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Abstract The paper is dedicated to the asymptotic behavior of e-periodically perforated
elastic (3-dimensional, plate-like or beam-like) structures as ¢ — 0. In case of plate-like or
beam-like structures the asymptotic reduction of dimension from 3D to 2D or 1D respec-
tively takes place. An example of the structure under consideration can be obtained by a
periodic repetition of an elementary “flattened” ball or cylinder for plate-like or beam-like
structures in such a way that the contact surface between two neighboring balls/cylinders has
a non-zero measure. Since the domain occupied by the structure might have a non-Lipschitz
boundary, the classical homogenization approach based on the extension cannot be used.
Therefore, for obtaining Korn’s inequalities, which are used for the derivation of a priori
estimates, we use the approach based on interpolation. In case of plate-like and beam-like
structures the proof of Korn’s inequalities is based on the displacement decomposition for
a plate or a beam, respectively. In order to pass to the limit as ¢ — 0 we use the periodic
unfolding method.
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1 Introduction

This paper deals with the linearized elasticity problem posed in different periodic domains.
These domains are obtained by reproducing a representative cell of size ¢ in such a way that
one can get beam-like, plate-like or N-dimensional structures. It is assumed that a part of
their exterior boundary denoted by I is fixed.

The e-cells are made of elastic materials. The reference cell is denoted by C (Fig. 1). We
assume that C has a Lipschitz boundary and that the interior of the closure of the union of
two contiguous cells is connected. Under these assumptions, the whole periodic structure
might have a non-Lipschitz boundary. Throughout this article, the cell C is included in the
unit parallelotope of RY (resp. R?), and one can replace this parallelotope by any bounded
domain having the paving property with respect to a discrete group of rank N (resp. 3).

Our aim is to investigate the asymptotic behavior of these elastic periodic structures as &
tends to 0. Since these structures might be non-Lipschitz, one of the main difficulties is to
obtain a priori estimates. The classical extension approach (see [25]) and Korn’s inequalities
for Lipschitz domains (see [9, 10]) cannot be used. Thus, in order to derive a priori estimates
we use interpolations as suggested in [14, Sect. 5.5]. This makes it possible to prove Korn’s
inequalities with constants independent of €. Note that in case of beam-like and plate-like
domains the derivation of Korn’s inequalities is also based on the decomposition of beam or
plate displacements. These decompositions have been introduced in [2, 18].

To derive the limit problems, we use the periodic unfolding method introduced in [11].
This method has been applied to a vast number of problems such as problems in perforated
domains [5, 6, 13, 16], transmission problems [17], contact problems [20, 22], problems
including a thin layer [21], problems in domains with “rough boundary” [1, 3, 4], to name
but a few. In our work, in contrast to earlier works for plate-like or beam-like structures
[14, 19, 21, 22, 24], we simultaneously proceed to the homogenization and reduction of
dimension. The periodic unfolding method used in this paper includes the following steps:

— introducing and applying appropriate unfolding operators, depending on the problem,

— obtaining a priori estimates for the displacements, then uniform estimates for the unfolded
displacements, which, in turn, are used to pass to a weak limit in appropriate spaces over
a fixed domain,

— establishing an unfolded limit problem from which a homogenized problem is derived.

As a general reference for the homogenization of elasticity problems in 3D periodically
perforated domains with Lipschitz boundary we refer to [25]. In case of a plate-like domain
we mention [14, Chapter V] where the interaction of homogenization and domain reduc-
tion, involving two small parameters such as plate thickness § and periodicity ¢, in its large
dimensions was investigated. For similar results in case of a beam-like domain we refer to
[19]. The novelty of this paper is the extension of the results to non-Lipschitz perforated
domains.

The paper is organized as follows. Sections 2, 3 and 4 deal with periodically perforated
3D, plate-like and beam-like domains, respectively. We begin every of these sections by
introducing the notation and describing the specific type of a periodic domain. Then, for
every type of a periodic domain, we introduce the unfolding operator, we derive weak limits
of the fields, we specify the limit problem for characterize the limit fields. Moreover, at the
end of every section, there is a conclusion in which we provide an approximation of the
solution to the elasticity problem.

The proofs of Korn’s inequalities for different types of domains, namely N-dimensional,
plate-like and beam-like, are given in Appendix A. The proofs of all lemmas and proposi-
tions are given in Appendix B.
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Homogenization of Perforated Elastic Structures 183

Fig. 1 Periodicity cells C

—Y C C+e;

(a) Sets C and Y, (b) Sets C and C + e;.

Throughout this paper we use Einstein’s summation convention. Moreover, in all the
estimates the constants do not depend on ¢.

2 N-Dimensional Periodic Domain

This section deals with the asymptotic behavior of the solution to the linearized elastic-
ity problem for e-periodically perforated N-dimensional structures as ¢ — 0. At first, we
explain the notation, introduce the structure and state the elasticity problem. Then, we in-
troduce the unfolding operator and its properties. And finally, we derive the unfolded limit
problem and the homogenized problem.

2.1 Notation and Geometric Setting

Let 2 Cc RV, N e N\ {0, 1}, be a bounded domain with a Lipschitz boundary and I" be a
subset of 92 with non-zero measure. We assume that there exists an open set 2’ with a
Lipschitz boundary such that 2 C £2" and 2'Nd2 =T

We will use the following notations through this section:

— Y =(—1/2,1/2)" is the unit cube, o
— C C Y is adomain with Lipschitz boundary such that the interior(C U(C+ ei)), i=1,N,
is connected,
- B, ={geZN e+ Y)NR#£0},
[={EeZV e +Y)N Q2 #0},
ci={Eed | E+e e}, i=1N,
- Q= interior(Uéegg e(€ + E)),
Y interior(UEeE‘E 163 +7)),

- = interior(U‘EeE; e+ E)),

- 2, = {x e RV | dist(x, 2) < 1},

— MY is the space of N x N symmetric matrices,
— for a.e. x € RY one has

e e ez 2o

Note that UlN:1 E, i C B, and that the domains §2, §2* are connected.
We are interested in the elastic behavior of a structure occupying the domain £2; which
is fixed on a part of its boundary I, = I" N £27. The space of all admissible displacements is

|
o OO &

Ve={ueH'(Q)H" | 3’ € H'(2/*)" such that u|p, = u and u’ = 0in 2/*\ 2;}.

This means that the displacements belonging to V, “vanish” on the part I'; of 9£2;.
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Fig. 2 Domains QX Qz_k
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Remark 1 Note that the domain £2 might be non-Lipschitz (see Fig. 2). In this case, one
cannot extend the displacements to the holes of this domain as it is proposed in [25].

2.2 Statement of the Elasticity Problem

For a displacement u € H!(£27)", we denote by e the linearized strain tensor (or symmetric
gradient)

ou; Buj). .1

e(u) = (Vu + (Vu) ) ej(u) = 2(

8)6]' 8)61'

Let a;ji; € L*(C), i, j,k,I =1, N be the components of the elasticity tensor. These func-
tions satisfy the usual symmetry and positivity conditions:

— a,»jkl(X) = a.,-,«kl(X) = ak“j(X) forae. X € C;
— forany t € MsN , there exists ¢y > 0 such that

aijkl(X)Tikal = CoTijTij forae. X € C. 2.2)

The constitutive law for the material occupying the domain §2} is given by the relation
between the linearized strain tensor and the stress tensor

o;; (u) = auklekl(u) YueV,, 2.3)

where the coefficients afj « are given by
e X «
a[jkl(x) = aijkl({ - }) forae. x € £2;.
&

Let f bein L2(£2 1)N, one defines the applied forces f, by

Je=Flex. (2.4)

The unknown displacement u, : 2 — R is the solution to the linearized elasticity system
in the strong formulation

V.ofu)=—f in
u, =0 on [, 2.5)
o) v, =0 on 02\ I,

where v, is the outward normal vector to 9£2;.
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Homogenization of Perforated Elastic Structures 185

The variational formulation of (2.5) is given by

Find u, € V, such that,

(2.6)
/ a*"’(ug):e(v)dx=/ fe-vdx, Yv eV,.
2r 2F

2.3 The Unfolding Operator

As mentioned above, for the derivation of the limit problem we use the periodic unfolding
method. This method requires the introduction of an unfolding operator depending on the
geometry of the problem. One of the main properties of this operator is that it replaces the
integrals over the periodically oscillating domain §27 by integrals over the “almost fixed”
domain £2¢* x C which includes the whole domain £2 and the periodicity cell C. Moreover,
it allows us to decompose any function into a main part without micro-oscillations and
a remainder which takes the micro-oscillations into account. Below, in a similar way as
for domains with holes (see [14]), we introduce a specific unfolding operator and give its
properties.

Definition 1 For every measurable function ¢ : 2 — R, the unfolding operator 7. :
228" x C— R is defined as follows:

TP (x, X) =¢<8[§] +8X) for a.e. (x, X) € 27 x C.

Below are some properties of 7., which are similar to those of the unfolding operators
introduced in [14]. That is due to the fact that

AST = Q\ 2 satisfies lirr(l) | A =0.
£—
Proposition 1 For every ¢ € L' (£27)

¢(x)dx=/ T @) (x, X)dxdX,
2 Q81xC

2.7
175 @)Lt 2o ey = @111 )
For every ¢ € L*(£2})
17 @)l 20ev w0y = 181l 2(0) - (2.8)
For every ¢ € H'(£27)
TX(Vo)(x, X) = éVXTf(d))(x, X) forae. (x,X)e R xC. (2.9)

For more properties see [14].
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186 G. Griso et al.

2.4 Weak Limits of the Fields and the Limit Problem

Set

®RY)! = interior( UG +E)).

EeZN

Denote by H ,{, per (C) the subspace of the periodic functions belonging to Hli,c((]RN ):)

Hy o (© = v € HL (@)D W (+6) =y () ac.in ®Y)], veez"],

by Hy ,.,.0(C) the subspace of the functions in Hy, ,,,(C) with zero mean

per

HY o o(C) = ilp €H) (O] /Cw(X) dX = 0},
and by H(£2) the space of the functions in H'(£2) that vanish on I"!
Hi(2)={¢pecH' (2)|¢=0 onTl}.
The proof of the following lemma is given in Appendix B.1.
Lemma 1 The solution u, of problem (2.5) satisfies
luell g = Cllf 2@ (2.10)
The proof of the proposition below is also postponed to Appendix B.1.

Proposition 2 (The unfolded limit problem) Let u, be the solution of problem (2.5). There
existu € H\.(2)Y and & € L*(£2; H[{/,per,()(c))N such that

T () — u  strongly in L*(2; H' ()N,
T (Vue) = Vu+ Vxii  weaklyin L*(£2 x )NV, (2.11)
ﬁ*(e(ug)) — e(u) +ex (@) stronglyin L*(£2 x C)N*V,

and the pair (u, ) is the unique solution to the following unfolded problem:

/ aijii(ew () + ex @) (e (V) + ex,;; (V) dx dX = |C|f frvdx,
axc 2 2.12)

Vve HL()N, VU e L (R2: Hy ., o(C)",

where for all v € H' (C)N

1,97y oy
eX.kl(ﬁ)=§<_8;+—8X;>, k,l=1,N.
I

1Every function in H 1]“ (£2) is extended to a function in H 11" (£2) which vanishes on £2’\ £2.
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2.5 Homogenization

In this section, we give the expressions of the microscopic field i in terms of the macroscopic
displacement u. First, taking v = 0 as a test function in (2.12), we obtain

/ aijur (e () + ex (@) ex ;@) dxdX =0, Ve H,, (O, ae. ing.
C

This shows that the displacement u can be written in terms of the elements of the tensor

e(u).

