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Abstract
A continuous Galerkin finite element method that allows mixed boundary conditions with-
out the need for Lagrange multipliers or user-defined parameters is developed. A mixed
coupling of Lagrange and Raviart-Thomas basis functions are used. The method is proven
to have a Hamiltonian-conserving spatial discretisation and a symplectic time discretisa-
tion. The energy residual is therefore guaranteed to be bounded for general problems and
exactly conserved for linear problems. The linear 2D wave equation is discretised and mod-
elled by making use of a port-Hamiltonian framework. This model is verified against an
analytic solution and shown to have standard order of convergence for the temporal and
spatial discretisation. The error growth over time is shown to grow linearly for this sym-
plectic method, which agrees with theoretical results. A modal analysis is performed which
verifies that the eigenvalues of the model accurately converge to the exact eigenvalues, as
the mesh is refined. The port-Hamiltonian framework allows boundary coupling with bond-
graph or, more generally, lumped parameter models, therefore unifying the two fields of
lumped parameter modelling and continuum modelling of Hamiltonian systems. The wave
domain discretisation is shown to be equivalent to a coupling of canonical port-Hamiltonian
forms. This feature allows the model to have mixed boundary conditions as well as to have
mixed causality interconnections with other port-Hamiltonian models. A model of the 2D
wave equation is coupled, in a monolithic manner, with a lumped parameter model of an
electromechanical linear actuator. The combined model is also verified to conserve energy
exactly.

Keywords Port-Hamiltonian · Modelling · PDE · FEniCS · Hamiltonian · Finite element ·
Galerkin · Symplectic · Lumped parameter · Continuum · Monolithic · Bond graph
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1 Introduction

As computational power increases and the desire for ever more complex models grows, the
need to have an energy-conserving mathematical framework for multiphysics, multidomain
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problems is becoming apparent. Many fields require complex couplings between continuum
and lumped parameter models (LPMs) including physiology, aerospace, vehicle dynamics,
robotics, and many more. The coupling of these models is typically done in an iterative
manner, which has multiple disadvantages. Two major downsides are the failure of itera-
tive couplings to conserve energy [35] and the difficulty in finding a stable combination of
timesteps for the coupled models [45]. Another equally large disadvantage of the iterative
approach is the difficulty of implementing control algorithms without a monolithic state-
space matrix. A fully coupled, monolithic approach that conserves the structural properties
of the lumped parameter and continuum models is desirable.

In this paper we discuss the energy conservation of a continuum system described by a
partial differential equation (PDE) coupled with a LPM. Specifically, a model is derived for
the linear 2D wave equation with an electromechanical (EM) linear actuator driving one of
the boundaries. This example also shows that the port-Hamiltonian (PH) formalism can be
used to interconnect various types of models while conserving energy flow through port-
s/boundaries. PH is a proven method for the modelling and control of complex multiphysics
systems. Over the last 20 years, a significant amount of work has been done on infinite-
dimensional PH methods for the modelling of continuum systems [17, 42]. Some PDEs that
have been modelled using the PH framework are transmission line equations, shallow water
equations and Timoshenko beam equations [14]. More recently, both 2D and 3D models
have been implemented using the PH framework [38, 41, 44].

In Sect. 2 the spatial discretisation is proven to conserve the Hamiltonian in the same
manner as the exact equations. Section 3 formulates the discretisation of the temporal do-
main with well known symplectic integrators: the symplectic Euler (SE) method, the sym-
plectic (implicit) midpoint (SM) method and the Störmer-Verlet (SV) (leapfrog) method. A
symplectic method conserves volume in phase space, which results in bounded conservation
of the Hamiltonian [20]. The combined spatial-temporal discretisation, therefore, conserves
the Hamiltonian structure of the governing equations. A similar class of methods that con-
serves the Hamiltonian structure is the class of multi-symplectic methods. Multiple groups
have applied multi-symplectic methods to both the linear and non-linear wave equations. Re-
ich used Runge-Kutta finite difference schemes in both space and time [34], McLachlin com-
pared multiple methods, including spectral methods [28], and Brugnano used a Hamilton
Boundary Value Method [5]. McDonald shows that multi-symplecticity preserves the trav-
elling waves of hyperbolic equations [27]. The Partitioned Finite Element Method (PFEM)
in the paper by Cardoso-Ribeiro et al. [11] combines a finite element spatial discretisation
with an SV time integration scheme in a way that conserves energy but requires Lagrange
multipliers to implement mixed boundary conditions [21]. Brugnoli et al. successfully apply
this approach to Mindlin and Kirchhoff plate models [7, 8]. Brugnoli et al. [9] have also in-
troduced another method for applying mixed boundary conditions to PFEM. Their method
requires discretisation of the spatial domain into separate sections, each section having one
type of boundary condition. The Stokes-Dirac structure [43] and interconnection property
of PH methods is then used to combine the multiple sections, creating a full system with
mixed boundary conditions. Similar to our method, Kotyczka uses a finite element discreti-
sation and symplectic time integration in a way that conserves the Hamiltonian structure
and allows for mixed boundary conditions [22], however, user-defined parameters in the
method must be tuned for accurate results. The method introduced in this paper combines
desirable attributes of Cardoso-Ribeiro’s, Brugnoli’s, and Kotyczka’s methods and provides
a Hamiltonian-conserving, symplectic method that allows for easily implemented mixed
boundary conditions, port-based boundary coupling, and does not require tuning of user-
defined parameters.
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To ensure conservation of energy flow through the boundaries, a weak boundary con-
dition implementation is used for the Dirichlet conditions, similar to the way Neumann
conditions are typically implemented in finite element methods. Weak boundary conditions
are implemented in the variational form and provide many benefits for a finite element for-
mulation. One of these benefits is that it simplifies the implementation by not having to
directly prescribe the degrees of freedom (DOFs) at the boundary. This can have benefits in
applying multiple types of boundary conditions, including no-slip conditions for the Navier-
Stokes equations [3]. Also, no manipulation of the solution matrix is required to prescribe
the DOFs. The ability to have mixed boundary conditions is also extended to allow mixed
causality interconnections with other PH models. By showing that our spatial discretisa-
tion is equivalent to a coupling of canonical PH models with either Neumann or Dirichlet
boundaries and by following the interconnection methods of Brugnoli [6], we calculate the
causal boundary connections with a LPM. The ability to use the canonical forms to calcu-
late the power conserving interconnection allows mixed causality boundary interconnection
between other PH models.

Continuous Galerkin and hybridizable discontinuous Galerkin methods couple well with
PH methods due to the ease of ensuring structural properties of the models and the simplic-
ity of coupling different models at the boundary. Brezzi and Fortin give a good overview of
Galerkin methods [4]. Cockburn developed a unifying framework for Galerkin methods [12]
that multiple authors have extended. McLachlan extends Cockburn’s discontinuous Galerkin
(DG) methods into a formulation that allows proof of multi-symplecticity for elliptic equa-
tions [29]. Sanchez uses a hybridizable discontinuous Galerkin approach to obtain a wave
equation discretisation similar to our method, that is proven to be Hamiltonian-conserving
and symplectic in time [36]. We prove the same qualities for our method, a continuous
Galerkin approach that has the important added novelty of being able to be coupled with
arbitrary PH LPMs. The conservativity and modular approach of this method is thus ideal
for a wide range of real-world problems.

Energy conservation in the Galerkin method is extremely important for real-world ap-
plications that require long-time simulations, such as in geophysical fluid dynamics. Bauer
uses a Poisson bracket approach to prove conservation of energy for a Galerkin discretisa-
tion of the rotating shallow water equations [2]. Extending on Bauer’s work, Eldred uses
the Galerkin method coupled with a Poisson time integrator to conserve energy when mod-
elling the thermal shallow water equations [15]. Both of these models take advantage of
Hamiltonian-conservation to give good long-time prediction for geophysical fluid dynamics
applications.

Modelling of wave propagation also has applications in multiple biological fields. In this
paper, the wave equation models homogeneous, linear-elastic media. For extensions with
heterogeneous materials, typical of most biological materials, see the paper by Serhani [38].
Elastography [31] is an interesting application that requires a type of inverse modelling to
identify the elasticity of heart tissue. A coupled LPM-continuum model could improve the
current elastography methods. There has also been work done on non-linear models for wave
propagation through biological tissue [13].

The model in this paper is implemented with the software FEniCS [1], which is a tool
for automated scientific computing that focuses on solving PDEs. FEniCS allows for a very
efficient implementation of finite element methods specified in a weak form. Another strong
attribute of FEniCS is its automatic differentiation, which is valuable for inverse problems
and for control.

The section outline of the paper is as follows. Section 2 details the PH form of the wave
equation, proves that the discretisation conserves energy, and proves that the discretisation
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retains the Stokes-Dirac structure. The FEniCS implementation and the results showing en-
ergy conservation are shown in Sect. 3. Section 4 validates the wave equation against an an-
alytical solution by showing spatial, temporal, and eigenvalue convergence. An EM model is
introduced in Sect. 5. In Sect. 6 the wave equation is coupled with the EM model in a mono-
lithic approach that conserves the canonical PH structure. Finally, in Sect. 7, the results
of the combined model are shown and the energy conservation of the model is discussed.
Appendices A and C detail the Python code for Sects. 3 and 6, respectively.

2 The Wave Equation

This section details the weak form PH discretisation of the wave equation with constant
propagation speed, the conservation of energy proof, and the proof that the discretisation
ensures a Stokes-Dirac structure. The 2D wave equation in Cartesian coordinates is used
throughout this paper, however, all results in this section naturally extend to the 3D wave
equation. The basic linear wave equation is

∂2
t w(x, t) = c2�w(x, t) , (1)

where w is the wave amplitude, x denotes the spatial coordinates, and t is the time. To
model the simplified wave propagation in an elastic membrane we define c2 = kw/ρw as the
wave speed squared, which is a constant function of the material density (ρw) and stiffness
(kw). To transform Equation (1) into PH form, state variables, p̃, the momentum, and q̃ , the
strain, are chosen as

p̃ = −ρw∂tw , q̃ = ∇w . (2)

This transforms the second-order equation into a system of (n + 1) first-order equations,
where n is the number of spatial dimensions. Note that the tilde overscript is used to de-
note exact variables, to distinguish them from the approximate functions used in subsequent
sections. Using the PH notation of flow and effort variables, the time derivative of the state
variables, f̃p and f̃q , are defined as flows

f̃p = −∂t p̃ , f̃q = −∂t q̃ . (3)

The Hamiltonian functional and the Hamiltonian density are respectively given by

H(p̃, q̃) =
∫

�

H(p̃, q̃)dV , (4)

H(p̃, q̃) = 1

2ρw

p̃2 + 1

2
kwq̃ · q̃ , (5)

where � is an open, bounded spatial domain with a Lipschitz-continuous boundary, ∂�. The
effort variables ẽp , the velocity, and ẽq , the stress, are defined as the variational derivatives
of the Hamiltonian density,

ẽp = ∂p̃H = p̃

ρw

, ẽq = ∂q̃H = kwq̃ . (6)
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For a functional that only depends on its states, not on their spatial derivatives, the vari-
ational derivatives are equal to the partial derivatives of the integrand. Transforming Equa-
tions (1) and (3) to (6) into a PH structure gives

[
f̃p

f̃ q

]
=

[
0 div

grad 0

][
ẽp

ẽq

]
= J

[
ẽp

ẽq

]
, (7)

where the div and grad operators make up the formally skew-adjoint J operator. For a proof
of the skew-adjointness of J see the work by Trenchant et al. [40].

Theorem 2.0.1 Equation (7) is energy-conserving. i.e., the rate of change of the Hamiltonian
is equal to the energy flow through the domain boundary.

