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Abstract Mechanical aspects play an important role in brain development, function, and
disease. Therefore, continuum-mechanics-based computational models are a valuable tool
to advance our understanding of mechanics-related physiological and pathological processes
in the brain. Currently, mainly phenomenological material models are used to predict the be-
havior of brain tissue numerically. The model parameters often lack physical interpretation
and only provide adequate estimates for brain regions which have a similar microstructure
and age as those used for calibration. These issues can be overcome by establishing ad-
vanced constitutive models that are microstructurally motivated and account for regional
heterogeneities through microstructural parameters.

In this work, we perform simultaneous compressive mechanical loadings and microstruc-
tural analyses of porcine brain tissue to identify the microstructural mechanisms that under-
lie the macroscopic nonlinear and time-dependent mechanical response. Based on experi-
mental insights into the link between macroscopic mechanics and cellular rearrangements,
we propose a microstructure-informed finite viscoelastic constitutive model for brain tissue.
We determine a relaxation time constant from cellular displacement curves and introduce
hyperelastic model parameters as linear functions of the cell density, as determined through
histological staining of the tested samples. The model is calibrated using a combination of
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cyclic loadings and stress relaxation experiments in compression. The presented consider-
ations constitute an important step towards microstructure-based viscoelastic constitutive
models for brain tissue, which may eventually allow us to capture regional material hetero-
geneities and predict how microstructural changes during development, aging, and disease
affect macroscopic tissue mechanics.

Mathematics Subject Classification 74L15

Keywords Brain tissue · Finite viscoelasticity · Microstructure · Constitutive modeling ·
Parameter identification

1 Introduction

Mechanical forces and signals have recently been identified as an important influenc-
ing factor for brain development, injury, and disease [22, 29]. Consequently, continuum-
mechanics-based computational models have gained considerable interest in the context of
targeting open challenges associated with physiological and pathological processes in the
brain. Numerical simulations have advanced our understanding of cortical folding during
brain development [5, 11] and the interplay of biochemical and biomechanical degeneration
in Alzheimer’s disease [45]. In addition, mechanical models have been applied to assess the
risk during traumatic brain injury (TBI) [31] and establish corresponding injury thresholds
[37], or to inform neurosurgeons on the optimization of neurosurgical procedures [52].

From a mechanics point of view, brain tissue is an exceptional material due its extreme
compliance and mechanical complexity [15]. The mechanical response highly depends on
length and time scales as well as loading conditions and has been subject of numerous
studies throughout the last half century [15, 17]. The main mechanical characteristics are
nonlinearity, compression-tension asymmetry, and – especially for short and intermediate
time scales – pronounced conditioning and hysteresis [12, 41]. The latter can only partially
be attributed to the biphasic nature of brain tissue and poroelastic effects [18, 21].

Not only the mechanical response of brain tissue is complex but also its structure, both
on macroscopic and microscopic scales [11, 16, 30, 47]. The brain consists of the cerebrum
(with telencephalon and diencephalon), the cerebellum, and the brain stem (with mesen-
cephalon, pons, and medulla oblongata), as illustrated in Fig. 1. Macroscopically, we may
distinguish between two tissue types, gray and white matter, or more refined between the
cortex (outer gray matter), the corona radiata (central white matter), the basal ganglia (part
of the inner gray matter including the putamen), and inner white matter, with highly aligned
nerve fibers in the corpus callosum (which connects the two hemispheres) and the brain
stem. But even within gray and white matter regions, the brain’s microstructure consisting
of cells, extracellular matrix, and interstitial fluid may vary significantly due to differences in
local functional demands. This is clearly visible when comparing the microstructure of the
corona radiata and the brain stem (both white matter regions) in Figs. 1b and e, respectively.
The microstructure of brain tissue is interesting from a mechanics point of view as it lacks
fibrillar extracellular matrix components, such as elastin and fibrillar collagen [3], which
control the overall mechanical behavior of other soft tissues like arteries [23, 24]. Conse-
quently, the much softer cellular and non-fibrillar extracellular components may become
decisive [3, 50]. In addition, brain cells ‘actively’ respond to their mechanical environment
through ‘mechanosensing’ [8, 29, 38, 49]: They may adapt their migration, differentiation
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Fig. 1 Structure of the porcine brain with (a) different macroscopic components (cerebrum, cerebellum, and
brain stem) and anatomical regions (corona radiata and putamen) and the corresponding microstructure in (b)
the corona radiata, (c) the putamen, (d) the cerebellar white matter, and (e) the brain stem. Scale bars indicate
100 µm

and proliferation behavior, or even their mechanical environment through secretion of ex-
tracellular matrix components resulting in additional coupling effects [9].

