit integration of the rate of the in-
ternal energy yields for the scaling factor T/θn = 1 in B and one obtains the algorithmically
consistent form of the intrinsic dissipation, i.e., the incremental energy equation reads

η = ηn + τ

θn

f · ċτ + τ

θn

(r̄ − Div[∂− 1
T

∇T
̂φcon]|T =θn ) .

In addition, the dissipative terms in the time-discrete forms of the quasi-static equilibrium
(79)1, the micro-force balance (79)2 and the boundary conditions (80)1−2 as well as the
dissipative terms in the time discrete forms of the evolution equations (79)5 do not contain
the scaling factor. The isentropic operator split is modified by an additional optimization in
the isentropic predictor step with respect to the mechanical driving forces f.

4.5 Mixed Variational Principle with Threshold Function

Intrinsic dissipation potential functions are often modeled by the principle of maximum dis-
sipation. For the classical local theories of plasticity, this principle can be traced back among
others to the work of Hill [34], see also Moreau [57], Simo [76] and Lubliner [42]. For a
general discussion of this principle and its connection to evolution laws governed by dissi-
pation potentials we refer to Hackl & Fischer [30] and Hackl et al. [31, 32]. The intrinsic
dissipation potential function for thermomechanics is defined by the constrained maximum
principle

̂φint(ċ; c, θ) = sup
f∈E(c,θ)

f · ċ , (87)

that includes at given state (c, θ) a domain of admissible mechanical driving forces which
we assume to be smooth14

E(c, θ) = { f | ̂f (f; c, θ) ≤ 0 } . (88)

14For example, in case of multisurface plasticity one considers a set of m ≥ 2 intersecting functions ̂fα ,
α = 1, . . . ,m which generate a convex but maybe nonsmooth domain E, see, e.g., Simo et al. [80].
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Clearly, the function ̂φint(· ; c, θ) defined in (87) is positively homogeneous of degree one.
The set (88) is governed by a threshold function ̂f (f; c, θ) = ŵ(f; c, θ) − ĉ(c, θ), where
ĉ(c, θ) > 0 is a positive threshold constant that might depend on the given thermomechanical
state and ŵ a level set function that is a gauge, i.e., (i) nonnegative ŵ(· ; c, θ) ≥ 0, (ii) zero
in the origin ŵ(0; c, θ) = 0, (iii) convex in f and (iv) positively homogeneous of degree one
in f. As a result of (iii), the constrained optimization problem (87) has a unique solution. By
the use of the Lagrange multiplier method, we can put (87) into the form

̂φint(ċ; c, θ) = sup
f

inf
λ≥0

[ f · ċ− λ ̂f (f; c, θ) ] , (89)

whose necessary optimality condition defines the evolution of the constitutive state

ċ = λ∂f ̂f , (90)

where the Lagrange multiplier λ satisfies classical loading-unloading conditions in Kuhn-
Tucker form

λ ≥ 0 , ̂f (f; c, θ) ≤ 0 , λ ̂f (f; c, θ) = 0 . (91)

This is the typical structure of flow rules associated with rate-independent material behavior.
Note that even though ∂f ̂f (0; c, θ) is a subdifferential (see Footnote 7), we get for f = 0
the unique value ċ = 0. The optimization problem (89) now motivates the definition of a
modified mixed dissipation potential functional

V ∗
λ (ϕ̇, q̇, η̇, T , f, λ;ϕ,q, θ) =

∫

B
v̂∗

λ(ċ, η̇, T ,∇T , f, λ; c, θ)dV (92)

in terms of the mixed dissipation potential function

v̂∗
λ = T

θ
f · ċ− T η̇ − λ ̂f (f; c, θ) − ̂φcon(− 1

T
∇T ; c, θ) , (93)

that governs the subsequent modified mixed variational principle.
It should be mentioned that unlike for local theories, the Lagrange multiplier λ for ̂f = 0

cannot be determined at current time by a local consistency condition in terms of rates of
the external quantities deformation and temperature. Hence, as, e.g., mentioned in De Borst
& Mühlhaus [15] a nonlocal version has to be elaborated, see Sect. 4.5.1.

4.5.1 Rate-Type Formulation

Based on the internal energy and dissipation potential functionals E+ in (47) and V ∗
λ in (92),

we are in the position to formulate a mixed rate-type variational principle that accounts for
dissipative threshold mechanisms. We define at current time t the rate-type potential

�∗
λ(ϕ̇, q̇, η̇, θ̇ , T , f, λ) = d

dt
E+(ϕ,q, η, θ) + V ∗

λ (ϕ̇, q̇, η̇, T , f, λ) − Pext(ϕ̇, T )

with given state (ϕ,q, η, θ). We write this potential with its internal and external contribu-
tions

�∗
λ(ϕ̇, q̇, η̇, θ̇ , T , f, λ) =

∫

B
π̂∗

λ (ċ, η̇, θ̇ , T ,∇T , f, λ)dV − Pext(ϕ̇, T ) (94)
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in terms of the extended internal potential density

π̂∗
λ (ċ, η̇, θ̇ , T ,∇T , f, λ) = d

dt
ê+(c, η, θ) + v̂∗

λ(ċ, η̇, T ,∇T , f, λ) .

