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Abstract The paper is dedicated to the asymptotic behavior of ε-periodically perforated
elastic (3-dimensional, plate-like or beam-like) structures as ε → 0. In case of plate-like or
beam-like structures the asymptotic reduction of dimension from 3D to 2D or 1D respec-
tively takes place. An example of the structure under consideration can be obtained by a
periodic repetition of an elementary “flattened” ball or cylinder for plate-like or beam-like
structures in such a way that the contact surface between two neighboring balls/cylinders has
a non-zero measure. Since the domain occupied by the structure might have a non-Lipschitz
boundary, the classical homogenization approach based on the extension cannot be used.
Therefore, for obtaining Korn’s inequalities, which are used for the derivation of a priori
estimates, we use the approach based on interpolation. In case of plate-like and beam-like
structures the proof of Korn’s inequalities is based on the displacement decomposition for
a plate or a beam, respectively. In order to pass to the limit as ε → 0 we use the periodic
unfolding method.
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1 Introduction

This paper deals with the linearized elasticity problem posed in different periodic domains.
These domains are obtained by reproducing a representative cell of size ε in such a way that
one can get beam-like, plate-like or N -dimensional structures. It is assumed that a part of
their exterior boundary denoted by Γε is fixed.

The ε-cells are made of elastic materials. The reference cell is denoted by C (Fig. 1). We
assume that C has a Lipschitz boundary and that the interior of the closure of the union of
two contiguous cells is connected. Under these assumptions, the whole periodic structure
might have a non-Lipschitz boundary. Throughout this article, the cell C is included in the
unit parallelotope of RN (resp. R3), and one can replace this parallelotope by any bounded
domain having the paving property with respect to a discrete group of rank N (resp. 3).

Our aim is to investigate the asymptotic behavior of these elastic periodic structures as ε

tends to 0. Since these structures might be non-Lipschitz, one of the main difficulties is to
obtain a priori estimates. The classical extension approach (see [25]) and Korn’s inequalities
for Lipschitz domains (see [9, 10]) cannot be used. Thus, in order to derive a priori estimates
we use interpolations as suggested in [14, Sect. 5.5]. This makes it possible to prove Korn’s
inequalities with constants independent of ε. Note that in case of beam-like and plate-like
domains the derivation of Korn’s inequalities is also based on the decomposition of beam or
plate displacements. These decompositions have been introduced in [2, 18].

To derive the limit problems, we use the periodic unfolding method introduced in [11].
This method has been applied to a vast number of problems such as problems in perforated
domains [5, 6, 13, 16], transmission problems [17], contact problems [20, 22], problems
including a thin layer [21], problems in domains with “rough boundary” [1, 3, 4], to name
but a few. In our work, in contrast to earlier works for plate-like or beam-like structures
[14, 19, 21, 22, 24], we simultaneously proceed to the homogenization and reduction of
dimension. The periodic unfolding method used in this paper includes the following steps:

– introducing and applying appropriate unfolding operators, depending on the problem,
– obtaining a priori estimates for the displacements, then uniform estimates for the unfolded

displacements, which, in turn, are used to pass to a weak limit in appropriate spaces over
a fixed domain,

– establishing an unfolded limit problem from which a homogenized problem is derived.

As a general reference for the homogenization of elasticity problems in 3D periodically
perforated domains with Lipschitz boundary we refer to [25]. In case of a plate-like domain
we mention [14, Chapter V] where the interaction of homogenization and domain reduc-
tion, involving two small parameters such as plate thickness δ and periodicity ε, in its large
dimensions was investigated. For similar results in case of a beam-like domain we refer to
[19]. The novelty of this paper is the extension of the results to non-Lipschitz perforated
domains.

The paper is organized as follows. Sections 2, 3 and 4 deal with periodically perforated
3D, plate-like and beam-like domains, respectively. We begin every of these sections by
introducing the notation and describing the specific type of a periodic domain. Then, for
every type of a periodic domain, we introduce the unfolding operator, we derive weak limits
of the fields, we specify the limit problem for characterize the limit fields. Moreover, at the
end of every section, there is a conclusion in which we provide an approximation of the
solution to the elasticity problem.

The proofs of Korn’s inequalities for different types of domains, namely N -dimensional,
plate-like and beam-like, are given in Appendix A. The proofs of all lemmas and proposi-
tions are given in Appendix B.
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Fig. 1 Periodicity cells

Throughout this paper we use Einstein’s summation convention. Moreover, in all the
estimates the constants do not depend on ε.

2 N -Dimensional Periodic Domain

This section deals with the asymptotic behavior of the solution to the linearized elastic-
ity problem for ε-periodically perforated N -dimensional structures as ε → 0. At first, we
explain the notation, introduce the structure and state the elasticity problem. Then, we in-
troduce the unfolding operator and its properties. And finally, we derive the unfolded limit
problem and the homogenized problem.

2.1 Notation and Geometric Setting

Let Ω ⊂ R
N , N ∈ N \ {0,1}, be a bounded domain with a Lipschitz boundary and Γ be a

subset of ∂Ω with non-zero measure. We assume that there exists an open set Ω ′ with a
Lipschitz boundary such that Ω ⊂ Ω ′ and Ω ′ ∩ ∂Ω = Γ .

We will use the following notations through this section:

– Y
.= (−1/2,1/2)N is the unit cube,

– C ⊂ Y is a domain with Lipschitz boundary such that the interior
(
C∪ (C+ei )

)
, i = 1,N ,

is connected,
– Ξε

.= {ξ ∈ Z
N | ε(ξ + Y ) ∩ Ω �= ∅},

– Ξ ′
ε

.= {ξ ∈ Z
N | ε(ξ + Y ) ∩ Ω ′ �= ∅},

– Ξε,i
.= {ξ ∈ Ξε | ξ + ei ∈ Ξε

}
, i = 1,N ,

– Ω∗
ε

.= interior
(⋃

ξ∈Ξε
ε(ξ + C)

)
,

– Ωext
ε

.= interior
(⋃

ξ∈Ξε
ε(ξ + Y )

)
,

– Ω ′ ∗
ε

.= interior
(⋃

ξ∈Ξ ′
ε
ε(ξ + C)

)
,

– Ω1
.= {x ∈R

N | dist(x,Ω) < 1
}
,

– MN
s is the space of N × N symmetric matrices,

– for a.e. x ∈ R
N one has

x = ε
([x

ε

]
+
{x

ε

})
, where

[x
ε

]
∈ Z

N,
{x

ε

}
∈ Y.

Note that
⋃N

i=1Ξε,i ⊂ Ξε and that the domains Ω∗
ε , Ω ′ ∗

ε are connected.
We are interested in the elastic behavior of a structure occupying the domain Ω∗

ε which
is fixed on a part of its boundary Γε = Γ ∩Ω∗

ε . The space of all admissible displacements is

Vε = {u ∈ H 1(Ω∗
ε )N | ∃u′ ∈ H 1(Ω ′ ∗

ε )N such that u′
|Ω∗

ε
= u and u′ = 0 in Ω ′ ∗

ε \ Ω∗
ε

}
.

This means that the displacements belonging to Vε “vanish” on the part Γε of ∂Ω∗
ε .
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Fig. 2 Domains
Ω, Ω ′, Ω∗

ε , Ω ′ ∗
ε and sets Ξε ,

Ξ ′
ε

Remark 1 Note that the domain Ω∗
ε might be non-Lipschitz (see Fig. 2). In this case, one

cannot extend the displacements to the holes of this domain as it is proposed in [25].

2.2 Statement of the Elasticity Problem

For a displacement u ∈ H 1(Ω∗
ε )N , we denote by e the linearized strain tensor (or symmetric

gradient)

e(u)
.= 1

2

(
∇u + (∇u)T

)
, eij (u)

.= 1

2

( ∂ui

∂xj

+ ∂uj

∂xi

)
. (2.1)

Let aijkl ∈ L∞(C), i, j, k, l = 1,N be the components of the elasticity tensor. These func-
tions satisfy the usual symmetry and positivity conditions:

– aijkl(X) = ajikl(X) = aklij (X) for a.e. X ∈ C;
– for any τ ∈ MN

s , there exists c0 > 0 such that

aijkl(X)τij τkl ≥ c0τij τij for a.e. X ∈ C. (2.2)

The constitutive law for the material occupying the domain Ω∗
ε is given by the relation

between the linearized strain tensor and the stress tensor

σ ε
ij (u)

.= aε
ijklekl(u), ∀u ∈ Vε, (2.3)

where the coefficients aε
ijkl are given by

aε
ijkl(x) = aijkl

({x

ε

})
for a.e. x ∈ Ω∗

ε .

Let f be in L2(Ω1)
N

, one defines the applied forces fε by

fε = f |Ω∗
ε
. (2.4)

The unknown displacement uε : Ω∗
ε →R

N is the solution to the linearized elasticity system
in the strong formulation

⎧
⎪⎨

⎪⎩

∇ · σ ε(uε) = −fε in Ω∗
ε ,

uε = 0 on Γε,

σ ε(uε) · νε = 0 on ∂Ω∗
ε \ Γε,

(2.5)

where νε is the outward normal vector to ∂Ω∗
ε .
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The variational formulation of (2.5) is given by

⎧
⎪⎨

⎪⎩

Find uε ∈ Vε such that,
∫

Ω∗
ε

σ ε(uε) : e(v) dx =
∫

Ω∗
ε

fε · v dx, ∀v ∈ Vε.
(2.6)

2.3 The Unfolding Operator

As mentioned above, for the derivation of the limit problem we use the periodic unfolding
method. This method requires the introduction of an unfolding operator depending on the
geometry of the problem. One of the main properties of this operator is that it replaces the
integrals over the periodically oscillating domain Ω∗

ε by integrals over the “almost fixed”
domain Ωext

ε ×C which includes the whole domain Ω and the periodicity cell C. Moreover,
it allows us to decompose any function into a main part without micro-oscillations and
a remainder which takes the micro-oscillations into account. Below, in a similar way as
for domains with holes (see [14]), we introduce a specific unfolding operator and give its
properties.

Definition 1 For every measurable function φ : Ω∗
ε → R, the unfolding operator T ∗

ε :
Ωext

ε × C →R is defined as follows:

T ∗
ε (φ)(x,X) = φ

(
ε
[x
ε

]
+ εX

)
for a.e. (x,X) ∈ Ωext

ε × C.

Below are some properties of T ∗
ε , which are similar to those of the unfolding operators

introduced in [14]. That is due to the fact that

Λext
ε

.= Ωext
ε \ Ω satisfies lim

ε→0
|Λext

ε | = 0.

Proposition 1 For every φ ∈ L1(Ω∗
ε )

∫

Ω∗
ε

φ(x) dx =
∫

Ωext
ε ×C

T ∗
ε (φ)(x,X)dxdX,

‖T ∗
ε (φ)‖L1(Ωext

ε ×C) = ‖φ‖L1(Ω∗
ε ).

(2.7)

For every φ ∈ L2(Ω∗
ε )

‖T ∗
ε (φ)‖L2(Ωext

ε ×C) = ‖φ‖L2(Ω∗
ε ). (2.8)

For every φ ∈ H 1(Ω∗
ε )

T ∗
ε (∇φ)(x,X) = 1

ε
∇XT ∗

ε (φ)(x,X) for a.e. (x,X) ∈ Ωext
ε × C. (2.9)

For more properties see [14].
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2.4 Weak Limits of the Fields and the Limit Problem

Set

(RN)
∗
ε

.= interior
( ⋃

ξ∈ZN

ε(ξ + C)
)
.

Denote by H 1
N,per (C) the subspace of the periodic functions belonging to H 1

loc((R
N)

∗
ε)

H 1
N,per (C)

.=
{
ψ ∈ H 1

loc((R
N)

∗
ε) | ψ(· + ξ) = ψ(·) a.e. in (RN)

∗
ε , ∀ ξ ∈ Z

N
}
,

by H 1
N,per,0(C) the subspace of the functions in H 1

N,per (C) with zero mean

H 1
N,per,0(C)

.=
{
ψ ∈ H 1

N,per (C) |
∫

C
ψ(X)dX = 0

}
,

and by H 1
Γ (Ω) the space of the functions in H 1(Ω) that vanish on Γ 1

H 1
Γ (Ω)

.= {φ ∈ H 1(Ω) | φ = 0 on Γ
}
.

The proof of the following lemma is given in Appendix B.1.

Lemma 1 The solution uε of problem (2.5) satisfies

‖uε‖H 1(Ω∗
ε ) ≤ C‖f ‖L2(Ω1). (2.10)

The proof of the proposition below is also postponed to Appendix B.1.

Proposition 2 (The unfolded limit problem) Let uε be the solution of problem (2.5). There
exist u ∈ H 1

Γ (Ω)N and û ∈ L2(Ω;H 1
N,per,0(C))N such that

T ∗
ε (uε) → u strongly in L2(Ω;H 1(C))N ,

T ∗
ε (∇uε) ⇀ ∇u + ∇Xû weakly in L2(Ω × C)N×N,

T ∗
ε

(
e(uε)

)→ e(u) + eX(̂u) strongly in L2(Ω × C)N×N,

(2.11)

and the pair (u, û) is the unique solution to the following unfolded problem:

⎧
⎪⎨

⎪⎩

∫

Ω×C
aijkl

(
ekl(u) + eX,kl (̂u)

)(
eij (v) + eX,ij (̂v)

)
dx dX = |C|

∫

Ω

f · v dx,

∀v ∈ H 1
Γ (Ω)N, ∀ v̂ ∈ L2(Ω;H 1

N,per,0(C))N ,

(2.12)

where for all v̂ ∈ H 1(C)N

eX,kl (̂v) = 1

2

( ∂v̂k

∂Xl

+ ∂v̂l

∂Xk

)
, k, l = 1,N.

1Every function in H 1
Γ (Ω) is extended to a function in H 1

Γ (Ω ′) which vanishes on Ω ′ \ Ω .
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2.5 Homogenization

In this section, we give the expressions of the microscopic field û in terms of the macroscopic
displacement u. First, taking v = 0 as a test function in (2.12), we obtain

∫

C
aijkl

(
ekl(u) + eX,kl (̂u)

)
eX,ij (̂v) dx dX = 0, ∀ v̂ ∈ H 1

per,0(C)N , a.e. in Ω.

This shows that the displacement û can be written in terms of the elements of the tensor
e(u).

