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Abstract
Introducing a crack in an elastic plate is challenging from the mathematical point of view
and relevant within an engineering context of evaluating strength and reliability of struc-
tures. Accordingly, a multitude of associated works is available to date, emanating from both
applied mathematics and mechanics communities. Although considering the same problem,
the given complex potentials prove to be different, revealing various inconsistencies in terms
of resulting stresses and displacements. Essential information on crack near-tip fields and
crack opening displacements is nonetheless available, while intuitive adaption is required to
obtain the full-field solutions. Investigating the cause of prevailing deficiencies inevitably
leads to a critical review of classical works by Muskhelishvili or Westergaard. Complex
potentials of the mixed-mode loaded Griffith crack, sparing restrictive assumptions or lim-
itations of validity, are finally provided, allowing for rigorous mathematical treatment. The
entity of stresses and displacements in the whole plate is finally illustrated and the distribu-
tions in the crack plane are given explicitly.

Keywords Complex potentials · Westergaard stress function · Holomorphic functions ·
Griffith crack · Kolosov’s equations · Crack fields

Mathematics Subject Classification (2010) 74B05 · 74R10 · 30A99

1 Introduction

With the goal of calculating strains at every point in a beam, Airy introduced the now called
Airy stress function [1]. With this function, the constitutive law of elasticity and compatibil-
ity conditions of strains a biharmonic equation is derived, finally providing stress solutions
if an appropriate ansatz of the Airy stress function is chosen, satisfying boundary conditions.
The first work on elastic crack problems is commonly attributed to Inglis [13], who adopted
Love’s solution of a plate with an elliptic hole [18] as a basis. Already six years before,
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Wieghardt [34], however, published a paper in German language, translated “On the cleav-
age and rupture of elastic bodies”, where stresses at cracks and sharp corners are rigorously
derived from Airy’s stress function.

A more general and contemporary solution of modern fracture mechanics employs com-
plex function theory and is given by two complex holomorphic potentials. Kolosov [15] was
the first to obtain the displacements and stresses based on these two functions. Muskhel-
ishvili [20] later extensively utilized these relations and comprehensively investigated the
holomorphic functions, being the basis of a very general and powerful approach to deter-
mine the solution of various boundary value problems. In fracture mechanics, this approach
flourished as it enables the calculation of stress and displacement fields in spite of non-
continuous and non-smooth boundary conditions along the crack plane, finally allowing for
the calculation of the crack tip loading.

A less general but more common approach has subsequently been introduced by West-
ergaard [33] in terms of the Westergaard stress functions which is also applied to determine
stress and displacement fields. However, the originally introduced approach was deemed
incomplete, only solving a restricted class of crack problems, but was extended to resolve
these restrictions [25, 27, 29]. For particular classes of problems, the two-complex-potential
approach can be simplified to an approach requiring only one function, exploiting certain
symmetries [27]. This single complex potential is related to the Westergaard stress function.
The two methods are widespread in fracture mechanics featuring a multitude of references
applied to various crack problems. A lot of them have been compiled, e.g., by Tada et al.
[31].

For the Griffith crack, as the most simple configuration, sparing boundary conditions
apart from the crack faces being embedded in an infinite elastic plate, numerous authors,
e.g., [2, 4, 6, 8–10, 12, 14, 16, 17, 19, 20, 22, 23, 26–28, 30–33, 35, 37], provide complex
potentials or stress functions for mode I loading. Much less authors also provide those for
mode II loading [2, 4, 9, 16, 19, 20, 23, 27, 30, 31]. The majority of references in this
context either cite Muskhelishvili or Westergaard. While Muskhelishvili’s functions for the
Griffith crack are predominantly adopted correctly, Westergaard’s original stress function,
however, is scarcely transcribed appropriately.

However, Muskhelishvili’s complex potentials (e.g., [4, 6, 8, 10, 12, 16, 19, 20, 23, 26,
27]) and the Westergaard stress functions as mostly employed (e.g., [2, 9, 12, 17, 22, 28, 30–
32, 35, 37]) are just strictly valid in the positive (x > 0) half plane of the crack, see hatched
area in Fig. 1. Applying them to the whole domain, obviously reveals discontinuities and
unphysical point symmetry. Stresses and displacements in the negative half-plane are thus,
inter alia, either obtained intuitively by reflection in the y-axis or by adapting the equations
introducing an a priori case-by-case analysis which, however, is not mathematically moti-
vated. While the limited validity in [20] is due to a transformation in the complex number
plane which will be discussed in Sect. 4, the approach presented in [33] is basically valid
on the whole domain, however, has been transferred erroneously to contemporary literature,
basically giving rise to the same issue as in [20].