While computational modeling based on nonlinear continuum mechanics has been ap-
preciated as a promising tool to advance our understanding of brain mechanics and better
understand mechanics-driven processes associated with injury and disease, it remains chal-
lenging to provide appropriate constitutive models that capture brain tissue complexity in
space and time. Those are key to perform predictive simulations that are eventually useful
to the biomedical and clinical communities. Currently used constitutive models are mostly
phenomenological [12, 19, 34, 35, 43]. It has been shown that the Ogden model well rep-
resents the time-independent, hyperelastic response of brain tissue under different loading
modes [12, 34, 36], and that its viscoelastic extension is capable of additionally capturing
conditioning effects and hysteresis [13]. However, the corresponding material parameters
have varied greatly depending on the experimental data used for calibration. In addition,
those models can only implicitly account for regional differences through individual param-
eter sets for different anatomical regions [12, 13], while it is not possible to capture the
heterogeneities that are present even within a certain anatomical region.

A possible solution to this problem is to incorporate microstructural information into
constitutive models for brain tissue [7], which has been successfully realized for other tis-
sues, such as arterial tissue, especially by Gerhard A. Holzapfel and his co-workers [24].
An additional advantage of microstructure-informed constitutive models is that they enable
us to predict how (local) changes in the tissue’s microstructure that may occur during de-
velopment and aging or due to injury and disease translate into changes in macroscopic
mechanical properties. This is highly relevant in the context of certain diseases, where mi-
crostructural changes are known but the link to the corresponding tissue mechanics remains
unclear [6, 16]. Importantly, such changes in mechanical properties can in turn affect cell
behavior [29].

Recent efforts towards micromechanical modeling of brain tissue have proposed to in-
clude the individual contributions of axons and extracellular matrix in white matter tissue
[25, 42] or the brain stem [2, 26] through representative volume elements accounting for the
distribution and orientation of nerve fiber bundles from magnetic resonance and diffusion
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tensor imaging data. However, it remains controversial whether axons indeed majorly con-
tribute to the mechanical response of brain tissue [12, 15, 20, 51] and such models would
only be valid for certain white matter areas. Other studies have expanded phenomenologi-
cal models to account for a cell-density dependent tissue stiffness [1, 16, 28]. So far, such
models have been limited to linear elastic [1, 28] or hyperelastic models [16], but have not
accounted for viscoelastic effects. In addition, tissue samples were first subjected to me-
chanical loading and afterwards examined histologically or immunohistologically [16, 28],
or even separate sets of samples were used for mechanical and microstructural analyses [1].
Therefore, it still remains unclear how deformations on the tissue scale are transferred to the
different elements on the microscopic scale (cells, extracellular matrix components, blood
vessels) and which microstructural components contribute to the hyper- and viscoelastic
tissue behavior.

The aim of this study is to further advance microstructure-informed constitutive mod-
els for brain tissue. We will first introduce the modeling framework in Sect. 2.1, and then
simultaneously record the mechanical response and microstructural rearrangement during
compressive loading of porcine brain tissue in Sect. 2.2. Like this, we identify the key
microstructural elements that are relevant for the macroscopic mechanical response and
propose a microstructure-informed finite viscoelastic constitutive model for brain tissue in
Sect. 2.3. We include microstructural parameters from imaging data and calibrate the re-
maining model parameters by simultaneously considering cyclic loadings and stress relax-
ation experiments in Sect. 2.4. Finally, we conclude in Sect. 3 with a summary on the main
findings and prospects for microstructure-informed constitutive modeling of brain tissue in
the future.

2 Microstructure-Informed Modeling of Brain Viscoelasticity

2.1 Kinematics of Finite Viscoelasticity

To model the finite viscoelasticity of brain tissue, we use the nonlinear equations of con-
tinuum mechanics and introduce the deformation map ϕ (X, t) to map tissue from its un-
deformed, unloaded state with the position vector X at time t0 to its deformed, loaded state
with the position vector x = ϕ (X, t) at time t . We determine the associated deformation
gradient F in its spectral representation in terms of the eigenvalues λa and the undeformed
and deformed eigenvectors Na and na = F · Na,

F = ∇Xϕ =
3∑

a=1

λa na ⊗ Na . (1)

From the deformation gradient, we may further determine the left Cauchy Green deforma-
tion tensor b and its spectral representation

b = F · Ft =
3∑

a=1

λ2
ana ⊗ na . (2)

To capture viscoelastic effects, we decompose the deformation gradient into elastic and
viscous parts,

F = Fe
i · Fv

i ∀ i = 1, ..,m , (3)
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Fig. 2 Multiplicative
decomposition model, where F is
associated with the main elastic
network, Fv

1 is the viscous
damper associated with fluid flow
inside the tissue with the
corresponding hyperelastic
spring Fe

1, and Fv
2 and Fe

2 are the
viscous damper and the
corresponding hyperelastic
spring associated with the
viscoelasticity of the network of
cells and extracellular matrix.
Adapted from [14]

where i denotes the parallel arrangement of m viscoelastic elements [46], as illustrated in
Fig. 2. We can then introduce the spatial velocity gradient,

l = ∇xv = Ḟ · F−1 = le
i + lv

i , (4)

and decompose it additively into elastic parts, le
i = Ḟe · (Fe

i )
−1, and viscous parts, lv

i = Fe
i ·

Ḟv
i · (Fv

i )
−1 · (Fe

i )
−1.