Proof

Ḣ =
∫

�

(
∂H

∂p̃

∂p̃

∂t
+ ∂H

∂ q̃
· ∂ q̃

∂t

)
dV

= −
∫

�

(
ẽpf̃p + ẽq · f̃ q

)
dV . (8)

Equation (8) satisfies the well known bond-graph and PH condition, that the product of
the effort and flow variables equals the power [42]. Substituting Equation (7) into Equa-
tion (8) and using integration by parts gives

Ḣ = −
∫

�

(
ẽp(∇ · ẽq) + ẽq · ∇ ẽp

)
dV

= −
∫

�

(
ẽp(∇ · ẽq) − (∇ · ẽq)ẽp

)
dV −

∫
∂�

(ẽq · n)ẽpds

= −
∫

∂�

(ẽq · n)ẽpds . �

Therefore, the rate of change of the Hamiltonian is only dependent on the boundary terms
and thus the Hamiltonian is conserved within the internal domain.

Corollary 2.0.2 The canonical inputs and outputs of the system are either

ũq = −(ẽq · n)|∂� = −kw(q̃ · n)|∂� , ỹp = ẽp|∂� = p̃

ρw

∣∣∣∣
∂�

, (9)

respectively, or for the opposite causality the inputs and outputs are respectively,

ỹq = (ẽq · n)|∂� = kw(q̃ · n)|∂� , ũp = −ẽp|∂� = − p̃

ρw

∣∣∣∣
∂�

. (10)

2.1 Weak Form

In this section, the discretised weak form of the wave equation is derived. First, we define
the L2 inner product over the domain, �, and the boundary, ∂�, as

〈a|b〉� =
∫

�

a · bdV , 〈a|b〉∂� =
∫

∂�

a · bds . (11)
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Using the same function spaces as in Cardoso-Ribeiro’s work [11], approximate flow and
effort functions are introduced,

fp, ep ∈ H 1(�) ,

fq , eq ∈ H div(�) .
(12)

In the succeeding sections, we show that this choice of function spaces allows us to
combine important features of Cardoso-Ribeiro’s and Kotyczka’s [22] methods. Cardoso-
Ribeiro’s methods ease of implementation is combined with Kotyczka’s methods ability
to implement mixed boundary conditions without Lagrange multipliers. Substituting these
approximate functions for the exact flows and efforts in Equation (7) and taking the inner
product with the test functions (vp , vq ) gives

〈vp|fp〉� = 〈vp|∇ · eq〉� , (13a)

〈vq |fq〉� = 〈vq |∇ep〉� . (13b)

The right-hand side of Equations (13a) and (13b) are then integrated by parts to give

〈vp|fp〉� = −〈∇vp|eq〉� + 〈vp|(eq · n)〉∂� , (14a)

〈vq |fq〉� = −〈(∇ · vq)|ep〉� + 〈(vq · n)|ep〉∂� . (14b)

These equations are now in a form where the Galerkin method can be applied. To do this,
the approximate flow and effort functions in Equation (12) are defined from the discrete flow
(f̂ p ∈ R

Np , f̂ q ∈ R
Nq ) and effort (êp ∈ R

Np , êq ∈ R
Nq ) vectors and the vectors of globally

defined basis functions (ϕp , ϕq ) as shown here,

fp(x) =
Np∑
i=1

f̂piϕpi(x) = 〈f̂ p,ϕp(x)〉 ,

f q(x) =
Nq∑
j=1

f̂qjϕqj (x) = (ϕq(x))T f̂ q ,

(15)

ep(x) =
Np∑
i=1

êpiϕpi(x) = 〈êp,ϕp(x)〉 ,

eq(x) =
Nq∑
j=1

êqj
ϕqj (x) = (ϕq(x))T êq ,

(16)

where Np and Nq are the number of DOFs stored by the discrete vectors. A hat over a
variable is used to denote the vector of discrete values, i.e., êp is the column vector of
discrete DOF values for the scalar field ep . To make the method Galerkin, vp and vq are
discretised with the same basis functions as fp and fq , respectively. The basis function
families that we use are Lagrange for ϕp and Raviart-Thomas [33] for ϕq , however, any basis
functions that satisfy the function spaces in Equation (12) are suitable. In Equations (15)
and (16), the sizes of ϕp and ϕq are Np × 1 and Nq × 2, respectively. The notation, 〈·, ·〉 is
used for the standard inner product on R, as opposed to 〈·|·〉�, the L2 inner product. For the
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lowest order Lagrange and Raviart-Thomas elements, êp and f̂ p are stored at nodes and êq

and f̂q are stored at edges. For details on higher order elements see the FEniCS book [26].
Substituting the approximate functions from Equations (15) and (16) as well as the cor-

responding test functions into Equation (14a) gives

〈vp|fp〉� = −〈∇vp|eq〉� + 〈vp|(eq · n)〉∂� ,

→ v̂
T

p 〈ϕp|ϕp〉�f̂ p = −v̂
T

p 〈∇ϕp|ϕq〉�êq + v̂
T

p 〈ψp|ψq〉∂�êq ,

→ v̂
T

pMpf̂ p = v̂
T

pKp êq + v̂
T

pLp êq , (17)

where ψp = ϕp|∂� represents ϕp evaluated at the boundary and ψq = ϕq · n|∂� represents
ϕq evaluated in the normal direction at the boundary. More clearly, the basis functions for
the boundary terms satisfy the following relations,

ep|∂� = 〈êp,ψp〉 , eq · n|∂� = 〈êq ,ψq〉 . (18)

Substituting the approximate functions from Equations (15), (16) and (18), as well as the
corresponding test functions into Equation (14b) gives

〈vq |fq〉� = −〈(∇ · vq)|ep〉� + 〈(vq · n)|ep〉∂� ,

→ v̂q
T 〈ϕq |ϕq〉�f̂q = −v̂q

T 〈(∇ · ϕq)|ϕp〉�êp + v̂q
T 〈ψq |ψp〉∂�êp ,

→ v̂q
T
Mqf̂q = v̂q

T
Kqêp + v̂q

T
Lqêp . (19)

The matrices in Equations (17) and (19) are given as

Mp = 〈ϕp|ϕp〉� ,

Mq = 〈ϕq |ϕq〉� ,

Kp = −〈∇ϕp|ϕq〉� ,

Kq = −〈∇ · ϕq |ϕp〉� ,

Lp = 〈ψp|ψq〉∂� ,

Lq = 〈ψq |ψp〉∂� ,

(20)

where the inner product acts elementwise for the matrix as

〈a|b〉ij� = 〈ai |bj 〉� . (21)

Applying a typical weak form approach, Equations (17) and (19) must hold for any v̂p ∈
R

Np and v̂q ∈R
Nq . Therefore, according to the fundamental theorem of variational calculus,

the following matrix system of equations holds,

Mpf̂ p = Kp êq + Lp êq ,

Mqf̂q = Kqêp + Lqêp .

(22)

When implementing Equation (22), it is essential to include the discrete dynamic and
constitutive laws which coincide with Equations (3) and (6), respectively. The dynamic and
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constitutive laws are respectively,

∂

∂t

[
p̂

q̂

]
=

[
−f̂ p

−f̂q

]
, (23)

[
êp

êq

]
=

[ 1
ρw

I 0
0 kwI

][
p̂

q̂

]
= Q

[
p̂

q̂

]
, (24)

where I is the identity matrix. Also, p̂ and q̂ are the discrete vectors of momentum DOFs
and strain DOFs, respectively. This formulation assumes constant material properties and
therefore a constant Q matrix. Finally, substituting Equations (23) and (24) into Equa-
tion (22) we get the matrix system of equations,

[−Mp 0
0 −Mq

]
∂

∂t

[
p̂

q̂

]
=

[
0 Kp + Lp

Kq + Lq 0

][ 1
ρw

I 0
0 kwI

][
p̂

q̂

]
. (25)

In Sect. 2.3 we prove that Equation (25) can be written in two different (one for Dirichlet
and one for Neumann boundary conditions) canonical PH forms and that it represents a
non-degenerate Stokes-Dirac structure.

2.2 Discrete Conservation of Power Proof

To proceed with a conservation of power proof we first define the approximate Hamiltonian,
Ĥ , and Hamiltonian density, Ĥ in the same way as the exact functions that were defined in
Equations (4) and (5),

Ĥ (p,q) =
∫

�

Ĥ(p,q)dV =
∫

�

(
1

2ρw

p2 + 1

2
kwq · q

)
dV . (26)

The variables p and q have the same basis functions as ep and eq respectively. Substitut-
ing in the discrete vectors, p̂ and q̂ and their corresponding basis functions gives

Ĥ (p̂, q̂) =
∫

�

(
1

2ρw

p̂
T
ϕpϕT

p p̂ + 1

2
kwq̂

T
ϕqϕ

T
q q̂

)
dV

= 1

2ρw

p̂
T
Mpp̂ + 1

2
kwq̂

T
Mq q̂ . (27)

The relationship between the approximate state variable functions and the approximate
effort functions from Equation (16) can be found by taking the partial derivative of Ĥ(p,q)

with respect to p and q .

ep = ∂pĤ = p

ρw

, eq = ∂qĤ = kwq . (28)

The corresponding relation between discrete effort variables and state vectors is

êp = p̂

ρw

, êq = kwq̂ . (29)

To retain the structure of the continuous system, the discretised equations must have the
same energy-conserving structure as the continuous equations. Therefore, the rate of change
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of the Hamiltonian must only depend on the boundary variables, as in Theorem 2.0.1. The
following conservation of energy proof is influenced by the thesis of Kotyczka [22] and the
paper by Cardoso-Ribeiro [11].

Theorem 2.2.1 The rate of change of the Hamiltonian for the discrete system ( ˙̂
H ) is a dual

product of the boundary efforts (êpb , êqb) and boundary flows (f̂ pb , f̂ qb) in either p or q .
Put more simply, the change of energy in the domain equals the energy flow through the
domain boundary.

˙̂
H = −ê

T

pbf̂ pb = −ê
T

qbf̂ qb .

To prove Theorem 2.2.1 a mapping between general variables and boundary variables
must be formulated. Following the work of [22], we decompose Lp into T p , Sq and Lq into
Tq , Sp , as shown,

Lp = T T
pSq , Lq = Tq

T Sp . (30)

The matrix T p is simply a mapping from all êp DOFs of the mesh to the DOFs that have
êp defined at the boundary. Similarly, Tq is a mapping from all êq DOFs of the mesh to the
DOFs that have êq defined at the boundary. Both T p and Tq are made of zeroes and ones and
are semi-orthogonal, therefore T pT T

p = INp and TqTq
T = INq . For first order Lagrange and

Raviart-Thomas elements, the identity matrix INp has a number of rows and columns equal
to the number of nodes (Np) and INq has a number of rows and columns equal to the number
of edges (Nq ). Calculation of Sp and Sq is done trivially by using the semi-orthogonality of
T p/q and Equation (30), giving Sq = T pLp and Sp = TqLq . The matrix Sp is a mapping

from momentum efforts êp to boundary strain flows f̂ qb . Similarly, Sq is a mapping from

stress efforts êq to boundary velocity flows f̂ pb . The matrix mappings of T p/q and Sp/q are
summarised as

êpb = T p êp , êqb = Tqêq ,

f̂ pb = Sqêq , f̂ qb = Sp êp .
(31)

To prove Theorem 2.2.1 we need a small lemma.

Lemma 2.2.2 (Lemma 1 [24])

(Kp + Lp) + (Kq + Lq)
T = Lp .

Proof

(Kq + Lq)
T =

(
− 〈∇ · ϕq |ϕp〉� + 〈ψq |ψp〉∂�

)T

,

(Kq + Lq)
T =

(
− 〈∇ · ϕq |ϕp〉� + 〈(ϕq · n)|ψp〉∂�

)T

.
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Applying integration by parts in reverse then gives

(Kq + Lq)
T =

(
〈ϕq |∇ϕp〉�

)T

= 〈∇ϕp|ϕq〉�
= −Kp ,

(32)

therefore,

(Kp + Lp) + (Kq + Lq)
T = (Kp + Lp) − Kp = Lp . �

Proof of Theorem 2.2.1 We start by taking the time differential of the Hamiltonian in the
usual way.