Denote by M"” the N x N symmetric matrix with following coefficients

N

K = E(Skn(slp +8kp81n)7 n,p,k,lel,N,

where §;; is the Kronecker symbol.
Since the tensor e(u) has N> components, we introduce the N 2 correctors

j(\npeH,: (C)Nv n,P=17N,

er,0

which are solutions to the following cell problems
/ ajjul (eX,kl(j(\np) + M:f)ex,ij MdX =0, Vve H,ig,,o(C)N~ (2.13)
c

Observe that X, = Xpn 11, p = 1, N. As a consequence, the function & can be written in the
form
N
W, X)= Y e (X)%up(X) forae. (x,X)e R xC. (2.14)

n,p=1

Theorem 1 (The homogenized limit problem) The limit displacement u € H}-($2)" is the
unique solution of the following homogenized problem:

/Q alim ey (u)e;; (v) dx =/Q fvdx, YveHL(2)V, (2.15)
where?
hom 1 np ~
iy = 11 /e aijur (MG7 + ex i (np)) dX. (2.16)
Proof Taking U =0 as a test function in (2.12) and using (2.14) provides
/ aijii (ex () + enp Wex i (Knp) )eij (V) dx dX = |C| / f-vdx, YveH.(2)".
2xC 2
After straightforward computations, we have
[ (/ aiju (M + ex.u(Knp)) dX)enp(u) ej(v)dx = |C|/ frvdx, YveHL(2)Y,
2 NJc 2

and the assertion of the theorem follows.

tis easy to prove the usual conditions of symmetry.
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188 G. Griso et al.

Now, we prove that the operator in problem (2.15) is elliptic. Using formulas (2.16) of
the homogenized coefficients and (2.13), we obtain

1
a:’;:ﬁp/fnpfn’p’ = ﬁ /(;a,vjkl(exiykl(lll) + Mk[)(EXJj(lI/) + Mij)dX, TE MyXN,

where
Mkl = T"PMZ‘ID’ v = THP;(\'!P'
Then, in view of (2.2) and following the proof of [14, Lemma 11.19], we have

7 €o
a,}ll;:/p/fnptn’p’ > ﬁ /(.: (eX,ij(llj) + Mij) (eX,ij (l[/) + Mij) dX > CoTnpTp-

Thus, the operator in problem (2.15) is elliptic and by virtue of the Lax-Milgram theorem
this problem admits a unique solution. O

2.6 Conclusion

We summarize the result of this section: for e-periodic porous materials with a known struc-
ture, for e.g. structures made of beams whose thicknesses are of order ¢, or dense packages
of small compressed balls, the solution to the linearized elasticity problem (2.5)-(2.6) in a
heterogeneous 3D domain is approximated by

1o () ~ u(x) + & i e,,,,(u)(x)@,,({g}) for x € 27, 2.17)

n,p=1

where u is the solution of the homogenized problem (2.16) and where the correctors X, are
given by (2.13). In (2.17), the sum represents the warpings of the cells.

3 Periodic Plate

This section is devoted to the study of the asymptotic behavior of the solution to the lin-
earized elasticity problem for a e-periodic plate-like structure as € — 0. Note that this struc-
ture is 3-dimensional and only periodic in two directions. In the third direction it is “thin”,
that is, its thickness is of the same order ¢ as the period of the other two dimensions. The
section is organized in a similar way as the previous one. It can be considered as an extension
of the results obtained for the homogenization of a periodic plate (see [8], [14, Chap. 11],
[22], [23], [26, Sect. 3.2] and also [24] for a shell).

3.1 Notation and Geometric Setting

We consider a bounded domain e in R? with Lipschitz boundary. As in Sect. 2, we introduce
y, a subset of dw with a non-zero measure. We assume that there exists a bounded domain
o' with Lipschitz boundary such that

woCo and o Niw=y.

In this section we use the following notations:

@ Springer



Homogenization of Perforated Elastic Structures 189

SV (12, 1DL Y Y X (<12, 1) = (-1/2,1/2%,

— C C Y is adomain with Lipschitz boundary such that the interior(C U(C+ ea)), a=1,2,
is connected,

- B, ={eZ?| (6 +eY)Nw#0},

- Q= interior(Ugegg (€ + 86)),

- Bl ={s€Z? | (& +eY) N #0},

- = interior(UEeEé (e + 86)),

— ot = interior(UEeEE (e& + 8?)),

- w = {x e R? | dist(x, w) < 1} w Cw,

- o' ={x €ew|dist(x, dw) > 3¢},

- 0" ={x e w|dist(x, d0') > 3¢},

£

- 5= £ e 22| (6 +eY) C ],

_ Q"” :1nter101’<UEE:~im (e +8C))

- B =g € B, | (6§ +eY) Noy™ # 0},
- Qi :mterlor(UEEE;im (¢§ +5C))’

- EBa={€B. | E+e, B} a=12.

Note that the domain §27 is a connected open set, and if ¢ is small enough, we have
2 Cwy x (—¢/2,¢/2).
The space of all admissible displacements is denoted by V.,:

Vo= {ve H'(2)' |3 e B2, v=1]g,. v=0in 2\ 27].
3.2 Statement of the Elasticity Problem

We are interested in the elastic behavior of a structure occupying the domain £2; and fixed
on the part I, of its boundary, =(y x(—¢€/2,¢/2)) N §2}.

Let f bein Lz(a)l) . We deﬁne the applied forces f, as follows
fra=€fon for=8fs, a=12, ae.in 2. (3.1)

Again, the unknown displacement u, : 2} — R3 is the solution to the linearized elasticity
system

V.of(u,)=—f, in £,
u, =0 on I} ﬂ.Q_:, (3.2)
of(ug) - v, =0 on 92\ T,

in the strong formulation, where v, is the outward normal vector to 9§2;.
The variational formulation of problem (3.2) is given by

Find u, € V, such that
(3.3)
/ o’(uy) e(v)dx = fe-vdx, VveV,.

2F
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190 G. Griso et al.

3.3 The Unfolding-Rescaling Operator

Below, we introduce the unfolding operator for a plate-like structure and state its properties.
Note that, since this structure is periodic only in two directions and it is “thin” in the third
one, the unfolding operator is a “rescaling” operator in the third direction. As a consequence,
the asymptotic reduction from 3D plate-like structure to 2D takes place. The reduction of
dimension is done by the standard scaling to a fixed thickness (see the pioneer papers [7,
15]).

Definition 2 For every measurable function u : £ — R? the unfolding operator 7.* is
defined as follows:

!

Tru)(x', X) = u(s[x—] +eX/, 8X3) forae. (x', X) € 0 x C,
£
where x' = (x1, x2), X = (X', X3) = (X1, X2, X3).
Below we recall some properties of 7.* (for further results see [14]).

Proposition 3 For every u € L'(§2)

1
/ TXw) (', X)dx'dX = —/ u(x)dx,
w8 xC & Jor
3.4
1
”7—:(“)“Ll(w§“><C) = E”u”Ll(();)-

For every u € Hl(.Q:)
TX(Vu)(x', X) = éVX’E*(u)(x’, X) forae (x',X) €™ xC. (3.5)

3.4 Weak Limits of the Fields and the Limit Problem

Denote by H}} (w) the space of functions in H'(w) that vanish on y,
H (@) = {u e H'(w) | u :Oony},

and by H)f (w) the space of functions in H?(w) that vanish on y and their first derivatives
vanish on y as well

H2(0) = {u € H () |u:0anqu:00ny}.

Since we are dealing with a plate-domain, we use the decomposition of the displacements of
aplate (see [18] and Sect. A.2 of Appendix A). Any displacement u € V, can be decomposed
as

u(x) =U(x) +ux) =UE") + R A xzes +u(x)

U (x") + x3R2(x) (3.6
=[UhE) —xRi(&) | +ux), forae x= (&', x)=(x],x2,x3) € 2",
Us(x')
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Homogenization of Perforated Elastic Structures 191

where U stands for the displacement of the mid-surface of the plate restricted to £2} N {x3 =
0}, R(x") A x3e; represents the small rotation of a “fiber” from x" € 27 N {x3 =0} and u is
the warping of the “fibers”.

Here, U € H (0y")’, R € H)(wy™)> and 7 € H' (w0y™ x (—&/2,¢/2))" 3

In the next step, we compute the strain tensor of the displacement u, using the decompo-
sition (3.6)

e(n) =e(U% +e(u)

u IRy 18U, U x R1 | IR 1 U
MyxiR L4 20)yg(- Ry 0m) (R, 4 )
= * % — X3 Bd% %( - R] + 3%23 +
* * 0
w1 (9w |, o | (97 | om:
moEAR) (Bem
o 1 (i, | ow:
‘ 3.7
Further, we extend U, R by 0 to o’ \ @;" and the field & by 0 to £2/ \ £2/i".
The following lemma is proved in Appendix B.2.
Lemma 2 The solution u, of the problem (3.2) satisfies
||3(Ma)||1,2(.(2;f) = C85/2(||f||L2(w,) + ”g||L2(w1))' (3.8)

The proof of the following lemma is postponed to Appendix B.2.
Lemma 3 Let {u.}. be a sequence of displacements belonging to V., decomposed as in
(3.6) and satisfying
le(ue)ll 20z < Ce2.
Then, for a subsequence of {e}, still denoted by {¢},
() there existU, € H' («'), a=1,2, U;s € H*(«') such that

1
&2

1
U, 31 1y = U strongly in L* (o)),
& @3¢

qualw;,;;m — U, stronglyin L*(),

| (3.9)
— VU ol i — VU,  weakly in L*(0')?,
& W3¢

1
—VU, 31 1y — VU weakly in  L*(w')?,
£ W3

3Note, that such a decomposition for plate-domains can also be written in a slightly different way, as in [14,
Chap. 11].
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(ii) there exists R € H' (a)’)2 such that

1
—Real, im = Ro  strongly in L* (),
£ 3¢

| (3.10)
~VReol in = VRy weakly in Lz(w/)z,
£ 3¢
and
ou ou
Ri=———2, Ry=-— aeinaw, 3.11)
8x2 axl
furthermore, the fields Uy, R, Us and VU5 vanish in o' \ @,
(iii) there exists u € L*('; Hzl‘pe, (C))? such that
1
ST @ i) = U weakly in L*(o'; H'(C))’. (3.12)
& 3e
Since the fields U,, R, U; and the gradient U5 vanish in o’ \ @, we obtain
Uy e Hy(w), UseH)(w), ReH, ().
Lemma below is proven in Appendix B.2.
Lemma 4 For a subsequence, still denoted {e}, we have
1, . 20
—27’S (Z/{g,alw;,-,,,) — U, stronglyin L~(o' x C),
& 3¢
1 . 2,
—7?(Us,31w;fm) —Us stronglyin L°(o" x C),
& 3¢
,B=1,2, (3.13)
1 Uy Uy o B
—7;*( ks | /,-,,,) —~ % weaklyin L* xC),
82 3)65 @3¢ 3)65
1 ou, ou
_7;*(_‘9*3 1 /inl) — 2 stronglyin  L*(e x C),
& 8)(/3 @3¢ 8x,3
and
1
=T (Real jin) = Ra,  strongly in L*(& x C),
3e
f a=1,2 (3.14)
—7;*(v7zg,a1 ) VR., weaklyin L x C),
& W3
For any u € H'(w)?, v € H*(w) we denote
du 1{ ou du 9% 9%y
o (i) o o O
M = | 1(0u du du B = 9% 3%v
EM(u) §<£+ﬁ) Dy of E'm=|ghs oo
0 0 0 0 0 0

Define
M; 2 lf d I = 1/24
3= = xX3ax, 3= — xydax.
ICl Je Icl Je™
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Homogenization of Perforated Elastic Structures 193

The following proposition provides the first main result of this section. Its proof is given in
Appendix B.2.