Denote by Mnp the N × N symmetric matrix with following coefficients

Mnp

kl = 1

2

(
δknδlp + δkpδln

)
, n,p, k, l ∈ 1,N,

where δij is the Kronecker symbol.
Since the tensor e(u) has N2 components, we introduce the N2 correctors

χ̂np ∈ H 1
per,0(C)N , n,p = 1,N,

which are solutions to the following cell problems
∫

C
aijkl

(
eX,kl(χ̂np) + Mnp

kl

)
eX,ij (̂v) dX = 0, ∀ v̂ ∈ H 1

per,0(C)N . (2.13)

Observe that χ̂np = χ̂pn n,p = 1,N . As a consequence, the function û can be written in the
form

û(x,X) =
N∑

n,p=1

enp(u)(x)χ̂np(X) for a.e. (x,X) ∈ Ω × C. (2.14)

Theorem 1 (The homogenized limit problem) The limit displacement u ∈ H 1
Γ (Ω)N is the

unique solution of the following homogenized problem:
∫

Ω

ahom
ijnp enp(u)eij (v) dx =

∫

Ω

f · v dx, ∀v ∈ H 1
Γ (Ω)N, (2.15)

where2

ahom
ijnp = 1

|C|
∫

C
aijkl

(
Mnp

kl + eX,kl(χ̂np)
)
dX. (2.16)

Proof Taking v̂ = 0 as a test function in (2.12) and using (2.14) provides
∫

Ω×C
aijkl

(
ekl(u) + enp(u)eX,kl(χ̂np)

)
eij (v) dx dX = |C|

∫

Ω

f · v dx, ∀v ∈ H 1
Γ (Ω)N .

After straightforward computations, we have
∫

Ω

(∫

C
aijkl

(
Mnp

kl + eX,kl(χ̂np)
)
dX
)
enp(u) eij (v) dx = |C|

∫

Ω

f · v dx, ∀v ∈ H 1
Γ (Ω)N,

and the assertion of the theorem follows.

2It is easy to prove the usual conditions of symmetry.
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Now, we prove that the operator in problem (2.15) is elliptic. Using formulas (2.16) of
the homogenized coefficients and (2.13), we obtain

ahom
npn′p′τnpτn′p′ = 1

|C|
∫

C
aijkl

(
eX,kl(Ψ ) + Mkl

)(
eX,ij (Ψ ) + Mij

)
dX, τ ∈ MN×N

s ,

where

Mkl = τnpMnp

kl , Ψ = τnpχ̂np.

Then, in view of (2.2) and following the proof of [14, Lemma 11.19], we have

ahom
npn′p′τnpτn′p′ ≥ c0

|C|
∫

C

(
eX,ij (Ψ ) + Mij

)(
eX,ij (Ψ ) + Mij

)
dX ≥ c0τnpτnp.

Thus, the operator in problem (2.15) is elliptic and by virtue of the Lax-Milgram theorem
this problem admits a unique solution. �

2.6 Conclusion

We summarize the result of this section: for ε-periodic porous materials with a known struc-
ture, for e.g. structures made of beams whose thicknesses are of order ε, or dense packages
of small compressed balls, the solution to the linearized elasticity problem (2.5)-(2.6) in a
heterogeneous 3D domain is approximated by

uε(x) ≈ u(x) + ε

N∑

n,p=1

enp(u)(x)χ̂np

({x

ε

})
for x ∈ Ω∗

ε , (2.17)

where u is the solution of the homogenized problem (2.16) and where the correctors χ̂np are
given by (2.13). In (2.17), the sum represents the warpings of the cells.

3 Periodic Plate

This section is devoted to the study of the asymptotic behavior of the solution to the lin-
earized elasticity problem for a ε-periodic plate-like structure as ε → 0. Note that this struc-
ture is 3-dimensional and only periodic in two directions. In the third direction it is “thin”,
that is, its thickness is of the same order ε as the period of the other two dimensions. The
section is organized in a similar way as the previous one. It can be considered as an extension
of the results obtained for the homogenization of a periodic plate (see [8], [14, Chap. 11],
[22], [23], [26, Sect. 3.2] and also [24] for a shell).

3.1 Notation and Geometric Setting

We consider a bounded domain ω in R
2 with Lipschitz boundary. As in Sect. 2, we introduce

γ , a subset of ∂ω with a non-zero measure. We assume that there exists a bounded domain
ω′ with Lipschitz boundary such that

ω ⊂ ω′ and ω′ ∩ ∂ω = γ.

In this section we use the following notations:
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– Y ′ .= (−1/2,1/2)2, Y
.= Y ′ × (−1/2,1/2) = (−1/2,1/2)3,

– C ⊂ Y is a domain with Lipschitz boundary such that the interior
(
C∪ (C+eα)

)
, α = 1,2,

is connected,
– Ξε

.= {ξ ∈ Z
2 | (εξ + εY ′) ∩ ω �= ∅},

– Ω∗
ε = interior

(⋃
ξ∈Ξε

(εξ + εC)
)

,

– Ξ ′
ε

.= {ξ ∈ Z
2 | (εξ + εY ′) ∩ ω′ �= ∅},

– Ω ′∗
ε

.= interior
(⋃

ξ∈Ξ ′
ε
(εξ + εC)

)
,

– ωext
ε = interior

(⋃
ξ∈Ξε

(εξ + εY ′)
)

,

– ω1 = {x ∈R
2 | dist(x,ω) < 1

}
, ω ⊂ ω1,

– ωint
3ε = {x ∈ ω | dist(x, ∂ω) > 3ε

}
,

– ω
′ int
3ε = {x ∈ ω | dist(x, ∂ω′) > 3ε

}
,

– Ξint
ε

.= {ξ ∈ Z
2 | (εξ + εY ′) ⊂ ωint

3ε

}
,

– Ωint
ε = interior

(⋃
ξ∈Ξint

ε
(εξ + εC)

)
,

– Ξ ′ int
ε

.= {ξ ∈ Ξε | (εξ + εY ′) ∩ ω
′ int
3ε �= ∅},

– Ω ′ int
ε

.= interior
(⋃

ξ∈Ξ ′ int
ε

(εξ + εC)
)

,

– Ξε,α
.= {ξ ∈ Ξε | ξ + eα ∈ Ξε

}
, α = 1,2.

Note that the domain Ω∗
ε is a connected open set, and if ε is small enough, we have

Ω∗
ε ⊂ ω1 × (−ε/2, ε/2).
The space of all admissible displacements is denoted by Vε:

Vε
.=
{
v ∈ H 1(Ω∗

ε )3
∣
∣ ∃v′ ∈ H 1(Ω ′∗

ε )3, v = v′
|Ω∗

ε
, v′ = 0 in Ω ′∗

ε \ Ω∗
ε

}
.

3.2 Statement of the Elasticity Problem

We are interested in the elastic behavior of a structure occupying the domain Ω∗
ε and fixed

on the part Γε of its boundary, Γε
.= (γ × (−ε/2, ε/2)) ∩ Ω∗

ε .

Let f be in L2(ω1)
3
. We define the applied forces fε as follows

fε,α = ε2fα, fε,3 = ε3f3, α = 1,2, a.e. in Ω∗
ε . (3.1)

Again, the unknown displacement uε : Ω∗
ε → R

3 is the solution to the linearized elasticity
system

⎧
⎪⎨

⎪⎩

∇ · σ ε(uε) = −fε in Ω∗
ε ,

uε = 0 on Γε ∩ Ω∗
ε ,

σ ε(uε) · νε = 0 on ∂Ω∗
ε \ Γε,

(3.2)

in the strong formulation, where νε is the outward normal vector to ∂Ω∗
ε .

The variational formulation of problem (3.2) is given by

⎧
⎪⎨

⎪⎩

Find uε ∈ Vε such that
∫

Ω∗
ε

σ ε(uε) : e(v) dx =
∫

Ω∗
ε

fε · v dx, ∀v ∈ Vε.
(3.3)
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3.3 The Unfolding-Rescaling Operator

Below, we introduce the unfolding operator for a plate-like structure and state its properties.
Note that, since this structure is periodic only in two directions and it is “thin” in the third
one, the unfolding operator is a “rescaling” operator in the third direction. As a consequence,
the asymptotic reduction from 3D plate-like structure to 2D takes place. The reduction of
dimension is done by the standard scaling to a fixed thickness (see the pioneer papers [7,
15]).

Definition 2 For every measurable function u : Ω∗
ε → R

3 the unfolding operator T ∗
ε is

defined as follows:

T ∗
ε (u)(x ′,X) = u

(
ε
[x ′

ε

]
+ εX′, εX3

)
for a.e. (x ′,X) ∈ ωext

ε × C,

where x ′ = (x1, x2), X = (X′,X3) = (X1,X2,X3).

Below we recall some properties of T ∗
ε (for further results see [14]).

Proposition 3 For every u ∈ L1(Ω∗
ε )

∫

ωext
ε ×C

T ∗
ε (u)(x ′,X)dx ′dX = 1

ε

∫

Ω∗
ε

u(x) dx,

‖T ∗
ε (u)‖L1(ωext

ε ×C) = 1

ε
‖u‖L1(Ω∗

ε ).

(3.4)

For every u ∈ H 1(Ω∗
ε )

T ∗
ε (∇u)(x ′,X) = 1

ε
∇XT ∗

ε (u)(x ′,X) for a.e. (x ′,X) ∈ ωext
ε × C. (3.5)

3.4 Weak Limits of the Fields and the Limit Problem

Denote by H 1
γ (ω) the space of functions in H 1(ω) that vanish on γ ,

H 1
γ (ω)

.=
{
u ∈ H 1(ω) | u = 0 on γ

}
,

and by H 2
γ (ω) the space of functions in H 2(ω) that vanish on γ and their first derivatives

vanish on γ as well

H 2
γ (ω)

.=
{
u ∈ H 2(ω) | u = 0 and ∇u = 0 on γ

}
.

Since we are dealing with a plate-domain, we use the decomposition of the displacements of
a plate (see [18] and Sect. A.2 of Appendix A). Any displacement u ∈ Vε can be decomposed
as

u(x) =Ue(x) + u(x) = U(x ′) +R(x ′) ∧ x3e3 + u(x)

=
⎛

⎝
U1(x

′) + x3R2(x
′)

U2(x
′) − x3R1(x

′)
U3(x

′)

⎞

⎠+ u(x), for a.e. x = (x ′, x) = (x1, x2, x3) ∈ Ω ′ int
ε ,

(3.6)
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where U stands for the displacement of the mid-surface of the plate restricted to Ω∗
ε ∩ {x3 =

0}, R(x ′) ∧ x3e3 represents the small rotation of a “fiber” from x ′ ∈ Ω∗
ε ∩ {x3 = 0} and u is

the warping of the “fibers”.
Here, U ∈ H 1

γ (ω
′ int
3ε )3, R ∈ H 1

γ (ω
′ int
3ε )2 and u ∈ H 1

(
ω

′ int
3ε × (−ε/2, ε/2)

)3
.3

In the next step, we compute the strain tensor of the displacement u, using the decompo-
sition (3.6)

e(u) = e(Ue) + e(u)

=

⎛

⎜
⎜
⎝

∂U1
∂x1

+ x3
∂R2
∂x1

1
2

(
∂U1
∂x2

+ ∂U2
∂x1

)
+ x3

2

(
− ∂R1

∂x1
+ ∂R2

∂x2

)
1
2

(
R2 + ∂U3

∂x1

)

∗ ∂U2
∂x2

− x3
∂R1
∂x2

1
2

(
−R1 + ∂U3

∂x2

)

∗ ∗ 0

⎞

⎟
⎟
⎠+

+

⎛

⎜⎜
⎝

∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)

∗ ∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)

∗ ∗ ∂u3
∂x3

⎞

⎟⎟
⎠ .

(3.7)
Further, we extend U , R by 0 to ω′ \ ω

′int
3ε and the field u by 0 to Ω ′

ε \ Ω ′ int
ε .

The following lemma is proved in Appendix B.2.

Lemma 2 The solution uε of the problem (3.2) satisfies

‖e(uε)‖L2(Ω∗
ε ) ≤ Cε5/2

(‖f ‖L2(ω1) + ‖g‖L2(ω1)

)
. (3.8)

The proof of the following lemma is postponed to Appendix B.2.

Lemma 3 Let {uε}ε be a sequence of displacements belonging to Vε , decomposed as in
(3.6) and satisfying

‖e(uε)‖L2(Ω∗
ε ) ≤ Cε5/2.

Then, for a subsequence of {ε}, still denoted by {ε},
(i) there exist Uα ∈ H 1(ω′), α = 1,2, U3 ∈ H 2(ω′) such that

1

ε2
Uε,α1

ω
′int
3ε

→ Uα strongly in L2(ω′),

1

ε
Uε,31

ω
′int
3ε

→ U3 strongly in L2(ω′),

1

ε2
∇Uε,α1

ω
′int
3ε

⇀ ∇Uα weakly in L2(ω′)2,

1

ε
∇Uε,31

ω
′int
3ε

⇀ ∇U3 weakly in L2(ω′)2,

(3.9)

3Note, that such a decomposition for plate-domains can also be written in a slightly different way, as in [14,
Chap. 11].
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(ii) there exists R ∈ H 1(ω′)2
such that

1

ε
Rε,α1

ω
′int
3ε

→ Rα strongly in L2(ω′),

1

ε
∇Rε,α1

ω
′int
3ε

⇀ ∇Rα weakly in L2(ω′)2
,

(3.10)

and

R1 = −∂U3

∂x2
, R2 = ∂U3

∂x1
a.e. in ω′, (3.11)

furthermore, the fields Uα , R, U3 and ∇U3 vanish in ω′ \ ω,
(iii) there exists u ∈ L2(ω′;H 1

2,per (C))3 such that

1

ε2
T ∗

ε (uε1
ω

′int
3ε

) ⇀ u weakly in L2(ω′;H 1(C))3. (3.12)

Since the fields Uα , R, U3 and the gradient U3 vanish in ω′ \ ω, we obtain

Uα ∈ H 1
γ (ω), U3 ∈ H 2

γ (ω), R ∈ H 1
γ (ω)2.

Lemma below is proven in Appendix B.2.

Lemma 4 For a subsequence, still denoted {ε}, we have

1

ε2
T ∗

ε (Uε,α1
ω

′int
3ε

) → Uα strongly in L2(ω′ × C),

1

ε
T ∗

ε (Uε,31
ω

′int
3ε

) → U3 strongly in L2(ω′ × C),

1

ε2
T ∗

ε

(∂Uε,α

∂xβ

1
ω

′int
3ε

)
⇀

∂Uα

∂xβ

weakly in L2(ω′ × C),

1

ε
T ∗

ε

(∂Uε,3

∂xβ

1
ω

′int
3ε

)
→ ∂U3

∂xβ

, strongly in L2(ω′ × C),

α,β = 1,2, (3.13)

and

1

ε
T ∗

ε (Rε,α1
ω

′int
3ε

) → Rα, strongly in L2(ω′ × C),

1

ε
T ∗

ε

(
∇Rε,α1

ω
′int
3ε

)
⇀ ∇Rα, weakly in L2(ω′ × C),

α = 1,2. (3.14)

For any u ∈ H 1(ω)2, v ∈ H 2(ω) we denote

EM(u)
.=

⎛

⎜
⎜
⎝

∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
0

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
∂u2
∂x2

0

0 0 0

⎞

⎟
⎟
⎠ , EB(v)

.=

⎛

⎜
⎜
⎝

∂2v

∂x2
1

∂2v
∂x1∂x2

0
∂2v

∂x1∂x2

∂2v

∂x2
2

0

0 0 0

⎞

⎟
⎟
⎠ .