Following a brief presentation of essential fundamentals in Sect. 2, the complex poten-
tials and stress functions provided by established literature as well as resulting stress and
displacement fields are discussed in Sect. 3. Due to various conspicuous features in the re-
sults, works of Muskhelishvili [20] and Westergaard [33] and their transfer to contemporary
literature are critically reviewed. In this context, Sect. 4 provides details on some mathe-
matical issues to be considered. Subsequently, in Sect. 5, current approaches to overcome
deficiencies and complement stress and displacement solutions are outlined, finally illumi-
nating why this problem did not attract attention yet. Complex potentials for the whole elas-
tic domain of the Griffith crack are eventually presented in Sect. 6, avoiding case-by-case
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Fig. 1 Mode-I/II loaded Griffith
crack; hatched area indicates the
scope of validity of commonly
available solutions

analysis and incorporating rigid body rotation for the sake of generality, which is basically
disregarded in literature. The crack fields are calculated sparing ineligible discontinuities or
other irregularities. Being of major interest in fracture mechanics, all stresses and displace-
ments in the crack plane are given explicitly.

2 Some Fundamentals of Elastic Crack Solutions

An arbitrarily loaded straight crack of the length 2a in an infinitely large sheet of isotropic
linear-elastic material, i.e., a Griffith crack, is depicted in Fig. 1. The origin of the complex
plane is located in the center of the crack, introducing the complex coordinate z = x + iy.
The positions of the crack faces are defined as:

−a ≤ x ≤ a, y = ±0, (1)

assuming traction-free boundaries, i.e.,

σ±
12(x) = 0, σ±

22(x) = 0 for |x| < a, (2)

where the superscript ± indicates the positive (+) or negative (−) crack face. The stresses
at infinity are controlled by uniaxial tension σ∞

22 and in-plane shear loading σ∞
12 :

σ22(z) = σ∞
22 , σ12(z) = σ∞

12 , σ11(z) = σ∞
11 = 0 for |z| =

√
x2 + y2 → ∞. (3)

The calculation of the crack fields is achieved by Kolosov’s equations [15]

σ11(z) + σ22(z) = 2(�′(z) + �′(z)) = 4Re[�′(z)],
σ22(z) − σ11(z) + 2iσ12(z) = 2(z�′′(z) + � ′(z)),

2μ(u1(z) + iu2(z)) = κ�(z) − z�′(z) − �(z),

(4)

where � and � are holomorphic complex potentials on C \ [−a, a] with their respective
spatial derivatives �′, �′′ and � ′. The stresses are denoted as σij and ui are the displace-
ments, where μ is the shear modulus and κ is Kolosov’s parameter. Bars on quantities denote
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complex conjugates, e.g., z̄ = x− iy. For holomorphic functions, the Cauchy-Riemann equa-
tions are satisfied and employing the Wirtinger derivatives [36], the displacement gradients
are calculated as:

∂u1(z)

∂x
= 1

2μ
Re
[
κ�′(z) − �′(z) − z�′′(z) − � ′(z)

]
,

∂u1(z)

∂y
= 1

2μ
Re
[
κi�′(z) − i�′(z) + zi�′′(z) + i� ′(z)

]
,

∂u2(z)

∂x
= 1

2μ
Im
[
κ�′(z) − �′(z) − z�′′(z) − � ′(z)

]
,

∂u2(z)

∂y
= 1

2μ
Im
[
κi�′(z) − i�′(z) + zi�′′(z) + i� ′(z)

]
.

(5)

Exploiting the axial and skew symmetries for the mode I and II, respectively, loading of
the Griffith crack, the two complex potentials can be reduced to one, requiring a relation
between � and � [27]. According to [25, 29], functions A(z) and B(z) have to be introduced
for the sake of generality, whereupon

� ′
I (z) = −z�′′

I (z) − A,

� ′
II (z) = −2�′

II (z) − z�′′
II (z) − iB,

(6)

with real constants A and B is provided as special case in [27, 29] being valid for the
considered problem. The subscript I or II indicates the affiliation to the respective crack
opening mode. Furthermore, the reduction to one complex potential enables a relation to the
Westergaard stress functions [33] ZI (z), ZII (z) according to [25, 29]:

�′
I (z) = 1

2
(ZI (z) + A), � ′

I (z) = −1

2
(zZ′

I (z)) − A,

�′
II (z) = − i

2
(ZII (z) + B), � ′

II (z) = iZII (z) + iz

2
(Z′

II (z)).