Proposition 4 (The unfolded limit problem) Let u. be the solution to (3.2). Then the fol-
lowing convergences hold:

1 o

—27;*(%,1) — U — X3—3 strongly in  L*(w x C),

£ 0x1

1 ou

?7—:(”6,2) — U — X33_)63 stronglyin  L*(w x C), (3.15)
2

1
— TS (ue3) — Us  strongly in L*(w x C).
£
Moreover
1
ST (el i) = EM Uy) — X3E® (Us) + ex (@)  weakly in L* (0 x €)™,
& 3¢

1 * (€ M B e : 2
ST L) = i (ELY Un) = XaEf W) + exa@) - weakly in L*(w x ©).
(3.16)

where U,, = U, U,) € H}} (a))z, Us € Hf(a)), e L*(w; Hzl, (C))? are the solution to

the following unfolded problem:

per,0

[ (Bl @) = XaER @) + ex@) (B ) = XaE0) + exs @) d'dX

=101 [ fvear + ot [ (R +a)ax+n [ a5 ar),

VVu=W1. V) € H)(w)’, Vi€ H(w), VeL(w;H,,,,C).
(3.17)

3.5 Homogenization

In this section, we give the expressions of the microscopic displacement % in terms of the
membrane displacements U4, and the bending U43.
Taking V = 0 as a test function in (3.17), we obtain

/ aiju(EN Un) — X3EE(Us) + ex u(@))ex.;;(0)dX =0, VYve H;.per,o(c)3~
c

This shows that the microscopic displacement # can be written in terms of the tensors
EM, EB.

Define
1 00 010 0 0 0
M'=]0o 0o o], M?=|1 0 0], M?=|0 1 O
0 0 0 0 0 0 0 0 0
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Since the tensors EM (U,,U,), E® () have 6 components

olh
8x2

au
EMUy, Uy = M +(
Bxl

o it

M22
3)(2 8x1 ’

)M12

Uy . Uy | U
M M M2,

EBUs) =
) 0x] 0x10x2 0x;

we introduce 6 correctors
3
Xehs Xap € HY pero(©), (o, B e (1, 1), (1,2), (2,2),

which are the unique solutions to the following cell problems

/ aijk (eX,kl(X(%) + MZf) ex;;(V)dX =0,
N a,B=1,2, (3.18)

/ aijki (eX,kI(X,zg) - X%M:f> ex,;;(0V)dX =0,
c

forall v e L*(w; Hzl,per,o(c))3~
As a consequence, the function 7 from (3.16) is given in terms of I/ as follows

2

ux', X)= Z [eaﬂ(um(x’))x(%(X) + PP 38( ) (X)] forae. (x’, X) €w x C.
a,f=1

(3.19)

This substitution allows us to separate the scales and formulate the second main result:
Theorem 2 (The homogenized limit problem) The limit field

U= (Un.Us) € H) (@)’ x H} (w)
is the unique solution to the homogenized problem

om hom 821/{3
/w (aglgo/ﬂ/eaﬂ (Um)ea’ﬂ’ (Vm) + bi,,so/ﬁ/ ox 8 Co'p’ (Vm)

3*V; U Vs
+b om € Z/{m = 4 ham, )d /
afa’p € ﬁ( )8)(0/8)(/5/ aﬂa F 8)( 8x/3 8)(0/3)(/5/ *

, v v
= [ foveax s a [ (52 4 eva)ax v [ o ax
© © 0xq 0xq

[0

(3.20)

V (Vn, V3) € Hy () x H} (),

where
1 -y
hom aff o' B
dopalp = 1 /C aijki (ex,kl (xap) + My )(ex_,-_,- (X)) + M ) dXx,
1 o, m/ ’
bz;’g B = ﬁ / ai_ikl (eX,kl (th’j) —_ X3Mk]ﬁ> (EXJ‘J‘ (Xojyﬂ’) + Ml.].ﬂ ) dX, (321)

Z;Z/ﬂ; = |C| /a,,kl €y, kl(Xocﬂ) X3Mk] )(EX lJ(Xa’ﬂ) X3M )dX
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Proof Take v =0 as a test function in (3.17). Replacing u by its representation (3.19), yields

2

/ Qjjki (ea,s (Z/{m)<eX,k1(X£/§) + Mkf) + s (ex kl(Xaﬁ) X3Mk1ﬁ>>
wxC 8xa8 Xg

2 V3

3 0xq 0xgr

v v
— C|ffavadx’+/X3dX/ [fa 3 Va]dx’+fxidxfga 3 dx’.
w c o 0xq c w  0Xy

Taking into account the variational problems (3.18) satisfied by the correctors, the problem
(3.20) with the homogenized coefficients given by (3.21) is obtained by a simple computa-
tion.

Now, we prove the ellipticity of the operator in Problem (3.20). Using the formulas (3.21)
for the homogenized coefficients, we obtain

x M (ewrp V) = X )dx'ax

oty T ety T Dago s Torpr  Dap Ty Torpy F oy Tap T
=/ aijkl<(3qu](l1/) +Mk1)(€X.,'j(lI’) +M,'j)dX, aﬂ’ M2><2
C

where
M= (tly — Xstl )M, W=l oh B

Then, in view of (2.2) and following the proof of [14, Lemma 11.19], we obtain
Gy Tap Tty + Vi Ty Ty + By Ta Ty T o e T
ZCO/C <€x,ij(‘1’) + Mij) (ex,ij(q’) + Mu) dX = C(typTap + T Tup)-
Thus, the operator of problem (3.20) is elliptic and this problem has a unique solution. [l

3.6 Conclusion

We summarize the results of this section. The solution to the linearized elasticity problem
(3.2) (in the strong form), or (3.3) (in the weak/variational form) is approximated by

oUs (x’
821/{1 (x’) — EX3 3(X )
2 az/?)zl /)
% X
Ue (X) & 821/{2()6/) — EX3 3
8x2
ez (x")
2 / 2 / /
3 (X X3 U (x") g /(x X3
'3 [ ({51 2) + Toag xa({sh 2]
+5a;1["/3( R (g B R o e 71 el B

where U is the solution of the homogenized 2 D-problem with constant effective coefficients
(3.21) and Xc%’ Xfﬂ IS Hzliper(C)3 with @, 8 = 1,2 are 6 3D displacement correctors, the
solutions of auxiliary problems (3.18) on the periodicity cell (see Fig. 3).

As usual for a plate, we first recognize a Kirchhoff-Love displacement plus here a second
term which represents the warpings of the cells.
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M B B
X11 X12 X12 X11

Fig. 3 Perturbations for periodic corrector-problems y (% (X) and x cﬁ‘i (X) in the example of a plate with
fibre structure (a textile)

4 Periodic Beam

In this section, we study the asymptotic behavior of the solution to the linearized elasticity
problem for e-periodic beam-like structure as ¢ — 0. This structure is 3-dimensional and
periodic in one dimension. In two other directions the structure is “thin”, that is, its size in
each of these directions, is of order €. The section is organized in a similar way as the previ-
ous ones. It can be considered as an extension of the results of [19] to beam-like structures
with a boundary that does not have to be a Lipschitz boundary.

4.1 Notation and Geometric Setting

Let C € R® be a bounded domain with Lipschitz boundary and let L be a fixed positive
constant. In this section, we also assume that the interior of C U (C + e3) is connected and
C N (C+ e3) =0. The beam-like structure is introduced in the following way:

N-1
Q= interior( U elies + E)) &=

i=0

We choose as centerline of the structure the segment whose direction is e; and place the
origin at the center of mass of the first cell (thus the centers of mass of the other cells
are also on this segment). The orthonormal basis (e;, e, e3) is chosen in such a way that
Jc x1x2dx =0, and we set

1 / )
Iy =— | x,dx.
ICl Jc

Concerning the directions e; and e, it is important to note that they do not necessary
correspond to the principal axes of inertia.
The space of all admissible displacements is denoted by V,

V.={ueH' (2 |u=00nT,}, where I,=(sC—ece;)NeC.
4.2 Statement of the Elasticity Problem

As before, we are interested in the elastic behavior of a structure occupying the domain £27
and fixed on the part I, of its boundary.
Let f and g be in L2(0, L)*, we define the applied forces f. € L*(£2})° by

Fea () = fi(x) + x283(x1),
fer(x) =&* fo(x1) — x183(x1), forae. x € £2;. .1

fe3(x) =ef3(x1) —x181(x1) — x282(x1),
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The unknown displacement u, : 2 — R? is the solution to the linearized elasticity sys-
tem

V.o®(u,)=—f in £},
u, =0 on I,N .Q_;‘, 4.2)
o®(ug) v, =0 on 982\ Iy,

where v, is the outward normal vector to 9£2;.
The variational formulation of problem (4.2) is given by

Find u, € V, such that,

4.3)
/ o®(u,) e(v)dx = fe-vdx, VveV,.
)

s 2
4.3 The Unfolding-Rescaling Operator
Below, we introduce the unfolding operator for a beam-like structure and provide its prop-
erties. Note that since this structure is only periodic in one direction and is “thin” in the
other two directions, the unfolding operator is a “rescaling” operator in two direction. As a

consequence, the asymptotic reduction from 3 D beam-like structure to 1D takes place.

Definition 3 For every measurable function ¢ : 22} — R, the unfolding-rescaling operator
T, is defined as follows:

T () (x3, X) = ¢(.st, X, a[ﬁ] + gx3) for a.e. (x3, X) € (0, L) x C.
e
Proposition 5 (Properties of the operator 7,*) (a) For every ¢ € L*(£2})

1
/ TP (x5, X)dxzdX = — | ¢ (x)dx,
(0,L)xC & Jar

4.4)
1
||7?(¢)||L2((0,L)xC) = g||¢||L2((2;‘)'
(b) Forevery ¢ € Hl(.Q:)
7;*(V¢)(x3, X)= évxﬁ(¢)(x3, X) fora.e (x3,X)e (0,L) xC. 4.5)

4.4 Weak Limits of the Fields and the Limit Problem

Denote

HL0,L) = {u € H'(0, L) | u(0) :0}, H2(0,L) = {u e H*0, L) | u(0) = u'(0) :0].
As in [18], we decompose the displacement field u € V. in the following way:

u(x) =U(x) +ulx) =UK3) + R(x3) A (x1€) + x2€2) +u(x),

fora.e. x = (x1, x2, x3) € £2, (4.6)

where U, R € H}(0, L)3. The displacement # belongs to V.
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The field ¢/ stands for the displacement of the centerline of the structure. The term
R(x3) A (x;€] + x,e;) represents the small rotation of the cross-section at the point x3 of the
centerline, whereas the last term #%(-, x3) is the warping of the cross-section at the point x3
of the centerline.