Define

M3
.= 1

|C|
∫

C
x3 dx, I3

.= 1

|C|
∫

C
x2

3 dx.
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The following proposition provides the first main result of this section. Its proof is given in
Appendix B.2.

Proposition 4 (The unfolded limit problem) Let uε be the solution to (3.2). Then the fol-
lowing convergences hold:

1

ε2
T ∗

ε (uε,1) → U1 − X3
∂U3

∂x1
strongly in L2(ω × C),

1

ε2
T ∗

ε (uε,2) → U2 − X3
∂U3

∂x2
strongly in L2(ω × C),

1

ε
T ∗

ε (uε,3) → U3 strongly in L2(ω × C).

(3.15)

Moreover

1

ε2
T ∗

ε (e(uε)1ω
′int
3ε

) ⇀ EM(Um) − X3E
B(U3) + eX(̂u) weakly in L2(ω × C)3×3,

1

ε2
T ∗

ε (σ ε
ij (uε)1ω

′int
3ε

) ⇀ aijkl

(
EM

kl (Um) − X3E
B
kl(U3) + eX,kl (̂u)

)
weakly in L2(ω × C),

(3.16)
where Um

.= (U1,U2) ∈ H 1
γ (ω)

2
, U3 ∈ H 2

γ (ω), û ∈ L2(ω;H 1
2,per,0(C))3 are the solution to

the following unfolded problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

ω×C
aijkl

(
EM

kl (Um) − X3E
B
kl(U3) + eX,kl (̂u)

)(
EM

ij (Vm) − X3E
B
ij (V3) + eX,ij (̂v)

)
dx ′dX

= |C|
(∫

ω

fαVα dx ′ +M3

∫

ω

(
fα

∂V3

∂xα

+ gαVα

)
dx ′ + I3

∫

ω

gα

∂V3

∂xα

dx ′
)
,

∀ Vm = (V1,V2) ∈ H 1
γ (ω)2, V3 ∈ H 2

γ (ω), v̂ ∈ L2(ω;H 1
2,per,0(C))3.

(3.17)

3.5 Homogenization

In this section, we give the expressions of the microscopic displacement û in terms of the
membrane displacements Um and the bending U3.

Taking V = 0 as a test function in (3.17), we obtain

∫

C
aijkl(E

M
kl (Um) − X3E

B
kl(U3) + eX,kl (̂u))eX,ij (̂v) dX = 0, ∀ v̂ ∈ H 1

2,per,0(C)3.

This shows that the microscopic displacement û can be written in terms of the tensors
EM, EB .

Define

M11 =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , M12 =
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , M22 =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ .
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Since the tensors EM(U1,U2), EB(U3) have 6 components

EM(U1,U2) = ∂U1

∂x1
M11 +

(∂U1

∂x2
+ ∂U2

∂x1

)
M12 + ∂U2

∂x2
M22,

EB(U3) = ∂2U3

∂x2
1

M11 + ∂2U3

∂x1∂x2
M12 + ∂2U3

∂x2
2

M22,

we introduce 6 correctors

χM
αβ, χB

αβ ∈ H 1
2,per,0(C)

3
, (α, β) ∈ (1,1), (1,2), (2,2),

which are the unique solutions to the following cell problems
∫

C
aijkl

(
eX,kl(χ

M
αβ) + Mαβ

kl

)
eX,ij (̂v) dX = 0,

∫

C
aijkl

(
eX,kl(χ

B
αβ) − X3Mαβ

kl

)
eX,ij (̂v) dX = 0,

α,β = 1,2, (3.18)

for all v̂ ∈ L2(ω;H 1
2,per,0(C))3.

As a consequence, the function û from (3.16) is given in terms of U as follows

û(x ′,X) =
2∑

α,β=1

[
eαβ(Um(x ′))χM

αβ(X) + ∂2U3(x
′)

∂xα∂xβ

χB
αβ(X)

]
for a.e. (x ′,X) ∈ ω × C.

(3.19)
This substitution allows us to separate the scales and formulate the second main result:

Theorem 2 (The homogenized limit problem) The limit field

U = (Um,U3

) ∈ H 1
γ (ω)2 × H 2

γ (ω)

is the unique solution to the homogenized problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

ω

(
ahom

αβα′β ′eαβ(Um)eα′β ′(Vm) + bhom
αβα′β ′

∂2U3

∂xα∂xβ

eα′β ′(Vm)

+ bhom
αβα′β ′eαβ(Um)

∂2V3

∂xα′∂xβ ′
+ chom

αβα′β ′
∂2U3

∂xα∂xβ

∂2V3

∂xα′∂xβ ′

)
dx ′

=
∫

ω

fαVα dx ′ +M3

∫

ω

(
fα

∂V3

∂xα

+ gαVα

)
dx ′ + I3

∫

ω

gα

∂V3

∂xα

dx ′,

∀ (Vm,V3) ∈ H 1
γ (ω)2 × H 2

γ (ω),

(3.20)

where

ahom
αβα′β ′ = 1

|C|
∫

C
aijkl

(
eX,kl

(
χM

αβ

)+ Mαβ

kl

)(
eX,ij

(
χM

α′β ′
)+ Mα′β ′

ij

)
dX,

bhom
αβα′β ′ = 1

|C|
∫

C
aijkl

(
eX,kl

(
χB

αβ

)− X3Mαβ

kl

)(
eX,ij

(
χM

α′β ′
)+ Mα′β ′

ij

)
dX,

chom
αβα′β ′ = 1

|C|
∫

C
aijkl

(
eX,kl

(
χB

αβ

)− X3Mαβ

kl

)(
eX,ij

(
χB

α′β ′
)− X3Mα′β ′

ij

)
dX.

(3.21)
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Proof Take v̂ = 0 as a test function in (3.17). Replacing û by its representation (3.19), yields

∫

ω×C
aijkl

(
eαβ(Um)

(
eX,kl

(
χM

αβ

)+ Mαβ

kl

)
+ ∂2U3

∂xα∂xβ

(
eX,kl

(
χB

αβ

)− X3Mαβ

kl

))

× Mα′β ′
ij

(
eα′β ′(Vm) − X3

∂2V3

∂xα′∂xβ ′

)
dx ′dX

= |C|
∫

ω

fαVα dx ′ +
∫

C
X3 dX

∫

ω

[
fα

∂V3

∂xα

+ gαVα

]
dx ′ +

∫

C
X2

3 dX

∫

ω

gα

∂V3

∂xα

dx ′.

Taking into account the variational problems (3.18) satisfied by the correctors, the problem
(3.20) with the homogenized coefficients given by (3.21) is obtained by a simple computa-
tion.

Now, we prove the ellipticity of the operator in Problem (3.20). Using the formulas (3.21)
for the homogenized coefficients, we obtain

ahom
αβα′β ′τm

αβτm
α′β ′ + bhom

αβα′β ′τ b
αβτm

α′β ′ + bhom
αβα′β ′τm

αβτ b
α′β ′ + chom

αβα′β ′τ b
αβτ b

α′β ′

=
∫

C
aijkl

(
eX,kl

(
Ψ
)+ Mkl

)(
eX,ij

(
Ψ
)+ Mij

)
dX, τm

αβ, τ b
αβ ∈ M2×2

s ,

where

M = (τm
αβ − X3τ

b
αβ

)
Mαβ, Ψ = τm

αβχM
αβ + τ b

αβχB
αβ .

Then, in view of (2.2) and following the proof of [14, Lemma 11.19], we obtain

ahom
αβα′β ′τm

αβτm
α′β ′ + bhom

αβα′β ′τ b
αβτm

α′β ′ + bhom
αβα′β ′τm

αβτ b
α′β ′ + chom

αβα′β ′τ b
αβτ b

α′β ′

≥c0

∫

C

(
eX,ij

(
Ψ
)+ Mij

)(
eX,ij

(
Ψ
)+ Mij

)
dX ≥ C

(
τm
αβτm

αβ + τ b
αβτ b

αβ

)
.

Thus, the operator of problem (3.20) is elliptic and this problem has a unique solution. �

3.6 Conclusion

We summarize the results of this section. The solution to the linearized elasticity problem
(3.2) (in the strong form), or (3.3) (in the weak/variational form) is approximated by

uε(x) ≈ ε2

⎛

⎜⎜
⎜
⎝

ε2U1(x
′) − εx3

∂U3(x
′)

∂x1

ε2U2(x
′) − εx3

∂U3(x
′)

∂x2
εU3(x

′)

⎞

⎟⎟
⎟
⎠

+ ε3
2∑

α,β=1

[
eαβ(Um(x ′))χM

αβ

({x ′

ε

}
,
x3

ε

)
+ ∂2U3(x

′)
∂xα∂xβ

χB
αβ

({x ′

ε

}
,
x3

ε

)]
,

where U is the solution of the homogenized 2D-problem with constant effective coefficients
(3.21) and χM

αβ, χB
αβ ∈ H 1

2,per (C)
3

with α, β = 1,2 are 6 3D displacement correctors, the
solutions of auxiliary problems (3.18) on the periodicity cell (see Fig. 3).

As usual for a plate, we first recognize a Kirchhoff-Love displacement plus here a second
term which represents the warpings of the cells.
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Fig. 3 Perturbations for periodic corrector-problems χM
αβ(X) and χB

αβ(X) in the example of a plate with
fibre structure (a textile)

4 Periodic Beam

In this section, we study the asymptotic behavior of the solution to the linearized elasticity
problem for ε-periodic beam-like structure as ε → 0. This structure is 3-dimensional and
periodic in one dimension. In two other directions the structure is “thin”, that is, its size in
each of these directions, is of order ε. The section is organized in a similar way as the previ-
ous ones. It can be considered as an extension of the results of [19] to beam-like structures
with a boundary that does not have to be a Lipschitz boundary.

4.1 Notation and Geometric Setting

Let C ∈ R
3 be a bounded domain with Lipschitz boundary and let L be a fixed positive

constant. In this section, we also assume that the interior of C ∪ (C + e3) is connected and
C ∩ (C + e3) = ∅. The beam-like structure is introduced in the following way:

Ω∗
ε = interior

(N−1⋃

i=0

ε
(
ie3 + C

))
, ε = L

N
.

We choose as centerline of the structure the segment whose direction is e3 and place the
origin at the center of mass of the first cell (thus the centers of mass of the other cells
are also on this segment). The orthonormal basis (e1, e2, e3) is chosen in such a way that∫

C x1x2 dx = 0, and we set

Iα = 1

|C|
∫

C
x2

α dx.

Concerning the directions e1 and e2, it is important to note that they do not necessary
correspond to the principal axes of inertia.

The space of all admissible displacements is denoted by Vε

Vε = {u ∈ H 1(Ω∗
ε )3 | u = 0 on Γε

}
, where Γε

.= (εC − εe3) ∩ εC.

4.2 Statement of the Elasticity Problem

As before, we are interested in the elastic behavior of a structure occupying the domain Ω∗
ε

and fixed on the part Γε of its boundary.
Let f and g be in L2(0,L)3, we define the applied forces fε ∈ L2(Ω∗

ε )3 by

fε,1(x) = ε2f1(x1) + x2g3(x1),

fε,2(x) = ε2f2(x1) − x1g3(x1),

fε,3(x) = εf3(x1) − x1g1(x1) − x2g2(x1),

for a.e. x ∈ Ω∗
ε . (4.1)
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The unknown displacement uε : Ω∗
ε → R

3 is the solution to the linearized elasticity sys-
tem

⎧
⎪⎨

⎪⎩

∇ · σ ε(uε) = −fε in Ω∗
ε ,

uε = 0 on Γε ∩ Ω∗
ε ,

σ ε(uε) · νε = 0 on ∂Ω∗
ε \ Γε,

(4.2)

where νε is the outward normal vector to ∂Ω∗
ε .

The variational formulation of problem (4.2) is given by

⎧
⎪⎨

⎪⎩

Find uε ∈ Vε such that,
∫

Ω∗
ε

σ ε(uε) : e(v) dx =
∫

Ω∗
ε

fε · v dx, ∀v ∈ Vε.
(4.3)

4.3 The Unfolding-Rescaling Operator

Below, we introduce the unfolding operator for a beam-like structure and provide its prop-
erties. Note that since this structure is only periodic in one direction and is “thin” in the
other two directions, the unfolding operator is a “rescaling” operator in two direction. As a
consequence, the asymptotic reduction from 3D beam-like structure to 1D takes place.

Definition 3 For every measurable function φ : Ω∗
ε → R

3, the unfolding-rescaling operator
T ∗

ε is defined as follows:

T ∗
ε (φ)(x3,X) = φ

(
εX1, εX2, ε

[x3

ε

]
+ εX3

)
for a.e. (x3,X) ∈ (0,L) × C.

Proposition 5 (Properties of the operator T ∗
ε ) (a) For every φ ∈ L2(Ω∗

ε )

∫

(0,L)×C
T ∗

ε (φ)(x3,X)dx3dX = 1

ε2

∫

Ω∗
ε

φ(x) dx,

‖T ∗
ε (φ)‖L2((0,L)×C) = 1

ε
‖φ‖L2(Ω∗

ε ).

(4.4)

(b) For every φ ∈ H 1(Ω∗
ε )

T ∗
ε (∇φ)(x3,X) = 1

ε
∇XT ∗

ε (φ)(x3,X) for a.e. (x3,X) ∈ (0,L) × C. (4.5)

4.4 Weak Limits of the Fields and the Limit Problem

Denote

H 1
Γ (0,L)

.=
{
u ∈ H 1(0,L) | u(0) = 0

}
, H 2

Γ (0,L)
.=
{
u ∈ H 2(0,L) | u(0) = u′(0) = 0

}
.

As in [18], we decompose the displacement field u ∈ Vε in the following way:

u(x) = Ue(x) + u(x) = U(x3) +R(x3) ∧ (x1e1 + x2e2) + u(x),

for a.e. x = (x1, x2, x3) ∈ Ω∗
ε , (4.6)

where U,R ∈ H 1
Γ (0,L)3. The displacement u belongs to Vε .
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The field U stands for the displacement of the centerline of the structure. The term
R(x3)∧ (x1e1 + x2e2) represents the small rotation of the cross-section at the point x3 of the
centerline, whereas the last term u(·, x3) is the warping of the cross-section at the point x3

of the centerline.
The strain tensor of the displacement u is

e(u) = e(Ue) + e(u)

=

⎛

⎜
⎜
⎝

0 0 1
2

(
dU1
dx3

−R2 − x2
dR3
dx3

)

∗ 0 1
2

(
dU2
dx3

+R1 + x1
dR3
dx3

)

∗ ∗ dU3
dx3

+ x2
dR1
dx3

− x1
dR2
dx3

⎞

⎟
⎟
⎠+

⎛

⎜
⎜
⎝

∂u1
∂x1

1
2

(
∂u1
∂x2

+ ∂u2
∂x1

)
1
2

(
∂u1
∂x3

+ ∂u3
∂x1

)

∗ ∂u2
∂x2

1
2

(
∂u2
∂x3

+ ∂u3
∂x2

)

∗ ∗ ∂u3
∂x3

⎞

⎟
⎟
⎠ .