It proves convenient to also introduce the elastic left Cauchy Green deformation tensor
for each mode,

be
i = Fe

i · (Fe
i )

t =
3∑

a=1

[λe
i a]2 ne

i a ⊗ ne
i a , (5)

with eigenvalues λe
i a and eigenvectors ne

i a, which are, in general, not identical to the eigen-
vectors of the total left Cauchy Green deformation tensor in Equation (2), ne

i a �= na. The
material time derivative of the elastic left Cauchy Green deformation tensor,

ḃe
i = 2 [ le

i · be
i ]sym = 2 [ l · be

i ]sym − 2 [ lv
i · be

i ]sym, (6)

introduces the Lie-derivative,

Lv be
i = −2 [ lv

i · be
i ]sym , (7)

along the velocity field of the material motion.

2.2 Experimental Analyses

To experimentally assess the microstructural origin of brain tissue viscoelasticity, we used
a Discovery HR-3 Rheometer from TA instruments (New Castle, Delaware, USA) with the
corresponding microscope module. We visualized the cells inside the cylindrical tissue sam-
ple of approximately R = 4 mm diameter and H = 4 mm height by using methylene blue,
which is a water-based dye that stains the fresh tissue without significantly altering its me-
chanical properties. Figure 3 shows the experimental setup for unconfined compression ex-
periments with simultaneous cell tracking. The stained specimens were fixed to the bottom
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Fig. 3 Experimental setup. Rheometer with microscope module (left). Specimen mounted to the testing
device (right)

glass plate and upper specimen holder and immersed in phosphate buffered saline solution
(PBS). The microscope objective and light source were located underneath the glass plate.
We used a 20× magnification since, on the one hand, it allowed us to distinguish individual
larger cell bodies and track their deformations, and, on the other hand, it was still small
enough so that the observed cells did not leave the field of view during the experiments with
low to medium compressive strains.

We assumed that our brain samples deformed isochorically, J = det(F) = λ1λ2λ3 = 1,
and homogeneously during all experiments [12]. This implies that we neglect boundary
effects and assume a constant deformation gradient F across the sample [43]. For the case
of uniaxial compression, we then obtain

[F] =
⎡

⎣
1/

√
λ 0 0

0 1/
√

λ 0
0 0 λ

⎤

⎦ , (8)

where the stretch λ is computed as λ = 1 + �z/H with z-displacement �z. We further
computed the Piola stress Pzz as the force fz recorded during the experiments divided by the
cross-sectional area A of the specimen in its unloaded state, i.e., Pzz = fz/A with A = πR2.

2.2.1 The Limit of Brain Viscoelasticity

In an initial test series, we aimed to define the limit of brain viscoelasticity, i.e. the
macroscopic loading that still allows for the full recovery of the mechanical response of
brain tissue. To this end, we performed cyclic compression experiments with three load-
ing/unloading cycles and a recovery period of 20 minutes for compressive strains of up to
50%.

Figure 4 demonstrates that porcine brain tissue can recover from compressive loadings of
up to 30% strain within a 20 minute recovery period. We note that preliminary studies had
shown that shorter recovery periods were not sufficient for the tissue to reach full recovery.
For longer periods, in turn, the specimens may start to swell, which leads to artefacts in the
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Fig. 4 Limit of brain viscoelasticity. Representative nominal stress versus stretch behavior of specimens
from the corona radiata loaded with two sets of three loading cycles under compression, separated by a 20
min recovery period, with different maximum strains of 30%, 40%, and 50%. The tissue recovers from strains
up to 30%, while higher strains lead to permanent softening of the tissue response

Fig. 5 Rigid body displacement
of a cell body in the brain stem
during compressive loading (a)
and unloading (b). The colored
lines depict the shape of the cell
body in the undeformed (orange)
and deformed (blue) specimen.
The black arrow indicates the
displacement of the nucleus

measured stress response. For higher compressive strains, i.e., 40% and 50%, we observe
permanent softening of the tissue response, which is presumably associated with tissue dam-
age. The latter is also supported by the observation that specimens subjected to 50% strain
were visibly torn after testing.