Ḣ =
∫

�

(
∂H

∂p

∂p

∂t
+ ∂H

∂q
· ∂q

∂t

)
dV

= −〈ep|fp〉� − 〈eq |fq〉� .

The approximate efforts and flows from Equations (15) and (16) are then substituted for
the effort and flow functions to give the discrete Hamiltonian rate of change

˙̂
H = −ê

T

p 〈ϕp|ϕp〉�f̂ p − êq
T 〈ϕq |ϕq〉�f̂q

= −ê
T

pMpf̂ p − êq
T
Mqf̂q .

Equation (22) is then used to give

˙̂
H = −ê

T

p (Kp + Lp)êq − êq
T
(Kq + Lq)êp

= −ê
T

p (Kp + Lp)êq − ê
T

p (Kq + Lq)
T êq .

Lemma 2.2.2 can now be used. Following that, the definitions of the boundary flows and
efforts in Equation (31) can be used to complete the first half of the proof,

˙̂
H = −ê

T

pLp êq (33)

= −ê
T

pT T
pSqêq

= −(T p êp)T (Sqêq)

= −ê
T

pbf̂ pb ,
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and identically for the second half of the proof,

˙̂
H = −ê

T

pLp êq

= −ê
T

pLq
T êq

= −êq
T
Lqêp

= −êq
T
Tq

T Sp êp

= −(Tqêq)
T (Sp êp)

= −ê
T

qbf̂ qb . �

Corollary 2.2.3 The rate of change of the Hamiltonian of the discrete system conserves en-
ergy in the same way as in Theorem 2.0.1, for the continuous system.

Proof Beginning with Equation (33) and substituting in Lp from Equation (20) gives

˙̂
H = −ê

T

pLp êq

= −
∫

∂�

ê
T

pψpψT
q êqds

Substituting Equation (18) gives

˙̂
H = −

∫
∂�

ep(eq · n)ds ,

which confirms that the rate of change of the discrete system Hamiltonian is a function of
the efforts at the boundary. This correctly coincides with Theorem 2.0.1. �

The approximate system inputs and outputs are thus defined in the same way as Equa-
tions (9) and (10), either

uq = −eq · n|∂� , yp = ep|∂� , (34)

or

yq = eq · n|∂� , up = −ep|∂� . (35)

2.3 Stokes-Dirac Structure and the Canonical Port-Hamiltonian Form

In Equation (22) we introduce the model in a non-canonical PH form, however, in this sec-
tion we prove that Equation (22) is equivalent to a structure-preserving coupling of canoni-
cal Port-Hamiltonian forms. This also proves that the discretisation ensures a Stokes-Dirac
structure [43], therefore, conserving the structure of the continuous equations, Equation (7).
To formulate the system in an input-state-output PH form, we first define the input and out-
put functions at the boundary corresponding to Equations (34) and (35) in terms of their
discrete vectors (ûq , ŷp , ûp , ŷq ) and basis functions (θq , θp).

uq = 〈êq ,ψq〉 = 〈ûq , θq〉 ,

yp = 〈êp,ψp〉 = 〈ŷp, θp〉 ,
(36)
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up = 〈êp,ψp〉 = 〈ûp, θp〉 ,

yq = 〈êq ,ψq〉 = 〈ŷq , θq〉 ,
(37)

where θp and θq contain the entries of ψp and ψq corresponding to the boundary DOFs.
The first canonical PH form for Neumann boundary conditions can be set up by using

(Kq + Lq)
T = −Kp , (38)

which was formulated in Equation (32). Inserting the transpose of Equation (38) into Equa-
tion (22) gives

[
Mp 0

0 Mq

][
f̂ p

f̂ q

]
=

[
0 Kp + Lp

−Kp
T 0

][
êp

êq

]
. (39)

We then multiply the output equation in Equation (34) by the vyq = 〈v̂yq |θq〉∂�N
trial

function, where a subscript N denotes a Neumann boundary. Following this, we integrate
over the boundary then use the fundamental theorem of variational calculus to get,

v̂yq

∫
∂�N

θqypdsN = v̂yq

∫
∂�N

θqep|∂�N
dsN

→ v̂yq

∫
∂�N

θqθ
T
p ŷpdsN = v̂yq

∫
∂�N

θqψ
T
p êpdsN

→ Mypŷp = BT
qbêp (40)

where Myp = 〈θq |θp〉∂�N
. Also, Bqb is defined as,

Bqbûq = −Lp êq , Bqb = 〈ψp|θq〉∂�N
. (41)

Combining Equations (39) to (41) gives the PH canonical form,

⎡
⎢⎣

Mp 0 0

0 Mq 0

0 0 Myp

⎤
⎥⎦

⎡
⎢⎣

f̂ p

f̂ q

ŷp

⎤
⎥⎦ =

⎡
⎢⎣

0 Kp −Bqb

−KT
p 0 0

BT
qb 0 0

⎤
⎥⎦

⎡
⎢⎣

êp

êq

ûq

⎤
⎥⎦ . (42)

Including the dynamic and constitutive laws from Equations (23) and (24) gives the input-
state-output PH form,

⎡
⎢⎣

−Mp 0 0

0 −Mq 0

0 0 Myp

⎤
⎥⎦

⎡
⎢⎣

∂t p̂

∂t q̂

ŷp

⎤
⎥⎦ =

⎡
⎢⎣

0 Kp −Bqb

−KT
p 0 0

BT
qb 0 0

⎤
⎥⎦

⎡
⎢⎣

1
ρw

I 0 0

0 kwI 0

0 0 I

⎤
⎥⎦

⎡
⎢⎣

p̂

q̂

ûq

⎤
⎥⎦ ,

Mqb

⎡
⎢⎣

∂t p̂

∂t q̂

ŷp

⎤
⎥⎦ = JqbQqb

⎡
⎢⎣

p̂

q̂

ûq

⎤
⎥⎦ , (43)

where Mqb is the mass matrix, Jqb is the skew-symmetric matrix, and Qqb is the consti-
tutive law matrix. The infinite-dimensional canonical form corresponding to the discretised
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canonical form in Equation (42) is

Mqb

⎡
⎢⎣

fp

f q

yp

⎤
⎥⎦ = J qb

⎡
⎢⎣

ep

eq

uq

⎤
⎥⎦ , (44)

where, Mqb is the mass operator and J qb is the skew-symmetric operator.
Technically, Equations (43) and (44) are canonical forms for domains with Neumann

conditions only. In the following we formulate the canonical form for Dirichlet conditions.
We take the transpose of Equation (38) and use the fact that Lq = LT

p to give

(Kp + Lp)T = −Kq . (45)

Equation (45) can be substituted into Equation (22) and the discretisation of yq can be
done in the same way as for yp in Equation (40) to give the Dirichlet boundary condition
equivalent of Equation (42). This discrete canonical form is

⎡
⎢⎣

Mp 0 0

0 Mq 0

0 0 Myq

⎤
⎥⎦

⎡
⎢⎣

f̂ p

f̂ q

ŷq

⎤
⎥⎦ =

⎡
⎢⎣

0 −KT
q 0

Kq 0 −Bpb

0 BT
pb 0

⎤
⎥⎦

⎡
⎢⎣

êp

êq

ûp

⎤
⎥⎦ , (46)

and the input-state-output PH form is

⎡
⎢⎣

−Mp 0 0

0 −Mq 0

0 0 Myq

⎤
⎥⎦

⎡
⎢⎣

∂t p̂

∂t q̂

ŷq

⎤
⎥⎦ =

⎡
⎢⎣

0 −KT
q 0

Kq 0 −Bpb

0 BT
pb 0

⎤
⎥⎦

⎡
⎢⎣

1
ρw

I 0 0

0 kwI 0

0 0 I

⎤
⎥⎦

⎡
⎢⎣

p̂

q̂

ûp

⎤
⎥⎦ ,

Mpb

⎡
⎢⎣

∂t p̂

∂t q̂

ŷq

⎤
⎥⎦ = J pbQpb

⎡
⎢⎣

p̂

q̂

ûp

⎤
⎥⎦ , (47)

where Myq = 〈θp|θq〉∂�D
and a subscript D denotes a Dirichlet boundary. The canonical

PH form in Equation (47) has a mass matrix, Mpb , a skew-symmetric matrix, J pb, and a
constitutive law matrix, Qpb. The interconnection matrix, Bpb is defined as

Bpbûp = −Lq êp , Bpb = 〈ψq |θp〉∂�D
. (48)

The infinite-dimensional canonical form corresponding to Equation (46) is

Mpb

⎡
⎢⎣

fp

f q

yq

⎤
⎥⎦ = J pb

⎡
⎢⎣

ep

eq

up

⎤
⎥⎦ , (49)

where, Mpb is the mass operator and J pb is the skew-symmetric operator.
Equations (47) and (49) are only canonical PH forms for boundaries with Dirichlet condi-

tions. For a domain with mixed boundaries, our system in Equation (25) needs to be equiv-
alent to a canonical PH system, or in our case a combination of canonical PH systems.
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Fig. 1 Example of the
subdivision of a domain with
Neumann boundaries, ∂�N , and
Dirichlet boundaries, ∂�D ,
showing boundary and
interconnection inputs/outputs

Any closed domain with mixed Neumann and Dirichlet boundary conditions can be subdi-
vided into subdomains with only Neumann or only Dirichlet boundary conditions. This idea
has been taken advantage of in Brugnoli et al.’s work [9], where the authors numerically
segment the domain and apply PFEM to each section. Here the idea is only used conceptu-
ally to prove that our system in Equation (25) is equivalent to a combination of canonical
input-state-output PH formulations and therefore, by the compositionality property, retains
the Stokes-Dirac structure of the analytic equations, Equation (7). This means that mixed
boundary conditions can be implemented in the weak form, as detailed in Sect. 3, and that
the resulting system is a Stokes-Dirac structure. It is also important to note that our formu-
lation is non-degenerate, due to Mp and Mq being full rank. The matrices turn out to be full
rank because we use the same basis functions for effort and flow functions. Proposition 1 of
Kotyczka’s paper [24], uses a similar compositionality argument to allow mixed boundary
conditions and mixed causality at the boundaries. However, in Kotyczka’s work, the non-
full-rank Mp and Mq matrices cause the requirement of user-defined parameters in-order to
form a non-degenerate Stokes-Dirac structure.

Theorem 2.3.1 Equation (25) over any connected domain with Neumann and Dirichlet
boundaries is equivalent to a structure-preserving combination of canonical PH systems
in the form of Equations (44) and (49). (Kotyczka makes the same statement in Proposition.
1 of [24] for a different set of function spaces.)

Proof First we subdivide the domain so that each connected Neumann boundary is in a
domain denoted �Ni that does not connect or overlap with any �Nj (j �= i) and is not
connected to any other external boundaries. A simple example of a subdivision is shown in
Fig. 1. Each of the i subdomains has inputs and outputs split up into uqi , ypi at the external
boundary, and uint

qi , y int
pi at the internal boundary. The remainder of the domain is therefore

connected and only has Dirichlet boundary conditions, we denote this subdomain �D .
The inputs and outputs of �D are split up into upk , yqk at the external boundaries and

uint
pi , y int

qi at the internal boundaries that border �Ni . The canonical form of Equation (44)
is used in the �Ni domains and Equation (49) is used in the �D domain. Note that the
canonical forms are modified accordingly, to split the inputs and outputs into internal and
external parts. The causal interconnection relations [6, 24] at each internal boundary can
then be written as

uint
pi = −y int

pi , uint
qi = y int

qi . (50)

This ensures conservation of energy flow between the subdomains due to the power con-
serving inner product,

〈uint
pi |y int

qi 〉∂�int
i

+ 〈uint
qi |y int

pi 〉∂�int
i

= 0 . (51)
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Fig. 2 Rectangle wave domain
diagram

Therefore, since each subdomain has a PH Stokes-Dirac structure, the power conserving
interconnection ensures the total system is also a Stokes-Dirac structure by compositionality.
Also, each subdomain has the correct canonical form for its Neumann or Dirichlet boundary
conditions. Lastly, any connected domain is equivalent to a decomposition in the way we
have described. The combination of these results proves that Equation (25) is equivalent to
a structure-preserving combination of canonical PH forms for any connected domain with
mixed boundary conditions. �

As will be seen in Sect. 6 the infinite-dimensional canonical form in Equation (49) can
be used to determine the power conserving interconnection between other canonical PH sys-
tems, where the interconnection enforces a Dirichlet condition on the wave domain bound-
ary. Similarly, the infinite-dimensional canonical form of Equation (44) can be used to find
the power conserving interconnection for connections that assign a Neumann condition on
the wave domain boundary. Due to the conclusion of Theorem 2.3.1, that any domain is
equivalent to a subdivision of subdomains with either the canonical form of Equation (49)
or Equation (44), both Dirichlet and Neumann interconnections can be implemented on a
domain. This means that the system developed in this paper can have mixed boundary con-
ditions as well as mixed causality interconnections between other PH systems.