(7)

Applying the superposition principle, e.g., �′ = �′
I +�′

II , and inserting Eq. (7) into Eq. (4)
yields

σ11(z) = Re[ZI (z)] − yIm[Z′
I (z)] + 2A + 2Im[ZII (z)] + yRe[Z′

II (z)],
σ22(z) = Re[ZI (z)] + yIm[Z′

I (z)] − yRe[Z′
II (z)],

σ12(z) = −yRe[Z′
I (z)] + Re[ZII (z)] − yIm[Z′

II (z)],

2μu1(z) = κ − 1

2
Re[ẐI (z)] − yIm[ZI (z)] + κ + 1

2
Ax + κ + 1

2
Im[ẐII (z)]

+ yRe[ZII (z)] + κ + 1

2
By,

2μu2(z) = κ + 1

2
Im[ẐI ] − yRe[ZI (z)] + κ − 3

2
Ay − κ − 1

2
Re[ẐII (z)]

− yIm[ZII (z)] − κ + 1

2
Bx,

(8)
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with ZI/II being the spatial derivative of ẐI/II . The constant B has an impact just on the
displacements and A does not contribute to singular crack tip stresses, accounting for, inter
alia, homogeneous stress in case of tension or compression loading in x-direction.

3 Commonly Applied Complex Potentials

The complex potentials commonly employed for the Griffith crack are basically given in
[4, 16, 23, 27], whereas [6, 8, 10, 12, 26] only cover mode I. Providing just � and � or �′
and � ′, and sometimes only � or �′ bearing on Eq. (6), some calculus is required to obtain
the whole set of functions to be inserted into Eqs. (4) and (5). Evolving integration constants
represent rigid body translation and may be canceled in a local crack related coordinate
system, which is mentioned briefly only in [6]. Rigid body rotation, being included in the
derivatives of the potentials, is basically disregarded, thus depriving the solution of some
generality. In [19, 20] this issue is taken into account, however, skipped in an early stage of
derivation. Following [27], in which �′ and � ′ are given, and assuming σ∞

11 = 0 the complex
potentials read:

�(z) = σ∞
22

2

√
z2 − a2 − σ∞

22

4
z + i

σ∞
12

2
z − i

σ∞
12

2

√
z2 − a2,

�′(z) = σ∞
22

2

z√
z2 − a2

− σ∞
22

4
+ i

σ∞
12

2
− i

σ∞
12

2

z√
z2 − a2

,

�′′(z) = −σ∞
22

2

a2

(z2 − a2)
3
2

+ i
σ∞

12

2

a2

(z2 − a2)
3
2

,

�(z) = σ∞
22

2
z − σ∞

22

2

a2

√
z2 − a2

+ iσ∞
12

2

2z2 − a2

√
z2 − a2

,

� ′(z) = σ∞
22

2
+ σ∞

22

2

za2

(z2 − a2)
3
2

+ iσ∞
12 (2z3 − 3za2)

2(z2 − a2)
3
2

.

(9)

In [16] a different fraction +iσ∞
12 /4 is found for the constant mode II term in �′, in [23]

−σ∞
22 /2 is given for the mode I term. Inserted into Eq. (4), Eq. (9) provides the crack fields

depicted in Figs. 2 and 3. The figures obviously reveal inconsistencies, e.g., the crack tip
stress singularities of σ22 and σ11 in mode I and σ12 in mode II exhibit point symmetry
and the displacement field is discontinuous (u2 of mode I, u1 of mode II) on C \ [−a, a].
Accordingly, the equations of Eq. (9), commonly denoted as holomorphic functions, do not
meet the requirements of this specification.