2.2.2 Deformations on the Cellular Level

By tracking the motion and deformation of individual cells during compression loading,
we observed that most cell bodies undergo large displacements without being deformed,
as exemplarily illustrated in Fig. 5. Only few cells deformed visibly, but still returned to
their original shape upon unloading (see Fig. 6). This suggests that cell bodies move with
the inter-cellular network consisting of dendrites, synapses, and extracellular matrix, but
hardly experience any deformation. Interestingly, also relative movements between neigh-
boring cells are minor compared to the overall cell displacement. We may conclude that the
mechanical loading is rather transferred to the inter-cellular network than the cell bodies
themselves. Accordingly, the stiffness of individual brain cells, which have been previously
probed [33], seems rather irrelevant for tissue mechanics.

2.2.3 Stress Relaxation Behavior Across Scales

In a next step, we aimed to unravel how rearrangements on the cellular scale are linked
to time-dependent effects and the stress relaxation behavior of brain tissue. We performed
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Fig. 6 Deformation of a cell
body in the brain stem during
compressive loading (a) and
unloading (b). The colored lines
depict the shape of the cell body
in the undeformed (orange) and
deformed (blue) configuration.
The black arrows indicate the
displacements of the surrounding
cell nuclei

Fig. 7 Stress relaxation behavior on the cell and tissue scale. During stress relaxation, cells keep moving
in the same direction as during loading (a). The maximum cell displacement correlates with the peak stress
inside the respective specimen with a correlation coefficient r = 0.71 (b). The cell displacements during the
relaxation period can be fitted with a one-term Prony series (c)

stress relaxation experiments in compression with maximum strains of 7.5% (for higher
strains the cells would have moved out of focus) and a holding period of 600 s. When a sam-
ple was loaded, the cells inside the tissue started moving, as exemplarily shown in Fig. 7a
(black dotted line). Interestingly, during the holding period, the cells kept moving in the
same direction as during the loading phase, but their velocity decreased over time. We note
that in previous studies, we had used a holding period of 300 s for stress relaxation tests.
However, as cell displacement curves take at least 600 s to reach equilibrium, we chose a
holding period of 600 s here. For even longer testing times, we could not have analyzed
the cell displacements as the staining washes out after around ten minutes. The cell dis-
placement curves were similar for all tested specimens. Consequently, they were much less
affected by measurement inaccuracies and boundary effects than the corresponding stress
data (blue solid line). In addition, the cell displacement data are extracted from micro-
scope videos and, thus, inherently less noisy. Therefore, we render them suitable for the
determination of microstructurally motivated relaxation time constants, as further discussed
in Sect. 2.3.2.

Figure 7b shows the correlation between the maximum cell displacement inside a spec-
imen and the peak stress of the corresponding stress relaxation curve. Higher peak stresses
are associated with larger cell displacements. This seems to hold true for all the different
regions introduced in Fig. 1, the corona radiata, putamen, brain stem, and cerebellum.
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2.3 Microstructure-Informed Constitutive Modeling

Based on our previous experimental findings [12], we assume that both the elastic and vis-
coelastic behavior of brain tissue are isotropic. Following the considerations in [44] and
[13], we introduce the viscoelastic free energy function ψ as the sum of three terms, an
equilibrium part ψeq in terms of the total principal stretches λa, a non-equilibrium part
ψneq = ∑m

i=1 ψi in terms of the i, ..,m elastic principal stretches λe
ia, and a term p [J − 1 ]

that enforces the incompressibility constraint, J − 1 = 0, via the Lagrange multiplier p [13,
14],

ψ = ψeq + ψneq − p [J − 1 ] . (9)

As we have previously shown that two viscoelastic elements are sufficient to accurately
capture the viscoelastic response of brain tissue [10, 13], we set m = 2 (see Fig. 2).

Corresponding to Equation (9), we introduce the stress power P as the sum of an equilib-
rium part Peq = τ eq : l in terms of the equilibrium Kirchoff stress τ eq and a non-equilibrium
part Pneq = τ neq : l in terms of the non-equilibrium Kirchoff stress τ neq = ∑2

i=1 τ i ,

P = Peq +Pneq = [τ eq + τ neq ] : l . (10)

We can then evaluate the dissipation inequality, D = P − ψ̇ ≥ 0, in terms of the individual
equilibrium and non-equilibrium contributions,

D = [Peq +Pneq ] − [ ψ̇eq + ψ̇neq ] ≥ 0. (11)

Based on the assumption of isotropy, we may express the non-equilibrium stress power
in terms of the Lie derivative of the elastic left Cauchy Green deformation tensor be

i in
Equation (7), Pneq = ∑2

i=1[τ i · (be
i )

−1]: 1
2 [ ḃe − Lvbe

i ], and obtain the following explicit
representation of the dissipation inequality,

D=
[
τ eq − 2

∂ψeq

∂b
· b

]
: l

+
2∑

i=1

[
1

2
τ i · (be

i )
−1 − ∂ψi

∂be
i

]
: ḃe

i

−
2∑

i=1

[
1

2
τ i · (be

i )
−1

]
: Lvbe

i ≥ 0 .