3 Wave Equation FEniCS Implementation

In this section, the FEniCS implementation of Equations (14a) and (14b) on a rectangle
domain is detailed. Appendix A supplements this section by detailing the Python code for
the implementation. A schematic of the wave domain is shown in Fig. 2.

An unstructured, triangular mesh was created over the domain with FEniCS meshing
software. The boundary conditions on the domain are set as

pL =p(0, y, t) =
{

10 sin(8πt) t < 0.25

0 t ≥ 0.25
, (52a)

pR =p(Lx, y, t) =0 , (52b)

qM =(q(x,0, t) · n)= (q(x,Ly, t) · n) = 0 , (52c)

where the inputs in Equations (34) and (35) for the left, right, and middle boundaries are
defined respectively as

upL = −pL

ρw

, upR = −pR

ρw

, uqM = −kwqM . (53)
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Dirichlet conditions are applied to both the left and the right boundaries. The left bound-
ary is set as an input condition whereas the right boundary is given a fixed zero value. The
top and bottom boundaries have a zero-flux Neumann condition applied. Separating the
boundary terms in Equations (14a) and (14b) for each boundary condition and reverting to
integral rather than inner product notation gives

∫
�

vpfpdV = −
∫

�

∇vp · eqdV +
∫

∂�L

vp(eq · n)dsL (54a)

+
∫

∂�R

vp(eq · n)dsR +
∫

∂�M

vp(eq · n)dsM ,

∫
�

vq · fqdV = −
∫

�

(∇ · vq)epdV +
∫

∂�L

(vq · n)epdsL (54b)

+
∫

∂�R

(vq · n)epdsR +
∫

∂�M

(vq · n)epdsM .

In Equations (54a) and (54b), the terms inside the boundary integrals are evaluated at
their respective boundary. Substituting the state variables fp = −ṗ, fq = −q̇ , ep = p/ρw ,
eq = kwq and the boundary terms from Equations (52a)–(52c) gives

−
∫

�

vpṗdV = − kw

∫
�

∇vp · qdV + kw

∫
∂�L

vp(q · n)dsL (55a)

+ kw

∫
∂�R

vp(q · n)dsR + kw

∫
∂�M

vpqMdsM ,

−
∫

�

vq · q̇dV = − 1

ρw

∫
�

(∇ · vq)pdV + 1

ρw

∫
∂�L

(vq · n)pLdsL (55b)

+ 1

ρw

∫
∂�R

(vq · n)pRdsR + 1

ρw

∫
∂�M

(vq · n)pdsM .

These equations can be implemented in FEniCS, which automatically generates a matrix
system of equations in the form of Equation (25). However, to solve these equations the
system must also be discretised in time. Symplectic time integration schemes conserve the
symplectic structure of the continuous equations and approximately conserve the Hamilto-
nian, therefore, they are the natural choice for the temporal discretisation. The symplectic
Euler (SE) time integration scheme is applied to Equations (55a) and (55b) to give

−
∫

�

vp

p − pm

�t
dV = − kw

∫
�

∇vp · qmdV + kw

∫
∂�L

vp(qm · n)dsL (56a)

+ kw

∫
∂�R

vp(qm · n)dsR + kw

∫
∂�M

vpqMdsM ,

−
∫

�

vq · q − qm

�t
dV = − 1

ρw

∫
�

(∇ · vq)pdV + 1

ρw

∫
∂�L

(vq · n)pLdsL (56b)

+ 1

ρw

∫
∂�R

(vq · n)pRdsR + 1

ρw

∫
∂�M

(vq · n)pdsM ,

where the m superscript denotes the variable at the previous time step. The L, R, and M

subscripts denote variables at the left, right, and middle boundaries, respectively. The SE
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scheme combines an explicit step for Equation (56a) and an implicit step for Equation (56b).
When the Hamiltonian is separable the SE scheme is semi-explicit, meaning Equation (56b)
could be solved explicitly after the solution of Equation (56a). However, due to the ease of
implementation in FEniCS, the equations are solved in one implicit step. By Theorem 2.2.1,
Equations (55a) and (55b) conserve the Hamiltonian. Combining this with SE integration
gives a discrete system that retains the Hamiltonian structure of the continuum equations
and conserves energy for large times, as further discussed in Sect. 3.1.

The energy bound on symplectic methods is, in general, proportional to O((�t)r ), where
r is the order of the time integration scheme [20]. To compare the energy bound between
different order methods, a second-order symplectic scheme, the Störmer-Verlet (SV) method
[19] is also implemented,

−
∫

�

vq · q1/2 − qm

0.5�t
dV = − 1

ρw

∫
�

(∇ · vq)p
mdV + 1

ρw

∫
∂�L

(vq · n)pm
L dsL (57a)

+ 1

ρw

∫
∂�R

(vq · n)pm
RdsR + 1

ρw

∫
∂�M

(vq · n)pmdsM ,

−
∫

�

vp

p − pm

�t
dV = − kw

∫
�

∇vp · q1/2dV + kw

∫
∂�L

vp(q1/2 · n)dsL (57b)

+ kw

∫
∂�R

vp(q1/2 · n)dsR + kw

∫
∂�M

vpq
1/2
M dsM ,

−
∫

�

vq · q − q1/2

0.5�t
dV = − 1

ρw

∫
�

(∇ · vq)pdV + 1

ρw

∫
∂�L

(vq · n)pLdsL (57c)

+ 1

ρw

∫
∂�R

(vq · n)pRdsR + 1

ρw

∫
∂�M

(vq · n)pdsM .

Solving Equations (57a)–(57c) requires two system of equation solves per time step,
Equation (57a) is solved to get q1/2 then Equations (57b) and (57c) are solved for q and p.
Although in the general case the energy residual is bounded for symplectic methods, since
the example we are modelling is linear we can improve this result and get exact energy
conservation. We do this with the symplectic midpoint (SM) method, which conserves all
quadratic invariants for linear systems [20]. The variational form of the SM scheme is

−
∫

�

vp

p − pm

�t
dV = − kw

∫
�

∇vp · (qm + q)

2
dV + kw

∫
∂�L

vp

(
(qm + q)

2
· n

)
dsL

(58a)

+ kw

∫
∂�R

vp

(
(qm + q)

2
· n

)
dsR + kw

∫
∂�M

vp

(qm
M + qM)

2
dsM ,

−
∫

�

vq · q − qm

�t
dV = − 1

ρw

∫
�

(∇ · vq)
(pm + p)

2
dV + 1

ρw

∫
∂�L

(vq · n)
(pm

L + pL)

2
dsL

(58b)

+ 1

ρw

∫
∂�R

(vq · n)
(pm

R + pR)

2
dsR + 1

ρw

∫
∂�M

(vq · n)
(pm + p)

2
dsM .
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3.1 Wave Results

In this section, the model that is detailed in Sect. 3 and proven to conserve energy by The-
orem 2.2.1 has been implemented with a range of different time integration schemes. Our
method, which has a weak Dirichlet boundary condition implementation is compared to
an implementation with Dirichlet boundary conditions implemented in the typical strong
form. This is done to show that the naive setting of boundary conditions in a strong man-
ner is detrimental to energy conservation. The strong Dirichlet implementation modifies the
matrix system of equations generated by FEniCS to directly enforce the boundary condi-
tion values. This differs from our weak boundary Dirichlet implementation, where we apply
the boundary conditions by specifying the boundary integral terms in Equations (55a) and
(55b). A detailed example of the different boundary condition implementations in FEniCS
is shown in Appendix A.

For the wave equation in PH form, setting p at the boundary is a Dirichlet condition,
equivalent to setting ρwep , and setting (q · n) is a Neumann condition, equivalent to setting

1
kw

(eq ·n). The reason that we can implement Dirichlet and Neumann conditions in the weak
form is because we integrate both Equations (13a) and (13b) by parts, giving boundary terms
for Dirichlet and Neumann conditions in Equations (55a) and (55b). This approach differs
from the PFEM of Cardoso-Ribeiro [10], where integration by parts is only used on a subset
of the governing equations. Our approach thus has the advantage of allowing mixed bound-
ary conditions without the need for Lagrange multipliers. Therefore, our method results in
a matrix system of equations that can be solved as an ordinary differential equation (ODE),
rather than a differential algebraic equation (DAE), which is easier to solve in general. All
methods in this section use a time step of �t = 5 × 10−4. Figure 3 shows the resulting
Hamiltonian, Ĥ , for the input in Equations (52a)–(52c). The Hamiltonian is expected to
be constant after 0.25 s, because the input boundary condition is set to zero, therefore, no
energy flows into or out of the domain.

In Fig. 3(a) we show that the implicit Euler (IE) scheme incorrectly dissipates energy
and the explicit Euler (EE) scheme has a fictitious increase in energy, resulting in instability.
At t ≈ 0.9 s the SE integration schemes for strong and weak boundary conditions show an
undesirable non-constant Hamiltonian. A zoomed-in image of the non-constant behaviour
is also shown in Fig. 3(b). The bump at t ≈ 0.9 s is likely due to there being high-order
dynamics when the wavefront approaches the right boundary that are not accounted for in
the first-order SE scheme. To remedy this situation, three second-order integration schemes
are implemented, Explicit Heun’s (EH) (also called improved Euler [39]), SV and SM. All of
these methods drastically decrease the bump at t ≈ 0.9 s. It should be noted that decreasing
the time step of the first-order methods also has the same effect of decreasing the bump
(not shown). Interestingly, EH removes the bump completely, however, SV does not. SM
also removes the bump completely because the SM scheme conserves quadratic invariants
exactly for linear systems [20].

Figure 3(b) shows that for SE and SV the Hamiltonian oscillates about a conserved aver-
age Hamiltonian. This plot also shows that SV has an approximately constant Hamiltonian
(apart from the aforementioned bump at t ≈ 0.9 s), whereas EH has a gradually increasing
Hamiltonian, indicating that energy is not conserved for long times. For SV, however, the
Hamiltonian oscillates about a conserved value and therefore, is conserved for long times.
The bound on the oscillations also converges towards the conserved value as the time step
is decreased [20]. The energy bound for SE and SV is likely higher at the bump due to the
reflecting boundary. This would hint that the non-perfect energy conservation of SE and SV
is heavily influenced by the boundary and not so much by the internal domain. The SM
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Fig. 3 (a) Hamiltonian for
different time integration
schemes and for strong and weak
boundary condition
implementations. (b) Zoomed in
view. IE=Implicit Euler,
EE=Explicit Euler,
SE=Symplectic Euler,
EH=Explicit Heun,
SV=Störmer-Verlet,
SM=Symplectic (Implicit)
Midpoint

scheme has a perfectly flat Hamiltonian after 0.25 s, which is the expected result, again due
to the conservation of quadratic invariants.