Recalling the mixed functions (47)2 and (93) and inserting the necessary condition (42) on
the given thermomechanical state, yields a reduced internal potential density of the form

π̂∗
λ,red(ċ, η̇, T ,∇T , f, λ) = ∂ĉψ · ċ+ (θ − T )η̇ + T

θ
f · ċ− λ ̂f (f) − ̂φcon(− 1

T
∇T ) . (95)

Then, the rates of the macro- and micro-motion as well as the rate of the entropy, the thermal
and mechanical driving forces and the Lagrange multiplier at current time t are governed by
the variational principle

{ϕ̇, q̇, η̇, T , f, λ} = Arg{ inf
ϕ̇,q̇,η̇

sup
T ,f

inf
λ≥0

[
∫

B
π̂∗

λ,red(ċ, η̇, T ,∇T , f, λ)dV −Pext(ϕ̇, T ) ] } . (96)

Like in (59), one has to account for the Dirichlet boundary conditions (60) and (33). By the
first variation of the functional (94) we have the necessary optimality conditions

δϕ̇�∗
λ + δq̇�∗

λ + δη̇�
∗
λ ≥ 0 , δT �∗

λ + δf�
∗
λ ≤ 0 , δλ�

∗
λ ≥ 0 (97)

for all admissible test functions (δη̇, δf, δλ) with λ+ δλ ≥ 0 in B and (δϕ̇, δq̇, δT ) fulfilling
homogeneous forms of Dirichlet boundary conditions. We obtain the Euler equations

1. Evolving macro-motion δϕ̇π̂∗
λ,red ≡ δϕ

̂ψ + δϕ̇( T
θ
f · ċ) = gγ̄ ,

2. Evolving micro-motion δq̇π̂∗
λ,red ≡ δq̂ψ + δq̇( T

θ
f · ċ) = 0 ,

3. Thermal driving force ∂η̇π̂
∗
λ,red ≡ T − θ = 0 ,

4. Evolving thermal state δT π̂∗
λ,red ≡ −η̇ + ∂T ( T

θ
f · ċ) − δT

̂φcon = −r̄/θ ,

5. Mechanical driving forces ∂fπ̂
∗
λ,red ≡ T

θ
ċ− λ∂f ̂f = 0 ,

6. Loading Conditions ∂λπ̂
∗
λ,red ≡ − ̂f ≥ 0 , λ ≥ 0 , λ ̂f = 0

(98)
in B along with the Neumann boundary conditions (80). Note, that the condition ̂f ≤ 0 in
(98)6 follows from (97)3 if we set λ = 0, which necessarily demands δλ ≥ 0. On the other
hand, by choosing λ > 0 the test function δλ can have any sign and we obtain from (97)3 the
equality ̂f = 0, or in summary λ ̂f = 0 as given in (98)6. The central three field equations are
identical to (81)–(83) and are complemented by the set of evolution equations (98)5 which
read

Ċ = λ∂m ̂f , q̇ = λ∂d ̂f , ∇q̇= λ∂g ̂f , (99)

as already given in Miehe [50], where the identity T = θ in B from (98)3 has been used.
Note that the only formal difference to (84) is that the nonsmooth evolution is not written in
form of differential inclusions but is governed by the Karush-Kuhn-Tucker conditions (98)6

containing the scalar variable λ. We also mention that the representation (99) is possible
because of the assumption of a smooth elastic domain E, i.e., its boundary only consists of
regular points.
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In addition, we have for ̂f = 0 the nonlocal consistency conditions

λ ≥ 0 ,
d

dt
̂f (f; c, θ) ≤ 0 , λ

d

dt
̂f (f; c, θ) = 0 in B , (100)

which at current time t are supplemented by rate forms of the equations (42) and (98)1−2,
the evolution equations (98)5 and the rate forms of the Neumann boundary conditions (80)
related to the macro- and micro-motion, respectively. To see conditions (100), consider at
current time t a nonzero evolution of the mechanical constitutive state, i.e., λt > 0. Then,
the first variation of the dissipation potential functional (92) with respect to the Lagrange
mulitplier vanishes

δλV
∗
λ |t =

∫

B
−δλ ̂f |t dV = 0 (101)

for all δλ. Next, at time t + τ , τ ≥ 0 we consider a state with λt+τ ≥ 0 and the first vari-
ation of the dissipation potential functional (92) with respect to the Lagrange multiplier is
nonnegative

δλV
∗
λ |t+τ =

∫

B
−δλ ̂f |t+τ dV ≥ 0 (102)

for all λt+τ + δλ ≥ 0. Subtracting (101) from (102) and dividing by τ yields

1

τ
[ δλV

∗
λ |t+τ − δλV

∗
λ |t ] =

∫

B
[−δλ (

d

dt
̂f + O(τ 2)

τ
) ]dV ≥ 0

for all λt+τ + δλ ≥ 0. For τ → 0 we have λt+τ → λt > 0, O(τ 2)/τ → 0 and get d
dt

̂f = 0
since δλ can have any sign. For τ small enough, we assume λt+τ = 0 and δλ must be
nonnegative yielding d

dt
̂f ≤ 0. When summarizing, we arrive at the nonlocal consistency

conditions (100). From this condition the Lagrange multiplier field can be determined in
terms of the rates (ϕ̇, θ̇ ) of the external fields deformation and temperature.

4.5.2 Incremental Formulation

Within a time interval [tn, tn+1] ⊂ T a variational principle can be constructed by the same
avenue as outlined in Sect. 4.3.2. Using the algorithmic approximations (66) of rates of state
quantities, we get the incremental internal potential density

π̂∗τ
λ = ̂ψ(c, θ)+τ [(θk − T )η̇τ + ηnθ̇

τ + T

θn

f · ċτ − λ ̂f (f; cn, θn) − ̂φcon(− 1

T
∇T ; cn, θn)],

(103)

where like before k = n + 1 corresponds to a fully implicit and k = n to a semi-explicit
update. Again, terms that are associated with previous time tn are dropped. Then, with the
use of the incremental load functional (68) the incremental variational principle

{ϕ,q, η, θ, T , f, λ} = Arg{ inf
ϕ,q,η

sup
θ,T ,f

inf
λ≥0

[
∫

B
π̂∗τ

λ (c, η, θ, T ,∇T , f, λ)dV − P τ
ext(ϕ, T ) ] }

(104)
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determines all fields at time tn+1. The corresponding Euler equations in B are time-discrete
forms of (98) together with (69)4 stemming from the variation with respect to the tempera-
ture θ . Considering the semi-explicit integration, the incrementally isentropic operator split
is modified by an additional optimization in the isentropic predictor step with respect to the
Lagrange multiplier λ ≥ 0.