The strain tensor of the displacement u is

e(u) =e(U°®) +e(u)

V(U g dR w1 (o w1 om0
00 2 ( dx3 RZ X2 dx3 ) dxq 2\ 9xp + dxq 2\ ox3 + dxq
_ 1 (dt aR; oy 1 (om0
* 0 2 ( dx3 + Rl + X1 dx3 + * dxp 2\ ax3 + dxp

duy dR; dRy dusz

* K dx3 +x2 dx3 X1 dx3 * * 9x3

4.7
In order to simplify the expression of the strain tensor e(U¢), we define a new triplet
(u, U, ®) (see also [19]) by

x3
U(x3) :/ R(?) Nesdt, u(x3) =Ux3) — Uxz), O (x3) =Ra(x3)
0

fora.e. x3€ (0, L).

Then, we have

dR, d’U, dR, d°U,

dvy  dx?’ dxy  dx}

du dU, -0 d du dU, - U d
dth o A -U) _du, dth | o dWh—U) _ duy
dX3 dX3 dX3 dJC3 dX3 dX3

From now on, we have a new decomposition of the field U¢(x)

— T2 (x3)
Uf(x) = u(x3) + U(x3) + %()%) A (x1€] + x2€;)
O (x3)
(4.8)
Uy (x3) + 1, (x3) — %20 (x3)
= Us(x3) + uy(x3) + 10 (x3) fora.e. x e 2%,
U3 (43) = X1 () — X2 2 (x3)
and the strain tensor of the displacement U* is
1(du do,
00 (f-xix)
(=[x 0 HEru) | (4.9)
* X %—xld;’g] —.dedz%

Note that the boundary conditions for the terms of this new decomposition are
dU
u(0)=U(0) = -—(0)=06(0) =0.
dX3
Also note that, since R, € H-(0, L), we have U, € HA(0, L).
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The estimates for the functions from the decomposition of u, can be obtained using
Lemma 6 and Lemmas 15, 16 from Appendix A. They are given in the following lemma:

Lemma 5 For every displacement u € V. one has (¢ =1, 2)

C
lull g,y < P’ le@) 122
(4.10)

C
||Ua||H2(0,L) + ||@||H1(0,L) =< 8—2“3(“)”#(.(2;)7
and

_ 1 _
lusll2eox + S(Hua l22¢0% + ||VM||L2(Q*)) + IVull 2+ + E”u”L2(Q*) = Clle(ll2(0z)-

4.11)
The proofs of the following two lemmas are given in Appendix B.3.
Lemma 6 The solution u, to problem (4.2) satisfies the following estimate:
lle@ell2(ex) < C52(||f||L2(0,L) + ||g||L2(0,L))- (4.12)
Lemma 7 For a subsequence of {€}, still denoted {¢},
(1) there exists U € le" (0, L)? such that the following convergences hold:
U, —~U weaklyin H?*0,L)?, (4.13)
T(U.) — U stronglyin  L*((0,L); H*(0, 1))%, (4.14)
dU dU
T( ) = 55 swonglyin L2((0,L); H'(0, 1))?, (4.15)
dX3 d)C3
L (d*U, d’U . ) )
() mektvin 100 x 0,17 4.16)
(i1) there exists ® € H 11" (0, L) such that the following convergences hold:
Oy — O weaklyin H'(0,L), 4.17)
T3(O,) — @ stronglyin  L*((0,L); H'(0, 1)), (4.18)
do, e . 5 )
7'*( i ) dn, weaklyin  L2(0.L) x (0, ); (4.19)
(iii) there exist u € H,L (0, L)3, u, € L?((0, L), Hll,pe, 0, 1)) (¢ =1, 2) such that
1 . 1 3
—u, —~u weaklyin H (0,L)", (4.20)
&
1
ST W) = u stronglyin  L*((0,L); H'(0, 1), @d.21)
1 ” dﬂs,a dﬂa 820( . 2
T, ( i ) ety wedklyin L(0.L)x 0.1). =12 (#22)
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1 d d
—ﬁ*(ﬁ)—\ﬁ weakly in  L*((0, L) x (0, 1)), (4.23)
& dX3 dX3

(iv) there exists u € L*((0, L); Hll,per (C))3 such that
1
=T @) —~u  weakly in L*((0, L); H'(C))’,
I3

1
—TX(Vit,) = Vxu  weakly in L*((0, L) x C)**3, (4.24)
I

1
T (e(it,)) — ex (@) weakly in L*((0, L) x C)>*.
&
Let us introduce the following vector space:
. 1 3 2 2 1 dU
Vir = { @ U.0) € H'0.L)> x H*0.1)? x H'(0.L) | 1(0) = U(0) = Z—(0) = ©(0) = 0}.
X3

For every (u, U, ®) € V;, we define the symmetric tensor E by

1(du _ ¥ do
00 2 (m X2 d)(3>
1 [ du de
Ew U, &)=+ 0  }(#+x42)
dus 42U, d?U,
* * i R, —_—t —_—
dx3 1 dx% X2 dx2

The following proposition provides the first main result of this section. Its proof is given in
Appendix B.3.

Proposition 6 (The unfolded limit problem) Let u, be the solution to (4.2). There exist func-
tions (u, U, ©) € Vy; and € L*((0, L); Hll’[m’oC))3 such that the following convergences
hold:

T (o) = U, weaklyin L*((0,L); H'(C)),

1
T (wen = Uey) = uy — X20  weaklyin  L*((0, L); H'(C)),
&

1 (4.25)
—T(en = Uen) = u; + X,0  weaklyin  L*((0, L); H'(C)),

)

dU dU
T (Ue3) =ty — Xj— — Xa—— weaklyin  L*((0, L); H'(C)),
’ ' dxs dxs

)

and

T (e(ue)) — E(u, U, ©) +ex (@) weakly in L*((0, L) x C)**3,
(4.26)

™M | —= M| =

T (0 () —~ a,«jkl<Ek1(g, U, ©) + exu (ﬁ)) weakly in L*((0, L) x C),
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where the functions u, U, ®, U are the solutions to the following unfolded problem:

/ aiji(Eq(u, U, @)+ ex () (Eij(v, V, T) + ex ;; (V) dxsd X
0,1)xC

dVv,
faVa d)C3 + Ia / ( / f';y?, dX3], (427)
(0.L) (0,L) dx3 (0,L)

V@ V,T)eVy, YoelL*(0,L);H,,(C)".

=lci|

4.5 Homogenization

In this section, we derive the representation of the microscopic displacement % in terms of
the macroscopic fields i, U and ©.
Taking (v, V, T) =0 as a test function in (4.27), we obtain

, N - 3
/ aij(En(u, U, ©) + ex 1y (@))ex,;;(0)) dx3dX =0, Vve Hll,periyo(c) .
0.L)xC

This shows that the microscopic displacement # can be written in terms of the tensor E.
Define

Ml3=1
2

0 0 1 0 0 O 0 0 O
x|l 33

0 0 0], M”==-]10 0 1}, M”=|0 0 O

1 0 0 01 0 0 0 1

The tensors E(u, U, @) have 6 components

2

E(u, U, ®)= Z —m Mm3 Z X, dZU M33 + (X1M23 _ X2M13>@
i) ’ o dx3’
and we introduce 6 correctors
X X X7 €HY 0 o(C©), a=1,2, m=1.2,3,
which are the unique solutions to the following cell problems
/ aiji(exu(x2) + M@ )ex ;@0 dX =0, m=1,2,3,
C
f aijur (exu(Xa) = XaMi) exij @ dX =0, a=1.2, (4.28)
c

/ QAjjkl (EX,kl (X @) + XlMi? - X2M11;) €x.ij dX =0
c

forallve H{ ,,,,(C)’.
Thus, the function % can be represented in terms of u, U, @ in the following way

3 2
R du,, dZIU e | .
S § d; u E X, xY + d_x3xo a.e.in (0, L) x C. (4.29)

m=1
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Theorem 3 (The homogenized limit problem) The limit field (u, U, ®) € V, is the unique
solution to the homogenized problem («, o’ € {1,2}, m € {1,2,3})

/ { hom dZU d V blwm dﬁm dym’
0 ao! dx? dx? " s dxs

d® dT hom (dzUa dv,, 4w, du, d°V, )
dx; dx; o\ dx? dxs  dxz dx}

de d*Vv, d*U, dT wom {(At,, AT dO dv,,
+ bc, " — ] dxs
dx3 dx3 dx3 dxa dx3 dx3 dx; dxs

L L dVa
= [ faVa de + IO(/ (ga
0 0 dx;

where

Clwm

hom
a

/OL favydxs, V@, V,T)eVy,
(4.30)

oty = % J e (M e () (M x5 (1) Ko Xer .

b = / i (M +ex i (x2)) (M 4 ex.(x29)) dX.

chom = o [ (XM = XaME e (%) (4! = XM + e (%)) X,

bl = g L o O ex () (M5 + ex, () X,

1
ach”m = E / a,»_,«kl (Mz? + eX,kl(XE)) (}(1M1213 — X2M11/3 —|— eX,l-j (X@)) XO, dX,
C

o

m

1
pem = oL [ g (M xc(12)) (VM) — XM 4 e () X
4.31)

Proof We take v =0 in (4.27). Replacing u by its expression (4.29), for every (v, V, T) €
V yields

/(0 LMCaim(ﬁ (Mk’”l3 + ex,kl(x,”;)) - X, e (Mil +exu(x? ))
de - o

+d_x3(Xlel Xsz/ +6Xkl( )))
d—m m3 d V 23 13) dT
(dx3M N d (XlMij _X2Mij d—xz) dx;dX

dVv, .
el [ fiVedu 41, / (05— ast]dnat [ vy
(0,L) 0,L) X3 0,L)

Taking into account the variational problems (4.28) satisfied by the correctors, the problem
(4.30) with the homogenized coefficients given by (4.31) is obtained by a simple computa-
tion.
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Now, we show that the operator on the left-hand side problem (4.30) is uniformly elliptic.
Using formulas (4.31) of the homogenized coefficients, we obtain

aggtntUTU/_‘_biln(Zln ::Ltm +Chom e ()+2abhomTUTu +2achom U e +2bch0m u O

= /;aijkl (exekl(q/) + Mkl) (ex,ij (‘1’) + Mi,-> dX,
where
M= (rl — Xyt )M” + <z§+ Xlr("’)M23 n (r}U vl &)M”,
W=y, + xsre 4+ 1, ), t9€eR, a=1,2,m=1,2,3.