One problem of the first-order SE weak method in Fig. 3 is its oscillatory behaviour.
These oscillations may be due to applying an essential boundary condition (EBC) weakly,
without a penalty method. Typically EBC’s are applied with a penalty method such as
Nitsche [25, 30], however, according to Scovazzi, penalty methods are not required due
to the hyperbolic nature of the wave equation [37]. This could mean that the oscillations
may simply be the expected oscillations of low order symplectic time integration schemes.
As anticipated by the proof of boundedness in [18], the oscillations are reduced when the
time step is decreased (not shown) or the order of the symplectic method is increased, as
seen with the SV method.

To compare the energy conservation of weak and strong boundary condition implemen-
tations, we define the energy residual at time tf as

Eres = Ĥ +
∫ tf

t0

∫
∂�L

(eq
� · n)e�

pdsLdt

= Ĥ + c2
∫ tf

t0

∫
∂�L

(q� · n)p�
LdsLdt , (59)

where Ĥ , which is equal to the internal energy in the domain at time tf , is calculated from
Equation (27) with q̂ and p̂ variables at time tf . Kotyczka et al. [23] shows that implicit
Gauss-Legendre schemes such as SM conserve the discrete energy exactly for linear PH
systems. However, for schemes such as SV and SE that do not conserve energy perfectly,
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we expect an energy error from both the non-conservativity within the domain and a non-
exact energy transferred through the boundary. Therefore, the second term in Equation (59)
is simply the energy that we expect to have transferred through the left boundary out of
the domain (the term is negative for flow into the domain) between the initial time t0 and
time tf . Since we want to calculate the numerical energy flow out of the boundary, care
must be taken to evaluate the output energy calculation in the same way as the numerical
time integration scheme. This ensures that there is no discrepancy between the accuracy in
which the two terms in Equation (59) are calculated. To ensure this consistent numerical
accuracy, variables with a � overscript are the effort or state variables evaluated at time steps
that correspond with the chosen time integration scheme. For example, the expected energy
contribution of the SV scheme at the boundary can be calculated by decomposing the SV
method, as shown in a concise form here,

q1/2 − qm

0.5�t
= F(pm) , (60a)

p − pm

�t
= F(q1/2) , (60b)

q − q1/2

0.5�t
= F(p) , (60c)

into two adjoint SE method steps with half timestep each [20], this gives

q1/2 − qm

0.5�t
= F(pm) ,

p1/2 − pm

0.5�t
= F(q1/2) , (61a)

q − q1/2

0.5�t
= F(p) ,

p − p1/2

0.5�t
= F(q1/2) , (61b)

where F() denotes a function of the entries in the bracket. Then, by knowing that the super-
scripts of q� and p�

L are the same as the superscripts of q and p in Equation (61a) for the
first half time step, and the same as in Equation (61b) for the second half time step. We can
calculate the residual in two half time steps, as follows from Equation (59),

Eres = H� + c2
∑

numSteps

(∫ t

tm

∫
∂�L

(q� · n)p�
LdsLdt

)
,

Eres = H� + c2
∑

numSteps

(∫ t1/2

tm

∫
∂�L

(q1/2 · n)pm
L dsLdt +

∫ t

t1/2

∫
∂�L

(q1/2 · n)pLdsLdt

)
,

Eres = H� + c2
∑

numSteps

(
0.5�t

∫
∂�L

(q1/2 · n)pm
L dsL + 0.5�t

∫
∂�L

(q1/2 · n)pLdsL

)
. (62)

The energy residual in Equation (59) is plotted for multiple time integration schemes in
Fig. 4.

It is clear from the bounded energy residual of the SE and SV schemes and the exactly
conserved energy of the SM scheme in Fig. 4 that the weak boundary condition implemen-
tation conserves energy for long times. This agrees with our proof of Theorem 2.2.1 and the
expected bounded energy residual of symplectic time integrations schemes. Again, for the
SE and SV schemes, the energy is conserved in an average sense and oscillations about the
conserved energy do occur. As expected, the SM scheme conserves energy exactly, with an
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Fig. 4 (a) Energy residual for
different time integration
schemes and for strong and weak
boundary condition
implementations. (b) Zoomed-in
view. IE=Implicit Euler,
EE=Explicit Euler,
SE=Symplectic Euler,
EH=Explicit Heun,
SV=Störmer-Verlet,
SM=Symplectic (Implicit)
Midpoint

energy residual of < 10−12, which is round-off error. The strong implementation of the in-
put Dirichlet boundary condition does not conserve energy. More exactly, the strong imple-
mentation’s energy residual is dependent on the refinement of the spatial mesh. To display
this effect, the energy residual of the wave equation with SV time integration is analysed
for varying element characteristic length (

√
Mean Element Area) and is shown in Fig. 5. A

quadratic trend is plotted to show that the energy residual when using a strong boundary
condition implementation has a quadratic dependence on the element characteristic length.
This differs from the weak boundary condition implementation, which conserves energy in-
dependently of the mesh refinement. This agrees with our proof of Theorem 2.2.1, i.e., that
our spatial discretisation is perfectly energy-conserving. Since the energy error is bounded
for symplectic time integration schemes [19], the energy error for the weak boundary im-
plementation is only dependent on the step size of the symplectic time integration scheme.

Temporal integration schemes cannot, in general, conserve both the exact energy and
the symplectic structure of the system [20]. However, a general result that applies to non-
linear systems, as well as our linear system, is that conserving the symplectic structure
results in a bounded energy error which decreases as the time step is reduced. In subsequent
chapters, we focus on the results of the SV scheme rather than the SM scheme to show
energy conservation results that resemble what we expect for general non-linear problems.

4 Wave Equation Comparison with Analytical Solution

In this section, our numerical model with a weak boundary condition implementation is
compared against an analytical solution to ensure stable spatial and temporal convergence
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Fig. 5 Energy residual vs
characteristic element length for
strong and weak boundary
condition implementations with
an SV integration scheme. A
quadratic trend of y = 100x2 is
plotted for comparison.
SV=Störmer-Verlet

as well as good long-time behaviour and accurate eigenvalues. The analytic solution of the
linear 2D wave equation was derived from one of the particular solutions in Sect. 7.1.1 of
Polyanin and Nazaikinskii’s book [32]. The initial and boundary conditions are given as

p(x, y,0) = ρc

√
π2

4L2
x

+ 4π2

L2
y

sin

(
πx

2Lx

+ π

2

)
sin

(
2πy

Ly

+ π

2

)
, (63a)

p(0, y, t) = ρc

√
π2

4L2
x

+ 4π2

L2
y

sin

(
2πy

Ly

+ π

2

)
cos

(
tc

√
π2

4L2
x

+ 4π2

L2
y

)
, (63b)

p(Lx, y, t) = 0 , (63c)

q(x,0, t) · n = 0 , (63d)

q(x,Ly, t) · n = 0 . (63e)

The analytical solution is then given by

pa(x, y, t) = ρc

√
π2

4L2
x

+ 4π2

L2
y

sin

(
πx

2Lx

+ π

2

)
sin

(
2πy

Ly

+ π

2

)
cos

(
tc

√
π2

4L2
x

+ 4π2

L2
y

)
,

(64)
where all constants are given in Appendix D.

4.1 Spatial Convergence

The error between the numerical model and the analytic solution for a range of characteristic
element lengths is evaluated to show the spatial convergence of the model. A table of the
number of elements, with corresponding error and convergence details for each refinement
level, is shown in Appendix E. The SV time integration scheme was used with a time step
of 5 × 10−4 s. The L2 error norm for each step n is defined as

En =
√∫

�

(pn − pa(tn))2)dV , (65)

where pa(tn) is the exact solution evaluated at the step n. This error is calculated accu-
rately with the ‘errornorm’ function in FEniCS. The maximum L2 error norm over 1.5 s of
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Fig. 6 Log-log plot of the
maximum L2 error norm of the
numerical method for a 1.5 s
simulation of the wave equation
for varied characteristic element
length and element order.
SV=Störmer-Verlet

simulation is plotted in Fig. 6 for each characteristic element length. In the figure legend,
the numbers following P and RT denote the order of the Lagrange and Raviart-Thomas
elements, respectively, i.e., P1RT2 uses first order Lagrange elements and second order
Raviart-Thomas elements. As can be seen, the L2 error norm for all element order com-
binations shows standard convergence against characteristic element length. Here we define
standard spatial convergence as convergence of order O((�xc)

k+1), where k is the order of
the methods lowest order basis function and �xc is the characteristic element length.

4.2 Modal Analysis

To ensure the correct handling of mixed boundary conditions, the eigenvalues of the model
were verified to be accurate by performing a modal analysis. The analytic eigenvalues were
calculated by separation of variables of Equation (1) into

w(x,y, t) = T (t)X(x)Y (y) . (66)

This method can simply be shown to give the following three first order eigenvalue prob-
lems,

∂2
t T + c2(μ + λ)T = 0 , (67a)

∂2
xX + λX = 0 , (67b)

∂2
yY + μY = 0 , (67c)

where λ and μ are eigenvalues of the first order spatial systems and ω2 = c2(μ + λ) is the
eigenvalue or the squared eigenfrequency that we want to predict. For the boundary condi-
tions in Equations (63a)–(63e), the real components of the eigenvalues in Equations (67b)
and (67c) are zero and the complex components are

λ =
(

nπ

Lx

)2

, ∀n ∈N
+ , μ =

(
mπ

Ly

)2

, ∀m ∈ N
0 . (68)

Therefore, from Equation (67a), the analytic eigenfrequencies we wish to find are given
by

ω = c

√(
nπ

Lx

)2

+
(

mπ

Ly

)2

, ∀n,m s.t. n ∈N
+ ,m ∈N

0 . (69)
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Fig. 7 Comparison of the
complex part of the first 50 model
and analytic eigenfrequencies

Fig. 8 Log-log plot of the first
eigenfrequency percentage error
when compared to the analytic
eigenfrequency

To predict the eigenfrequencies of our model, Equations (55a) and (55b) were discretised
in FEniCS, creating the following system of equations,

Me

∂

∂t

[
p̂

q̂

]
= Ke

[
p̂

q̂

]
+ Le

[
p̂

q̂

]
, (70a)

Me =
[−Mp 0

0 −Mq

]
, Ke =

[
0 kwKp

1
ρw

Kq 0

]
, Le =

[
0 kwLp

1
ρw

Lq 0

]
,

(70b)

where, Me , Ke , and Le are the mass, stiffness, and boundary matrices which determine the
eigenfrequencies of the system. The M−1

e (Ke + Le) matrix was then input into NumPy’s
eigensolver to calculate the eigenfrequencies of the system. A plot of the complex part of
the first 50 analytic and modelled eigenfrequency pairs for a mesh with 1322 elements is
shown in Fig. 7. The real parts of all eigenfrequencies equal zero, as expected for the wave
equation with no damping.

As shown in Fig. 7, the eigenfrequencies are predicted accurately with no spurious
modes. A plot of the convergence of the eigenfrequencies with respect to the characteris-
tic element length is shown in Fig. 8. This shows standard quadratic convergence for first
order Lagrange and Raviart-Thomas elements.
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Fig. 9 Log-log plot of the
maximum L2 error norm of the
numerical method for a 1.5 s
simulation of the wave equation
for varied time step and 9358
elements. SE=Symplectic Euler,
SV=Störmer-Verlet

4.3 Time Convergence

The numerical error for this model is heavily dominated by the spatial discretisation. There-
fore, to show time convergence, third order Lagrange and Raviart-Thomas elements are
used. This ensures that the initial spatial error is small, therefore, the error that propagates
through the domain is due to the temporal discretisation. A convergence study is done for
a 1.5 s simulation and an error growth study is assessed for long-times (t = 10 s). The
long-time analysis shows the rate at which the error grows through time and displays our
models effectiveness for long-time simulations. Although the rate of error growth for differ-
ent symplectic schemes is well known [18], this section importantly shows that our spatial
discretisation does not deteriorate the expected error growth rate.

The SE and SV time integration schemes have been implemented to show the temporal
convergence of our method. Linear and quadratic convergence is shown for the SE and SV
schemes, respectively in Fig. 9, where the maximum L2 error over the 1.5 s simulation is
plotted for a range of time steps. This shows that our method gives standard temporal conver-
gence, where we define standard temporal convergence as convergence of order O((�t)r ),
where r is the order of the time integration scheme. These simulations were performed on a
spatial discretisation with 9358 elements.