Complex potentials were extensively elaborated by Muskhelishvili [20], originally intro-
ducing �′ and � ′ according to

�′(z) = (2� + �2)z

2
√

z2 − a2
− 1

2
�2,

� ′(z) = �(z̄) − �′(z) − z�′′(z),

�(z) = (2� + �2)z

2
√

z2 − a2
+ 1

2
�2,

(10)
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Fig. 2 Normalized displacement fields for mode I (left) and mode II (right) for a Griffith crack calculated
with the complex potentials of Eq. (9)

with

� = 1

4
(σI + σII ),

�2 = −1

2
(σI − σII )e

−2iα.

(11)

In general

� = 1

4
(σI + σII ) + i

2με∞
1 + κ

(12)

holds, where ε∞ is the rigid body rotation at infinity which is set to zero in the derivation of
Eq. (10) in [20]. Furthermore, σI/II are the principal stresses at infinity and α is the angle
between the σI - and the x-axis. Equations (10) and (11) are cited by, e.g., [7, 32]. For the
case of biaxial tensile and in-plane shear stress loading, � and �2 read

� = σ∞
22

4
+ σ∞

11

4
,

�2 = σ∞
22

2
− σ∞

11

2
+ iσ∞

12 ,

(13)

inserted into Eq. (10) resulting in the functions of Eq. (9), for σ∞
11 = 0. It is noted that in the

original [20] �2 is denoted as �′.
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Fig. 3 Normalized stress fields for mode I (left) and mode II (right) for a Griffith crack calculated with the
complex potentials of Eq. (9)

However, a majority of authors applies stress functions according to Westergaard’s ap-
proach in terms of

ZI (z) = σ∞
22 z√

z2 − a2
,

ZII (z) = σ∞
12 z√

z2 − a2
,

(14)

e.g., [8, 12, 17, 22, 28, 32, 35, 37] for mode I and [2, 9, 30, 31] for mixed mode crack
opening, basically raising the same problems as the complex potentials of Eq. (9) in terms
of symmetry and discontinuity. In the original paper by Westergaard [33], just the function
ZI (z) is introduced, however, being dissimilar from the one in Eq. (14), actually reading

ZI (z) = σ∞
22√

1 − a2

z2

. (15)

While Eqs. (14) and (15) seem to be equivalent at the first glance, in fact they are not. This
issue being one source of problems, the following section provides some detailed discussion.
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4 The Problem of Complex Roots

The Eqs. (9), (10), (14) and (15) include roots with complex radicands. The common root
function x �→ √

x is defined for real x ≥ 0 and results in non-negative values. In order to
define the root function on C completely, the common polar form

z = |z|eiφ (16)

is considered, with the argument φ ∈ (−π,π ], and the root being

√
z =√|z|e iφ

2 . (17)

Equation (17) is called the principal root and ω2 = z with unknown ω has the solutions
ω = ±√

z. Moreover, in Cartesian coordinates

√
z =√

x + iy =

⎧
⎪⎪⎨

⎪⎪⎩

√ |z| + x

2
+ i

√ |z| − x

2
, y ≥ 0

√ |z| + x

2
− i

√ |z| − x

2
, y < 0

(18)

holds. Note that z �→ √
z is holomorphic in the slit plane C \ (−∞,0] and discontinuous in

the real interval (−∞,0). In general the principal branch is defined as

zr := |z|reriφ (19)

for r ∈R. It is straightforwardly shown that the derivation rule

d

dz
(zr ) = rzr−1 (20)

and the law of exponentiation

zr1zr2 = zr1+r2 (21)

hold in C. In particular

z−r = 1

zr
,

z
3
2 = (√

z
)3

,

(22)

need to be considered in fracture mechanics problems. Note that with Eqs. (18) and (22),
the complex potentials in Eq. (9) are formulated in Cartesian coordinates instead of employ-
ing polar coordinates. The irregularities in the complex potentials of the Griffith crack in
Eqs. (9), (10) and (14) arise, because in general zrωr does not equal (zω)r . For the sake of
clarification, the function

f :C �→C, f (z) =
√

z2 − a2, (23)

appearing in these equations, will be compared to the function

g :C �→ C, g(z) = √
z − a

√
z + a, (24)
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with its derivative

g′(z) = z√
z − a

√
z + a

. (25)

Furthermore,

g(z) = g(z) (26)

holds on C \ [−a, a], which is needed for the calculation of � ′ in Eq. (10). Looking at

f (−2a) = √
3a2 = √

3a,

g(−2a) = √−3a
√−a = −√

3a,

(27)

reveals that the functions do not coincide, even though they are treated equally in literature,
starting with the cutting-edge work of Muskhelishvili [20], who replaces the initially intro-
duced g(z) by f (z) in his derivation of Eq. (10). The function f (z) even has discontinuities
on the imaginary axis, which can be shown by the example

lim
ε↘0

f (i + ε) = lim
ε↘0

√

ε2 − 1 − a2
︸ ︷︷ ︸

< 0

+2iε = +i
√

1 + a2,

lim
ε↘0

f (i − ε) = lim
ε↘0

√

ε2 − 1 − a2
︸ ︷︷ ︸

< 0

−2iε = −i
√

1 + a2.