Then, in view of (2.2) and following the proof of [14, Lemma 11.19], we obtain

Zgl/nthT[{ bhorrh_ 'L' +Chom ] ()+Zabh0m'EU‘[u +2achom U ] +2bcham u O

Z/ co(ex,kz(llf) + Mkl) (ex,,'j (¥)+ M,~j> dX > C(tjJ +Th+ t@)z. O
C
4.6 Conclusion

For e-periodic porous materials, the solution of problem (4.2) (in the strong form), or (4.3)
(in the weak/variational form) is approximated by (for x € §27)

U (x3) + eu,; (x3) — %20 (x3)

~ Uz (x3) + eu,y(x3) + x10 (x3) du,, X X3
us(x) ~ dU21 U, + Z & (x )X ( { . })
sus(x3) — X d—)C';(X3) - x2d_xq(x3)

—Zexa i oo (222 e e (220 2)),
(4.32)
where (u U O) € Vy is the solution to the homogenized 1D problem (4.30) and
Xm, Xa ,x% e H erO(C) a=1,2, m=1,2,3, are the solutions to corresponding auxil-
iary cell problems (4 28) (see Fig. 4).
The first term in the previous formula is a Bernoulli-Navier displacement completed
by the displacements eu, and the term su, stands for the stretching-compression of the
structure. The remaining terms represents the warpings of the cells.
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x3

Ua (Ig)

To

5 2
O_i);ndmg(x& X) X Qijkl (Mz‘? + ex ki (XE)) Xa%—ijgg-

Fig. 4 Illustration of the two-scale approach for one pure bending experiment: compute the corrector X;EJ (X)
on the periodicity cell, compute 1D bending deflection U(x3) and put them into the approximating formula
for the local stresses

Appendix A: Korn’s Inequalities

For every open bounded set © in RV and § > 0, denote O = {x € O | dist(x, §0) > §}.
The following lemma is used to pass from convergences in O to convergences in the whole
domain O.

Lemma 8 Let O be an open bounded set in RN, and let {¢.}. be a sequence of functions
belonging to H' (O (k is a fixed strictly positive constant) satisfying

e ll g1 iy = C, (A1)

where C does not depend on s. We extend ¢, by 0 to RY \@ (extension with the same
name).
Then, there exists a subsequence of |}, still denoted by {¢}, and ¢ € H'(O) such that

¢ — ¢ weakly in L*(O),
Voelop — Vo weakly in L*(©O)" .

Proof It follows from (A.1) that there exist ¢ € L?(O) and @ € L*(O)" such that (up to a
subsequence still denoted by {¢})

¢ — ¢ weakly in L2(0),
Voelom — @ weakly in L*(O)".

Now, we show that V¢ = @, so ¢ belongs to HY0).
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. in
Fig. 5 Sets £2, 5228

=int
e

i/ﬁ’ Z¢ and

/:......... int
QI;S\/N

Let O’ be an open subset of O such that ' is strictly included in O. If ¢ is small enough,
one has @' C O™ For all ¥ € D(O')V, using the convergences given above we obtain on
the one hand

/ V(l)s-l/fdx:—/ d)gdiV('(/f)dX—)—/ ¢div(1//)dx:/ Vo -¥dx,
o’ o’ o’ o’
and on the other hand
/ Vo - ydx — D -Ydx.
O/ O/

Hence @ = V¢ in every open set O’ strictly included in O. Thus @ = V¢ a.e. in O. So, we
have ¢ € H'(O). O

A.1 Korn’s Inequality on N-Dimensional Domains

See Sect. 2.1 for the principal notations. We also denote (see Fig. 5)
gr={tezeE+Y)C Qgg”ﬁ}.

First, we recall the following results proved in [14, Lemmas 5.21, 5.23 and 5.34]:

Proposition 7 Let 2 be a bounded domain in RN with Lipschitz boundary. There exists
8o > 0 such that for all § € (0, 8] the sets 2i" are uniformly Lipschitz.

Proposition 8 Suppose p € [1,400). Let £ be a function defined on E.. There exists a
constant C which only depends on p and 052 such that

N
S@r=c( Y Or+Y Y e +e)— o).

teZ, gemint i=1 &g

Proposition 9 (Poincaré-Wirtinger inequality for £2/"") Let 2 be a bounded domain in RV
with Lipschitz boundary. Then, there exists 8y > 0 such that the domains Qg"’ for & € (0, o]
are uniformly Lipschitz. These domains satisfy a uniform Poincaré-Wirtinger inequality for
every p € [1,+00), i.e., there exists a constant C independent of § (C depends only on p
and 052) such that

le = Mo @)l Loapn, < CIVOlLaguey, Vo € WHP(S25), (A2)

where M Qi (@) is the mean value of the function ¢ in the domain Q™.
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Below, in every cell we compare a displacement to a rigid displacement. Then, in a
second step, we compare the rigid displacements obtained in two neighboring cells. After
that, we build a global displacement in order to obtain a Korn’s type inequality.

Let C; = interior(CU C + ¢;) and @ be a displacement in Wl”’(Ci)N, p € (1,+00) and
ie{l,...,N}. Applying Korn’s inequality in C and C + e; yields two rigid displacements
R0, R; 1, given by

Rio(x) =a;0+B;ox, N N
a;0, ;1 € R N xeR .
Rii(x)=a;; +B;; (x —¢),

where B, o, B; | are antisymmetric N x N matrices. We have

12 —Riollwircy < Clle(@) e,

(A3)
12 —Riillwircrey = Cle(@)llLrctens
where the constant depends only on C.
Lemma 9 The following estimates hold:
Bi;i —Biol < Clle(®@)rr(cy, )
i=1,...,N, (A.4)

la;1 —a;0—Bi1e| <Clle(P)lLrc;),
where the constant C depends only on C.

Proof Since the domain C; is connected and has a Lipschitz boundary, it satisfies Korn’s
inequality. Hence, there exists a rigid displacement R;,

Ri(x)=a,+B,(x —¢;/2), a;eRY, xeR",
where B; is an antisymmetric N x N matrix. The rigid displacement R; satisfies
12 —Rillwirc,) < Clle(@)lrrc;)s (A.5)
where the constant C depends on C;. Hence, by (A.3) and (A.5)
IVR; —=Rio)llerc)y + IVR; = Ry Dllzrctepy < Clle(P)lLrcyy- (A.6)
Taking into account the inequality (A.6), we obtain

B; —Biol <CIVR; —=R;0)llrc) < Clle(D)lLrcy,
B; —Bi 1| <CIVR; =R Dllrctey < Clle(@)llLrc))-

(A7)

Subtracting yields (A.4);.
Now we prove (A.4),. First observe that

=|
LP(C)

1
a;+B; (x — Eei) — (7,0 +Bj0x) H”(C) + ||Bix — By ox ||L,,(C)-
(A.8)

1
=B e
7 e

'ai —aj0—
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Besides, we have

1
Hai +B; (x — Eei) — (27,0 + Bi ox)

LP(C)

= [Ri —Rio|

L) = ||<p - R; ||LP(C) + ”Cb —Rip ”LP(C) = Clle(@)llzrc-

The previous estimate together with (A.8) and (A.7) gives

1
a —a;o— EBi ei’ =Clle(@)llrrcy-

Similarly, we obtain

1
B —a+ 5B, ¢| = Cle@)lurcy-

Hence (A.4), holds. Thus Lemma 9 is proved. O

Now, let u be a displacement in W7 (.Q;‘)N. By Korn’s inequality in (£ 4+ C) there exist
rigid displacements R,¢ (¢ € &,),

R, (x) =a(e§) + B(e§) (x —e§), xeR",
such that (using (A.3) and after e-scaling)

IV —Reg)llLreercy < Clle@)llLreErcoys
& G e (A.9)

le — RegllLr ety < Celle@)llLreE+oy-

As above we obtain the following estimates for every & € =, ;:

[B(e§ + se)) = B(eE)| < Ce ™7 el ¢t

|a(e + se;) — a(c§) — eB(e€ + se)e;| < Ce' M Plle@)ll et

where C; = interior((C +£) U (; + & + C)).
An immediate consequence of Lemma 9, we have

Lemma 10 The following estimates hold:

N
D IB(e& +ce) —B(eE)|Pe < Cle@)] g
i=1 £€E,;

. (A.10)
DY laleE +ce) —a(sé) — eB(ek +ee) €|’ < CePlle@)] o)

i=1 £€B,
where the constant C depends only on C.

Let £ be in Z,. If all the vertices of the parallelotope (& + Y) belong to =, we extend
the field a (or B, resp.) to this parallelotope as the O interpolate of its values at the vertices
of the parallelotope.

We obtain a field, still denoted a (or B, resp.), defined at least in .Q;z’ . This field belongs

. : VN
to W(QIt )N (resp. W (i NN,
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Lemma 11 For every displacement u € WP ()N the following estimates hold

C
”VB”LP(Qézi/N) = N le@)lLr 2y,
[va— B”LP(QZIJW) <Clle@)lLrep> (A.11)
e@)| pom = Clle@)llLrey,
” ”Ll @ LP($2%)
where the constants do not depend on ¢.
Proof A straightforward calculation and the estimates in Lemma 10 yield (A.11); 5. Then
(A.11), gives (A.11); (recall that B is an antisymmetric N x N matrix). Thus Lemma 11 is
proved. |
We assume that there exists a domain 2" with a Lipschitz boundary such that 2 C £’
and 2'Nd2=T.
Denote
WP (@) = {w e WP () |3y e W), ¥ =Y., ¥/ =0in 2/ \9_:} ,
where

27 = interior( L (et +sﬁ)>, gl={eeZ’ | (6 +eY)NR £0).

e/

Theorem 4 (Korn’s inequality) For every displacement u € Wl’p(.Q;‘)N, p € (1, +00),
there exists a rigid displacement R such that

flu — R||W1~P(A’2j) = C”e(u)”LP(Q;‘)- (A.12)
Furthermore, if u € W):"(25)N then
lullwir o = Clle@llLr@s), (A.13)
where the constants C in (A.12), (A.13) do not depend on ¢.
Proof Since the boundary of 'Q;Zi/ﬁ is uniformly Lipschitz, Korn’s inequality and (A.11)3
give a rigid displacement R such that
Ja— E”W“’(Qé’;i/ﬁ) < Cle “Lp(gé'g”m) = CllellLrz)-

Then (A.11), and the previous estimate lead to

[B VRl 0, = Clle@lirias

Denote B = VR. Hence

D IB(eg) = BIPeN < Clle@)1]qs-

gegin
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The estimate (A.10); in Lemma 10 together with the previous estimate and Lemma 8 yield
> IB(eg) = BIPeN < Clle@)] ) g (A.14)
Eel,

Now, from Proposition 9 and (A.11)s, there exits a € R such that
lla— a”LP(QZi/N) =<Clle@)llLrap-

Hence
Y laeg) —al?e™ < Clle@)l7y gy
EEE}?"’
The estimates (A.14), (A.10), together with the previous estimate and Lemma 8 yield

3 JaGes) —al’e < Clle@) ] g- (A.15)

Eelg

Let R =a + Bx. Then estimates (A.9) and (A.14), (A.15) lead to (A.12).
If u belongs to W,IJ"(.Q:)N, applying the previous result (A.12) with " in place of u, and
£2' in place of £2, gives a rigid displacement R’ such that

lu" — R,||W1-P(.(2£*) =< C”e(u)”LP(Q;f)-

Let O be an open set such that O strictly included in (.Q/ \ 5). For & small enough, the
function ' vanishes in O N £2/*.
Hence

IRl wironar < Clle@)lLr ey

which yields an estimate, independent of ¢, for the components of R’. Thus the estimate
(A.13) follows. O

A.2 Korn’s Inequality on a Plate-Like Domain
In this subsection, the proofs of the lemmas are similar to the proofs of those in the previous
subsection.