5 Representative Model Problems

We now apply the general variational setting for thermomechanics of gradient-extended
dissipative solids to complex multifield problems related to evolutions of species content in
elastic solids, damage and plasticity. Especially, we highlight a new minimization structure
for Cahn-Hilliard diffusion with respect to the species flux. The focus is put on incremental
potentials which also inherently contain the proposed operator split. The latter is applied to
a numerical example which shows the formation of an adiabatic shear band.

5.1 Cahn-Hilliard Diffusion Coupled with Temperature Evolution

We consider as a first model problem the Cahn-Hilliard theory of diffusive phase separation
in a rigid solid coupled with temperature evolution. In the following c : B × T → [0,1]
denotes a dimensionless concentration field whose evolution is governed by the local form
of conservation of species content

ċ = −DivH , (105)

where H : B × T → R
d is the species flux vector field. To give the concentration field the

character of an order parameter ql = (c), we impose homogeneous boundary conditions
ċ = 0 on ∂Bq and ∂∇c

̂ψ · n0 = 0 on ∂BH , see Fig. 2. Hence, the dynamic process is only
driven by an initial inhomogeneous distribution c0(X) of the concentration field in the do-
main B. In the following, we neglect the phenomenon of thermal diffusion (Soret effect)
that is species flow caused by a temperature gradient, see De Groot & Mazur [16] and the
recent contribution Nateghi & Keip [60]. The free energy function decomposes into a local,
nonlocal and purely thermal contribution

̂ψ(c, θ) = ̂ψl(c) + ̂ψ∇(∇c) + ̂ψθ(θ) , (106)

where the last term is given in (1). As considered in Cahn & Hilliard [9] we choose

̂ψl(c) = A[c ln c + (1 − c) ln(1 − c)] + Bc(1 − c) and ̂ψ∇(∇c) = L

2
|∇c|2

in terms of the threshold and mixing energy parameters A and B as well as the diffuse
interface parameter L. Note the nonconvexity of ̂ψl for B > 2A which is related to phase
separation. The evolution of the concentration is driven by the chemical potential μ given
by

μ = δc
̂ψ = A ln

c

1 − c
+ B(1 − 2c) − L�c . (107)

It can be understood as a constitutive representation of a micro-force balance in the sense of
Gurtin [26].
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5.1.1 Rate-Type Minimization Principles in Isothermal Case

Point of departure is the definition of the energy and dissipation functionals

E(c) =
∫

B
̂ψ(c)dV and D(ċ; c) =

∫

B
̂φ(ċ; c)dV , (108)

where ̂φ is the smooth dissipation potential function accounting for diffusion mechanisms. A
minimization of the corresponding rate-type potential with respect to ċ then yields as Euler
equation the mass balance in the form

δc
̂ψ + ∂ċ

̂φ = 0 in B .

Alternative to this setting, we now propose a new minimization formulation in terms of the
species flux vector. In line with Miehe et al. [54], we reformulate the rate of the energy
functional (108)1 at current concentration

d

dt
E(c) = E(H; c) = −

∫

B
δc

̂ψ DivH dV −
∫

∂B
(∂∇c

̂ψ · n0)DivH dA , (109)

where we inserted the balance equation (105). The dissipation functional is defined as

X(H; c) =
∫

B
χ̂ (H; c)dV (110)

in terms of the dissipation potential function χ̂ which has the simple quadratic form

χ̂ (H; c) = 1

2

1

Mc(1 − c)
H ·H . (111)

Here, M > 0 is a so-called mobility parameter. Note that χ̂ (· ; c) is a positively homoge-
neous function of degree two and its image coincides with half the dissipation in a material
element, see below. With the functionals (109) and (110) at hand, we define the potential

�(H; c) = E(H; c) + X(H; c)

with given concentration c. Its minimization with regard to homogeneous Dirichlet-type
boundary conditionsH ·n0 = 0 and −DivH = 0 on ∂Bq determines the current species flux
field. We obtain the Euler equations

1. Species flux ∇δc
̂ψ + ∂H χ̂ = 0 in B ,

2. Vanishing chemical potential −δc
̂ψ = 0 on ∂BH ,

3. Vanishing micro-force ∂∇c
̂ψ · n0 = 0 on ∂BH .

(112)

They contain necessary compatibility conditions for the given concentration field. As a post-
processing step, the current rate ċ of the concentration is determined via (105). Starting from
(35), we now calculate the dissipation whose unique source is diffusion

∫

B
D dV =

∫

B
B ·H dV with B = −∇δc

̂ψ ,
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where we performed integration by parts two times and inserted the balance (105) as well as
the homogeneous boundary conditions. Using (112)1, we can express the dual to the species
flux vector by the dissipation potential χ̂ and obtain with (111) for the dissipation associated
with a volume element D = 2χ̂ (H; c) ≥ 0.

5.1.2 Incremental Formulation with Temperature Evolution

In addition to (111), we consider the conductive dissipation potential function

̂φcon(g; θ) = k θ(g · g)/2 ,

which is convex in g = −∇θ/θ with k > 0 being the thermal conductivity. For the incre-
mental setting, we consider the implicit update of the species concentration

c = cn − τ DivH , (113)

and specify the incremental internal potential density (67) as

π̂+τ = ̂ψ(cn − τ DivH ,∇cn − τ ∇[DivH ], θ)

+ τ [ (θk − T )η̇τ + ηnθ̇
τ + χ̂ (

T

θn

H; cn, θn) − ̂φcon(− 1

T
∇T ; θn) ] .