(28)

It is hence not holomorphic in the relevant domain C\ [−a, a]. In contrast, the function g(z)

of Eq. (24) is continuous on the imaginary axis and is equivalently represented by

g(z) = z

√

1 − a2

z2
on C \ [−a, a], (29)

which appears in Eq. (15). In order to prove this equivalence, the real arguments of g(z) are
examined.

Proof

Step 1: x ∈ (a,∞)

⇒ g(x) =
√

x − a︸ ︷︷ ︸
> 0

√
x + a︸ ︷︷ ︸
> 0

=
√

x2 − a2 = √
x2

√

1 − a2

x2
= x

√

1 − a2

x2

Step 2: As g(z) = √
z + a

√
z − a and z �→ z

√

1 − a2

z2
are holomorphic on

C \ (−∞, a] and equal on the continuum (a,∞), the identity

theorem provides the equivalence of Eqs. (29) and (24) on (30)

C \ (−∞, a].
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Step 3: x ∈ (−∞,−a)

⇒ g(x) =
√

x − a︸ ︷︷ ︸
< 0

√
x + a︸ ︷︷ ︸
< 0

= −√
a − x

√−a − x = −
√

x2 − a2

= −|x|
√

1 − a2

x2
= x

√

1 − a2

x2
�

Equation (29) shows that g(z) is odd and holomorphic on C \ [−a, a]. Finally, the be-
havior of g(x), according to Eq. (24), is examined on the crack faces, i.e., x ∈ [−a, a],
where

lim
ε↘0

g(x + iε) = lim
ε↘0

√
x − a︸ ︷︷ ︸
≤ 0

+ iε
√

x + a︸ ︷︷ ︸
≥ 0

+ iε

= i
√

a − x
√

a + x

= i
√

a2 − x2

= g(x) (31)

and

lim
ε↘0

g(x − iε) = lim
ε↘0

(−g(−x + iε))

= −g(−x)

= −g(x) (32)

hold. The equivalence of Eqs. (24) and (29) is also valid for x ∈ (0, a] where

x

√

1 − a2

x2
= ix

√
a2

x2
− 1 = i

√
a2 − x2 (33)

is satisfied. For x ∈ (−a,0] the equivalence is not given, as g(x) in Eq. (24) is even on
[−a, a], whereas x �→ x

√
1 − a2/x2 is odd. It is noteworthy that f (z) and g(z), Eqs. (23)

and (24), are equal on [−a, a] if y = 0 is set without employing a limit.
To summarize, the relations

√
z − a

√
z + a �=

√
z2 − a2 if Re[z] < 0 and z /∈ [−a,0)

√
z − a

√
z + a = z

√

1 − a2

z2
on C \ (−a,0]

(34)

are crucial for the deduction of complex potentials and holomorphic functions, respectively,
of linear elastic crack problems. They emphasize that the function

√
z2 − a2 must not be

involved, which has been disregarded in Eqs. (9), (10) and (14), eventually giving rise to
the problems depicted in Figs. 2 and 3. Equation (15), on the other hand, is correct. Equa-
tions (31) and (32) further demonstrate that approaching y = 0 on the crack faces, necessar-
ily involves taking an upper or lower limit.
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Fig. 4 Comparison of
normalized stresses in the crack
plane, i.e., y = 0, for mode I
loading from different sources

5 Current Approaches Encountering the Deficiencies

Despite of the deficiencies of the solutions illustrated in Figs. 2 and 3, stresses and displace-
ments turn out to be correct in the positive half of the boundary value problem according
to Fig. 1. To obtain crack fields on the whole domain from complex potentials being valid
only for Re[z] > 0, a case distinction is commonly applied in literature. This is most suitably
demonstrated taking the stress σ22 in the crack plane, i.e., y = 0, for a single mode I loading,
which is given directly in [10, 16, 24, 38] and indirectly via Westergaard’s stress functions
according to Eq. (14) in [2, 9, 12, 17, 22, 28, 30–32, 35, 37]:

σ22(x) = σ∞
22 Re

[
x√

x2 − a2

]
. (35)

σ22 is obviously positive for x > a and negative for x < −a. Therefore, the following for-
mulation is intuitively employed

σ22(x) =

⎧
⎪⎪⎨

⎪⎪⎩

σ∞
22 Re

[
x√

x2 − a2

]
, x ≥ 0

σ∞
22 Re

[ −x√
x2 − a2

]
, x < 0,

(36)

actually lacking mathematical rigorousness. In, e.g., [4, 21] the stress is given monolithically
as

σ22(x) = σ∞
22 Re

[ |x|√
x2 − a2

]
, (37)

however, the associated complex potentials are either not provided [21] or do not result in
Eq. (37) [4]. Equation (15), yielding a mode I stress according to

σ22(x) = σ∞
22 Re

⎡

⎢⎢
⎣

1
√

1 − a2

x2

⎤

⎥⎥
⎦ , (38)

is depicted in [14, 31], whereat [31], however, concurrently provide the stress function ZI (z)

of Eq. (14). The stresses of the Eqs. (35) to (38) are illustrated in Fig. 4.
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In order to obtain Eq. (36), the complex potentials need to be formulated likewise by
separating ranges of validity, for the example of � reading

�(z) =

⎧
⎪⎨

⎪⎩

−σ∞
22

4
z + σ∞

22

2

√
z2 − a2 + i

σ∞
12

2
z − i

σ∞
12

2

√
z2 − a2, Re[z] ≥ 0

−σ∞
22

4
z − σ∞

22

2

√
z2 − a2 + i

σ∞
12

2
z + i

σ∞
12

2

√
z2 − a2, Re[z] < 0.

(39)

Avoiding a case distinction, monolithic complex potentials will be introduced in Sect. 6,
where in particular the findings of Eq. (34) will play a crucial role.

Another approach compensating the limited validity of Eqs. (9) and Eq. (14) is found
in, e.g., [2, 17, 28, 30]. They employ the polar form of Westergaard’s stress function in
connection with the impermissible transformation

√
z2 − a2 = √

z + a
√

z − a, see Eq. (34),
thus changing the sign of the principal complex root, whereupon Eq. (14) yields

ZI (z) = σ∞
22 z√

z − a
√

z + a
= σ∞

22 r√
r1r2

e
φ − 1

2
φ1 − 1

2
φ2

. (40)

Equation (40) leads to correct crack fields in the whole domain, with z = reiφ , z−a = r1eiφ1

and z + a = r2eiφ2 , although the complex potential of Eq. (14) is only valid in the half-
space Re[z] > 0. The fact that an erroneous transformation eventually allows to obtain a
comprehensive result from a constrained valid ansatz is one of the reasons, why the problems
with the complex potentials or Westergaard stress functions have not yet attracted attention.

6 Monolithic Complex Potentials

In order to obtain the stress and displacement fields in the whole domain without any dis-
tinction of cases, the following complex potentials are introduced for z ∈C \ [−a, a]:

�(z) = −σ∞
22

4
z + σ∞

22

2

(√
z − a

√
z + a

)+ i
σ∞

12

2
z − i

σ∞
12

2

(√
z − a

√
z + a

)

+ σ∞
11

4
z − 2iz

με∞
1 + κ

+ C,

�′(z) = −σ∞
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4
+ σ∞

22

2

z√
z − a

√
z + a

+ i
σ∞

12

2
− i

σ∞
12

2

z√
z − a

√
z + a

+ σ∞
11

4
− 2i

με∞
1 + κ

,

�′′(z) = −σ∞
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2

a2

(z − a)
3
2 (z + a)

3
2

+ i
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12

2
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(z − a)
3
2 (z + a)

3
2

,

�(z) = σ∞
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2
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22

2

a2

√
z − a

√
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+ iσ∞
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2

(
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)

√
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√
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2
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(41)
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Fig. 5 Normalized displacement fields for mode I (left) and mode II (right) for a Griffith crack calculated
with the complex potentials of Eq. (41)

For the sake of generality, an integration constant C = C1 + iC2 in �(z) accounts for linear
rigid body motion and the last term in �′(z) incorporates rigid body rotation. While trans-
lational motion vanishes in the local crack related coordinate system, trivially satisfying the
condition

u+
i (0) + u−

i (0) = 0 , i = 1,2, (42)

and thus C = 0, the rotational motion does not basically vanish, depending on the boundary
conditions. In [19, 20] it is introduced in “general formulae”, however, disregarded in the
specific boundary value problem.