(12)

Following standard arguments of thermodynamics, we obtain the definition of the equilib-
rium Kirchhoff stress,

τ eq = 2
∂ψeq

∂b
· b =

3∑

a=1

∂ψeq

∂λa
λana ⊗ na , (13)

the definition of the non-equilibrium Kirchhoff stresses,

τ i = 2
∂ψi

∂be
i

· be
i =

3∑

a=1

∂ψi

∂λe
i a

λe
i ane

i a ⊗ ne
i a , (14)
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and the reduced dissipation inequalities for each individual mode i,

Dred
i = −τ i : 1

2 [Lvbe
i · (be

i )
−1] ≥ 0 . (15)

It remains to specify the equilibrium and non-equilibrium parts of the free energy, ψeq

and ψneq (Sect. 2.3.1), and the evolution of the internal variables be
i (Sect. 2.3.2), based on

the insights into the microstructural origin of brain viscoelasticity gained in Sect. 2.2.

2.3.1 Microstructure-Informed Hyperelastic Constitutive Models

We have previously shown that the hyperelastic behavior of brain tissue under multiple
loading modes is best represented by the one-term Ogden model [40] with the strain energy
function ψ = 2μ/α2[λα

1 +λα
2 +λα

3 −3], which we have reformulated in terms of the classical
shear modulus μ and the nonlinearity parameter α here [12, 13]. In addition, we have found
that both the initial shear modulus and the nonlinearity parameter correlate linearly with the
density of cell nuclei in the fully developed human brain. This has motivated us to introduce
these two parameters as a linear function of the cell density ρc [16]. We have demonstrated
that this microstructure-informed hyperelastic model is capable of simultaneously predict-
ing the response of brain tissue from different regions, the corona radiata, cortex, corpus
callosum, and basal ganglia, with a single set of model parameters.

Following these considerations, we propose a similar approach for the equilibrium strain
energy

ψeq(λa, ρc) = 2μ∞(ρc)

α∞(ρc)2
[λα∞(ρc)

1 + λ
α∞(ρc)
2 + λ

α∞(ρc)
3 − 3 ] , (16)

parameterized in terms of the total stretches λa, with

μ∞(ρc) = mμ
∞ ρc + cμ

∞ and α∞(ρc) = mα
∞ ρc + cα

∞, (17)

and the non-equilibrium strain energies

ψi(λ̃
e
i a, ρc) = 2μi(ρc)

αi(ρc)2
[ (λ̃e

i1)
αi (ρc) + (λ̃e

i2)
αi (ρc) + (λ̃e

i3)
αi (ρc) − 3 ] , (18)

parameterized in terms of the deviatoric elastic principal stretches λ̃e
i = (J e

i )−1/3λe
i , the

square roots of the eigenvalues of the isochoric part of the elastic left Cauchy Green ten-
sor, b̃e

i = (J e
i )−2/3be

i , with

μi(ρc) = m
μ

i ρc + c
μ

i and αi(ρc) = mα
i ρc + cα

i . (19)

The derivatives in Equations (13) and (14) then yield

∂ψeq

∂λa
= 2μ∞

λα∞−1
a

α∞
(20)

and

∂ψi

∂λe
i a

λe
i a = 2μi

αi

[
2

3
(λ̃e

i a)
αi − 1

3
(λ̃e

i b)
αi − 1

3
(λ̃e

i c)
αi

]
, (21)

where a,b, c = {1,2,3} and a �= b, a �= c, and b �= c.
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Considering the finding that a single nonlinearity parameter α = α∞ = α1 = α2 can cap-
ture the nonlinearity of brain tissue with sufficient accuracy [14], this introduces a total of
eight model parameters, mα , cα , m

μ∞, c
μ∞, m

μ

1 , c
μ

1 , m
μ

2 , and c
μ

2 , while the cell density ρc is
a microstructural parameter that needs to be determined through histological staining of the
tested specimens [16], as discussed in detail in Sect. 2.4.

2.3.2 Microstructure-Based Relaxation Times

For the evolution of the internal variables be
i , we choose evolution equations that a priori

satisfy the reduced dissipation inequality (15) [13, 44],

−Lvbe
i · (be

i )
−1 = 1

ηi

τ i , (22)

which introduces a total of two additional parameters, the viscosities η1 > 0 and η2 > 0,
or, when scaled with the corresponding shear modulus μi , the associated relaxation times,
τi = ηi/μi [13, 44].