Here, χ̂ is the dissipation potential function (111) related to diffusion mechanisms, where
an additional temperature dependence M = ̂M(θ) of the mobility parameter is taken into
account. We obtain the Euler equations

δH π̂+τ ≡ ∇μ + [ ̂M(θn)cn(1 − cn) ]−1( T
θn

)2H = 0 ,

∂ηπ̂
+τ ≡ θk − T = 0 ,

∂θ π̂
+τ ≡ −C ln θ

θ0
+ ηk = 0 ,

δT π̂+τ ≡ −(η − ηn) + τ
θn

[ T
θn

1
̂M(θn)cn(1−cn)

|H |2 ] + τ
T

Div[k θn
1
T
∇T ] = −τ r̄/θn

in B, where we recall the definition of the chemical potential (107) together with (113).

5.2 Thermomechanics of Gradient Damage

We consider as a second application the thermomechanics of a gradient damage model with
an elastic stage. The scalar micro-motion field d : B × T → [0,1], referred to as damage
variable, measures at a macroscopic point X ∈ B the ratio between an arbitrary oriented
area of microcracks and a representative reference surface in which the mentioned crack
surfaces are embedded, see, e.g., Lemaitre [39]. In this sense, a value d = 0 characterizes an
unbroken state, whereas d = 1 represents a fully broken state. The irreversibility of micro-
cracking is usually expressed by the inequality constraint ḋ(X, t) ≥ 0 on the evolution of
the damage variable. The mechanical constitutive state is specified as

c= (C, d,∇d)

and contains the right Cauchy-Green tensor C, the damage variable as well as its first gra-
dient. In addition, we introduce the elastic right Cauchy-Green tensor Ce = F eTgF e that
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is based on the definition of an elastic, stress producing part F e = J
−1/3
θ F of the defor-

mation gradient in terms of a volumetric thermal expansion Jθ = exp[3αT (θ − θ0)], see Lu
& Pister [41]. One can then write Ce by means of C as Ce = J

−2/3
θ C. A simple model

of thermo-gradient-damage at large deformations may then be based on the objective free
energy function

̂ψ(c, θ) = ĝ(d)̂ψe(C
e) + ̂ψθ(θ) with ̂ψe = μ

2
(trCe − 3) + μ

δ
[ (detCe)− δ

2 − 1 ] , (114)

where ĝ(d) = (1 − d)2 is a degradation function and ̂ψθ the purely thermal contribution as
given in (1). Note that the gradient of damage does not arise in this constitutive function
but will exclusively enter the dissipation potential function, see below. μ > 0 is the shear
modulus and the second parameter δ > 0 models a weak compressibility. Note that only the
full elastic energy storage is degraded. From (114) we obtain the tensor functions

gP e = ∂F
̂ψ = ĝ(d)J

− 2
3

θ gF [μG−1 − μ(detCe)− δ
2 Ce−1 ] ,

βe = ∂d
̂ψ = −2(1 − d)[ μ

2 (trCe − 3) + μ

δ
((detCe)− δ

2 − 1) ] ,
η̃ = ∂θ

̂ψ = −ĝ(d)αT [μ trCe − μ(detCe)− δ
2 Ce : Ce−1 ] − C ln θ

θ0
,

(115)

that represent constitutive relationships for driving forces.

5.2.1 Rate-Type Formulation Based on Indicator Function

We consider the intrinsic dissipation potential function

̂φint(ḋ,∇ḋ;∇d, θ) = ̂φl(ḋ; θ) + ̂φ∇(∇ḋ;∇d) (116)

as the sum of a nonsmooth local and a smooth nonlocal part

̂φl(ḋ; θ) = ĉ(θ)ḋ + I+(ḋ) and ̂φ∇(∇ḋ;∇d) = μl2∇d · ∇ḋ . (117)

Here, irreversibility of damage is ensured by the indicator function I+(ḋ) of the set of posi-
tive real numbers defined as

I+(ḋ) =
{

0 for ḋ ≥ 0 ,

+∞ otherwise
and ∂I+(ḋ) =

⎧

⎨

⎩

0 for ḋ > 0 ,

R− for ḋ = 0 ,

∅ otherwise
(118)

with ∂ denoting the subdifferential. The parameter ĉ(θ) > 0 is a temperature-dependent
force-like threshold value for the onset of damage with d

dθ
ĉ < 0 and l a length scale pa-

rameter. Note that (116) is a positively homogeneous function of degree one in (ḋ,∇ḋ) and
hence models for an adiabatic process a rate-independent evolution of damage. In addition,
we have the conductive dissipation potential function

̂φcon(g;C, d, θ) =̂k(d)θ C−1 : (g ⊗ g)/2 , (119)

where the thermal conductivity is a function of the damage variable and may take the simple
form ̂k(d) = ĝ(d)kb in terms of the heat conduction coefficient kb > 0 of the undamaged
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bulk. With the constitutive functions (114), (116) and (119) at hand, we specify the internal
potential density (58) as

π̂+
red = ∂C

̂ψ : Ċ + βeḋ + (θ − T )η̇ + T

θ
[ ĉ(θ)ḋ + μl2∇d · ∇ḋ + I+(ḋ) ] − ̂φcon(− 1

T
∇T ) .