The order at which the state variable error of a method grows is a common metric for the
accuracy of symplectic and multi-symplectic methods, as assessed extensively in Hairer’s
book [20]. Hairer shows that symplectic methods have state variable error growth of order
O(t (�t)r ), where r is the order of the time integration scheme. The time step convergence
in Fig. 9 for fixed final time t = 1.5 s confirms that the error converges with order O((�t)r )

Therefore, observing an error growth proportional to t when simulated for long times is
sufficient to show the correct order of error growth, O(t (�t)r ). The L2 error norm for a 10 s
simulation of the wave equation is shown in Fig. 10 for various time integration schemes.
To give a fair comparison, the schemes have time steps that result in the same number of
function evaluations, 0.00025 s for IE and SM and 0.0005 s for SV. To display a result that
does not blow up immediately, the time step for EH is decreased even further to 0.000125 s.

In Fig. 10 the EH method blows up with exponential error growth because it does not
have a bounded energy residual. This behaviour is typical of fully explicit methods, which
can be unstable for long times [19]. The IE method has large error growth due to its inherent
energy dissipation. This error increase tapers off (not shown) due to the complete loss of
energy in the numerical model, this results in pn approaching a constant zero throughout the
domain. The symplectic methods both show an error that is linearly dependent on time, as
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Fig. 10 L2 error norm over a
10 s simulation for various time
integration schemes. EH=Explicit
Heun, IE=Implicit Euler,
SV=Störmer-Verlet,
SM=Symplectic (Implicit)
Midpoint

Fig. 11 p variable in wave
domain after 0.5 s, for the model
used to compare with the analytic
solution, using Störmer-Verlet
time integration

required to validate that the error growth is proportional to O(t (�t)r ). The high-frequency
oscillations of the L2 error norm in Fig. 10 are due to pn varying from being zero throughout
the domain to having a maximum, as shown in Fig. 11. Therefore, the oscillation frequency
is the frequency that p oscillates from maximum/minimum to zero.

5 Electromechanical Lumped Parameter Model

This section details a simple LPM for a linear actuated electric motor. The system diagram
and bond-graph schematic are shown in Fig. 12, with constants defined in Appendix D. The
current of the electrical system is i and the displacement of the linear motor is s. The bond-
graph methodology is a modular approach for LPMs that ensure conservation of energy
within and between models, for a review see the work by Gawthrop [16]. The PH framework
extends from bond-graphs to also allow continuum models that conserve energy.

The Hamiltonian for this system is

HEM = h2
E

2LE

+ h2
M

2m
+ Kms2

2
, (71)

where the canonical momentum for the mechanical subsystem is given by hM = mṡ and
the electrical system equivalent of the canonical momentum is the magnetic flux linkage,
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Fig. 12 (a) System diagram and (b) bond-graph diagram for an electromechanical system, where Se, R, I, C,
and GY denote effort sources, dissipative components, inductive/mass storage components, capacitive/spring
storage components, and gyrator components respectively

denoted by hE = LEi. The canonical PH form for this system is

∂

∂t

⎡
⎢⎣

hE

hM

s

⎤
⎥⎦ =

⎛
⎜⎝

⎡
⎢⎣

0 Bl 0

−Bl 0 −1

0 1 0

⎤
⎥⎦ −

⎡
⎢⎣

RE 0 0

0 RM 0

0 0 0

⎤
⎥⎦

⎞
⎟⎠

⎡
⎢⎣

∂HEM
∂hE

∂HEM
∂hM
∂HEM

∂s

⎤
⎥⎦ + Buu + BF Fb ,

yu = BT
u

⎡
⎢⎣

∂HEM
∂hE

∂HEM
∂hM
∂HEM

∂s

⎤
⎥⎦ , yF = BT

F

⎡
⎢⎣

∂HEM
∂hE

∂HEM
∂hM
∂HEM

∂s

⎤
⎥⎦ ,

(72)

where Bu is the input control matrix with corresponding input, u and output, yu. Also, BF

is the boundary port matrix with corresponding boundary force Fb and boundary output yF .
Including the constitutive laws and evaluating the Bu and BF matrices gives

∂

∂t

⎡
⎢⎣

hE

hM

s

⎤
⎥⎦=

⎛
⎜⎝

⎡
⎢⎣

0 Bl 0

−Bl 0 −1

0 1 0

⎤
⎥⎦−

⎡
⎢⎣

RE 0 0

0 RM 0

0 0 0

⎤
⎥⎦

⎞
⎟⎠

⎡
⎢⎣

1
LE

0 0

0 1
m

0

0 0 KM

⎤
⎥⎦

⎡
⎢⎣

hE

hM

s

⎤
⎥⎦+

⎡
⎢⎣

u

Fb

0

⎤
⎥⎦ ,

yu = hE

LE

, yF = hM

m
.

(73)

In this paper, the resistances, RE and RM , are set to zero, as a non-dissipative system is
required to display a conserved Hamiltonian. The values of all constants used in the simu-
lations are given in Appendix D. From Sect. 6 onwards Fb will be the reaction force from
the coupled wave equation. The first part of Equation (73) can be written as a typical linear
system of ODE’s with a state vector y = [hE,hM, s]T and a control/interconnection vector
u = [u,Fb,0]T , as

ẏ = Ay + u , (74)
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A =
⎛
⎝

⎡
⎣ 0 Bl 0

−Bl 0 −1
0 1 0

⎤
⎦ −

⎡
⎣RE 0 0

0 RM 0
0 0 0

⎤
⎦

⎞
⎠

⎡
⎣

1
LE

0 0
0 1

m
0

0 0 KM

⎤
⎦ .

To create a monolithic coupling of this LPM with the wave equation from Sect. 3 the
LPM needs to be implemented in FEniCS. The ODE in Equation (74) can be implemented
in FEniCS by using the ‘real function space’, which assumes a function has one value over
a domain, i.e., it has no spatial dependence. This makes the domain that the equations are
implemented on irrelevant to the ODE. Equation (74) can then be implemented by multiply-
ing by a trial function, vy , and taking the trace against the border of an arbitrary domain. To
allow easier coupling in the following section the trace is taken against the left boundary of
the wave domain. The remainder of this section details the implementation of the LPM in
FEniCS. Although in the following sections we use an SV time integration scheme, the SE
scheme is detailed here to provide easier understanding to the reader. For the implementation
of the SV method see the GitHub repo.
https://github.com/FinbarArgus/portHamiltonian_FEM.git

For the SE scheme, the ODE can be implemented by solving the matrix systems of equa-
tions generated by

∫
∂�L

vy · y − ym

�t
dsL =

∫
∂�L

vy · (Aya + u)dsL , (75)

at each time step. This method of implementing a LPM by assigning the variables as real
functions over the whole domain is not optimally efficient and thus, future work should
look at developing a method specifically for LPMs that is compatible with FEniCS. ym is a
vector of state variables at the previous time step and ya is a vector of state variables at a
combination of current and previous time steps, as shown here,

ym =
⎡
⎣ hm

E

hm
M

sm

⎤
⎦ , ya =

⎡
⎣ hE

hM

sm

⎤
⎦ , y =

⎡
⎣ hE

hM

s

⎤
⎦ . (76)

Once real function spaces are created and the vectors in Equation (76) are formed, the
variational form in Equation (75) can be expressed and solved with the Python code in
Appendix B.

6 Coupling with the Electromechanical Model

In this section, the wave equation from Sect. 3 is coupled with the EM PH model from
Sect. 5. A schematic of the combined model is shown in Fig. 13 for a rectangle wave domain.

Following the previous sections, the boundaries denoted ∂�M and ∂�R have zero Neu-
mann and zero Dirichlet conditions, respectively. The ∂�L boundary is the Dirichlet bound-
ary connection with the LPM model. All boundary conditions are implemented in a weak
manner. Since the only boundary connection is a Dirichlet boundary, the canonical form of
Equation (49) can be used to set up the interconnection with Equation (73). The relationship
between inputs and outputs of the wave domain and EM domain can be written as

up = −WyF , Fb = W∗yq , (77)
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Fig. 13 System diagram for the
coupled wave-electromechanical
system

where W is a compact operator and W∗ is its adjoint operator. The duality pairings for the
inputs and outputs are

〈up|yq〉∂� , 〈Fb, yF 〉 , (78)

where the 〈·|·〉∂�L
duality product is an L2 inner product that acts over the connection bound-

ary and the 〈·, ·〉 inner product is the standard inner product in R. We know that the velocity
of the left wave boundary is directly set by the output velocity of the EM system, therefore,

up = −WyF = −wyF , (79)

where w transforms a scalar into a constant function over the boundary, with the value of
yF . Substituting the boundary output relation from Equation (73) gives

up = −w
hM

m
, (80)

In practice, to turn the scalar value into a function it must be turned into a constant vector
and then the vector must be dot producted with a vector of basis functions. Knowing that
up = θT

p ûp we get,

θT
p ûp = −w

hM

m
, (81)

Now, we enforce that every point on the left boundary of the wave domain has the same
vertical velocity (êp|∂�L

) as the vertical velocity of the output motor ( hM

m
). Therefore, ûp =

−êp|∂�L
has the value of − hM

m
for each of its DOFs, which gives

−θT
p 1

hM

m
= −w

hM

m
, (82)

where 1 is a column vector of size equal to the number of boundary ûp DOFs that transforms
the scalar hM

m
into a vector with value hM

m
for each DOF on ∂�L. Equating both sides of

Equation (82) gives

w = θT
p 1 (83)
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The following energy conserving relation between the L2 and R inner products in Equa-
tion (78) can be used to determine W∗,

〈WyF |yq〉∂�L
= 〈W∗yq , yF 〉 . (84)

Evaluating the left-hand side of Equation (84) gives

〈WyF |yq〉∂�L
=

∫
∂�L

(wyF )T yqdsL

= yF

∫
∂�L

wT yqdsL .

(85)

Equating to the right-hand side of Equation (84) gives

yF

∫
∂�L

wyqdsL = 〈W∗yq , yF 〉

= yFW∗yq ,

(86)

which results in

Fb = W∗yq =
∫

∂�L

wyqdsL . (87)

Substituting yq from Equation (35) and eq = kwq gives

Fb = kw

∫
∂�L

w(q · n)dsL . (88)

Therefore, Equations (80) and (88) are the energy conserving interconnection relations
between the two domains. The total Hamiltonian of the combined system is given by

Htotal = Ĥ + HEM =
∫

�

(
1

2ρw

p2 + 1

2
kwq · q

)
dV + h2

E

2LE

+ h2
M

2m
+ KMs2

2
(89)

Finally, the canonical forms of Equations (47) and (73) can be combined to give the
input-state-output PH form of the interconnected system,
⎡
⎢⎢⎢⎢⎣

−Mp 0 0 0 0
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0 0 1 0 0
0 0 0 1 0
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(90)
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where Dp and D0
p are the interconnection matrices of the skew symmetric system matrix.

For skew-symmetry of the system matrix to hold the following must be true

D0
p = −DT

p . (91)

To verify that this skew symmetry holds we calculate Dp and D0
p by discretising Equa-

tions (80) and (88). Firstly, Equation (80) is discretised by multiplying on the left by the trial
basis function, ψq , and integrating over the boundary, as was done in the formulation of the
boundary term in Equation (19),

∫
∂�L

ψqupdsL = −
(∫

∂�L

ψqθ
T
pdsL

)
1
hM

m
(92)

= −Bpb1
hM

m
, (93)

where the final step comes from the definition of Bpb in Equation (48). Equating this with
the boundary term in the second row of Equation (90) gives

Dp

hM

m
= −Bpb1

hM

m
,

→ Dp = −Bpb1 . (94)

To discretise Equation (88), we first substitute Equation (83) and apply w = wT , because
w is a constant function,

Fb = kw

∫
∂�L

(θT
p 1)T (q · n)dsL . (95)

Discretising q · n in the same way as eq · n was discretised in Equation (18) gives,

Fb = 1T kw

(∫
∂�L

θpψq
T dsL

)
q̂

= 1T kwBT
pbq̂ , (96)

where 1T simply adds up the force contribution from each boundary DOF to calculate Fb .
Equating the boundary term in the fourth row of Equation (90) with the boundary term in
the second row of Equation (73) gives

kwD0
pq̂ = Fb

kwD0
pq̂ = kw1T BT

pbq̂ .