(4.7)
In order to simplify the expression of the strain tensor e(Ue), we define a new triplet
(u, U, Θ) (see also [19]) by

U(x3) =
∫ x3

0
R(t) ∧ e3 dt, u(x3) = U(x3) −U(x3), Θ(x3) = R3(x3)

for a.e. x3 ∈ (0,L).

Then, we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dR1

dx3
= −d2

U2

dx2
3

,
dR2

dx3
= d2

U1

dx2
3

,

dU1

dx3
−R2 = d(U1 −U1)

dx3
= du1

dx3
,

dU2

dx3
+R1 = d(U2 −U2)

dx3
= du2

dx3
,

U3 ≡ 0.

From now on, we have a new decomposition of the field Ue(x)

Ue(x) = u(x3) +U(x3) +
⎛

⎜
⎝

− dU2
dx3

(x3)
dU1
dx3

(x3)

Θ(x3)

⎞

⎟
⎠∧ (x1e1 + x2e2)

=
⎛

⎝
U1(x3) + u1(x3) − x2Θ(x3)

U2(x3) + u2(x3) + x1Θ(x3)

u3(x3) − x1
dU1
dx3

(x3) − x2
dU2
dx3

(x3)

⎞

⎠ for a.e. x ∈ Ω∗,

(4.8)

and the strain tensor of the displacement Ue is

e(Ue) =

⎛

⎜⎜
⎜
⎝

0 0 1
2

(
du1
dx3

− x2
dΘε

dx3

)

∗ 0 1
2

(
du2
dx3

+ x1
dΘ
dx3

)

∗ ∗ du3
dx3

− x1
d2

U1
dx2

3
− x2

d2
U2

dx2
3

⎞

⎟⎟
⎟
⎠

. (4.9)

Note that the boundary conditions for the terms of this new decomposition are

u(0) = U(0) = dU

dx3
(0) = Θ(0) = 0.

Also note that, since Rα ∈ H 1
Γ (0,L), we have Uα ∈ H 2

Γ (0,L).
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The estimates for the functions from the decomposition of uε can be obtained using
Lemma 6 and Lemmas 15, 16 from Appendix A. They are given in the following lemma:

Lemma 5 For every displacement u ∈ Vε one has (α = 1, 2)

‖u‖H 1(0,L) ≤ C

ε
‖e(u)‖L2(Ω∗

ε ),

‖Uα‖H 2(0,L) + ‖Θ‖H 1(0,L) ≤ C

ε2
‖e(u)‖L2(Ω∗

ε ),

(4.10)

and

‖u3‖L2(Ω∗) + ε
(‖uα‖L2(Ω∗) + ‖∇u‖L2(Ω∗)

)+ ‖∇u‖L2(Ω∗) + 1

ε
‖u‖L2(Ω∗) ≤ C‖e(u)‖L2(Ω∗

ε ).

(4.11)

The proofs of the following two lemmas are given in Appendix B.3.

Lemma 6 The solution uε to problem (4.2) satisfies the following estimate:

‖e(uε)‖L2(Ω∗
ε ) ≤ Cε2

(‖f ‖L2(0,L) + ‖g‖L2(0,L)

)
. (4.12)

Lemma 7 For a subsequence of {ε}, still denoted {ε},
(i) there exists U ∈ H 2

Γ (0,L)2 such that the following convergences hold:

Uε ⇀ U weakly in H 2(0,L)2, (4.13)

T ∗
ε (Uε) →U strongly in L2((0,L);H 2(0,1))2, (4.14)

T ∗
ε

(dUε

dx3

)
→ dU

dx3
strongly in L2((0,L);H 1(0,1))2, (4.15)

T ∗
ε

(d2
Uε

dx2
3

)
⇀

d2
U

dx2
3

weakly in L2((0,L) × (0,1))2; (4.16)

(ii) there exists Θ ∈ H 1
Γ (0,L) such that the following convergences hold:

Θε ⇀ Θ weakly in H 1(0,L), (4.17)

T ∗
ε (Θε) → Θ strongly in L2((0,L);H 1(0,1)), (4.18)

T ∗
ε

(dΘε

dx3

)
⇀

dΘ

dx3
weakly in L2((0,L) × (0,1)); (4.19)

(iii) there exist u ∈ H 1
Γ (0,L)3, ûα ∈ L2((0,L),H 1

1,per (0,1)) (α = 1,2) such that

1

ε
uε ⇀ u weakly in H 1(0,L)3, (4.20)

1

ε
T ∗

ε (uε) → u strongly in L2((0,L);H 1(0,1))3, (4.21)

1

ε
T ∗

ε

(duε,α

dx3

)
⇀

duα

dx3
+ ∂ûα

∂X3
weakly in L2((0,L) × (0,1)), α = 1,2, (4.22)
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1

ε
T ∗

ε

(duε,3

dx3

)
⇀

du3

dx3
weakly in L2((0,L) × (0,1)), (4.23)

(iv) there exists u ∈ L2((0,L);H 1
1,per (C))3 such that

1

ε2
T ∗

ε (uε) ⇀ u weakly in L2((0,L);H 1(C))3,

1

ε
T ∗

ε (∇uε) ⇀ ∇Xu weakly in L2((0,L) × C)3×3,

1

ε
T ∗

ε (e(uε)) ⇀ eX(u) weakly in L2((0,L) × C)3×3.

(4.24)

Let us introduce the following vector space:

VM
.=
{
(u,U,Θ) ∈ H 1(0,L)3 × H 2(0,L)2 × H 1(0,L) | u(0) = U(0) = dU

dx3
(0) = Θ(0) = 0

}
.

For every (u, U, Θ) ∈ VM , we define the symmetric tensor E by

E(u, U, Θ) =

⎛

⎜
⎜⎜
⎝

0 0 1
2

(
du1
dx3

− X2
dΘ
dx3

)

∗ 0 1
2

(
du2
dx3

+ X1
dΘ
dx3

)

∗ ∗ du3
dx3

− X1
d2

U1
dx2

3
− X2

d2
U2

dx2
3

⎞

⎟
⎟⎟
⎠

.

The following proposition provides the first main result of this section. Its proof is given in
Appendix B.3.

Proposition 6 (The unfolded limit problem) Let uε be the solution to (4.2). There exist func-
tions (u, U, Θ) ∈ VM and û ∈ L2((0,L);H 1

1,per,0C))3 such that the following convergences
hold:

T ∗
ε (uε,α) ⇀ Uα weakly in L2((0,L);H 1(C)),

1

ε
T ∗

ε (uε,1 −Uε,1) ⇀ u1 − X2Θ weakly in L2((0,L);H 1(C)),

1

ε
T ∗

ε (uε,2 −Uε,2) ⇀ u1 + X1Θ weakly in L2((0,L);H 1(C)),

1

ε
T ∗

ε (uε,3) ⇀ u3 − X1
dU1

dx3
− X2

dU2

dx3
weakly in L2((0,L);H 1(C)),

(4.25)

and

1

ε
T ∗

ε (e(uε)) ⇀ E(u, U, Θ) + eX(̂u) weakly in L2((0,L) × C)3×3,

1

ε
T ∗

ε (σ ε
ij (uε)) ⇀ aijkl

(
Ekl(u, U, Θ) + eX,kl (̂u)

)
weakly in L2((0,L) × C),

(4.26)
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where the functions u, U, Θ, û are the solutions to the following unfolded problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∫

(0,L)×C
aijkl(Ekl(u, U, Θ) + eX,kl (̂u))(Eij (v,V,T) + eX,ij (̂v)) dx3dX

=|C|
[∫

(0,L)

fαVα dx3 + Iα

∫

(0,L)

(
gα

dVα

dx3
− g3T

)
dx3 +

∫

(0,L)

f3v3 dx3

]
,

∀ (v, V, T) ∈ VM, ∀ v̂ ∈ L2((0,L);H 1
1,per,0(C))3.

(4.27)

4.5 Homogenization

In this section, we derive the representation of the microscopic displacement û in terms of
the macroscopic fields u, U and Θ .

Taking (v, V, T) = 0 as a test function in (4.27), we obtain

∫

(0,L)×C
aijkl

(
Ekl(u,U,Θ) + eX,kl (̂u)

)
eX,ij (̂v)) dx3dX = 0, ∀ v̂ ∈ H 1

1,per,0(C)
3
.

This shows that the microscopic displacement û can be written in terms of the tensor E.
Define

M13 = 1

2

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , M23 = 1

2

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , M33 =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

The tensors E(u, U, Θ) have 6 components

E(u, U, Θ) =
3∑

m=1

dum

dx3
Mm3 −

2∑

α=1

Xα

d2
Uα

dx2
3

M33 +
(
X1M23 − X2M13

)dΘ

dx3
,

and we introduce 6 correctors

χu
m, χU

α , χΘ ∈ H 1
1,per,0(C)3, α = 1,2, m = 1,2,3,

which are the unique solutions to the following cell problems

∫

C
aijkl

(
eX,kl

(
χu

m

)+ Mm3
kl

)
eX,ij (̂v) dX = 0, m = 1,2,3,

∫

C
aijkl

(
eX,kl

(
χU

α

)− XαM33
kl

)
eX,ij (̂v) dX = 0, α = 1,2,

∫

C
aijkl

(
eX,kl

(
χΘ
)+ X1M23

kl − X2M13
kl

)
eX,ij (̂v) dX = 0

(4.28)

for all v̂ ∈ H 1
1,per,0(C)3.

Thus, the function û can be represented in terms of u, U, Θ in the following way

û =
3∑

m=1

dum

dx3
χu

m −
2∑

α=1

Xα

d2
Uα

dx2
3

χU

α + dΘ

dx3
χΘ a.e. in (0,L) × C. (4.29)
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Theorem 3 (The homogenized limit problem) The limit field (u, U, Θ) ∈ VM is the unique
solution to the homogenized problem (α,α′ ∈ {1,2}, m ∈ {1,2,3})
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ L

0

{
ahom

αα′
d2
Uα

dx2
3

d2
Vα′

dx2
3

+ bhom
mm′

dum

dx3

dvm′

dx3

+ chom dΘ

dx3

dT
dx3

− abhom
αm

(
d2
Uα

dx2
3

dvm

dx3
+ dum

dx3

d2
Vα

dx2
3

)

− achom
α

(
dΘ

dx3

d2
Vα

dx2
3

+ d2
Uα

dx2
3

dT
dx3

)
+ bchom

m

(
dum

dx3

dT
dx3

+ dΘ

dx3

dvm

dx3

)}
dx3

=
∫ L

0
fαVα dx3 + Iα

∫ L

0

(
gα

dVα

dx3
− g3T

)
dx3 +

∫ L

0
f3v3 dx3, ∀ (v,V,T) ∈ VM,

(4.30)
where

ahom
αα′ = 1

|C|
∫

C
aijkl

(
M33

kl + eX,kl

(
χU

α

)) (
M33

ij + eX,ij

(
χU

α′
))

XαXα′ dX,

bhom
mm′ = 1

|C|
∫

C
aijkl

(
Mm3

kl + eX,kl

(
χu

m

))(
Mm′3

ij + eX,ij

(
χ

u

m′
))

dX,

chom = 1

|C|
∫

C
aijkl

(
X1M23

kl − X2M13
kl + eX,kl

(
χΘ
)) (

X1M23
ij − X2M13

ij + eX,kl

(
χΘ
))

dX,

abhom
αm = 1

|C|
∫

C
aijkl

(
M33

kl + eX,kl

(
χU

α

)) (
Mm3

ij + eX,ij

(
χu

m

))
Xα dX,

achom
α = 1

|C|
∫

C
aijkl

(
M33

kl + eX,kl

(
χU

α

)) (
X1M23

ij − X2M13
ij + eX,ij

(
χΘ
))

Xα dX,

bchom
m = 1

|C|
∫

C
aijkl

(
Mm3

kl + eX,kl

(
χu

m

)) (
X1M23

ij − X2M13
ij + eX,ij

(
χΘ
))

dX.

(4.31)

Proof We take v̂ = 0 in (4.27). Replacing û by its expression (4.29), for every (v, V, T) ∈
VM yields

∫

(0,L)×C
aijkl

(dum

dx3

(
Mm3

kl + eX,kl

(
χu

m

))− Xα

d2
Uα

dx2
3

(
M33

kl + eX,kl

(
χU

α

))

+ dΘ

dx3

(
X1M23

kl − X2M13
kl + eX,kl

(
χΘ
)))

×
(dvm

dx3
Mm3

ij − Xα

d2
Vα

dx2
3

M33
ij +

(
X1M23

ij − X2M13
ij

) dT
dx3

)
dx3dX

= |C|
[∫

(0,L)

fαVα dx3 + Iα

∫

(0,L)

[
gα

dVα

dx3
− g3T

]
dx3 +

∫

(0,L)

f3v3 dx3

]
.

Taking into account the variational problems (4.28) satisfied by the correctors, the problem
(4.30) with the homogenized coefficients given by (4.31) is obtained by a simple computa-
tion.
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Now, we show that the operator on the left-hand side problem (4.30) is uniformly elliptic.
Using formulas (4.31) of the homogenized coefficients, we obtain

ahom
αα′ τU

α τU

α′ + bhom
mm′τu

mτ
u

m′ + chomτΘτΘ + 2abhom
αm τU

α τ u
m + 2achom

α τU

α τΘ + 2bchom
m τu

mτΘ

=
∫

C
aijkl

(
eX,kl

(
Ψ
)+ Mkl

)(
eX,ij

(
Ψ
)+ Mij

)
dX,

where

M =
(
τ

u

1 − X2τ
Θ
)

M13 +
(
τ

u

2 + X1τ
Θ
)

M23 +
(
τU

1 + τU

2 + τ
u

3

)
M33,

Ψ = χU

α τU

α + χu
mτu

m + χΘτΘ, τU

α , τ u
m, τΘ ∈R, α = 1,2, m = 1,2,3.