Then, the variational principle (59) determines at current time t the rates of deformation,
damage and entropy as well as the thermal driving force and gives the Euler equations

δϕ̇π̂+
red ≡ −DivgP e = gγ̄ ,

δḋ π̂
+
red ≡ βe + T

θ
ĉ(θ) − μl2�(T

θ
d) + ∂I+(ḋ) � 0 ,

∂η̇π̂
+
red ≡ θ − T = 0 ,

δT π̂+
red ≡ −η̇ + 1

θ
̂φint(ḋ,∇ḋ) + 1

T
Div[̂k(d)θ C−1 1

T
∇T ] = −r̄/θ

(120)

in B. Observe, that the evolution of the entropy is driven by the rates of damage and gradient
of damage. The nonsmooth evolution of the damage variable is governed by the differential
inclusion (120)2. From there and the relation (120)3, we conclude for the determination of
the rates of deformation and damage the nonlocal consistency conditions15

ḋ ≥ 0 , −β̇e − d
dθ

ĉ(θ) θ̇ + μl2�ḋ ≤ 0 , ḋ [−β̇e − d
dθ

ĉ(θ) θ̇ + μl2�ḋ ] = 0 in B ,

where β̇e = ∂2
dC

̂ψ : Ċ + ∂2
dd

̂ψ ḋ + ∂2
dθ

̂ψ θ̇ and θ̇ follows from taking the time derivative of
the state equation (42). In addition, the rate form

Div[ ∂F P e : Ḟ + ∂dP
e ḋ + ∂θP

e θ̇ ] = ˙̄γ
of mechanical equilibrium (120)1 has to be considered together with the boundary conditions

[ ∂F P e : Ḟ + ∂dP
e ḋ + ∂θP

e θ̇ ]n0 = ˙̄t and ∇ḋ · n0 = 0 (121)

on ∂Bt and ∂BH , respectively. (121) are rate forms of the Neumann boundary conditions
P e n0 = t̄ on ∂Bt and ∇d · n0 = 0 on ∂BH which are outcomes of the variational principle.

From (38) the intrinsic dissipation is found to be
∫

B
Dint dV = −

∫

B
βeḋ dV ≥ 0 ,

where we used integration by parts and the homogeneous boundary conditions. Hence, ther-
modynamic consistency is shown.

5.2.2 Incremental Formulation Based on Threshold Function

We specify the array (71) of dissipative driving forces as

f = (0, β,0) ,

15These also follow from (100) by using the threshold function defined in (123) and the identifications

λ = ḋ and β = −βe + Div(∂∇ḋ
̂φ∇ )

for the Lagrange multiplier and the nonlocal driving force considered below.
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where β is the quantity conjugate to d . The Legendre transform of the local part (117)1 of
the intrinsic dissipation potential function reads

̂φ∗
l (β; θ) = sup

ḋ

[ (β − ĉ)ḋ − I+(ḋ) ] = sup
ḋ≥0

[ (β − ĉ)ḋ ] =
{

0 for β − ĉ ≤ 0 ,

+∞ for β − ĉ > 0
(122)

and enters the incremental internal potential density (85). Note that ̂φ∗
l is the indicator func-

tion of the set (88) of admissible driving forces governed by the threshold function16

̂f (β; θ) = β − ĉ(θ) . (123)

The latter defines the local intrinsic dissipation potential function by the constrained opti-
mization problem

̂φl(ḋ; θ) = sup
β

inf
λ≥0

[βḋ − λ ̂f (β; θ) ] .

Then, with the exact time integration of the nonlocal term (117)2 of the intrinsic dissipation
potential function

̂φτ
∇(∇d;∇dn) =

∫ tn+1

tn

μl2∇d · ∇ḋ dt = 1

2
μl2(|∇d|2 − |∇dn|2) , (124)

the incremental internal potential density (103) takes the form

π̂∗τ
λ = ̂ψ(c, θ)+τ [ (θk −T )η̇τ +ηnθ̇

τ + T

θn

(βḋτ + 1

τ
̂φτ

∇)−λ ̂f (β; θn)−̂φcon(g;Cn, dn, θn) ] .

As a result, the incremental variational principle (104) gives the Euler equations

δϕπ̂+τ
λ ≡ −DivgP e = gγ̄ ,

δd π̂
+τ
λ ≡ βe + T

θn
β − μl2�( T

θn
d) = 0 ,

∂ηπ̂
+τ
λ ≡ θk − T = 0 ,

∂θ π̂
+τ
λ ≡ η̃ + ηk = 0 ,

δT π̂+τ
λ ≡ −(η − ηn) + 1

θn
[β(d − dn) + ̂φτ

∇ ] + τ
T

Div[ θn
̂k(dn)C−1

n
1
T
∇T ] = −τ r̄/θn ,

∂βπ̂+τ
λ ≡ T

θn
(d − dn) − τλ = 0 ,

∂λπ̂
+τ
λ ≡ −τ [β − ĉ(θn) ] ≥ 0 , λ ≥ 0 , τλ[β − ĉ(θn) ] = 0

(125)
in B, which represent time-discrete forms of the general equations (42) and (98). We can
reduce this set of equations by expressing for k = n the dissipative driving force β = −βe +
16An alternative intrinsic local dissipation potential function may be given by

̂φl(ḋ;d, θ) = ĉ(θ)dḋ + I+(ḋ) ,

that in contrast to (117)1 depends explicitly on the given damage state d . We obtain the threshold function

̂f (β;d, θ) = β − ĉ(θ)d ,

which, due to occurrence of the damage variable in the resistance term, corresponds to a model without an
elastic stage, i.e., the damage starts to evolve from d = 0 at the instant of loading.
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μl2�d via (125)2 and the Lagrange multiplier τλ = d − dn via (125)6 yielding the explicit
nonlocal form of the Karush-Kuhn-Tucker conditions

d ≥ dn , μl2�d − βe − ĉ(θn) ≤ 0 , (d − dn)[μl2�d − βe − ĉ(θn) ] = 0 ,

where we recall the definition of the driving force (115)2.
As an alternative to this setting, which is fully rate-independent in the adiabatic case, we

may consider a (regularized) viscous over-force formulation based on the smooth dual local
intrinsic dissipation potential function, see Footnote 12,