Based on the observations in Sect. 2.2.3, we propose to determine one relaxation time
constant from the cell displacement curves during stress relaxation experiments (see Fig. 7a).
In addition to their physical interpretation, those curves were more robust and less noisy than
the stress data. The corresponding time constant is supposed to represent the viscoelasticity
of the network of cells and extracellular matrix. Since the displacement curves were sur-
prisingly consistent between the individual samples originating from different brain regions
(see also Fig. 7b), we decided to determine a single time constant valid for brain tissue as a
whole, independent of the local microstructure. To this end, we adopted a one-term Prony
series for each of the displacement curves, as exemplarily shown in Fig. 7c, and determined
the average relaxation time from n = 17 samples to τnetwork = 80s ± 27.48s. We note that,
while we universally set τnetwork = 80 s, the viscosity ηnetwork(ρc) = τnetwork μnetwork(ρc) is
still a function of the cell density ρc and may vary from one sample or region to the other –
depending on the underlying microstructure.

2.3.3 Overall Tissue Response

Finally, for comparison with experimental measurements, we calculate the Piola stress Pψ

as the partial pullback of the Kirchhoff stress τ ,

Pψ = τ · F−t = [τ eq + τ neq − p I ] · F−t . (23)

In unconfined compression, the Lagrange multiplier p follows from the lateral boundary
conditions, Pxx = Pyy

.= 0. To advance the non-equilibrium part of the constitutive equations
in time, we perform an implicit time integration with exponential update [13, 44]. For details,
we refer to [13].

2.4 Parameter Identification

Our viscoelastic model has two microstructural parameters ρc and τnetwork, which we obtain
from microstructural imaging data, and nine model parameters, which we calibrate by using
experimental data, as described in detail in Sect. 2.4.1. The parameters mα and cα character-
ize the nonlinearity of the hyperelastic spring elements, m

μ∞, c
μ∞, m

μ

1 , c
μ

1 , m
μ

2 and c
μ

2 char-
acterize the corresponding shear moduli, and η characterizes the unknown viscosity. While
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the microstructurally motivated time constant τnetwork is constant for all specimens, the cell
density ρc has to be determined individually through microstructural analyses subsequent to
the mechanical measurements. While the free model parameters are solely identified based
on mechanical measurements (see Sect. 2.4.2), they may be physically interpreted based on
the insights in Sect. 2.2 (see Sect. 2.4.3).

2.4.1 Mechanical and Microstructural Protocols for Parameter Identification

To determine the free model parameters, we performed a separate set of experiments com-
bining cyclic loadings and stress relaxation experiments on the same sample. We restricted
ourselves to specimens from the corona radiata, as only few of the brains, which we obtained
from a local slaughterhouse, included the brain stem and/or the cerebellum. Specimens ex-
tracted from the porcine putamen proved to be susceptible to swelling when immersed in
PBS for longer time spans, especially during stress relaxation tests. We first performed three
cycles of compression with a maximum strain of 7.5% and a loading velocity of 100 µm/s.
Subsequently, we performed a stress relaxation test with a maximum strain of 7.5% and a
holding period of 600 s, similar to the experiments in Sect. 2.2.3. In total, we tested n = 5
specimens.

Immediately after testing, we fixed each sample using 4% Formaldehyde to determine
the corresponding cell density ρc. We washed the specimens with PBS, soaked them in 30%
sucrose overnight at 4 ◦C in the refrigerator, embedded them in optimal cutting temperature
compound, and cryosectioned 6 µm thick slices. We then used Nissl staining, which stains
nuclei in dark blue and neuropil in a granular purple-blue, to visualize the cell nuclei and
cell bodies. In order to account for potential cell density variations within each specimen,
we took images at four different specimen planes. We analyzed the images using a custom-
written MATLAB code that first converts them into gray scale images and then applies
a TV-L1 denoising algorithm [32] as well as an optimized Kuwahara algorithm for edge
preservation [4]. Subsequently, the images were binarized using a Niblack algorithm [39].
In the binarized image, cell nuclei appear as black spots on a white background and can be
counted. For each specimen, the cell density averaged over the four planes was considered
as microstructural parameter, as reported in Fig. 8.