Then, in view of (2.2) and following the proof of [14, Lemma 11.19], we obtain

ahom
αα′ τU

α τU

α′ + bhom
mm′τu

mτ
u

m′ + chomτΘτΘ + 2abhom
αm τU

α τ u
m + 2achom

α τU

α τΘ + 2bchom
m τu

mτΘ ≥

≥
∫

C
c0

(
eX,kl

(
Ψ
)+ Mkl

)(
eX,ij

(
Ψ
)+ Mij

)
dX ≥ C

(
τU

α + τu
m + τΘ

)2
. �

4.6 Conclusion

For ε-periodic porous materials, the solution of problem (4.2) (in the strong form), or (4.3)
(in the weak/variational form) is approximated by (for x ∈ Ω∗

ε )

uε(x) ≈

⎛

⎜
⎜
⎝

U1(x3) + εu1(x3) − x2Θ(x3)

U2(x3) + εu2(x3) + x1Θ(x3)

εu3(x3) − x1
dU1

dx3
(x3) − x2

dU2

dx3
(x3)

⎞

⎟
⎟
⎠+

3∑

m=1

ε2 dum

dx3
(x3)χ

u
m

(x1

ε
,
x2

ε
,
{x3

ε

})

−
2∑

α=1

εxα

d2
Uα

dx2
3

(x3)χ
U

α

(x1

ε
,
x2

ε
,
{x3

ε

})
+ ε2 dΘ

dx3
(x3)χ

Θ
(x1

ε
,
x2

ε
,
{x3

ε

})
,

(4.32)
where (u, U, Θ) ∈ VM is the solution to the homogenized 1D problem (4.30) and
χ

u
m, χU

α , χΘ ∈ H 1
1,per,0(C)3, α = 1,2, m = 1,2,3, are the solutions to corresponding auxil-

iary cell problems (4.28) (see Fig. 4).
The first term in the previous formula is a Bernoulli-Navier displacement completed

by the displacements εu, and the term εu3 stands for the stretching-compression of the
structure. The remaining terms represents the warpings of the cells.
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Fig. 4 Illustration of the two-scale approach for one pure bending experiment: compute the corrector χU
α (X)

on the periodicity cell, compute 1D bending deflection U(x3) and put them into the approximating formula
for the local stresses

Appendix A: Korn’s Inequalities

For every open bounded set O in R
N and δ > 0, denote Oint

δ = {x ∈ O | dist(x, ∂O) > δ
}
.

The following lemma is used to pass from convergences in Oint
δ to convergences in the whole

domain O.

Lemma 8 Let O be an open bounded set in R
N , and let {φε}ε be a sequence of functions

belonging to H 1(Oint
κε ) (κ is a fixed strictly positive constant) satisfying

‖φε‖H 1(Oint
κε ) ≤ C, (A.1)

where C does not depend on ε. We extend φε by 0 to R
N \ Oint

κε (extension with the same
name).

Then, there exists a subsequence of {ε}, still denoted by {ε}, and φ ∈ H 1(O) such that

φε ⇀ φ weakly in L2(O),

∇φε1Oint
κε

⇀ ∇φ weakly in L2(O)
N
.

Proof It follows from (A.1) that there exist φ ∈ L2(O) and Φ ∈ L2(O)N such that (up to a
subsequence still denoted by {ε})

φε ⇀ φ weakly in L2(O),

∇φε1Oint
κε

⇀ Φ weakly in L2(O)N .

Now, we show that ∇φ = Φ , so φ belongs to H 1(O).
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Fig. 5 Sets Ω, Ωint

2ε
√

N
,Ξε and

Ξint
ε

Let O′ be an open subset of O such that O′ is strictly included in O. If ε is small enough,
one has O′ ⊂ Oint

κε . For all ψ ∈ D(O′)N , using the convergences given above we obtain on
the one hand

∫

O′
∇φε · ψ dx = −

∫

O′
φε div(ψ)dx → −

∫

O′
φ div(ψ)dx =

∫

O′
∇φ · ψ dx,

and on the other hand
∫

O′
∇φε · ψ dx →

∫

O′
Φ · ψ dx.

Hence Φ = ∇φ in every open set O′ strictly included in O. Thus Φ = ∇φ a.e. in O. So, we
have φ ∈ H 1(O). �

A.1 Korn’s Inequality on N -Dimensional Domains

See Sect. 2.1 for the principal notations. We also denote (see Fig. 5)

Ξint
ε

.= {ξ ∈ Z
N | ε(ξ + Y ) ⊂ Ωint

2ε
√

N

}
.

First, we recall the following results proved in [14, Lemmas 5.21, 5.23 and 5.34]:

Proposition 7 Let Ω be a bounded domain in R
N with Lipschitz boundary. There exists

δ0 > 0 such that for all δ ∈ (0, δ0] the sets Ωint
δ are uniformly Lipschitz.

Proposition 8 Suppose p ∈ [1,+∞). Let � be a function defined on Ξε . There exists a
constant C which only depends on p and ∂Ω such that

∑

ξ∈Ξε

|�(ξ)|p ≤ C
( ∑

ξ∈Ξint
ε

|�(ξ)|p +
N∑

i=1

∑

ξ∈Ξε,i

|�(ξ + ei ) − �(ξ)|p
)
.

Proposition 9 (Poincaré-Wirtinger inequality for Ωint
δ ) Let Ω be a bounded domain in R

N

with Lipschitz boundary. Then, there exists δ0 > 0 such that the domains Ωint
δ for δ ∈ (0, δ0]

are uniformly Lipschitz. These domains satisfy a uniform Poincaré-Wirtinger inequality for
every p ∈ [1,+∞), i.e., there exists a constant C independent of δ (C depends only on p

and ∂Ω) such that

‖ϕ −MΩint
δ

(ϕ)‖Lp(Ωint
δ ) ≤ C‖∇ϕ‖Lp(Ωint

δ ), ∀ϕ ∈ W 1,p(Ωint
δ ), (A.2)

where MΩint
δ

(ϕ) is the mean value of the function ϕ in the domain Ωint
δ .
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Below, in every cell we compare a displacement to a rigid displacement. Then, in a
second step, we compare the rigid displacements obtained in two neighboring cells. After
that, we build a global displacement in order to obtain a Korn’s type inequality.

Let Ci = interior(C ∪ C + ei ) and Φ be a displacement in W 1,p(Ci )
N

, p ∈ (1,+∞) and
i ∈ {1, . . . ,N}. Applying Korn’s inequality in C and C + ei yields two rigid displacements
Ri,0, Ri,1, given by

Ri,0(x) = ai,0 + Bi,0 x,

Ri,1(x) = ai,1 + Bi,1 (x − ei ),
ai,0, ai,1 ∈R

N, x ∈R
N,

where Bi,0, Bi,1 are antisymmetric N × N matrices. We have

‖Φ − Ri,0‖W1,p(C) ≤ C‖e(Φ)‖Lp(C),

‖Φ − Ri,1‖W1,p(C+ei )
≤ C‖e(Φ)‖Lp(C+ei ),

(A.3)

where the constant depends only on C.

Lemma 9 The following estimates hold:

|Bi,1 − Bi,0| ≤ C‖e(Φ)‖Lp(Ci ),

|ai,1 − ai,0 − Bi,1 ei | ≤ C‖e(Φ)‖Lp(Ci ),
i = 1, . . . ,N, (A.4)

where the constant C depends only on C.

Proof Since the domain Ci is connected and has a Lipschitz boundary, it satisfies Korn’s
inequality. Hence, there exists a rigid displacement Ri ,

Ri (x) = ai + Bi (x − ei/2), ai ∈R
N, x ∈ R

N,

where Bi is an antisymmetric N × N matrix. The rigid displacement Ri satisfies

‖Φ − Ri‖W1,p(Ci )
≤ C‖e(Φ)‖Lp(Ci ), (A.5)

where the constant C depends on Ci . Hence, by (A.3) and (A.5)

‖∇(Ri − Ri,0)‖Lp(C) + ‖∇(Ri − Ri,1)‖Lp(C+ei ) ≤ C‖e(Φ)‖Lp(Ci ). (A.6)

Taking into account the inequality (A.6), we obtain

|Bi − Bi,0| ≤ C‖∇(Ri − Ri,0)‖Lp(C) ≤ C‖e(Φ)‖Lp(Ci ),

|Bi − Bi,1| ≤ C‖∇(Ri − Ri,1)‖Lp(C+ei ) ≤ C‖e(Φ)‖Lp(Ci ).
(A.7)

Subtracting yields (A.4)1.
Now we prove (A.4)2. First observe that

∥
∥∥ai − ai,0 − 1

2
Bi ei

∥
∥∥

Lp(C)
≤
∥
∥∥ai + Bi (x − 1

2
ei )− (ai,0 + Bi,0x

)∥∥∥
Lp(C)

+∥∥Bix − Bi,0x
∥
∥

Lp(C)
.

(A.8)
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Besides, we have
∥∥
∥ai + Bi (x − 1

2
ei ) − (ai,0 + Bi,0x

)∥∥
∥

Lp(C)

= ∥∥Ri − Ri,0

∥
∥

Lp(C)
≤ ∥∥Φ − Ri

∥
∥

Lp(C)
+ ∥∥Φ − Ri,0

∥
∥

Lp(C)
≤ C‖e(Φ)‖Lp(Ci ).

The previous estimate together with (A.8) and (A.7) gives

∣∣
∣ai − ai,0 − 1

2
Bi ei

∣∣
∣≤ C‖e(Φ)‖Lp(Ci ).

Similarly, we obtain
∣∣
∣ai − ai,1 + 1

2
Bi ei

∣∣
∣≤ C‖e(Φ)‖Lp(Ci ).

Hence (A.4)2 holds. Thus Lemma 9 is proved. �

Now, let u be a displacement in W 1,p(Ω∗
ε )

N
. By Korn’s inequality in ε(ξ +C) there exist

rigid displacements Rεξ (ξ ∈ Ξε),

Rεξ (x) = a(εξ) + B(εξ) (x − εξ), x ∈R
N,

such that (using (A.3) and after ε-scaling)

‖∇(u − Rεξ )‖Lp(ε(ξ+C)) ≤ C‖e(u)‖Lp(ε(ξ+C)),

‖u − Rεξ‖Lp(ε(ξ+C)) ≤ Cε‖e(u)‖Lp(ε(ξ+C)).
(A.9)

As above we obtain the following estimates for every ξ ∈ Ξε,i :

|B(εξ + εei ) − B(εξ)| ≤ Cε−N/p‖e(u)‖
Lp(εCξ

i
)
,

|a(εξ + εei ) − a(εξ) − εB(εξ + εei )ei | ≤ Cε1−N/p‖e(u)‖
Lp(εCξ

i
)
,

where Cξ

i = interior
(
(C + ξ) ∪ (ei + ξ + C)

)
.

An immediate consequence of Lemma 9, we have

Lemma 10 The following estimates hold:

N∑

i=1

∑

ξ∈Ξε,i

|B(εξ + εei ) − B(εξ)|pεN ≤ C‖e(u)‖p

Lp(Ω∗
ε ),

N∑

i=1

∑

ξ∈Ξε,i

|a(εξ + εei ) − a(εξ) − εB(εξ + εei ) ei |pεN ≤ Cεp‖e(u)‖p

Lp(Ω∗
ε ),

(A.10)

where the constant C depends only on C.

Let ξ be in Ξε . If all the vertices of the parallelotope ε(ξ + Y) belong to Ξε , we extend
the field a (or B, resp.) to this parallelotope as the Q1 interpolate of its values at the vertices
of the parallelotope.

We obtain a field, still denoted a (or B, resp.), defined at least in Ωint

2ε
√

N
. This field belongs

to W 1,∞(Ωint

2ε
√

N
)N (resp. W 1,∞(Ωint

2ε
√

N
)N×N ).
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Lemma 11 For every displacement u ∈ W 1,p(Ω∗
ε )N the following estimates hold

‖∇B‖Lp(Ωint

2ε
√

N
) ≤ C

ε
‖e(u)‖Lp(Ω∗

ε ),

∥∥∇a − B
∥∥

Lp(Ωint

2ε
√

N
)
≤ C‖e(u)‖Lp(Ω∗

ε ),

∥∥e(a)
∥∥

Lp(Ωint

2ε
√

N
)
≤ C‖e(u)‖Lp(Ω∗

ε ),

(A.11)

where the constants do not depend on ε.

Proof A straightforward calculation and the estimates in Lemma 10 yield (A.11)1,2. Then
(A.11)2 gives (A.11)3 (recall that B is an antisymmetric N × N matrix). Thus Lemma 11 is
proved. �

We assume that there exists a domain Ω ′ with a Lipschitz boundary such that Ω ⊂ Ω ′
and Ω ′ ∩ ∂Ω = Γ .

Denote

W
1,p

Γ (Ω∗
ε )

.=
{
ψ ∈ W 1,p(Ω∗

ε )
∣∣ ∃ψ ′ ∈ W 1,p(Ω ′∗

ε ), ψ = ψ ′
|Ω∗

ε
, ψ ′ = 0 in Ω ′∗

ε \ Ω∗
ε

}
,

where

Ω ′∗
ε

.= interior
( ⋃

ξ∈Ξ ′
ε

(εξ + εC)
)
, Ξ ′

ε

.= {ξ ∈ Z
3 | (εξ + εY ) ∩ Ω ′ �= ∅}.

Theorem 4 (Korn’s inequality) For every displacement u ∈ W 1,p(Ω∗
ε )N , p ∈ (1,+∞),

there exists a rigid displacement R such that

‖u − R‖W1,p(Ω∗
ε ) ≤ C‖e(u)‖Lp(Ω∗

ε ). (A.12)

Furthermore, if u ∈ W
1,p

Γ (Ω∗
ε )N then

‖u‖W1,p(Ω∗
ε ) ≤ C‖e(u)‖Lp(Ω∗

ε ), (A.13)

where the constants C in (A.12), (A.13) do not depend on ε.

Proof Since the boundary of Ωint

2ε
√

N
is uniformly Lipschitz, Korn’s inequality and (A.11)3

give a rigid displacement R such that
∥
∥a − R

∥
∥

W1,p(Ωint

2ε
√

N
)
≤ C

∥
∥e(a)

∥
∥

Lp(Ωint

2ε
√

N
)
≤ C‖e(u)‖Lp(Ω∗

ε ).

Then (A.11)2 and the previous estimate lead to
∥
∥B − ∇R

∥
∥

Lp(Ωint

2ε
√

N
)
≤ C‖e(u)‖Lp(Ω∗

ε ).

Denote B = ∇R. Hence
∑

ξ∈Ξint
ε

|B(εξ) − B|pεN ≤ C‖e(u)‖p

Lp(Ω∗
ε ).
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The estimate (A.10)1 in Lemma 10 together with the previous estimate and Lemma 8 yield

∑

ξ∈Ξε

|B(εξ) − B|pεN ≤ C‖e(u)‖p

Lp(Ω∗
ε ). (A.14)

Now, from Proposition 9 and (A.11)3, there exits a ∈R such that

‖a − a‖Lp(Ωint

2ε
√

N
) ≤ C‖e(u)‖Lp(Ω∗

ε ).

Hence
∑

ξ∈Ξint
ε

|a(εξ) − a|pεN ≤ C‖e(u)‖p

Lp(Ω∗
ε ).

The estimates (A.14), (A.10)2 together with the previous estimate and Lemma 8 yield

∑

ξ∈Ξε

|a(εξ) − a|pεN ≤ C‖e(u)‖p

Lp(Ω∗
ε ). (A.15)

Let R = a + Bx. Then estimates (A.9) and (A.14), (A.15) lead to (A.12).
If u belongs to W

1,p

Γ (Ω∗
ε )N , applying the previous result (A.12) with u′ in place of u, and

Ω ′ in place of Ω , gives a rigid displacement R′ such that

‖u′ − R′‖W1,p(Ω ′∗
ε ) ≤ C‖e(u)‖Lp(Ω∗

ε ).