̂φ
η∗
l (β; θ) = 1

2ηf

〈 ̂f (β; θ) 〉2
+ ,

that approaches (122) for the vanishing viscosity limit ηf → 0. Then, with (124) the incre-
mental internal potential density (103) takes the form

π̂∗τ = ̂ψ + τ [ (θk − T )η̇τ + ηnθ̇
τ+ T

θn

(βḋτ + 1

τ
̂φτ

∇)

− 1

2ηf

〈 ̂f (β; θn)〉2
+ − ̂φcon(− 1

T
∇T ;Cn, dn, θn) ] ,

and the incremental variational principle (86) yields (125)1–(125)5 together with

∂βπ̂∗τ ≡ T

θn

(d − dn) − τ

ηf

〈β − ĉ(θn)〉+ = 0

as Euler equations in B. We can reduce this set of equations by expressing the dissipative
driving force β from (125)2 yielding for k = n the nonlocal (regularized) update equation

d = dn + τ

ηf

〈μl2�d − βe − ĉ(θn)〉+

for the damage variable.

5.3 Thermomechanics of Additive Gradient Plasticity

As third model problem, we consider a thermomechanically coupled formulation of addi-
tive gradient plasticity. Besides the standard metrics G and g, we introduce on the reference
configuration the (covariant) plastic metric tensor Gp ∈ Sym+(3) that evolves in time start-
ing from the initial state Gp(X, t0) = G. Following Miehe et al. [51] and as visualized in
Fig. 3, a Lagrangian elastic strain variable may be based on an explicit dependence on the
right Cauchy-Green tensor C, that is the current metric pulled back to the reference config-
uration, and the plastic metric Gp in an additive format

εe = ε − εp ,

where the total and plastic Hencky strain tensors

ε = 1

2
lnC and εp = 1

2
lnGp

are introduced. Hence, instead of Gp we consider in what follows the logarithmic plastic
strain εp as the local internal variable whose evolution from εp(X, t0) = 0 is governed by a
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Fig. 3 Geometry of additive plasticity. a) Definition of the total Hencky strain tensor ε = 1
2 lnC in terms of

the pull-back C of the standard current metric g. b) Definition of the plastic metric tensor Gp on the reference
configuration governing the plastic Hencky strain εp = 1

2 lnGp whose evolution is given by a local flow rule.
Then, εe = ε − εp is the elastic strain measure entering the free energy function

standard flow rule. Note that within this framework the condition of plastic incompressibility
detGp = 1 is equivalent to a standard statement of vanishing trace trεp = 0.

We specify the mechanical constitutive state

c = (ε,εp,α,∇α) ,

which contains a scalar hardening variable α as well as its first gradient. In the following,
we focus on metal plasticity characterized by small elastic but large plastic deformations
and consider the free energy function

̂ψ(c, θ) = ̂ψe(ε,εp) + ̂ψp(α, θ) + 1

2
μl2|∇α|2 + ̂ψe−θ (ε, θ) + ̂ψθ(θ) . (126)

Here, ̂ψe is the purely elastic contribution that is assumed to have the quadratic form

̂ψe(ε,εp) = κ

2
(trε)2 + μ|Devεe |2 , (127)

where κ > 0 and μ > 0 are the bulk and shear modulus, respectively. ̂ψp is an isotropic
hardening function that also takes into account thermally induced softening. The gradient
extension related to a length scale parameter l is assumed to affect the scalar hardening
variable only. The coupled thermoelastic response is modeled by the constitutive function

̂ψe−θ (ε, θ) = −καT (trε)(θ − θ0)

in line with (1), where also the pure thermal contribution ̂ψθ is specified. Note, that the
function (127), known as Hencky energy, is not polyconvex17 with respect to the deforma-
tion gradient F = Dϕ in the sense of Ball [4], but rank-one convex for a moderately high
elastic deformation range, see Bruhns et al. [8]. Hence, it is applicable to the typical sce-
nario of metal plasticity. With the free energy function (126) at hand, we can derive the

17Neff et al. [61] introduced an exponentiated Hencky energy which is polyconvex in the two-dimensional
case.
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tensor functions

σ e = ∂ε
̂ψ = κ[ trε − αT (θ − θ0) ]G−1 + 2μDev[G−1εeG−1] ,

βe = ∂εp ̂ψ = −2μDev[G−1εeG−1] ,
βe = δα

̂ψ = ∂α
̂ψp − μl2�α ,

η̃ = ∂θ
̂ψ = ∂θ

̂ψp − καT trε − C ln θ
θ0

,

(128)

that represent constitutive relationships for driving forces. Note the occurrence of the Lapla-
cian term μl2�α in (128)3 that is in line with the approach of Aifantis, see, e.g., Aifantis
[1].

5.3.1 Incremental Formulation Based on Threshold Function

We specify the array (71) of dissipative driving forces as

f = (0, s, β,0) ,

where (s, β) are the quantities conjugate to (εp,α). For von Mises-type gradient plasticity
we define the yield function

̂f (s, β; θ) = | s | −
√

2

3
[ ŷ(θ) − β ] , (129)

that restricts the set of admissible driving forces according to (88). ŷ(θ) is a temperature de-
pendent yield stress function with d

dθ
ŷ < 0. The corresponding intrinsic dissipation potential

function is defined by the constrained optimization problem

̂φint(ε̇
p, α̇; θ) = sup

s,β

inf
λ≥0

[ s : ε̇p + βα̇ − λ ̂f (s, β; θ) ] . (130)

The intrinsic dissipation follows as

Dint = −(βe : ε̇p + βeα̇) = λ(s : ∂s
̂f + β∂β

̂f ) =
√

2

3
λŷ(θ) ≥ 0 , (131)

where we used the evolution laws for the plastic strain and hardening variable stemming
from (130) and the identities s = −βe and β = −βe which are outcomes of the rate-type
variational principle (96). Note that the last equality in (131) follows from ŵ(s, β) = | s | +√