The notations are those of Sect. 3.1. We recall that C is a domain with Lipschitz boundary
included in Y = (—1/2, 1/2)* and such that the sets C, = interior(CU (C +¢,)), @ =1,2,
are connected.

Let u be in H'! (.Q;‘)3. For every & € E, there exists a rigid displacement R,

Rec(x) =U(eE) + R(e6) A (x —8), x€eR’,
such that

IV —Ree) 20 < Clle@l2ercy, 14— Regll2¢e10) < Celle@) L2 40))-
(A.16)

Remark 2 By construction, the fields U, R are piecewise linear in each cell.

In the same way as in Lemma 10 we get the following lemma:
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Lemma 12 The following estimates hold:

2

YD IRGeE +ee) —R(EEIE < Cle@l}o gy @=1,2,
a=1£&€8: o

, (A.17)
Yo D UGk +ee,) —UEE) — eR(eE + seu) Aeg e’ < Celle() s g

a=1E€8 o
The constant C depends only on C.

As in the previous subsection, using Q interpolation we extend the fields U and R to the
whole domain " and obtain two fields U € W (wi")? and R € W (wi")? satisfying

U(e§) =U(8), R(s§) =R(e§), VEeE Ny
Below, we use the plate decomposition from [18]. We define the displacement U as
U‘(x) =UK) + R Axzes, Yxe™, x'=(x,x).
Lemma 13 For every displacement u € H' (Q;‘)3 we have

C
||VR”L2<wg';’) =< P lle(u) ||L2(rz;)v
(A.18)

C
< m”e(u)”Lng), a=1,2.

H 8th

U
The constant C depends only on C.

Proof The estimates (A.18) are the consequences of (A.17) and the fact that the fields ¢/ and
R are piecewise linear in every cell. |

Theorem 5 For every displacement u € H' (95)3, there exists a rigid displacement R such
that

C
[zt —Ra||L2(:zg) = C||€(M)||L2(.(z;f)’ flus —R3||L2(9;)+ ||V(M—R)||L2(:z;f) = ;||e(u)||L2((2j)'
The constant C does not depend on €.

Proof From Proposition 9, there exits (b, b,) € R? such that

C
1Re = bull 2y < =5l 1260 (A.19)

Then, the previous estimate, (A.17); and Proposition 8 yield

C
D IRa(e8) = bol’e® < < le()ll 2(0)-
&

§ei;
Furthermore, (A.18), and (A.19) lead to
oUs

P!

|5+ |
L2 ((u”” aX2

C
< —l|le)|l;20%y, oa=1,2.
3x1 < 81/2” Wl 2

L2 (@5
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Proceeding as above, there exists a3 € R such that

C
Z U3 (e€) — a3 + bre&) — bie&r) e’ < 8—38||€(u)||L2(9;)~

ek,
From (A.18), we also obtain

o, 82/12

|5 +5e
L2 0x; 8x1

’ BZ/IQ
8)61

C
9% m”e(u)“Lng)-

LZ(wlllf

36 ) L@y

Since the boundary of {" is uniformly Lipschitz, Korn’s inequality for 2D gives a rigid
displacement r (x1, x;) = (a1 — bsxp)e; + (ax + bsxp)e; such that

C
24 = rill g ooy + o =2l g iy < o lle@) Il L2(qz)-

These estimates and (A.18), imply that

C
IR = b3l 2 gy = 817||€(M)||L2(98*>-
Then, as above, we obtain

D IRa(eE) — bs*e’ + D Ui (68) — ar + bsekal’ed + Y [Ua(eE) — ay — back *e’

Eele EcE, ek,
C
<— ||€(M)||L2(9;>~
e
By choosing R(x) = a + b A x and using (A.16) we complete the proof of the theorem. [

Let y be a subset of dw with a non-zero measure. Assume that there exists a domain '
with Lipschitz boundary such that

wCao and o' NiIw=y.
Denote
Vv, = [v e H'(2)) |3 e H(QL) v=1]p, v =0in 2"\ 9_5]
where

QF= interior( s+ eE)), El={6eZ’ | (£ +eY)No #0}.
ekl

Theorem 6 For every displacement u in V, the following estimates hold

C
Nl 2oy + N2l 20 < Clle@ll20x),  usll2@r + 1Vull 20 < ;||€(M)||L2(Qg)-
(A.20)
The constant C does not depend on ¢.
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Proof Since u belongs to V., there exists u’ € H'(£2[")? such that u = ujq,, u' =0 in

Q!* \ £27. Then, applying Theorem 5 with u’ in place of u, and £2’ in place of £2, gives a
rigid displacement R’ such that

||14; - R;“LZ(Q’*) = C||€(M)||L2(m),

) ) ) ) C (A.21)
65 = Ryl 2z + IV = R) 2z < — llel)ll 2.

Let O be an open set such that O is strictly included in (a)’ \6). For ¢ small enough, the
function u’ vanishes in O x (—&/2, ¢/2) N §2/*. Then the terms of its decomposition " and
R’ also vanish in O. Hence, one can choose R’ = 0 without changing the estimates (A.21).
So, (A.20) follows. O

As a consequence of the two previous theorems, we obtain the following result

Corollary 1 For every displacement u in V. the following estimates hold:
C
”ul”[-{l(wg’;’) + ”uZ”Hl(wg';’) + ”RSHHl(wg’;f) =< m ”e(u)“LZ(Qg)»

C
”Z/[S”Hl(wggf) + IR ”Hl(w?;') + ”RZHHl(wé'Z,’) = 837”6(14)”L2(Q;‘)a (A.22)
lluy ||L2(_Q””) + |u2||L2(Q"”) = C“:”e(u)”Lz(.Q*),

131 2 iney + 1V 2 gy < Clle) 220,

and
D RIS+ Y [Ra(eE)Pe” + Y [Us(e8)|’e” < —||e(u)||Lz(m),
e §e€le Eel; (A23)
D IRaEEPE + Y U (e6) e + Y lha(e8)Pe” < ||e<u>||L2(m
Eele Eele Eele

The constants C do not depend on ¢.
A.3 Korn’s Inequality on a Beam-Like Domain
In this subsection, the notations are those of Sect. 4.1.
For every displacement u € H'(£2¥)?, Korn’s inequality applied on the domain &(§ +
C), £ e &,, gives arigid displacement R¢,
Roc(x) =U(eE) + R(e6) A (x —8), x€R’,

such that

IV —Re) 20y < Clle@ 2y 1t — Regll 2 10)) < Celle@l L2610y
(A.24)

Remark 3 By construction, the fields U and R are piecewise constant.
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In the same way as in Lemmas 10-12 we get
Lemma 14 The following estimates hold:

3 IR(eE + e3) — R(e8) e < Clle@)2 g,

tel,

(A.25)
Z U(E + ce3) —U(E) — eR(e€ + ces) Aes’e’ < Ce? IIe(u)IILz(m
Eel,
The constant C depends only on C.
Define
R(Ne)=R(N —1)e), UNe)=U(N — 1)) +eR(Ne¢) A e;.

Now, using Q, interpolation, we extend the fields ¢ and R to fields U, R belonging to
W0, L)? and such that

U(e) =U(e8), R(e§) =R(e§), VE€{0,...,N}
Let us introduce the displacement U¢ as follows:
U’(x) =U(x3) + R(x3) A (x1€) + x2€3), Vi e 2.

Lemma 15 For every displacement u € H' (2} )3 the following estimates hold:

C
&2 ||e(14)||L2(.(z*),

H d)C3

L2(0, L)
¢ A26
| | B QI PR (4.26)
|ecue) ||L2(9§) < Clle)|l 202
Moreover,
||V(M - U€)||L2(m) C||€(u)||L2(m llu —U* ||L2(.Q*) C8||€(M)||L2(m) (A.27)

The constant C in (A.26), (A.27) depends only on C.

Proof The estimates (A.25) yield (A.26), ». A straightforward calculation and (A.26); , lead
to (A.26);. Then, taking into account (A.24), we obtain (A.27). O

Denote

H(0,L)={¢ e H'(0,L) | $(0) =0}.

Lemma 16 For every displacement u € V, the following estimates hold:
C
1111 0.2y + € (I 1 0.2y + 1l g1 0.) + IR 2200.1)) < EHE(M)HLZ(.Qj) (A.28)
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and

lusll2 oz + & (lurll 2@z + luall2iep + VUl 20z) < Clle@ll 2y (A.29)

The constant C in (A.28), (A.29) does not depend on €.
Proof We extend u by 0 to the cell 8( —e3 4 C). Then, proceeding as in Lemma 9 we obtain

IR(0)*e* < Clle@) |} U©)e* < Celle)l7.

(£25)° (£23)"

Without losing the estimates (A.26), we set U (0) = R(0) = 0. Estimates (A.28) are the

immediate consequences of (A.26); » and the Poincaré inequality. Finally (A.24) and (A.28)
lead to (A.29). O

As a consequence of the previous lemma and (A.24), we have the following decomposi-
tion of a displacement u € V,:

u=U"+u,
where the displacement U° is given by
U(x) =U(x3) + R(x3) A (x1€] +x285), VxeRF, U, ReH(O,L)
and where the displacement u € V, satisfies the estimates (see [18])
@l 200 < Celle@)ll2ery,  I1VUllzes < Clle@) 20 (A.30)

The constant C in (A.30) does not depend on €.