The rotational term introduced in Eq. (41) has to satisfy the condition of rigid body
rotation at infinity, i.e.,

ε∞ = lim
|z|→∞

1

2

(
∂u1(z)

∂y
− ∂u2(z)

∂x

)
, (43)

which, with the displacement gradients of Eq. (5), leads to −2iμε∞/(1 + κ) in �′. Accord-
ing to Eq. (4), the stress fields are not affected by the additional term. Inserting Eq. (41) into
Eq. (4), with σ∞

11 = 0 and zero rigid body rotation, the crack fields depicted in Figs. 5 and
6 are obtained, consistently employing the principal complex root. Due to expected sym-
metries as well as continuities and discontinuities, the plots illustrate the plausibility of the
results.
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Fig. 6 Normalized stress fields for mode I (left) and mode II (right) for a Griffith crack calculated with the
complex potentials of Eq. (41)

Equations (24) and (29) being equivalent for z ∈ C \ (−a,0], the complex potentials
alternatively are formulated as follows:

�(z) = −σ∞
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+ iσ∞
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2
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z

)

√

1 − a2

z2

− σ∞
11

2
z.

(44)

In the crack plane (y → ±0), being of major interest in fracture mechanics, the holomor-
phic functions of Eqs. (41) or (44) for σ∞

11 = 0 and ε∞ = 0 yield the following results for
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mode I,

σ11(x) = σ∞
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u1(x) = Re
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and for mode II
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=

⎧
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Here, ± and ∓ indicate the positive (y ↘ 0) or negative (y ↗ 0) crack face. Note
that the complex potentials in the formulation of Eq. (41) yield the result of the posi-
tive crack face if y = 0 is inserted without employing an appropriate limit. The com-
plex potentials in Eq. (44) likewise account for the positive crack face for x > 0 and
the negative crack face for x < 0. Taking an upper or lower limit of y → 0 there-
fore is vital to distinguish between the crack faces and to obtain appropriate solu-
tions.

With Eq. (13) and assuming ε∞ = 0, �′(z) and � ′(z) of Eq. (41) are obtained from the
relations

�′(z) = (2� + �2)z

2
√

z − a
√

z + a
− 1

2
�2,

�(z) = (2� + �2)z

2
√

z − a
√

z + a
+ 1

2
�2,

(47)

providing the counterpart of Eq. (10), however, not being equivalent, bearing in mind that
f (z) �= g(z), according to Eq. (34). Introducing a function h(x) on the crack faces with
x ∈ (−a, a) as the limit y → 0 from above of �′(z) + �2/2 in Eq. (47), i.e.,

h(x) = lim
ε↘0

(
�′(x + εi) + 1

2
�2

)

= lim
ε↘0

2� + �2

2

x + εi√
x + εi − a

√
x + εi + a

=2� + �2

2i

x√
a2 − x2

, x ∈ (−a, a), (48)

the condition
∫ a

−a

h(x)dx = 0 (49)

postulated in [20] is still satisfied as h(x) is odd.

7 Conclusion

Complex potentials and holomorphic functions, respectively, for a crack in an infinite elas-
tic domain under mixed-mode loading are provided. In contrast to approaches commonly
taken from literature, stresses and displacements in the whole domain are displayed without
unphysical discontinuities or point symmetry, furthermore allowing for arbitrary rigid body
rotation. Basically, problems arise from misinterpretation of roots in the complex plane. This
issue, so far, didn’t attract attention, probably for two reasons. Firstly, fracture mechanics
applications focus on merely a few aspects of the crack solution, restricted to the crack faces
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and the ligament of just one crack tip. Secondly, a rigorous mathematical derivation is not
required to obtain a comprehensive solution, but can be replaced by intuitive continuation of
a partially valid solution. Finally it is noteworthy, that the addressed problems of the com-
plex potentials or Westergaard stress functions do not only arise for the Griffith crack, but
probably for various other crack problems, e.g., the Dugdale crack model [3, 5, 11, 31].
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