D0
p = 1T BT

pb

→ D0
p = −DT

p . (97)

Therefore, the discrete interconnected system retains a skew symmetric matrix, as re-
quired for a port Hamiltonian system. Equation (90) encompasses the canonical form, the
dynamic equations and the constitutive law equations of the interconnected system.

It is important to note that if the right-side boundary condition, pR , was non-zero then
there would be an extra boundary input and output in the canonical form of Equation (90).
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Fig. 14 p variable in the wave
domain after 0.3 s of a wave-EM
simulation, using Störmer-Verlet
time integration

Also, if the top and bottom Neumann boundaries were non-zero conditions, the canonical
form of Equation (90) would have interconnection inputs uint

p and outputs y int
q with the same

definitions as the discrete version of Equation (35). A canonical form for the Neumann con-
ditions would also have to be created with inputs/outputs for the boundary uq , yp and for the
interconnection uint

q , y int
p with the same definitions as the discrete version of Equation (34).

The two canonical forms could then be connected with Equation (50). Although the for-
mulation of the interconnected canonical form seems complicated, it is not necessary for
implementation. The full system canonical form is only discussed to reassure the reader that
the total system is equivalent to a combination of canonical forms and therefore is a Stokes-
Dirac structure and can have mixed causality boundary connections. The usefulness of the
canonical forms, Equations (47) and (73), is that they allow calculation of the interconnec-
tion relations, which can then be implemented in FEniCS, as shown in Appendix C.

7 Interconnection Model Results

This section displays the results for the coupled wave-EM model for a sinusoidal input
voltage. The time step for the simulations is 5×10−4 s, using an SV time integration scheme.
The problem is solved on both a simple rectangle domain with 21110 elements and a square
domain with central input and 13067 elements.

7.1 Rectangle Domain

The input voltage condition for the rectangle domain is given by

u =
{

5 sin(8πt) [V] t < 0.25 [s]
0 [V] t ≥ 0.25 [s] . (98)

The p variable of the wave equation is displayed after 0.3 s and 1.1 s in Figs. 14 and 15,
respectively. The initial large sinusoidal wave, which is due to the input over the first 0.25 s,
flows through the domain as expected. This wave is followed by smaller repeating waves
caused by the lingering oscillations of the EM system.

To confirm that the energy error of the model is bounded, the energy residual of each
domain and the total energy residual is plotted in Fig. 16. The residual for each domain is
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Fig. 15 p variable in the wave
domain after 1.1 s of a wave-EM
simulation, using Störmer-Verlet
time integration

Fig. 16 Energy residual vs time
for the interconnected wave-EM
simulation, using Störmer-Verlet
time integration. Total Residual
is the sum of the energy residuals
from the wave and EM domains.
Wave residual is the difference
between the energy in the wave
domain and the accumulated
energy that has entered the wave
domain through its boundaries.
EM residual is the difference
between the energy in the EM
domain and the accumulated
energy that has entered the EM
domain through its boundaries

the difference between the accumulated energy that has entered the domain and the internal
energy in the domain.

As shown, the energy residual is bounded for increasing times, as expected for a sym-
plectic time integration scheme. For a second-order symplectic method such as SV, the en-
ergy residual bound should be quadratically dependent on the time step, this relationship is
proven in [18] and expressed more generally as

H(q(t),p(t)) = H(q(0),p(0)) +O((�t)r ) . (99)

To ensure that the bounded energy residual is indeed quadratically dependent on the time
step, the energy residual maximum over a 20 s simulation is plotted against the step size
in Fig. 17. As discussed in Sect. 4 The SM scheme can also be used to conserve quadratic
invariants exactly. As shown in Fig. 17 we achieve an energy residual of < 10−11 for a
20 s simulation with SM, confirming that our model, with an SM scheme, conserves energy
exactly for linear, coupled LPM-continuum systems.

7.2 Square Domain with Central Input Boundary

A diagram for the domain of this section is shown in Fig. 18 and the input voltage is the same
as Equation (98). Following the notation of the previous sections, the boundaries denoted
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Fig. 17 Maximum energy
residual for the interconnection
model with a varied time step
size. SV=Störmer-Verlet,
SM=Symplectic (Implicit)
Midpoint

Fig. 18 System diagram for the
coupled wave-electromechanical
system with a square domain and
a central input

∂�M and ∂�R have zero Neumann conditions and zero Dirichlet conditions, respectively.
Again, the ∂�L boundary is the connection boundary with the LPM model and all boundary
conditions are implemented in the weak form.

The p variable of the wave equation is displayed after 0.4 s and 0.6 s in Figs. 19 and 20,
respectively. As can be seen, this example shows realistic 2D dispersion of a wave entering
a square domain.

At long times the uniform circular wave structure breaks down due to waves rebounding
off the walls. However, the wave behaviour should still retain some structure, for example,
there should be symmetry about the midline parallel to the x axis. Figure 21 shows pn after
8 s of simulation, once the uniform wavefronts have completely broken down. As can be
seen, there is still symmetry about the midline parallel to the x axis, further showing this
methods ability to accurately model the physical structure of the system.

The energy residual for an 8 s simulation with the SV scheme is shown in Fig. 22. As
in previous sections, the energy residual is oscillatory and bounded, as expected. Also, as in
the previous sections, when using the SM method the energy residual is < 10−12, therefore,
exactly conserved to within round-off error.
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Fig. 19 p variable in a square
wave domain after 0.4 s of the
wave-EM simulation, using
Störmer-Verlet time integration

Fig. 20 p variable in a square
wave domain after 0.6 s of the
wave-EM simulation, using
Störmer-Verlet time integration

Fig. 21 p variable in a square
wave domain after 8 s of the
wave-EM simulation, using
Störmer-Verlet time integration

8 Conclusion

For the modelling of continuum systems, a port-Hamiltonian, Galerkin finite element
method has been developed that, in general, has a bounded energy residual and linear long-
time error growth for the state variables. This method allows mixed boundary conditions
without the need for Lagrange multipliers or user-defined parameters. The discretisation
is shown to be equivalent to a coupling of canonical port-Hamiltonian forms that allows
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Fig. 22 Energy residual vs time
for the interconnected wave-EM
simulation with a square domain,
using Störmer-Verlet time
integration. Total Residual is the
sum of the energy residuals from
the wave and EM domains. Wave
residual is the difference between
the energy in the wave domain
and the accumulated energy that
has entered the wave domain
through its boundaries. EM
residual is the difference between
the energy in the EM domain and
the accumulated energy that has
entered the EM domain through
its boundaries

mixed interconnections with other canonical port-Hamiltonian models. The discretisation is
also shown to be symplectic in both time and space. For our specific 2D linear wave equa-
tion system we also show exact energy conservation with a symplectic (implicit) midpoint
method that guarantees conservation of quadratic first integrals. We also compare against
an analytical solution and show standard order of convergence for the state variables with
respect to the temporal and spatial discretisation. A modal analysis is performed and the
eigenvalues are verified to be accurate. The boundary conditions are implemented in varia-
tional form, in a weak manner, without the need for penalty methods. In addition to this, the
method is capable of monolithic coupling with arbitrary LPMs. The coupled model is shown
to also have a bounded energy residual with a standard temporal order of convergence for
the SV time integration scheme and exact energy conservation for the SM time integration
scheme. The example model of a 2D linear wave equation coupled with an EM linear actua-
tor is a good proof of concept for more advanced couplings between Hamiltonian PDEs and
LPMs. Future work will be done on implementing control algorithms for coupled models,
in order to improve control of multiphysics, multidomain, and non-linear problems.

Appendix A: FEniCS Code Example

To give the reader details on how the variational forms in Sect. 3 are implemented in FEn-
iCS, this section shows code snippets for the SE scheme with weak form and strong form
boundary conditions. The full code can be found at
https://github.com/FinbarArgus/portHamiltonian_FEM.git

Firstly FEniCS and the meshing software mshr are imported, then the domain shown in
Fig. 2 is created with the following lines of code,

from f e n i c s i m p o r t ∗
i m p o r t mshr
m a i n R e c t a n g l e = mshr . R e c t a n g l e ( P o i n t ( 0 . 0 , 0 . 0 ) , P o i n t ( L_x , L_y ) )
mesh = mshr . g e n e r a t e _ m e s h ( ma inRec tang le , r e s )

where res is the resolution of the mesh. The function spaces, trial functions, test functions
and functions for the DOFs at the previous and current time steps can then be created as
follows,
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# c r e a t e mixed f u n c t i o n s p a c e o f Lagrange and R a v i a r t −Thomas Elemen t s
P = F i n i t e E l e m e n t ( ’ P ’ , t r i a n g l e , l a g r a n g e _ b a s i s _ o r d e r )
RT = F i n i t e E l e m e n t ( ’RT’ , t r i a n g l e , R T _ b a s i s _ o r d e r )
e l e m e n t = MixedElement ( [ P , RT ] )
U = F u n c t i o n S p a c e ( mesh , e l e m e n t )

# D e f i n e t r i a l and t e s t f u n c t i o n s
p , q = T r i a l F u n c t i o n s (U)
v_p , v_q = T e s t F u n c t i o n s (U)

# D e f i n e f u n c t i o n s f o r s o l u t i o n s a t p r e v i o u s and c u r r e n t t ime s t e p s
u_m = F u n c t i o n (U)
p_m , q_m = s p l i t ( u_n )

u_ = F u n c t i o n (U)
p_ , q_ = s p l i t ( u_ )

To implement the Neumann conditions on the top and bottom boundaries, the DOFs on
the relevant boundaries are marked as shown,

c l a s s TopBottomMarker ( SubDomain ) :
d e f i n s i d e ( s e l f , x , on_boundary ) :

r e t u r n on_boundary and ( n e a r ( x [ 1 ] , 0 ) o r n e a r ( x [ 1 ] , L_y ) )

# I n i t i a l i s e mesh f u n c t i o n f o r weak b o u n d a r i e s . F a c e t s a r e dim () −1
boundaryDomains = MeshFunct ion ( ’ s i z e _ t ’ , mesh , mesh . t o p o l o g y ( ) . dim () −1)
# i n i t i a l i s e subdomains t o i n d e x an a r b i t r a r y i n d e x 3
boundaryDomains . s e t _ a l l ( 3 )

# Mark t o p and bot tom b o u n d a r i e s wi th i n d e x 1
topBottomMark = TopBottomMarker ( )
topBottomMark . mark ( boundaryDomains , 1 )

For the weak implementation of the Dirichlet left and right boundaries, a similar marking
method is done as shown,

# L e f t and r i g h t edge boundary c o n d i t i o n f o r marking
c l a s s L e f t M a r k e r ( SubDomain ) :

d e f i n s i d e ( s e l f , x , on_boundary ) :
r e t u r n on_boundary and n e a r ( x [ 0 ] , 0 )

c l a s s Righ tMarke r ( SubDomain ) :
d e f i n s i d e ( s e l f , x , on_boundary ) :

r e t u r n on_boundary and n e a r ( x [ 0 ] , L_x )

i f d i r i c h l e t I m p == ’ weak ’ :
l e f t M a r k = L e f t M a r k e r ( )
l e f t M a r k . mark ( boundaryDomains , 0 )

r i g h t M a r k = Righ tMarke r ( )
r i g h t M a r k . mark ( boundaryDomains , 2 )

# R e d e f i n e ds so t h a t ds ( 0 ) i s l e f t boundary ,
# ds ( 1 ) i s topBot tom ( middle ) and ds ( 2 ) i s r i g h t boundary
ds = Measure ( ’ ds ’ , domain=mesh , subdomain_da ta =boundaryDomains )