Appendix B: Proofs of the Results of Sects. 2, 3 and 4

B.1 Results of Sects. 2

Proof of Lemma 1 From (A.13) in Theorem 4, we have
luell2p) < Clle(ue)ll L2y

Then, using the Cauchy-Schwarz inequality, we obtain

[ ferueds| <1 Nzl = CIF eyl e,
2

and thus (2.10) follows from (2.2). O

Proof of Proposition 2 There exists a subsequence of {¢}, still denoted {¢}, and exist u €
HL(2)Y and u € L*(2; H,{,’pe,’o(C))N such that (see [14, Theorem 4.43])

T (ue) — u strongly in  L*(£2; H'(C))Y,
(B.1)
T*(Vue) = Vu + Vyit  weaklyin  L*(£2 x C)N*V.
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In order to obtain the limit problem (2.12), we use the same approach as in [13, Theorem
4.3]. Let us introduce the following fields

ve H'(2)" suchthatv =0 in 2,N(2'\2), ¢eD ), ¥ € Hy ., (O",

,per,0

and take v, (x) = v(x) + e (x)@(x) as a test function in (2.6), where V. (x) = ‘/’(%) Note
that

€;j(v:)(x) = €;; (V) (x) + €e;j (Ve) (x)

= ey +ex (D)oo + 5 (v, (2) 22 Co )88;”( )
J

= ey )00+ ex s (D00 + 5 (1,00 32 (>+w,<X) o 00)

xef,i,j=1,N.
Then, applying 7, to v,, gives
T (v;) — v stronglyin L*(£2 x O)V,
T (e(v:) = e(v) +ex(¥)p stronglyin  L*(2 x O)N*N,

Unfolding the left-hand side of (2.6), using [le(ve) [| 2 pexty = le(v) || 2¢4exry — O and passing
to the limit, we obtain

/ o (ug) :e(vy)dx = / T (0% (ue)) 1 T (e(ve)) dx dX
ar

Q8&1xC

= T (0 (ue)) : T (e(ve)) dx d X —|—/ o’(u,) :e(vy)dx

2xC Aext

— aiji (er () + ex 1 (@) (e (v) + ex;; (Y)p)dx dX.
2xC

Taking into account (2.4) and using [|ve [| 2 pexty = [Vl 2 gexty — O, we have
fovedx= / TA(f) - T2 (ve) dxdX
2 £ % C

= T - TX(ve)dxd X + f-ve.dx

2xc Aext

— fX)-v(x)dxdX = |C|/ f(x)-v(x)dx.
o)

2xC

Hence, the convergences given above lead to
/ ajji (e () + ex () (e (v) + ex.ij(Y)p)dx dX = |C|/ frvdx.
2xc 2

Finally, since the functions v € HY ()N satisfying v =0 in £2; N (.Q/ \ 5) are dense in
H/.(£2) and since the tensor product D(£2) ® H,{,JW,O(C) is dense in L?(£2; Hﬁ/.peno(c))v
we obtain (2.12).
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The solution to the variational problem (2.12) is unique. Indeed, if there are two solu-
tions (u1,u;) and (u,,u) to this problem, denote U = u; — up and U =u; — u,. Taking
into account the respective equalities from (2.12) and choosing the test functions U, U, we
obtain

/ aijii(en(U) + eX,kl(ﬁ))(eij(U) + eX,ij(ﬁ) dxdX =0.
2xC

The property (2.2) of the elasticity tensor {a;x} yields
colle) +e@) 32000 < / aiju(ew(U) + ex (D)) (eij(U) + ex,ij(U)) dx dX =0.
2xC

So e(fj ) = —e(U) and thus the field U is an affine function with respect to X. Since Uis
periodic with respect to X and belongs to L?($2; H 1{, per,O(C))N , it is equal to O (because its
mean value on the cell is equal to 0). Hence, e(U) = 0 and due to the boundary conditions
we obtain U = 0. Finally, the whole sequences in (B.1) converge to respective limits.

Now, we prove the strong convergences (2.11), 3. By Proposition 1, (2.6) and (2.12) we
have

/ . aijia(ex () + ex ) (ex (1) + ex () dx dX
2x

e—0 ext

< liminff ﬁ(af}k,)ﬁ*(ekl(ug))ﬁ*(eij (ug))dxdX +1imi(1)1f/ o’(u,) :e(v,)dx
2xC &= A

< liminf/ o(ug):e(ug)dx < limsup/ o(ug):e(ug)dx zlimsup/ fu.dx
e—0 QF 2, 2

e—0 x e—0 *
=|C| frudx = f aiji (ex () + ex ) (ex () + ex (@) dx dX.
2xC 2xC
Thus, the strong convergence (2.11); holds. O

B.2 Results of Sects. 3

Proof of Lemma 2 Taking into account the decomposition of the displacements introduced
in Sect. A.2 of Appendix A, the Cauchy—Schwarz inequality and the estimates (A.16) and
(A.23) of Corollary 1, we have

‘ fg-ugdx‘:‘Z/ fg-ugdx‘
2 fem Jero)

Ee

<

2 /g(s+c> ot = ng)dx’ >

€ I o

[ f.-Ryedx|. (B2)
£(E+C)

Each term on the right-hand side of (B.2) can be estimated as follows:

e’ a_Re d
Z /S(Hc)f (u ¢) X‘

Eel,

= Z /s(E+C)

§ebe

fo e =Reo)|dx = 37 1 fell 2y lte = Rell2escr

§ebe
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2 2 7/2
< \/ Yl erey \/ D e =Rl oo = CEPNf 2o lle@o 2 az)-

£el, §ebe
Hence
Z/ fE-Rggdx]=Zf fo - WU(EE) + R(e) A (x — e£) dx]
fel, &((+C) teh, e(E+C)
<e’c ) / U (e6) i (X)) dx' +£C Y [Us(e8) fo(x) | dx’
fem, YeG+Y) feg, JEEHY)

rec Y [ e oy

teB, E+Y")

+e4ch [R1@6)] (2] 01 +] 20 )
foa Jeryn

el

+e'C ) /W) [Rae6)|(| /1] + e 5G] )

wee Y [ Rae) (|50 + A0
e(E+Y")

§€E;

<ECI fill 2oy | D U +ECN fll iy, | Us (8262

tel, §el;

+ & Cll fill 2wy | Y UsEE)Pe2+Ce* | Y IREE PN Il 200

Eel; §ele
5.2
<ce” I F L2 op e el 2oz

And finally, from the previous two estimates

5/2
[ feuedx| = €Ul @l 2.
2

Using this estimate, we obtain (3.8). O

Proof of Lemma 3 In order to prove (i)-(ii), we note that from the estimates (3.8) and
(A.22), in Corollary 1 and Lemma 8, it follows that there exist functions I/ € H'(«')? and
R € H'(w')? such that the following convergences hold

1 1
—Uew = U, weaklyin L*(o), — VUeal jine = VU, weaklyin  L*()?,
& & 3

1 1

~U, 3 —~U; weaklyin L*(), VU, 31 i — VUs  weaklyin  L*(0')?,
& & 3¢

1 1
~Rew — R, weaklyin L* (o), ~VReal im = VR, weakly in LX)’
& £ 3¢

Now we prove that the fields U, R, U3 and VU3 vanish in o’ \ @.
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Let O be an open subset such that O is strictly included in " \ @. Since u, vanishes in
27\ 227, then the fields U;, R, vanish in o] \ 0. If ¢ is small enough then O C @/ \ ”’”.
Thus by construction, the fields U, 4, R, L{ .3 and VU, 3 vanish in O. As a consequence,
their weak limits also vanish in O. Since this holds for every open set O strictly included in
' \ o, this is also satisfied in the full set ' \ @. Estimate (A.18), in Lemma 13 leads to

1 /ouU
( L R F) 1, — 0 strongly in L*(o),
axz @3¢

1 [ oU
Z ( > Rz,s) 1, — 0 strongly in L* (o).
0x; “3e

From convergences (3.9)4 and (3.10); we also have

oUs
0x2

1 /U .
! ( - m) Ly = 5 =R weakly in L*(@)
3e X1

and then we get the equalities (3.11). Thus, we have U; € H>(o').
(iii) From estimates (A.22); 4 in Corollary 1, we obtain

— 1/2
172 @ 1200 ey < /

||ug ||L2 ant) < C8

7

IVx T @l 2w xe) = T (Vo) 120 xc)

172

I
< 2|\ Vi || 2 gy < Ce'2lleue) |l 205 < CE.

Z (_ +Rl,s) 1 — — 4Ry weakly in L* (o),
3e

lle@a)llp2(ox) < Ce’,

Thus, for a subsequence, still denoted by {e}, there exists u € L*(o'; Hzly per (C)) such that

the convergences (3.12), , hold.

O

Proof of Lemma 4 Applying [12, Proposition 2.9] and the equality (3.11) we have the con-
vergences (3.13);,, (3.14); and there exist functions RO,, L{O,, Z/{g e L*(w'; H2' pero(C))

(¢ =1, 2) such that

weakly in  L*(o’ x C),

1 /R 32U R

—T*( e | ’mz>—‘_ & + “

3Xﬁ “3¢ 8xa8x,3 8X,3

1 MWy o, o,
(G ) = e

1 Jint -
Bxﬂ BXﬂ

5 " weakly in  L*(w’ x C),
Xﬁ 3¢

174(32/153 )4% alls

1 !int + —
Bxﬁ @3¢ Bxﬂ aXﬁ

a,=1,2 weaklyin L* x C).

(B.3)

From Remark 2, the functions R o, Us o, Ue 3 are piecewise linear with respect to the vari-
ables Xg (8 =1, 2). Thus, the functions R, Uy, U3 are also piecewise linear. As they are

periodic, these fields are independent of X4, B € {1, 2}. Hence

Re Wy U
3Xp 9Xp 9Xp

and the convergences (3.13);, (3.14), hold.
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Proof of Proposition 4 From (3.13),,, (3.14); and (3.12),, we obtain the convergences
(3.15).
From estimate (A.18), and (3.8) we have

—Re A ea)lwm <Cé.

3e

H 3xa L2 (w)

Then there exists X € Lz(a))2 such that

1 /ou
S( e Rea)lyp = & weaklyin  L2(w),
_x kI
! (B.4)
1 /0l s , ,
— (— + Rgil)lwm — A&, weaklyin L“(w).
0x, ’ 3¢

Due to (3.14),, (B.4) and [14, Lemma 11.11], there exists a function Ze L*(w; Hzl’[m(C))
such that, up to subsequence,

1 ausv:; 82 -~ . 2
FT (5 ~Reflg) = 4+ 5 —Re weaklyin L ©),

1 M. 3 IZ .
;7”*(( - + R )L ) = ot o+ R weaklyin L2 x C),

where the field ’fia is introduced in Lemma 4 (see (B.3)). Since R is independent of X and
X, and mean value of R on a cell equal to zero, we have

1 U, 3 0z . 2
?Tk(( ax R8’2)1w52’> Tty weklyin EHex Q). (B.5)

1 s 5 IZ o
?7?(( oxs +Rg,l)1w§2t> - &+ 8—X2 weakly in  L*(w x C).