Let O be an open set such that O strictly included in
(
Ω ′ \ Ω

)
. For ε small enough, the

function u′ vanishes in O ∩ Ω ′∗
ε .

Hence

‖R′‖W1,p(O∩Ω ′∗
ε ) ≤ C‖e(u)‖Lp(Ω∗

ε )

which yields an estimate, independent of ε, for the components of R′. Thus the estimate
(A.13) follows. �

A.2 Korn’s Inequality on a Plate-Like Domain

In this subsection, the proofs of the lemmas are similar to the proofs of those in the previous
subsection.

The notations are those of Sect. 3.1. We recall that C is a domain with Lipschitz boundary
included in Y = (−1/2,1/2)3 and such that the sets Cα = interior

(
C ∪ (C + eα)

)
, α = 1,2,

are connected.
Let u be in H 1(Ω∗

ε )3. For every ξ ∈ Ξε there exists a rigid displacement Rεξ ,

Rεξ (x) = U(εξ) +R(εξ) ∧ (x − εξ), x ∈R
3,

such that

‖∇(u − Rεξ )‖L2(ε(ξ+C)) ≤ C‖e(u)‖L2(ε(ξ+C)), ‖u − Rεξ‖L2(ε(ξ+C)) ≤ Cε‖e(u)‖L2(ε(ξ+C)).

(A.16)

Remark 2 By construction, the fields U , R are piecewise linear in each cell.

In the same way as in Lemma 10 we get the following lemma:
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Lemma 12 The following estimates hold:

2∑

α=1

∑

ξ∈Ξε,α

|R(εξ + εeα) −R(εξ)|2ε3 ≤ C‖e(u)‖2
L2(Ω∗

ε )
, α = 1,2,

2∑

α=1

∑

ξ∈Ξε,α

|U(εξ + εeα) −U(εξ) − εR(εξ + εeα) ∧ eα|2ε3 ≤ Cε2‖e(u)‖2
L2(Ω∗

ε )
.

(A.17)

The constant C depends only on C.

As in the previous subsection, using Q1 interpolation we extend the fields U and R to the
whole domain ωint

3ε and obtain two fields U ∈ W 1,∞(ωint
3ε )3 and R ∈ W 1,∞(ωint

3ε )2 satisfying

U(εξ) =U(εξ), R(εξ) = R(εξ), ∀ ξ ∈ Ξε ∩ ωint
3ε .

Below, we use the plate decomposition from [18]. We define the displacement Ue as

Ue(x) = U(x ′) +R(x ′) ∧ x3e3, ∀x ∈ Ωint
ε , x ′ = (x1, x2).

Lemma 13 For every displacement u ∈ H 1(Ω∗
ε )3 we have

‖∇R‖L2(ωint
3ε

) ≤ C

ε3/2
‖e(u)‖L2(Ω∗

ε ),

∥
∥∥

∂U
∂xα

−R∧ eα

∥
∥∥

L2(ωint
3ε

)
≤ C

ε1/2
‖e(u)‖L2(Ω∗

ε ), α = 1,2.

(A.18)

The constant C depends only on C.

Proof The estimates (A.18) are the consequences of (A.17) and the fact that the fields U and
R are piecewise linear in every cell. �

Theorem 5 For every displacement u ∈ H 1(Ω∗
ε )3, there exists a rigid displacement R such

that

‖uα −Rα‖L2(Ω∗
ε ) ≤ C‖e(u)‖L2(Ω∗

ε ), ‖u3 −R3‖L2(Ω∗
ε )+‖∇(u−R)‖L2(Ω∗

ε ) ≤ C

ε
‖e(u)‖L2(Ω∗

ε ).

The constant C does not depend on ε.

Proof From Proposition 9, there exits (b1, b2) ∈R
2 such that

‖Rα − bα‖L2(ωint
3ε

) ≤ C

ε3/2
‖e(u)‖L2(Ω∗

ε ). (A.19)

Then, the previous estimate, (A.17)1 and Proposition 8 yield

∑

ξ∈Ξε

|Rα(εξ) − bα|2ε3 ≤ C

ε3
‖e(u)‖L2(Ω∗

ε ).

Furthermore, (A.18)2 and (A.19) lead to

∥
∥∥
∂U3

∂x1
+ b2

∥
∥∥

L2(ωint
3ε

)
+
∥
∥∥
∂U3

∂x2
− b1

∥
∥∥

L2(ωint
3ε

)
≤ C

ε1/2
‖e(u)‖L2(Ω∗

ε ), α = 1,2.
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Proceeding as above, there exists a3 ∈R such that

∑

ξ∈Ξε

|U3(εξ) − a3 + b2εξ1 − b1εξ2|2ε3 ≤ C

ε3
ε‖e(u)‖L2(Ω∗

ε ).

From (A.18)2 we also obtain

∥
∥∥
∂U1

∂x1

∥
∥∥

L2(ωint
3ε

)
+
∥
∥∥
∂U2

∂x2

∥
∥∥

L2(ωint
3ε

)
+
∥
∥∥
∂U1

∂x2
+ ∂U2

∂x1

∥
∥∥

L2(ωint
3ε

)
≤ C

ε1/2
‖e(u)‖L2(Ω∗

ε ).

Since the boundary of ωint
3ε is uniformly Lipschitz, Korn’s inequality for 2D gives a rigid

displacement r(x1, x2) = (a1 − b3x2)e1 + (a2 + b3x1)e2 such that

‖U1 − r1‖H 1(ωint
3ε

) + ‖U2 − r2‖H 1(ωint
3ε

) ≤ C

ε1/2
‖e(u)‖L2(Ω∗

ε ).

These estimates and (A.18)2 imply that

‖R3 − b3‖L2(ωint
3ε

) ≤ C

ε1/2
‖e(u)‖L2(Ω∗

ε ).

Then, as above, we obtain

∑

ξ∈Ξε

|R3(εξ) − b3|2ε3 +
∑

ξ∈Ξε

|U1(εξ) − a1 + b3εξ2|2ε3 +
∑

ξ∈Ξε

|U2(εξ) − a2 − b3εξ1|2ε3

≤ C

ε
‖e(u)‖L2(Ω∗

ε ).

By choosing R(x) = a + b ∧ x and using (A.16) we complete the proof of the theorem. �

Let γ be a subset of ∂ω with a non-zero measure. Assume that there exists a domain ω′

with Lipschitz boundary such that

ω ⊂ ω′ and ω′ ∩ ∂ω = γ.

Denote

Vε
.=
{
v ∈ H 1(Ω∗

ε )3
∣∣ ∃v′ ∈ H 1(Ω ′∗

ε )3, v = v′
|Ω∗

ε
, v′ = 0 in Ω ′∗

ε \ Ω∗
ε

}
,

where

Ω ′∗
ε

.= interior
( ⋃

ξ∈Ξ ′
ε

(εξ + εC)
)
, Ξ ′

ε

.= {ξ ∈ Z
2 | (εξ + εY ′) ∩ ω′ �= ∅}.

Theorem 6 For every displacement u in Vε the following estimates hold

‖u1‖L2(Ω∗
ε ) + ‖u2‖L2(Ω∗

ε ) ≤ C‖e(u)‖L2(Ω∗
ε ), ‖u3‖L2(Ω∗

ε ) + ‖∇u‖L2(Ω∗
ε ) ≤ C

ε
‖e(u)‖L2(Ω∗

ε ).

(A.20)
The constant C does not depend on ε.
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Proof Since u belongs to Vε , there exists u′ ∈ H 1(Ω ′∗
ε )3 such that u = u′

|Ω∗
ε
, u′ = 0 in

Ω ′∗
ε \ Ω∗

ε . Then, applying Theorem 5 with u′ in place of u, and Ω ′ in place of Ω , gives a
rigid displacement R′ such that

‖u′
α − R′

α‖L2(Ω ′∗
ε ) ≤ C‖e(u)‖L2(Ω∗

ε ),

‖u′
3 − R′

3‖L2(Ω ′∗
ε ) + ‖∇(u′ − R′)‖L2(Ω ′∗

ε ) ≤ C

ε
‖e(u)‖L2(Ω∗

ε ).
(A.21)

Let O be an open set such that O is strictly included in
(
ω′ \ ω

)
. For ε small enough, the

function u′ vanishes in O × (−ε/2, ε/2) ∩ Ω ′∗
ε . Then the terms of its decomposition U ′ and

R′ also vanish in O. Hence, one can choose R′ = 0 without changing the estimates (A.21).
So, (A.20) follows. �

As a consequence of the two previous theorems, we obtain the following result

Corollary 1 For every displacement u in Vε the following estimates hold:

‖U1‖H 1(ωint
3ε

) + ‖U2‖H 1(ωint
3ε

) + ‖R3‖H 1(ωint
3ε

) ≤ C

ε1/2
‖e(u)‖L2(Ω∗

ε ),

‖U3‖H 1(ωint
3ε

) + ‖R1‖H 1(ωint
3ε

) + ‖R2‖H 1(ωint
3ε

) ≤ C

ε3/2
‖e(u)‖L2(Ω∗

ε ),

‖u1‖L2(Ωint
ε ) + |u2‖L2(Ωint

ε ) ≤ Cε‖e(u)‖L2(Ω∗
ε ),

|u3‖L2(Ωint
ε ) + ‖∇u‖L2(Ωint

ε ) ≤ C‖e(u)‖L2(Ω∗
ε ),

(A.22)

and

∑

ξ∈Ξε

|R1(εξ)|2ε2 +
∑

ξ∈Ξε

|R2(εξ)|2ε2 +
∑

ξ∈Ξε

|U3(εξ)|2ε2 ≤ C

ε3
‖e(u)‖2

L2(Ω∗
ε )

,

∑

ξ∈Ξε

|R3(εξ)|2ε2 +
∑

ξ∈Ξε

|U1(εξ)|2ε2 +
∑

ξ∈Ξε

|U2(εξ)|2ε2 ≤ C

ε
‖e(u)‖2

L2(Ω∗
ε )

.

(A.23)

The constants C do not depend on ε.

A.3 Korn’s Inequality on a Beam-Like Domain

In this subsection, the notations are those of Sect. 4.1.
For every displacement u ∈ H 1(Ω∗

ε )3, Korn’s inequality applied on the domain ε(ξ +
C), ξ ∈ Ξε , gives a rigid displacement Rεξ ,

Rεξ (x) = U(εξ) +R(εξ) ∧ (x − εξ), x ∈R
3,

such that

‖∇(u − Rεξ )‖L2(ε(ξ+C)) ≤ C‖e(u)‖L2(ε(ξ+C)), ‖u − Rεξ‖L2(ε(ξ+C)) ≤ Cε‖e(u)‖L2(ε(ξ+C)).

(A.24)

Remark 3 By construction, the fields U and R are piecewise constant.
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In the same way as in Lemmas 10-12 we get

Lemma 14 The following estimates hold:

∑

ξ∈Ξε

|R(εξ + εe3) −R(εξ)|2ε3 ≤ C‖e(u)‖2
L2(Ω∗

ε )
,

∑

ξ∈Ξε

|U(εξ + εe3) −U(εξ) − εR(εξ + εe3) ∧ e3|2ε3 ≤ Cε2‖e(u)‖2
L2(Ω∗

ε )
.

(A.25)

The constant C depends only on C.

Define

R(Nε) = R((N − 1)ε), U(Nε) = U((N − 1)ε) + εR(Nε) ∧ e3.

Now, using Q1 interpolation, we extend the fields U and R to fields U , R belonging to
W 1,∞(0,L)3 and such that

U(εξ) =U(εξ), R(εξ) = R(εξ), ∀ ξ ∈ {0, . . . ,N}.
Let us introduce the displacement Ue as follows:

Ue(x) = U(x3) +R(x3) ∧ (x1e1 + x2e2), ∀x ∈ Ω∗
ε .

Lemma 15 For every displacement u ∈ H 1(Ω∗
ε )3 the following estimates hold:

∥
∥∥

dR
dx3

∥
∥∥

L2(0,L)
≤ C

ε2
‖e(u)‖L2(Ω∗

ε ),

∥∥
∥

dU
dx3

−R∧ e3

∥∥
∥

L2(0,L)
≤ C

ε
‖e(u)‖L2(Ω∗

ε ),

∥
∥e(Ue)

∥
∥

L2(Ω∗
ε )

≤ C‖e(u)‖L2(Ω∗
ε ).

(A.26)

Moreover,

‖∇(u − Ue
)‖L2(Ω∗

ε ) ≤ C‖e(u)‖L2(Ω∗
ε ), ‖u − Ue‖L2(Ω∗

ε ) ≤ Cε‖e(u)‖L2(Ω∗
ε ). (A.27)

The constant C in (A.26), (A.27) depends only on C.

Proof The estimates (A.25) yield (A.26)1,2. A straightforward calculation and (A.26)1,2 lead
to (A.26)3. Then, taking into account (A.24), we obtain (A.27). �

Denote

H(0,L)
.= {φ ∈ H 1(0,L) | φ(0) = 0

}
.

Lemma 16 For every displacement u ∈ Vε the following estimates hold:

‖U3‖H 1(0,L) + ε
(‖U1‖H 1(0,L) + ‖U2‖H 1(0,L) + ‖R‖L2(0,L)

)≤ C

ε
‖e(u)‖L2(Ω∗

ε ) (A.28)
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and

‖u3‖L2(Ω∗
ε ) + ε

(‖u1‖L2(Ω∗
ε ) + ‖u2‖L2(Ω∗

ε ) + ‖∇u‖L2(Ω∗
ε )

)≤ C‖e(u)‖L2(Ω∗
ε ). (A.29)

The constant C in (A.28), (A.29) does not depend on ε.

Proof We extend u by 0 to the cell ε
(− e3 +C). Then, proceeding as in Lemma 9 we obtain

|R(0)|2ε3 ≤ C‖e(u)‖2
L2(Ω∗

ε )
, |U(0)|ε3 ≤ Cε2‖e(u)‖2

L2(Ω∗
ε )

.

Without losing the estimates (A.26), we set U(0) = R(0) = 0. Estimates (A.28) are the
immediate consequences of (A.26)1,2 and the Poincaré inequality. Finally (A.24) and (A.28)
lead to (A.29). �

As a consequence of the previous lemma and (A.24), we have the following decomposi-
tion of a displacement u ∈ Vε:

u = Ue + u,

where the displacement Ue is given by

Ue(x) = U(x3) +R(x3) ∧ (x1e1 + x2e2), ∀x ∈ Ω∗
ε , U, R ∈ H(0,L)3

and where the displacement u ∈ Vε satisfies the estimates (see [18])

‖u‖L2(Ω∗
ε ) ≤ Cε‖e(u)‖L2(Ω∗

ε ), ‖∇u‖L2(Ω∗
ε ) ≤ C‖e(u)‖L2(Ω∗

ε ). (A.30)

The constant C in (A.30) does not depend on ε.