2.4.2 Calibration of Free Model Parameters

After defining the microstructural parameters for each specimen, we identified the free
model parameters by using the nonlinear least-squares algorithm lsqnonlin in MATLAB
Release 2019b. We minimized the objective function,

χ2 =
n∑

i=1

[Pzz − P ψ
zz ]2

i , (24)

where n is the number of considered experimental data points. Pzz and P ψ
zz are the ex-

perimentally measured and model predicted Piola stresses, respectively. To evaluate the
‘goodness of fit’, we determined the coefficient of determination, R2 = 1 − P res/P tot,
where P res = ∑n

i=1[Pi − P
ψ

i ]2 is the sum of the squares of the residuals with the exper-
imental data Pi , the corresponding model data P

ψ

i , and the number of data points n, and
P tot = ∑n

i=1[Pi − P̄ ]2 is the total sum of squares with the mean of the experimental data
P̄ = 1/n

∑n

i=1 Pi .
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Table 1 Calibrated model parameters∗

mα cα m
μ∞ c

μ∞ m
μ
1 c

μ
1 η1 m

μ
2 c

μ
2

[mm2] [-] [kPa mm2] [kPa] [kPa mm2] [kPa] [kPa s] [kPa mm2] [kPa]

−0.0072 −9.1765e–5 −1.7250e–4 0.3960 1.5368e–4 0.0128 1.7025 −1.8292e–4 0.4154

∗ valid for ρc < 2270/mm2

Although the presented experimental setup only allowed us to perform a single loading
mode, i.e., compression, and we had to limit ourselves to samples from a single region, i.e.,
the corona radiata, we were able to include our previous findings towards mode-specific and
regional trends through the considerations in Sect. 2.3.1. On the one hand, we had previously
shown that the one-term Ogden model is capable of simultaneously capturing the behavior
of brain tissue under compression, tension, and shear – and especially the characteristic
compression-tension asymmetry – when the nonlinearity parameter α adopts negative val-
ues. Therefore, we restricted the parameters mα and cα accordingly. On the other hand, we
anticipated that by accounting for the linear dependence of the shear modulus and the non-
linearity parameter on the cell density, the calibrated model would also be valid for regions
different from the corona radiata, according to the results in [16].

Figure 8 shows the performance of the calibrated microstructure-informed viscoelastic
constitutive model for brain tissue. Table 1 summarizes the corresponding model parameters.
The model well captures the slope of the stress-stretch response during cyclic experiments
for all specimens and only slightly underestimates the hysteresis area, achieving coefficients
of determination between R2 = 0.82 and 0.97. We note that, while we had previously only
calibrated our constitutive models with either the first or the third loading cycle [13–15],
here we consider the entire loading history including three loading cycles in addition to
the stress relaxation response. For the stress relaxation experiments, the agreement between
model predictions and experimental data is slightly worse with coefficients of determination
between R2 = 0.82 and 0.95. For these data, we struggled with extremely low forces that
approach the resolution limit of our testing device, especially during the holding period of
stress relaxation experiments. Smoothing the noisy data could have introduced artefacts and
especially the relaxation curves of the samples three and four show an uncommon shape and
should be treated with caution. Overall, the model is capable of predicting the mechanical
response of all specimens with reasonable accuracy.

2.4.3 Physical Interpretation of Free Model Parameters

Interestingly, the viscoelasticity of the network determined from microstructural data in
Sect. 2.2.3 seems to be associated with the longer time scale, τnetwork = τ2 = 80 s, contrary to
our previous assumptions in [13], while the first viscoelastic element with η1 = 1.7025 kPa s
yields time constants between τ1 = 5.33 s and 7.06 s. The latter may represent the fluid
movement through the network of cells and extracellular matrix, as indicated in Fig. 2. We
further observed that all nonlinear spring elements needed to be cell-density-dependent in or-
der to accurately predict the viscoelastic behavior of each specimen and specifically the hys-
teresis. This dependence is plausible for the equilibrium response and the non-equilibrium
element associated with the viscoelasticity of the network of cells and matrix (i = 2) ac-
cording to the findings in [16]: With fewer cells, there is more space for interconnections
and matrix leading to a stiffer response. For the first viscoelastic element potentially asso-
ciated with fluid movement, however, the observation is interesting and may be associated
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Fig. 8 Model calibration. Mechanical response and microstructure of five specimens from the corona radiata
of porcine brain tissue. Representative histologically stained images of each specimen used to determine
the cell density ρc as microstructural parameter (left). Experimentally recorded mechanical response during
cyclic loadings and stress relaxation experiments (blue dotted line) used for model parameter identification
and corresponding model fit (black solid line) with coefficients of determination R2 (right). Scale bars in
microscope images indicate 100 µm
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with a cell-density-dependent permeability. Importantly, the corresponding m
μ

1 is positive,
contrary to the negative m

μ∞ and m
μ

2 . This means that an increase in the cell density leads to
an increase in the stiffness of the first viscoelastic element.