In order to prove (3.16),, note that from (3.7) and convergences (3.13), (3.14), we have

a2 2
oy, Pl ("’“‘+“;ﬁ’f)—X3 0t <X1+3X])

1 x| 3x12 dxy 9x10x7
—7_3‘F e(u 1/ ) — Uy 32U3 (92 +ex u
g2 ¢ ( E M ) * o X3 8)‘% 7 X, + Xy (@)
* * 0
ah L | b azz? P g 0 0 X+
dxp 2 X x| 3x1 3)(21 dx2 1 1 [;X,-l
= Uy - X3 PUs + = 9z | +ex(u).
* FER 0 * 22 0 2 0 X —|— e
* * 0 " * 0 * ok 0
Denote

up(x, X) + X34 (x)
ux, X) = | u2(x, X) + X34 (x) | +C,
uz(x, X)+ Z(x, X)

where C is determined in order to get fC u(-, X)dX =0a.e. in . And thus (3.16), follows.
Then, taking into account the definition (2.3), we have (3.16),.
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To obtain the limit problem (3.17), let us define the following fields
Va€H)(w), =12, Vse€H)(), ¢€Dw), V¥eH,,, (),

and take the test function in (3.3) as

IV
Vi) = 252 () (X" )Pe1(x)
ve() = [ V() = 2FAC) [+ | 9D (r) ]
Ly @) Pe3(x)
where ¥, (x) = w(g). Then
vy 1{ov, |, 3, 32v3 82V3
E E(sz + x| ) 0 8x 0x19x 0
2 2
e(v)=¢" | L1 4 Vy —&x av; av;
(ve) 2 ( o T o ) Fre 0 3 ijdxz dx2 0
0 0 0 0
1 1
49x1 1/,] 2 (dxz 1//1 dxl 1//2> 2 3l3 BAI
3] 1
te 2 axz wl 6x1 \ZIZ Brz I/fz 2 3)&2 ¢3 + 9 8)(3 (B 6)
I
2 ()X3 w + o 6)r| \[f3 (szw + 3)(3 1//2> ()X';
Yy 13y | v 1(ay 3\’/3
X, 2 (axz + ax1> 2 (ax3 + axl
2 L(3y1 | 3 (k) 3 | o
tee (o o X, (m+a§3
1(ay 4 avs 3vs | Weo 33
2\ 0X3 + 93X <3X2 + X3 ) X3

Applying the unfolding operator 7 to the stress tensor e(v,), given by (B.6), and passing
to the limit as ¢ — 0, we obtain

éT:(e(vg)) = EM (V) = X3 EP(V3) +ex(¥)g  strongly in L@ x ©)°,  (B.7)
where V,, = (V1, V,).

Unfolding the left-hand side of (3.3) and taking into account that by virtue of (3.8), (B.6)
and Cauchy-Schwarz inequality

o’(u,) :e(v,)dx
anem

< 10" 2 e 2 g iy = O (£72) 0 (72) = o(¢°),

we have

f o (uy) e(v,)dx
Q*

B

=¢ 7;*(05(u51w;,~n,) (T (e(ve))dx'dX + / o®(u,) :e(vy)dx

wxC Qr\eunt

1 1
=g f ST el i) 1 5 T (e(ve)) dx'd X + o(&”).
wxC € 3¢ 3
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Unfold the right hand side of (3.3)

fsUgdx:S/ 7:;*(](‘5)7?(7)8)dx/dX
wxC

2
2

=) f T (fea) TS (Ve o) dx'dX + 6 [

a=1 YoxC wX

T (fe3) T (ve3) dx'd X.
C

(B.8)
Taking into account the form of the applied forces (3.1), the first term on the right-hand side
of (B.8) can be rewritten as follows

& ﬂ*(fs,a)ﬁ*(vs,a)dx‘ixzes/- E*(fa)éﬁ*(ve.a)dx/dx
wxC

wxC

1
e / XoT7 (8) = T (v ) dX'dX, a=1,2,
wxC &
and, thus, as ¢ — 0 we obtain

1 1
ﬁ(fa)gﬁ(vs,a)dx/dXJr/ X377 (80) 5 7. (V) dx'd X

wxC wxC &

A%
- fa(x/)(va(x’wx3 3(x’)>dx’dX

wxC 3xa
Vs

0Xxy

+ / nga(x’)(va(x’)JrX; (x’)) dx'dX

wxC

’ ’ ’ , V3 , ,
=101 [ emaran'+ [ Xadx [ g s
w C w a
/ ’ / 2 f 3V3 , ,

+ X'$dX ga(x )Va(x)d-x + X3dX ga(x)a—(x)dx’ a=1,2.

C 3} C w Xa

Using (3.1) the second term on the right-hand side of (B.8) can be rewritten as follows

e[ T T dxdX = / T )T i) d'd X,
wxC

wxC

and, thus, as ¢ — 0
1 / I i ! I I !’
/ 7;*(f3)g7}*(vg,3)dx dX — / SVs(x)dx'dX = |C|f SV (x)dx'.
wxC wxC w

Hence, taking into account (3.16), (B.7) and the convergences obtained above, we can pass
to the limitas ¢ — 0

f Ca,-ju(E,?f Un) — X3EGUs) + ex a M) EL (Vi) — X3 E[(V3) + gex ij(¥)) dx'd X
/ / / ’ 8V3 / / ’ ’ /
=|C|ffa(x Wea(x') dx +fX3de[fa<x)87(x>dx + g (X)W (x) ] dx
w C w o
+/X%dX/ga(x’)%(x’)dx’.
c w 8xa
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Finally, since the tensor product D(w) ® H, per(C) s dense in L*(w; Hy »er(C)), We obtain
the limit problem (3.17). O

B.3 Results of Sects. 4

Proof of Lemma 6 Taking into account the estimates in Lemma 16, we have

fs-ugdx’

0
= ‘/* ((Szfl(XS) +x283(x3)) (Us,1 (x3) — X2 R 3(x3) + 11 ()

+ (2 fo(x3) — x183(x3)) (Ue2(x3) + X1 R 3(x3) + e (%))

+ (ef3(r3) = X181(9) = x282(19)) (e 3 () + 32Re1 (353) = 1R 2(053) + e 3 () dx|

582‘

sttty + e [ ftmaeda]+ | [ adeReatn da
2F 2F

2

2| [ potacodi] ¢ [ pemamds|+] [ detReac

2F

ve| [ poatsdr|vel [ paamamar+| [ deeaRaw
2 2 2

+)/ xlzgl(x3)Rs,2(X3)dx‘
2

4 3 — 4
<C&| fi ”LZ(O,L)”L{S,I ||L2(O,L) + Ce’|l fi ||L2(0,L)||”e,1 ||L2(.o;) +Ce ||g3”L2(0,L) ”Re,3||L2(0,L)
4 3 — 4
+Ce¢ ||f2||L2(0,L)||Us,2||L2(04,L) +Ce¢ ||f2||L2(0,L)||Me,2||L2(9;) +Ce¢ ||g3||L2(0,L)||Rs.3||L2(o,L)

3 2 — 4
+ Ce’ll fall 2. e 3l 20,0y + €Nl Fll 20,0y 1,31 1225y + CET NI 82l 20,0y IRe1 200, 1)
+ Ce*llg 20,01 Re2ll20,) < C€2(||f||L2(0,L) + ||g||L2(0,L)> lle@) L2
and thus (4.12) follows. O

Proof of Lemma 7 (i)-(iii) From (4.10); 3 in Lemma 5, [12, Theorem 3.6] and [14, Corollary
1.37] it follows that there exist functions U € HI% O,L), ® ¢ H} O,L),ue H} (0, L)? such
that the convergences (4.13), (4.14), », (4.17), (4.18), (4.20) and (4.21), hold.

The functions R, u, ; are piecewise linear with respect to the variable x3, hence

dR.\ dR
7( 8)4— weaklyin  L2((0, L) x (0, 1)).
" \dxs dxs

As a consequence, we obtain

d*U, L(dR. dR da*u . 2 3
7;*( i )_ - (dx3 /\e3) PR weakly in  L2((0, L) x (0, 1))?,
d6,\ _ (dR. de o,
7;*(dx3 )=, (dx3 ) o weaklyin | L2((0. L) x (0.1),
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1 * d££,3 dﬂ3 . 2
ST(G) = G weaklyin L2(0.L) x ©0.1).

From the estimates (4.12) and (4.10), there exists i, € L?((0, L), Hll.per 0,1)) (¢ e{1,2})
such that

T*(dl“’) L O, yin L2(0.L) x (0, 1))
¢ d)C3 dX3 8X3 Y ’ ’ '

(iv) From (4.11), (4.4), and (4.5), it follows that

— — 2
||7?(u8)”L2((0,L)><C) = g”us ||L2(Q;<) <C¢’,

— — — 2
”VX’E*(MS)”LZ((O,L)XC) = 5”7?(VMS)HL2((O,L)><C) = ||V”e||L2(Qg) <Ce

and, thus, for a subsequence, still denoted by {¢}, there exists u € L?((0, L); H'(C)) such
that the convergence (4.24), holds. The periodicity of #, that is w € L>((0, L), H 1" er (©)),
can be proved in a similar way as in [13, Theorem 2.1]. From (4.24), and (4.4), we have

(4.24), and (4.24);. ]

Proof of Proposition 6 From (4.14), ,, (4.18);, (4.21), and (4.24);, we obtain the conver-
gences (4.25).
By virtue of (4.9), (4.14);, (4.18), and (4.21), 3 we have

du de o

1 A o~ X (00 %
e duy 4o X
ST = 5 [+ 0 aw TXG e 0 B
%_ dUl_ d-Uyp .

* % de3 2X1—dx32 2X2_dx§ * x 0

Denote

uwy(x, X))+, (x3, X3)
u(x, X) = | ua(x, X) +u,(x3, X3) | +C,
uz(x, X)

where C is determined in order to get fc u(-,X)dX =0 ae. in (0, L). And thus (4.26),
follows. Then, taking into account the definition (2.3), we get (4.26),.
To obtain the limit problem (4.27), let us introduce the following fields

w,V,T)eVy
and take the test function in (4.3) as
LV (x3) 4 v, (x3) — %T(M) PYe.1(x)
ve()=e | Valxa) +u,(x3) + 2T(x3) | +&20(x3) | e (x) |,
v3(x3) = LT (x3) — 2 T2 (x3) Ve s(x)
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where V¥, (x) = w( ) v e Hl per(C)3. Then

dv| x3 dT 5
. 0 0 Z”(S)_?E 2 0 0 ;7“;1111
v x1 dT
e(v£)=5 * 0 dxz( )+?IE +—=1* 0 ;)WWZ
dvy  Hx1 d?Vy  Axp d?V)
* % 2dm 2-L i e * % 3X3 L s
(B.9)
Wi LWy 1o 4 s
90X 2\ 90X, X 2\ 0X3 X
(A} 1(3v3 (A%}
& 3y 1(0ys | Yo
Tep | x X, 2(8X2+8X3)
* * N

X3
Applying the unfolding operator 7.* to the stress tensor e(v,) (B.9) and passing to the limit
as ¢ — 0, we obtain

éﬁf*(e(vg)) — E@,V,T) +ex(¥)p strongly in L2((0, L) x C)>*3. (B.10)

Unfolding the left-hand side of (4.3) gives

/ of(u,):e(vy)dx = 5/ T (0% (ue)) 1 T (e(ve)) dx3 dX
& (0,L)xC

:e3/ —7“*(0 () : 7'*(e(v£))dx3dX.
(0, L)><C

Unfolding the right-hand side of (4.3) and applying (4.1) leads

fovcx=e [ ﬁ(fp)’r*w»dxadx—ez | T e dnax
o 0.L)xC (

0,L)xC

dv, dv,

=83/ [f1V1+f2V2+f3U3 X383T — X183T+X181d +X2g2d ]dx3dX
0.L)xC

Hence, taking into account (4.26), (B.10) and the convergences obtained above, we can pass
to the limit as ¢ — 0

/ aiji(Ex(u, U, ©) 4 ex (@) (Eij (v, V, T) + gex,i;(¥)) dxzd X
0.L)xC

dv,
[0 —asT|dw}+1C1 [ fivyds.
X3 O,L)

=i{|C|

a=1

faVa d)C3 + Ia /

0,L) O,L)

Finally, since the tensor product D(0, L) ® H1 per (C) is dense in L2((0, L); Hl er (C)), we
obtain the limit problem (4.27). |
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