Appendix B: Proofs of the Results of Sects. 2, 3 and 4

B.1 Results of Sects. 2

Proof of Lemma 1 From (A.13) in Theorem 4, we have

‖uε‖L2(Ω∗
ε ) ≤ C‖e(uε)‖L2(Ω∗

ε ).

Then, using the Cauchy-Schwarz inequality, we obtain

∣∣∣
∫

Ω∗
ε

fε · uε dx

∣∣∣≤ ‖f ‖L2(Ω∗
ε )‖uε‖L2(Ω∗

ε ) ≤ C‖f ‖L2(Ω1)‖e(uε)‖L2(Ω∗
ε ),

and thus (2.10) follows from (2.2). �

Proof of Proposition 2 There exists a subsequence of {ε}, still denoted {ε}, and exist u ∈
H 1

Γ (Ω)N and û ∈ L2(Ω;H 1
N,per,0(C))N such that (see [14, Theorem 4.43])

T ∗
ε (uε) → u strongly in L2(Ω;H 1(C))N ,

T ∗
ε (∇uε) ⇀ ∇u + ∇Xû weakly in L2(Ω × C)N×N .

(B.1)
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In order to obtain the limit problem (2.12), we use the same approach as in [13, Theorem
4.3]. Let us introduce the following fields

v ∈ H 1(Ω1)
N such that v = 0 in Ω1 ∩ (Ω ′ \ Ω

)
, ϕ ∈ D(Ω), ψ ∈ H 1

N,per,0(C)N ,

and take vε(x) = v(x) + εψε(x)ϕ(x) as a test function in (2.6), where ψε(x) = ψ
(

x
ε

)
. Note

that

eij (vε)(x) = eij (v)(x) + εeij (ψεϕ)(x)

= eij (v)(x) + eX,ij (ψ)
(x

ε

)
ϕ(x) + ε

2

(
ψj

(x

ε

) ∂ϕ

∂xi

(x) + ψi

(x

ε

) ∂ϕ

∂xj

(x)
)

= eij (v)(x) + eX,ij (ψ)(X)ϕ(x) + ε

2

(
ψj(X)

∂ϕ

∂xi

(x) + ψi(X)
∂ϕ

∂xj

(x)
)
,

x ∈ Ω∗
ε , i, j = 1,N.

Then, applying T ∗
ε to vε , gives

T ∗
ε (vε) → v strongly in L2(Ω × C)N ,

T ∗
ε (e(vε)) → e(v) + eX(ψ)ϕ strongly in L2(Ω × C)N×N .

Unfolding the left-hand side of (2.6), using ‖e(vε)‖L2(Λext
ε ) = ‖e(v)‖L2(Λext

ε ) → 0 and passing
to the limit, we obtain
∫

Ω∗
ε

σ ε(uε) : e(vε) dx =
∫

Ωext
ε ×C

T ∗
ε (σ ε(uε)) : T ∗

ε (e(vε)) dx dX

=
∫

Ω×C
T ∗

ε (σ ε(uε)) : T ∗
ε (e(vε)) dx dX +

∫

Λext

σ ε(uε) : e(vε) dx

→
∫

Ω×C
aijkl(ekl(u) + eX,kl (̂u))(eij (v) + eX,ij (ψ)ϕ)dx dX.

Taking into account (2.4) and using ‖vε‖L2(Λext
ε ) = ‖v‖L2(Λext

ε ) → 0, we have

∫

Ω∗
ε

f · vε dx =
∫

Ωext
ε ×C

T ∗
ε (f ) · T ∗

ε (vε) dxdX

=
∫

Ω×C
T ∗

ε (f ) · T ∗
ε (vε) dxdX +

∫

Λext

f · vε dx

→
∫

Ω×C
f (x) · v(x) dx dX = |C|

∫

Ω

f (x) · v(x) dx.

Hence, the convergences given above lead to
∫

Ω×C
aijkl(ekl(u) + eX,kl (̂u))(eij (v) + eX,ij (ψ)ϕ)dx dX = |C|

∫

Ω

f · v dx.

Finally, since the functions v ∈ H 1(Ω1)
N satisfying v = 0 in Ω1 ∩ (Ω ′ \ Ω

)
are dense in

H 1
Γ (Ω) and since the tensor product D(Ω) ⊗ H 1

N,per,0(C) is dense in L2(Ω;H 1
N,per,0(C)),

we obtain (2.12).
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The solution to the variational problem (2.12) is unique. Indeed, if there are two solu-
tions (u1, û1) and (u2, û2) to this problem, denote U = u1 − u2 and Û = û1 − û2. Taking
into account the respective equalities from (2.12) and choosing the test functions U, Û , we
obtain

∫

Ω×C
aijkl

(
ekl(U) + eX,kl(Û )

)(
eij (U) + eX,ij (Û

)
dx dX = 0.

The property (2.2) of the elasticity tensor {aijkl} yields

c0‖e(U) + e(Û)‖2
L2(Ω×C)

≤
∫

Ω×C
aijkl

(
ekl(U) + eX,kl(Û )

)(
eij (U) + eX,ij (Û )

)
dx dX = 0.

So e(Û) = −e(U) and thus the field Û is an affine function with respect to X. Since Û is
periodic with respect to X and belongs to L2(Ω;H 1

N,per,0(C))N , it is equal to 0 (because its
mean value on the cell is equal to 0). Hence, e(U) = 0 and due to the boundary conditions
we obtain U = 0. Finally, the whole sequences in (B.1) converge to respective limits.

Now, we prove the strong convergences (2.11)2,3. By Proposition 1, (2.6) and (2.12) we
have
∫

Ω×C
aijkl

(
ekl(u) + eX,kl (̂u))

(
ekl(u) + eX,kl (̂u)) dx dX

≤ lim inf
ε→0

∫

Ω×C
T ∗

ε (aε
ijkl)T

∗
ε (ekl(uε))T ∗

ε (eij (uε)) dx dX + lim inf
ε→0

∫

Λext

σ ε(uε) : e(vε) dx

≤ lim inf
ε→0

∫

Ω∗
ε

σ (uε) : e(uε) dx ≤ lim sup
ε→0

∫

Ω∗
ε

σ (uε) : e(uε) dx = lim sup
ε→0

∫

Ω∗
ε

f · uε dx

= |C|
∫

Ω×C
f · udx =

∫

Ω×C
aijkl

(
ekl(u) + eX,kl (̂u))

(
ekl(u) + eX,kl (̂u)) dx dX.

Thus, the strong convergence (2.11)3 holds. �

B.2 Results of Sects. 3

Proof of Lemma 2 Taking into account the decomposition of the displacements introduced
in Sect. A.2 of Appendix A, the Cauchy–Schwarz inequality and the estimates (A.16) and
(A.23) of Corollary 1, we have

∣
∣∣
∫

Ω∗
ε

fε · uε dx

∣
∣∣=
∣
∣∣
∑

ξ∈Ξε

∫

ε(ξ+C)

fε · uε dx

∣
∣∣

≤
∑

ξ∈Ξε

∣∣
∣
∫

ε(ξ+C)

fε · (uε − Rεξ ) dx

∣∣
∣+
∑

ξ∈Ξε

∣∣
∣
∫

ε(ξ+C)

fε · Rεξ dx

∣∣
∣. (B.2)

Each term on the right-hand side of (B.2) can be estimated as follows:

∑

ξ∈Ξε

∣
∣∣
∫

ε(ξ+C)

fε · (uε − Rεξ ) dx

∣
∣∣

≤
∑

ξ∈Ξε

∫

ε(ξ+C)

∣∣
∣fε · (uε − Rεξ )

∣∣
∣dx ≤

∑

ξ∈Ξε

‖fε‖L2(ε(ξ+C))‖uε − Rεξ‖L2(ε(ξ+C))
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≤
√∑

ξ∈Ξε

‖fε‖2
L2(ε(ξ+C))

√∑

ξ∈Ξε

‖uε − Rεξ‖2
L2(ε(ξ+C))

≤ Cε7/2‖f ‖L2(ω1)‖e(uε)‖L2(Ω∗
ε ).

Hence

∑

ξ∈Ξε

∣∣
∣
∫

ε(ξ+C)

fε · Rεξ dx

∣∣
∣=
∑

ξ∈Ξε

∣∣
∣
∫

ε(ξ+C)

fε · (U(εξ) +R(εξ) ∧ (x − εξ)) dx

∣∣
∣

≤ ε3C
∑

ξ∈Ξε

∫

ε(ξ+Y ′)
|U 1(εξ)f1(x

′)|dx ′ + ε3C
∑

ξ∈Ξε

∫

ε(ξ+Y ′)
|U2(εξ)f2(x

′)|dx ′

+ ε4C
∑

ξ∈Ξε

∫

ε(ξ+Y ′)
|U 3(εξ)f3(x

′)|dx ′

+ ε4C
∑

ξ∈Ξε

∫

ε(ξ+Y ′)

∣
∣R1(εξ)

∣
∣
(
ε
∣
∣f3(x

′)| + ∣∣f2(x
′)
∣
∣
)

dx ′

+ ε4C
∑

ξ∈Ξε

∫

ε(ξ+Y ′)

∣∣R2(εξ)
∣∣
(∣∣f1(x

′)
∣∣+ ε

∣∣f3(x
′)
∣∣
)

dx ′

+ ε4C
∑

ξ∈Ξε

∫

ε(ξ+Y ′)

∣∣R3(εξ)
∣∣
(∣∣f2(x

′)
∣∣+ ∣∣f1(x

′)
∣∣
)

dx ′

≤ ε3C‖f1‖L2(ω1)

√∑

ξ∈Ξε

|U 1(εξ)|2ε2 + ε3C‖f2‖L2(ω1)

√∑

ξ∈Ξε

|U2(εξ)|2ε2

+ ε4C‖f3‖L2(ω1)

√∑

ξ∈Ξε

|U 3(εξ)|2ε2 + Cε4

√∑

ξ∈Ξε

|R(εξ)|2ε2‖f ‖L2(ω1)

≤ Cε5/2‖f ‖L2(ω1)‖e(uε)‖L2(Ω∗
ε ).

And finally, from the previous two estimates

∣∣
∣
∫

Ω∗
ε

fε · uε dx

∣∣
∣≤ Cε5/2‖f ‖L2(ω1)‖e(uε)‖L2(Ω∗

ε ).

Using this estimate, we obtain (3.8). �

Proof of Lemma 3 In order to prove (i)-(ii), we note that from the estimates (3.8) and
(A.22)1 in Corollary 1 and Lemma 8, it follows that there exist functions U ∈ H 1(ω′)3 and
R ∈ H 1(ω′)2 such that the following convergences hold

1

ε2
Uε,α ⇀ Uα weakly in L2(ω′),

1

ε2
∇Uε,α1

ω
′int
3ε

⇀ ∇Uα weakly in L2(ω′)2,

1

ε
Uε,3 ⇀ U3 weakly in L2(ω′),

1

ε
∇Uε,31

ω
′int
3ε

⇀ ∇U3 weakly in L2(ω′)2,

1

ε
Rε,α ⇀ Rα weakly in L2(ω′),

1

ε
∇Rε,α1

ω
′int
3ε

⇀ ∇Rα weakly in L2(ω′)2
.

Now we prove that the fields Uα , R, U3 and ∇U3 vanish in ω′ \ ω.
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Let O be an open subset such that O is strictly included in ω′ \ ω. Since uε vanishes in
Ω ′∗

ε \Ω∗
ε , then the fields Uε , Rε vanish in ω′

ε \ω′int
3ε . If ε is small enough then O ⊂ ω′

ε \ω′int
3ε .

Thus, by construction, the fields Uε,α , Rε , Uε,3 and ∇Uε,3 vanish in O. As a consequence,
their weak limits also vanish in O. Since this holds for every open set O strictly included in
ω′ \ ω, this is also satisfied in the full set ω′ \ ω. Estimate (A.18)2 in Lemma 13 leads to

1

ε

(
∂U3,ε

∂x2
+R1,ε

)
1

ω
′int
3ε

→ 0 strongly in L2(ω′),

1

ε

(
∂U3,ε

∂x1
−R2,ε

)
1

ω
′int
3ε

→ 0 strongly in L2(ω′).

From convergences (3.9)4 and (3.10)1 we also have

1

ε

(
∂U3,ε

∂x2
+R1,ε

)
1

ω
′int
3ε

⇀
∂U3

∂x2
+R1 weakly in L2(ω′),

1

ε

(
∂U3,ε

∂x1
−R2,ε

)
1

ω
′int
3ε

⇀
∂U3

∂x1
−R2 weakly in L2(ω′)

and then we get the equalities (3.11). Thus, we have U3 ∈ H 2(ω′).
(iii) From estimates (A.22)3,4 in Corollary 1, we obtain

‖T ∗
ε (uε)‖L2(ω′×C) ≤ 1√

ε
‖uε‖L2(Ωint

ε ) ≤ Cε1/2‖e(uε)‖L2(Ω∗
ε ) ≤ Cε3,

‖∇XT ∗
ε (uε1Ω ′

ε
)‖L2(ω′×C) = ε‖T ∗

ε (∇uε1Ω ′∗
ε
)‖L2(ω′×C)

≤ ε1/2‖∇uε‖L2(Ω ′ int
ε ) ≤ Cε1/2‖e(uε)‖L2(Ω∗

ε ) ≤ Cε3.

Thus, for a subsequence, still denoted by {ε}, there exists u ∈ L2(ω′;H 1
2,per (C)) such that

the convergences (3.12)1,2 hold. �

Proof of Lemma 4 Applying [12, Proposition 2.9] and the equality (3.11) we have the con-
vergences (3.13)1,2, (3.14)1 and there exist functions R̂α, Ûα, Û3 ∈ L2(ω′;H 1

2,per,0(C)),

(α = 1,2) such that

1

ε
T ∗

ε

(∂Rε,α

∂xβ

1
ω

′int
3ε

)
⇀ − ∂2U3

∂xα∂xβ

+ ∂R̂α

∂Xβ

weakly in L2(ω′ × C),

1

ε2
T ∗

ε

(∂Uε,α

∂xβ

1
ω

′int
3ε

)
⇀

∂Uα

∂xβ

+ ∂Ûα

∂Xβ

weakly in L2(ω′ × C),

1

ε
T ∗

ε

(∂Uε,3

∂xβ

1
ω

′int
3ε

)
⇀

∂U3

∂xβ

+ ∂Û3

∂Xβ

α,β = 1,2 weakly in L2(ω′ × C).

(B.3)

From Remark 2, the functions Rε,α, Uε,α, Uε,3 are piecewise linear with respect to the vari-
ables Xβ (β = 1,2). Thus, the functions R̂α, Ûα, Û3 are also piecewise linear. As they are
periodic, these fields are independent of Xβ , β ∈ {1,2}. Hence

∂R̂α

∂Xβ

= ∂Ûα

∂Xβ

= ∂Û3

∂Xβ

= 0,

and the convergences (3.13)3, (3.14)2 hold. �
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Proof of Proposition 4 From (3.13)1,2, (3.14)1 and (3.12)2, we obtain the convergences
(3.15).