The strong implementation of Dirichlet left and right boundaries differs by specifying
forced and fixed boundaries, respectively, as shown,
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# L e f t edge f o r c e d boundary c o n d i t i o n f o r d e f i n i n g s t r o n g D i r i c h l e t BC
d e f f o r c e d _ b o u n d a r y ( x , on_boundary ) :

r e t u r n on_boundary and n e a r ( x [ 0 ] , 0 . 0 )

# R i g h t edge f i x e d boundary c o n d i t i o n f o r d e f i n i n g s t r o n g D i r i c h l e t BC
d e f f i x e d _ b o u n d a r y ( x , on_boundary ) :

r e t u r n on_boundary and n e a r ( x [ 0 ] , L_x )

After setting an expression for the left boundary condition pL =p_L, a list of the Dirich-
let boundary conditions is created as follows,

i f d i r i c h l e t I m p == ’ s t r o n g ’ :
b c _ f o r c e d = D i r i c h l e t B C (U. sub ( 0 ) , p_L , f o r c e d _ b o u n d a r y )

# f i x e d boundary a t r i g h t boundary
b c _ f i x e d = D i r i c h l e t B C (U. sub ( 0 ) , C o n s t a n t ( 0 . 0 ) , f i x e d _ b o u n d a r y )

# L i s t o f s t r o n g boundary c o n d i t i o n o b j e c t s
bcs = [ b c _ f o r c e d , b c _ f i x e d ]

The final clear difference between the boundary condition implementations can be seen
when specifying the variational forms for the SE scheme as shown below. Note the extra
terms for the left and right Dirichlet boundaries in the weak implementation.

i f d i r i c h l e t I m p == ’ s t r o n g ’ :
# V a r i a t i o n a l form of t h e wave e q u a t i o n wi th s t r o n g D i r i c h l e t BCs
F = ( p − p_m )∗ v_p∗dx + \

d t ∗k_w∗(− d o t ( q_m , g ra d ( v_p ) ) ∗ dx + q_M∗v_p∗ds ( 1 ) ) + \
d o t ( q − q_m , v_q )∗ dx + \
d t / rho_w∗ d o t ( g ra d ( p ) , v_q )∗ dx

e l i f d i r i c h l e t I m p == ’ weak ’ :
# V a r i a t i o n a l form of t h e wave e q u a t i o n wi th weak D i r i c h l e t BCs
# T h i s i s t h e i m p l e m e n t a t i o n of Eq . ~ ( 5 6 )
F = ( p − p_m )∗ v_p∗dx + \

d t ∗k_w∗(− d o t ( q_m , g ra d ( v_p ) ) ∗ dx +
q_M∗v_p∗ds ( 1 ) +
d o t ( q_m , n )∗ v_p∗ds ( 0 ) +
d o t ( q_m , n )∗ v_p∗ds ( 2 ) ) + \
d o t ( q − q_m , v_q )∗ dx −
d t / rho_w ∗ ( d i v ( v_q )∗ p∗dx +
d o t ( v_q , n )∗ p_L∗ds ( 0 ) +
d o t ( v_q , n )∗ p_R∗ds ( 2 ) +
d o t ( v_q , n )∗ p∗ds ( 1 ) )

Note that q_M, p_L, and p_R are defined as FEniCS expressions equal to their coun-
terpart qM , pL, and pR definitions in Equations (52a)–(52c). To formulate the A and B

matrices in Ax = B , where x is the vector of state variables, we then implement the final
lines,

# S e p a r a t e t h e v a r i a t i o n a l form i n t o LHS and RHS
a = l h s ( F )
b = r h s ( F )

# Assemble m a t r i c e s
A = a s s e m b l e ( a )
B = a s s e m b l e ( b )
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# Apply boundary c o n d i t i o n s t o m a t r i c e s i f we have D i r i c h l e t c o n d i t i o n s
i f d i r i c h l e t I m p == ’ s t r o n g ’ :

[ bc . a p p l y (A, B) f o r bc i n bcs ]

Note that the Dirichlet boundary condition application in the final line modifies the A

and B matrices by removing the rows and columns that correspond with the fixed or forced
boundary DOFs and specifies the value of the DOF exactly. The system can finally be solved
by iterating through the time steps as follows,

t = 0
f o r n i n r a n g e ( n u m b e r _ o f _ s t e p s )

# u p d a t e t ime
t += d t

# Here you must u p d a t e any t ime d e p e n d e n t e x p r e s s i o n s ( o m i t t e d )

# a s s e m b l e B m a t r i x wi t h u p d a t e d u_m
B = a s s e m b l e ( b )

# Apply boundary c o n d i t i o n s t o m a t r i c e s
i f d i r i c h l e t I m p = ’ s t r o n g ’ :

[ bc . a p p l y (A, B) f o r bc i n bcs ]

s o l v e (A, u_ . v e c t o r ( ) , B)

# u p d a t e s o l u t i o n a t t h e p r e v i o u s t ime s t e p f o r t h e n e x t loop
u_m . a s s i g n ( u_ )

Appendix B: Electromechanical Python Implementation

The following block of code shows the variational form used to implement the lumped
parameter EM model, Equation (75), in FEniCS.

F = (− d o t ( v_y , y − y_m ) / d t +
d o t ( v_y , A. d o t ( y_a ) ) +
v_y [ 0 ]∗ u I n p u t + v_y [ 1 ]∗ F_b )∗ ds ( 0 )

where A, v_y, y, y_m, and y_a correspond to A, vy , y, ym, and ya , respectively. Also,
uInput and F_b are FEniCS expressions that correspond with u and Fb , respectively. The
problem can then be solved by iterating through time steps, assembling the variational form,
then solving the assembled matrix system for each time step, in the same way as at the end
of Appendix A.

Appendix C: FEniCS Implementation of the Interconnection

In this section, since the scalar variables are implemented in FEniCS as constant functions,
w, which turns scalar values into constant functions, can be omitted. The interconnection
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condition for the wave domain input boundary, Equation (79), is implemented in FEniCS
with the boundary variational form in Equation (55b). This variational form is

∫
∂�L

(vq · n)
pL

ρw

dsL = −
∫

∂�L

(vq · n)updsL =
∫

∂�L

(vq · n)yF dsL =
∫

∂�L

(vq · n)
hM

m
dsL .

(100)
The variational form in Equation (75) that allows the EM domain input boundary term,

Equation (87), to be applied in FEniCS is
∫

∂�L

vy2FbdsL , (101)

where vy2 is the 2nd component of vy , the ODE test function vector. Substituting Equa-
tion (87) into Equation (101) and taking vy2 out of the integral, since it is a real function
space that is constant over the boundary, gives

∫
∂�L

vy2

(∫
∂�L

yqdsL

)
dsL = vy2

∫
∂�L

(∫
∂�L

yqdsL

)
dsL . (102)

Now, since the inside integral evaluates to a constant over the boundary, the outside
integral can be evaluated to give

vy2Ly

∫
∂�L

yqdsL . (103)

Finally, substituting yq from Equation (35) and eq = kwq gives

kwLyvy2

∫
∂�L

(q · n)dsL . (104)

The interconnection with boundary interconnection forms, Equations (100) and (104),
can be implemented in FEniCS for the SE scheme with the following code,

# T h i s i s t h e v a r i a t i o n a l form of t h e wave e q u a t i o n
F = ( p − p_m )∗ v_p∗dx + \

d t ∗k_w∗(− d o t ( q_m , g ra d ( v_p ) ) ∗ dx +
q_M∗v_p∗ds ( 1 ) +
d o t ( q_m , n )∗ v_p∗ds ( 0 ) +
d o t ( q_m , n )∗ v_p∗ds ( 2 ) ) + \
d o t ( q − q_m , v_q )∗ dx −
d t / rho_w ∗ ( d i v ( v_q )∗ p∗dx +
d o t ( v_q , n )∗ p_R∗ds ( 2 ) +
d o t ( v_q , n )∗ p∗ds ( 1 ) ) +
d t ∗ d o t ( v_q , n )∗ y [ 1 ] /m∗ds ( 0 ) # T h i s l i n e implemen t s Eq . ~ ( 1 0 0 )

# T h i s i s t h e v a r i a t i o n a l form of t h e e l e c t r o m e c h a n i c a l sys tem
F_em = (− d o t ( v_y , y − y_m ) / d t +

d o t ( v_y , A. d o t ( y_a ) ) +
v_y [ 0 ]∗ u I n p u t +
k_w∗L_y∗v_y [ 1 ]∗ d o t ( q_m , n ) ) ∗ ds ( 0 ) # T h i s l i n e implemen t s Eq . ~ ( 1 0 4 )

# Combine t h e two v a r i a t i o n a l forms
F = F + F_em
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Table 1 Material constants for wave equation and coupled wave-EM simulations

Parameter Symbol Value Units

Wave domain density ρw 2.0 kg m−3

Wave domain stiffness kw 3.0 kg m s−2

Wave speed squared c2(kw/ρw) 1.5 m2 s−2

Wave domain x-length Lx 1.0 m

Wave domain y-length Ly 0.25 m

Square domain x-length Lsx 1.0 m

Square domain y-length Lsy 1.0 m

Square domain centre-length Lc 0.1 m

Electrical resistance RE 0 � = kg m2 s−1 C−2

Electrical inductance LE 0.1 H = kg m2 C−2

Gyrator constant Bl 5.0 kg m s−1 C−1

Mechanical damping RM 0 kg m s−1

Mechanical stiffness KM 5.0 kg m s−2

Mechanical mass m 0.15 kg

Table 2 Spatial Discretisation properties for each refinement level for P1RT1, P2RT1, and P1RT2. RL=Re-
finement Level, NoE=Number of Elements, CEL=Characteristic Element Length, L2 = L2 Error Norm,
OoC=Order of convergence from previous refinement

P1RT1 P2RT1 P1RT2

RL NoE CEL [m] L2 OoC L2 OoC L2 OoC

0 570 0.0209 6.75 0.00 8.62 0.00 7.51 0.00

1 1322 0.0138 3.03 1.90 3.97 1.84 2.92 2.25

2 2344 0.0103 1.76 1.90 2.26 1.97 1.77 1.75

3 5318 0.0069 0.86 1.76 1.02 1.94 0.69 2.28

4 9358 0.0052 0.50 1.94 0.58 1.97 0.39 2.01

5 14404 0.0042 0.32 1.99 0.38 1.99 0.25 2.07

Appendix D: Material Constants

The constants used for simulation of the wave equation and coupled wave-EM model are
shown in Table 1.

Appendix E: Spatial Convergence Tables

The element numbers, characteristic element lengths, L2 error norm and order of conver-
gence from the previous refinement level for the spatial convergence in Sect. 4.1 are shown
in Table 2, Table 3, and Table 4.
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Table 3 Spatial Discretisation
properties for each refinement
level for P2RT2. RL=Refinement
Level, NoE=Number of
Elements, CEL=Characteristic
Element Length, L2 = L2 Error
Norm, OoC=Order of
convergence from previous
refinement

RL NoE CEL [m] L2 OoC

0 98 0.0505 5.93 0.00

1 211 0.0344 1.30 3.96

2 368 0.0261 0.59 2.81

3 570 0.0209 0.31 2.92

4 837 0.0173 0.20 2.34

5 1322 0.0138 0.13 2.04

Table 4 Spatial Discretisation
properties for each refinement
level for P3RT3. RL=Refinement
Level, NoE=Number of
Elements, CEL=Characteristic
Element Length, L2 = L2 Error
Norm, OoC=Order of
convergence from previous
refinement

RL NoE CEL [m] L2 OoC

0 42 0.0772 0.379 0.000

1 98 0.0505 0.131 2.510

2 148 0.0411 0.056 4.110

3 211 0.0344 0.025 4.576

4 291 0.0293 0.011 4.895

5 368 0.0261 0.008 3.138
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