The values obtained for c
μ∞ and c

μ

2 are close, which makes sense considering the fact
that we associate both with the contribution of the network of cells, cellular processes, and
extracellular matrix. The value for c

μ

1 , in contrast, is an order of magnitude smaller. This
suggests that the first viscoelastic element indeed rather contributes to the viscous than the
elastic behavior of the tissue.

3 Conclusions

We have provided important insights into the microstructural origin of brain viscoelasticity
through the simultaneous analysis of the macroscopic mechanical response and microstruc-
tural rearrangements of porcine brain tissue samples. We have shown that cell bodies are
displaced but hardly deformed upon compressive mechanical loading, which suggests that
the network of dendrites, glial cell processes, and extracellular matrix controls the mechan-
ical response of brain tissue. In addition, we have identified the limit of finite viscoelasticity
of brain tissue in compression to be 30% strain. For higher strains, permanent softening
occurred.

As cells are embedded in the extracellular matrix and firmly connected through the net-
work of cell processes, the deformation of the network can be tracked through the displace-
ments of cell bodies or cell nuclei. In a recent study, fluorescent beads have been embedded
in collagen gels to track the deformation that cells impose on their surrounding matrix and
to uncover the role of three-dimensional traction forces in cancer cell invasion [27]. In brain
tissue, the displacements of cell nuclei could similarly be used to determine local tissue
deformation. Here, we have exploited this effect to determine microstructurally motivated
relaxation time constants from cell displacement data during stress relaxation experiments.
Besides the physical relevance, an advantage of this approach is that we can circumvent
the previously identified issue that relaxation times for brain tissue largely depend on the
holding time during stress relaxation experiments [19]. In addition, due to the extreme com-
pliance of brain tissue, stress relaxation data are often noisy and, therefore, less suitable for
the identification of highly sensitive parameters.

Based on these considerations, we have proposed a microstructure-informed finite vis-
coelastic constitutive model for brain tissue, where one of two time constants is determined
from cell displacement curves and universally fixed for brain tissue in general, and the hyper-
elastic model parameters are introduced as linear functions of the cell density. The model
is intended to inherently capture regional differences in the mechanical response through
the spatial distribution of the cell density. Even within a certain anatomical region, e.g. the
corona radiata (see Fig. 1), the microstructure may vary notably. Here we have demonstrated
that our proposed model captures the variation in the mechanical response of brain tissue
through the consideration of the average cell density in each tested sample with reasonable
accuracy (see Fig. 8).

Taken together, the results in Sect. 2.2.2 and 2.2.3 along with the time constants from cell
displacement curves in Sect. 2.3.2 suggest that the short time scale of approximately τ1 ≈ 6
s is associated with fluid movement within the solid skeleton consisting of the cellular net-
work and the extracellular matrix, while the longer time scale of approximately τ2 ≈ 80 s
represents the viscoelasticity of the network itself, as illustrated in Fig. 2. This is consistent
with the results of a recent study on poro-viscoelastic modeling of brain tissue, suggesting
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that fluid squeezed out during loading immediately flows back upon unloading [18]. How-
ever, a clear physical interpretation of the first viscoelastic element will require additional
studies, for instance with focus on the distinction between viscoelastic and poroelastic ef-
fects of brain tissue behavior [18, 21]. It is interesting to note, however, that our model
calibration yielded a positive correlation between the cell density and the shear modulus in
this particular element, while we find the opposite trend for the equilibrium response (see
also [16]) and the second viscoelastic element.

The negative values of the parameters m
μ∞ and m

μ

2 further confirm that the mechanical
response of brain tissue is largely controlled by the network of dendrites, synapses, and
extracellular matrix, rather than the cell nuclei themselves. This, however, only holds for
the fully developed brain, since experiments have shown that the trend between the density
of nuclei and stiffness is reversed in the early stages of development [48]. In this case, the
network of connections has not formed yet, such that cell nuclei take over a more important
role in the mechanical response of brain tissue, which diminishes over time. Therefore,
the microstructure-informed viscoelastic constitutive model presented in this study is only
valid for the fully developed brain under physiological conditions, at least with the set of
parameters provided in Table 1. Still, the reversed trend in early stages of development
could easily be implemented through a positive model parameter m

μ∞.
As the cell density for the porcine brain samples tested in this study was slightly higher

than for our previously tested human brain samples [16], the slope m
μ∞ is smaller. Hypothet-

ically, this could be attributed to the fact that the porcine brain tissue tested here originates
from relatively young animals, while for the relatively old human body donors in [16] certain
neuron loss has already taken place. The main focus of the present work was to establish and
validate the modeling framework. Still, we plan to repeat the experiments on human brain
samples from different regions in the future to account for possible inter-species variations.
We note, however, that we only expect effects on the quantitative parameters (if at all) and
not on the qualitative considerations presented here.
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