2/3β being a gauge, i.e., ŵ is a positively homogeneous function of degree one with
the resulting property s : ∂sŵ + β ∂βŵ = ŵ. With (130) the incremental internal potential
density (103) is specified as

π̂∗τ
λ = ̂ψ(c, θ) + τ [ (θk − T )η̇τ + ηnθ̇

τ + T

θn

(s : ε̇pτ + βα̇τ )

− λ ̂f (s, β; θn) − ̂φcon(− 1

T
∇T ;Cn, θn) ] ,

where ̂φcon is the conductive dissipation potential function defined in (119), however, with a
constant heat conduction coefficient. Then, the incremental variational principle (104) gives
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the Euler equations

δϕπ̂+τ
λ ≡ −Div[σ e : ∂F ε ] = gγ̄ ,

∂εp π̂+τ
λ ≡ βe + T

θn
s = 0 ,

δαπ̂
+τ
λ ≡ βe + T

θn
β = 0 ,

∂ηπ̂
+τ
λ ≡ θk − T = 0 ,

∂θ π̂
+τ
λ ≡ η̃ + ηk = 0 ,

δT π̂+τ
λ ≡ −(η − ηn) + τ

θn
[ s : ε̇pτ + βα̇τ ] + τ

T
Div[ θnkC−1

n
1
T
∇T ] = −τ r̄/θn ,

∂s π̂
+τ
λ ≡ T

θn
(εp − ε

p
n ) − τλGsG/| s | = 0 ,

∂βπ̂+τ
λ ≡ T

θn
(α − αn) − τλ

√
2/3 = 0 ,

∂λπ̂
+τ
λ ≡ −τ ̂f (s, β; θn) ≥ 0 , λ ≥ 0 , τλ ̂f (s, β; θn) = 0

(132)
in B which represent time-discrete forms of the general equations (42) and (98). We can
reduce the set of equations (132) by expressing for k = n the dissipative driving forces
s = −βe and β = −βe via (132)2 and (132)3, respectively, and the Lagrange multiplier τλ =√

3/2 (α −αn) via (132)8 yielding the nonlocal form of the Karush-Kuhn-Tucker conditions
in strain space

α ≥ αn , |βe | − √

2/3 (ŷ(θn) + βe) ≤ 0 , (α − αn)[ |βe | − √

2/3 (ŷ(θn) + βe) ] = 0 ,

where we recall the definitions of the driving forces (128)2−3.
As an alternative to this setting, which is fully rate-independent in the adiabatic case,

we may consider a (regularized) viscous over-force formulation based on the smooth dual
intrinsic dissipation potential function

̂φ
η∗
int(s, β; θ) = 1

2ηf

〈 ̂f (s, β; θ)〉2
+

in terms of the threshold function defined in (129). Then, the incremental internal potential
density (103) takes the form

π̂∗τ = ̂ψ + τ [ (θk − T )η̇τ+ηnθ̇
τ + T

θn

(s : ε̇pτ + βα̇τ )

− 1

2ηf

〈 ̂f (s, β; θn)〉2
+ − ̂φcon(− 1

T
∇T ;Cn, θn) ] ,

(133)

and the incremental variational principle (86) yields (132)1−6 together with

∂s π̂
∗τ ≡ T

θn
(εp − ε

p
n ) − (τ/ηf ) 〈 ̂f (s, β; θn)〉+ GsG/|s| = 0 ,

∂βπ̂∗τ ≡ T
θn

(α − αn) − (τ/ηf ) 〈 ̂f (s, β; θn)〉+ √
2/3 = 0

as Euler equations in B. This set of equations can again be reduced by expressing the dis-
sipative driving forces s and β from (132)2 and (132)3 yielding for k = n the nonlocal
(regularized) update equations

εp = ε
p
n − (τ/ηf ) 〈 |βe | − √

2/3 (ŷ(θn) + βe) 〉+ GβeG/|βe| ,
α = αn + (τ/ηf ) 〈 |βe | − √

2/3 (ŷ(θn) + βe) 〉+ √
2/3
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Table 1 Parameters of representative numerical example

No. Parameter Name Value Unit

1 κ bulk modulus 164.2 kN/mm2

2 μ shear modulus 80.2 kN/mm2

3 l plastic length scale {0.05,0.1,0.2} mm

4 αT thermal expansion coefficient 10−5 1/K

5 C heat capacity 3.588 · 10−3 kN/(mm2K)

6 k heat conduction coefficient 0.0 kN/(sK)

7 θ0 reference temperature 293.0 K

8 h0 initial hardening parameter −0.13 kN/mm2

9 y0 initial yield stress 0.45 kN/mm2

10 wh thermal softening coefficient 0.0 1/K

11 w0 thermal softening coefficient 0.002 1/K

12 ηf viscosity parameter 10−6 kNs/mm2

Fig. 4 Cross Shear Localization.
Geometry and mechanical
loading. The process of heat
conduction is neglected. Due to
the symmetry of the boundary
value problem, only the top right
quarter of the domain is
discretized by finite elements. To
trigger plasticity in the center, the
initial yield stress y0 is reduced
by 3% in the dark grey element

for the plastic Hencky strain as well as the hardening variable. A local finite strain ther-
moplasticity model that uses the same additive strain kinematics together with the plastic
configurational entropy in the sense of Simo & Miehe [79] is proposed by Ulz [86]. For
a comparison of rate-independent and rate-dependent formulations in isothermal gradient-
plasticity of Fleck-Willis-type we refer to Nielsen & Niordson [64].

5.3.2 Numerical Example: Cross Shear Localization

For softening visco-plasticity of von Mises-type, we analyze the development of shear bands
in a rectangular plate B = (0,L)× (0,2L) with L = 50 mm subject to tensile loading under
the condition of plane strain. The geometric setup is depicted in Fig. 4. We use the viscous
over-force formulation of the mixed large deformation setting from Sect. 5.3.1 above and
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Fig. 5 Cross Shear Localization. Contour plots of equivalent plastic strain α and temperature θ at final dis-
placement ū = 5 mm for a discretization of one quarter of the specimen by 20 × 40 finite elements. The
chosen plastic length scale parameters are a), d) l = 0.05 mm; b), e) l = 0.1 mm and c), f) l = 0.2 mm

specify the isotropic hardening function in (126) as

̂ψp(α, θ) = 1

2
̂h(θ)α2 .

Here, ̂h is a temperature dependent hardening function which together with the temperature
dependent yield stress function is specified as

̂h(θ) = h0[1 − wh(θ − θ0) ] and ŷ(θ) = y0[1 − w0(θ − θ0) ] , (134)

see Simo & Miehe [79]. The used material parameters are summarized in Table 1. To trigger
plasticity in the center, the initial yield stress is reduced by 3% in the element shaded in dark
grey in Fig. 4. For simplicity, we neglect the effect of heat conduction which is a reasonable
assumption in case of a fast formation of the shear band generated by a high loading rate. We
stretch the specimen with a constant displacement rate ˙̄u = 5 mm/s within the time interval
T = (0,1) s that is divided into 1000 equal increments.18 We use the proposed semi-explicit

18Since the process of heat conduction is neglected and the viscosity is chosen very low in order to have a
formulation that is close to the nonsmooth setting, the overall thermomechanical material behavior is de facto
rate-independent. Hence, the specific loading rate applied on the specimen is practically irrelevant.
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Fig. 6 Cross Shear Localization. Load-deflection curves. a) Mesh dependent structural response for local
theory with l = 0 mm and b) mesh objective response for gradient theory with l = 0.1 mm. The dashed
line in b) shows the behavior of the specimen under isothermal condition and one observes the influence of
thermal softening on the yield stress according to (134)2. Note, that in b) the final displacement is ū = 5 mm,
whereas in a) it is ū = 2.5 mm

variational update with index k = n in the incremental internal potential density (133). Since
heat conduction is not taken into account, the time step size τ is not restricted by the CFL
condition. Due to the variational structure, the resulting stiffness matrix within a typical
Newton-Raphson iteration step is symmetric. As (global) primary fields we take the macro-
scopic deformation ϕ, the scalar hardening/softening variable α and its dual driving force β .
The temperature θ is calculated via the implicit local equation (132)5. Due to symmetry, only
one quarter of the domain is discretized by 15 × 30, 20 × 40 and 25 × 50 quadrilateral finite
elements. We use a Q1E4-Q1-Q1 element pairing which bases on a (local) enhancement of
the macroscopic displacement gradient according to Simo & Armero [77]. Figure 5 shows
contour plots of the equivalent plastic strain α and the temperature θ at final displacement
ū = 5 mm for three different plastic length scale parameters l ∈ {0.05,0.1,0.2} mm. Clearly,
the specimen experiences a rise in the temperature in the region of plastic dissipation. When
increasing the plastic length scale, the equivalent plastic strain α as well as the temperature
θ spread over more elements. At the same time, one observes decreasing maximum values
of α and θ , see also Aldakheel & Miehe [2] and the references cited therein, i.e., Voyiadjis
& Faghihi [87]. As widely known, in case of a local theory (l = 0 mm) the plastic defor-
mation localizes within one element width. This mesh dependency also manifests itself in
the load-displacement curve of the structure as shown in Fig. 6a). In contrast, the regular-
ization provided by the gradient theory yields mesh independent results, see Fig. 6b). There,
one also observes the additional softening effect in the nonisothermal case due to locally
decreasing yield stresses according to (134)2. At this point, we want to note that Wcisło &
Pamin [88] incorporate a gradient-enhanced relative temperature field in their formulation
in order to regularize adiabatic thermal softening behavior.

For the used mixed setting of gradient plasticity, alternative finite element formulations
are presented in Miehe et al. [53]. Note that in this context the construction of inf-sup stable
finite element pairings is a difficult task which in detail has recently been investigated by
Krischok & Linder [35]. Especially, our chosen element pairing results in a nonphysical
oscillatory behavior of the driving force field β . However, this instability seems to have no
visible influence on the macroscopic deformation field ϕ, the scalar plastic strain field α and
the temperature field θ .
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6 Conclusion

We presented a unified framework for the fully coupled thermomechanics of gradient-
extended dissipative solids which undergo large deformations. The key of the formulation
is the consideration of the entropy and the entropy rate as canonical variables which enter
besides the gradient-extended mechanical state and the rate of this state, respectively, the in-
ternal energy and dissipation functions. Here, the rate-type formulation of local thermoplas-
ticity outlined in Yang et al. [89] is recovered by the concept of dual variables. Especially,
the quantity conjugate to the entropy is rigorously distinguished from the quantity conjugate
to the entropy rate. The coupled macro- and micro-balances as well as the energy equation
are outcomes of the stated saddle point principle. Within this setting, the entropy is also
driven by additional gradient-type dissipative effects. Emphasis was also put on extended
variational formulations which incorporate dissipative mechanical driving forces and tem-
perature dependent threshold mechanisms. In addition, we discussed variationally consistent
time incrementations and suggested a semi-explicit numerical algorithm that renders the al-
gorithmically consistent form of the intrinsic dissipation. It was shown that this algorithm
has the structure of an operator split. A special focus was put on applying the framework to
complex multifield problems which are of interest in the thermomechanics of solids. Three
model problems, i.e., Cahn-Hilliard diffusion, gradient damage and (additive) gradient plas-
ticity strongly coupled with temperature evolution, showed the capability of the proposed
formulation. In a numerical example we studied the formation of a cross shear band under
adiabatic condition.
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