From estimate (A.18)2 and (3.8) we have

∥
∥∥
∥
(∂Uε

∂xα

−Rε ∧ eα

)
1ωint

3ε

∥
∥∥
∥

L2(ω)

≤ Cε2.

Then there exists X ∈ L2(ω)
2

such that

1

ε2

(∂Uε,3

∂x1
−Rε,2

)
1ωint

3ε
⇀ X1 weakly in L2(ω),

1

ε2

(∂Uε,3

∂x2
+Rε,1

)
1ωint

3ε
⇀ X2 weakly in L2(ω).

(B.4)

Due to (3.14)2, (B.4) and [14, Lemma 11.11], there exists a function Ẑ ∈ L2(ω;H 1
2,per (C))

such that, up to subsequence,

1

ε2
T ∗

ε

((∂Uε,3

∂x1
−Rε,2

)
1ωint

3ε

)
⇀ X1 + ∂Ẑ

∂X1
− R̂2 weakly in L2(ω × C),

1

ε2
T ∗

ε

((∂Uε,3

∂x2
+Rε,1

)
1ωint

3ε

)
⇀ X2 + ∂Ẑ

∂X2
+ R̂1 weakly in L2(ω × C),

where the field R̂α is introduced in Lemma 4 (see (B.3)). Since R̂ is independent of X1 and
X2 and mean value of R̂ on a cell equal to zero, we have

1

ε2
T ∗

ε

((∂Uε,3

∂x1
−Rε,2

)
1ωint

3ε

)
⇀ X1 + ∂Ẑ

∂X1
weakly in L2(ω × C),

1

ε2
T ∗

ε

((∂Uε,3

∂x2
+Rε,1

)
1ωint

3ε

)
⇀ X2 + ∂Ẑ

∂X2
weakly in L2(ω × C).

(B.5)

In order to prove (3.16)1, note that from (3.7) and convergences (3.13), (3.14), we have

1

ε2
T ∗

ε

(
e(uε1

ω
′ int
3ε

)
)
⇀

⎛

⎜
⎜
⎝

∂U1
∂x1

− X3
∂2U3
∂x2

1

1
2

(
∂U1
∂x2

+ ∂U2
∂x1

)
− X3

∂2U3
∂x1∂x2

1
2

(
X1 + ∂Ẑ

∂X1

)

∗ ∂U2
∂x2

− X3
∂2U3
∂x2

2

1
2

(
X2 + ∂Ẑ

∂X2

)

∗ ∗ 0

⎞

⎟
⎟
⎠+ eX(u)

=
⎛

⎜
⎝

∂U1
∂x1

1
2

(
∂U1
∂x2

+ ∂U2
∂x1

)
0

∗ ∂U2
∂x2

0
∗ ∗ 0

⎞

⎟
⎠− X3

⎛

⎜⎜
⎝

∂2U3
∂x2

1

∂2U3
∂x1∂x2

0

∗ ∂2U3
∂x2

2
0

∗ ∗ 0

⎞

⎟⎟
⎠+ 1

2

⎛

⎜
⎝

0 0 X1 + ∂Ẑ
∂X1

∗ 0 X2 + ∂Ẑ
∂X2∗ ∗ 0

⎞

⎟
⎠+ eX(u).

Denote

û(x,X)
.=
⎛

⎝
u1(x,X) + X3X1(x)

u2(x,X) + X3X2(x)

u3(x,X) + Ẑ(x,X)

⎞

⎠+ C,

where C is determined in order to get
∫

C û(·,X)dX = 0 a.e. in ω. And thus (3.16)1 follows.
Then, taking into account the definition (2.3), we have (3.16)2.
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To obtain the limit problem (3.17), let us define the following fields

Vα ∈ H 1
γ (ω), α = 1,2, V3 ∈ H 2

γ (ω), ϕ ∈ D(ω), ψ ∈ H 1
2,per (C)3,

and take the test function in (3.3) as

vε(x) = ε2

⎛

⎜
⎝
V1(x

′) − x3
ε

∂V3
∂x1

(x ′)
V2(x

′) − x3
ε

∂V3
∂x2

(x ′)
1
ε
V3(x

′)

⎞

⎟
⎠+ ε3

⎛

⎝
ϕ(x ′)ψε,1(x)

ϕ(x ′)ψε,2(x)

ϕ(x ′)ψε,3(x)

⎞

⎠ ,

where ψε(x) = ψ
(

x
ε

)
. Then

e(vε) = ε2

⎛

⎜
⎜
⎝

∂V1
∂x1

1
2

(
∂V1
∂x2

+ ∂V2
∂x1

)
0

1
2

(
∂V1
∂x2

+ ∂V2
∂x1

)
∂V2
∂x2

0

0 0 0

⎞

⎟
⎟
⎠− εx3

⎛

⎜
⎜
⎝

∂2V3
∂x2

1

∂2V3
∂x1∂x2

0
∂2V3

∂x1∂x2

∂2V3
∂x2

2
0

0 0 0

⎞

⎟
⎟
⎠

+ ε3

⎛

⎜⎜
⎜
⎝

∂ϕ

∂x1
ψ1

1
2

(
∂ϕ

∂x2
ψ1 + ∂ϕ

∂x1
ψ2

)
1
2

(
∂ϕ

∂x3
ψ1 + ∂ϕ

∂x1
ψ3

)

1
2

(
∂ϕ

∂x2
ψ1 + ∂ϕ

∂x1
ψ2

)
∂ϕ

∂x2
ψ2

1
2

(
∂ϕ

∂x2
ψ3 + ∂ϕ

∂x3
ψ2

)

1
2

(
∂ϕ

∂x3
ψ1 + ∂ϕ

∂x1
ψ3

)
1
2

(
∂ϕ

∂x2
ψ3 + ∂ϕ

∂x3
ψ2

)
∂ϕ

∂x3
ψ3

⎞

⎟⎟
⎟
⎠

+ ε2ϕ

⎛

⎜
⎜⎜
⎝

∂ψ1
∂X1

1
2

(
∂ψ1
∂X2

+ ∂ψ2
∂X1

)
1
2

(
∂ψ1
∂X3

+ ∂ψ3
∂X1

)

1
2

(
∂ψ1
∂X2

+ ∂ψ2
∂X1

)
∂ψ2
∂X2

(
∂ψ3
∂X2

+ ∂ψε,2
∂X3

)

1
2

(
∂ψ1
∂X3

+ ∂ψ3
∂X1

) (
∂ψ3
∂X2

+ ∂ψε,2
∂X3

)
∂ψ3
∂X3

⎞

⎟
⎟⎟
⎠

.

(B.6)

Applying the unfolding operator T ∗
ε to the stress tensor e(vε), given by (B.6), and passing

to the limit as ε → 0, we obtain

1

ε2
T ∗

ε (e(vε)) → EM(Vm) − X3E
B(V3) + eX(ψ)ϕ strongly in L2(ω × C)9, (B.7)

where Vm = (V1,V2).
Unfolding the left-hand side of (3.3) and taking into account that by virtue of (3.8), (B.6)

and Cauchy-Schwarz inequality
∫

Ω∗
ε \Ω ′int

ε

σ ε(uε) : e(vε) dx

≤ ‖σ ε(uε)‖L2(Ω ′∗
ε )‖e(vε)‖L2(Ω∗

ε \Ω ′int
ε )

= O
(
ε5/2
)
O
(
ε7/2
)

= o
(
ε5
)
,

we have
∫

Ω∗
ε

σ ε(uε) : e(vε) dx

= ε

∫

ω×C
T ∗

ε (σ ε(uε1
ω

′int
3ε

) : T ∗
ε (e(vε)) dx ′dX +

∫

Ω∗
ε \Ω ′int

ε

σ ε(uε) : e(vε) dx

= ε5
∫

ω×C

1

ε2
T ∗

ε (σ ε(uε1
ω

′int
3ε

) : 1

ε2
T ∗

ε (e(vε)) dx ′dX + o(ε5).
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Unfold the right hand side of (3.3)
∫

Ω∗
ε

fεvε dx = ε

∫

ω×C
T ∗

ε (fε)T ∗
ε (vε) dx ′dX

= ε

2∑

α=1

∫

ω×C
T ∗

ε (fε,α)T ∗
ε (vε,α) dx ′dX + ε

∫

ω×C
T ∗

ε (fε,3)T ∗
ε (vε,3) dx ′dX.

(B.8)
Taking into account the form of the applied forces (3.1), the first term on the right-hand side
of (B.8) can be rewritten as follows

ε

∫

ω×C
T ∗

ε (fε,α)T ∗
ε (vε,α) dxdX = ε5

∫

ω×C
T ∗

ε (fα)
1

ε2
T ∗

ε (vε,α) dx ′dX

+ ε5
∫

ω×C
X3T ∗

ε (gα)
1

ε2
T ∗

ε (vε,α) dx ′dX, α = 1,2,

and, thus, as ε → 0 we obtain
∫

ω×C
T ∗

ε (fα)
1

ε2
T ∗

ε (vε,α) dx ′dX +
∫

ω×C
X3T ∗

ε (gα)
1

ε2
T ∗

ε (vε,α) dx ′dX

→
∫

ω×C
fα(x

′)
(
Vα(x

′) + X3
∂V3

∂xα

(x ′)
)

dx ′dX

+
∫

ω×C
X3gα(x

′)
(
Vα(x

′) + X3
∂V3

∂xα

(x ′)
)

dx ′dX

= |C|
∫

ω

fα(x
′)Vα(x

′) dx ′ +
∫

C
X3 dX

∫

ω

fα(x
′)

∂V3

∂xα

(x ′) dx ′

+
∫

C
X3 dX

∫

ω

gα(x
′)Vα(x

′) dx ′ +
∫

C
X2

3 dX

∫

ω

gα(x
′)

∂V3

∂xα

(x ′) dx ′, α = 1,2.

Using (3.1) the second term on the right-hand side of (B.8) can be rewritten as follows

ε

∫

ω×C
T ∗

ε (fε,3)T ∗
ε (vε,3) dx ′dX = ε5

∫

ω×C
T ∗

ε (f3)
1

ε
T ∗

ε (vε,3) dx ′dX,

and, thus, as ε → 0
∫

ω×C
T ∗

ε (f3)
1

ε
T ∗

ε (vε,3) dx ′dX →
∫

ω×C
f3(x

′)V3(x
′) dx ′dX = |C|

∫

ω

f3(x
′)V3(x

′) dx ′.

Hence, taking into account (3.16), (B.7) and the convergences obtained above, we can pass
to the limit as ε → 0
∫

ω×C
aijkl(E

M
kl (Um) − X3E

B
kl(U3) + eX,kl (̂u))(EM

ij (Vm) − X3E
B
ij (V3) + ϕeX,ij (ψ)) dx ′dX

= |C|
∫

ω

fα(x
′)Vα(x

′) dx ′ +
∫

C
X3 dX

∫

ω

[fα(x
′)

∂V3

∂xα

(x ′) dx ′ + gα(x
′)Vα(x

′)]dx ′

+
∫

C
X2

3 dX

∫

ω

gα(x
′)

∂V3

∂xα

(x ′) dx ′.



222 G. Griso et al.

Finally, since the tensor product D(ω) ⊗ H 1
2,per (C) is dense in L2(ω;H 1

2,per (C)), we obtain
the limit problem (3.17). �

B.3 Results of Sects. 4

Proof of Lemma 6 Taking into account the estimates in Lemma 16, we have

∣∣
∣
∫

Ω∗
ε

fε · uε dx

∣∣
∣

=
∣
∣∣
∫

Ω∗
ε

((
ε2f1(x3) + x2g3(x3)

)(
Uε,1(x3) − x2Rε,3(x3) + uε,1(x)

)

+ (ε2f2(x3) − x1g3(x3)
)(
Uε,2(x3) + x1Rε,3(x3) + uε,2(x)

)

+ (εf3(x3) − x1g1(x3) − x2g2(x3)
)(
Uε,3(x3) + x2Rε,1(x3) − x1Rε,2(x3) + uε,3(x)

))
dx

∣
∣∣

≤ ε2
∣
∣∣
∫

Ω∗
ε

f1(x3)Uε,1(x3) dx

∣
∣∣+ ε2

∣
∣∣
∫

Ω∗
ε

f1(x3)uε,1(x) dx

∣
∣∣+
∣
∣∣
∫

Ω∗
ε

x2
2g3(x3)Rε,3(x3) dx

∣
∣∣

+ ε2
∣∣
∣
∫

Ω∗
ε

f2(x3)Uε,2(x3) dx

∣∣
∣+ ε2

∣∣
∣
∫

Ω∗
ε

f2(x3)uε,2(x) dx

∣∣
∣+
∣∣
∣
∫

Ω∗
ε

x2
1g3(x3)Rε,3(x3) dx

∣∣
∣

+ ε

∣
∣∣
∫

Ω∗
ε

f3(x3)Uε,3(x3) dx

∣
∣∣+ ε

∣
∣∣
∫

Ω∗
ε

f3(x3)uε,3(x) dx

∣
∣∣+
∣
∣∣
∫

Ω∗
ε

x2
2g2(x3)Rε,1(x3) dx

∣
∣∣

+
∣∣
∣
∫

Ω∗
ε

x2
1g1(x3)Rε,2(x3) dx

∣∣
∣

≤ Cε4‖f1‖L2(0,L)‖Uε,1‖L2(0,L) + Cε3‖f1‖L2(0,L)‖uε,1‖L2(Ω∗
ε ) + Cε4‖g3‖L2(0,L)‖Rε,3‖L2(0,L)

+ Cε4‖f2‖L2(0,L)‖Uε,2‖L2(0,L) + Cε3‖f2‖L2(0,L)‖uε,2‖L2(Ω∗
ε ) + Cε4‖g3‖L2(0,L)‖Rε,3‖L2(0,L)

+ Cε3‖f3‖L2(0,L)‖Uε,3‖L2(0,L) + Cε2‖f3‖L2(0,L)‖uε,3‖L2(Ω∗
ε ) + Cε4‖g2‖L2(0,L)‖Rε,1‖L2(0,L)

+ Cε4‖g1‖L2(0,L)‖Rε,2‖L2(0,L) ≤ Cε2
(
‖f ‖L2(0,L) + ‖g‖L2(0,L)

)
‖e(u)‖L2(Ω∗

ε ),

and thus (4.12) follows. �

Proof of Lemma 7 (i)-(iii) From (4.10)1,3 in Lemma 5, [12, Theorem 3.6] and [14, Corollary
1.37] it follows that there exist functions U ∈ H 2

Γ (0,L), Θ ∈ H 1
Γ (0,L), u ∈ H 1

Γ (0,L)3 such
that the convergences (4.13), (4.14)1,2, (4.17), (4.18)1, (4.20) and (4.21)1 hold.

The functions Rε , uε,3 are piecewise linear with respect to the variable x3, hence

T ∗
ε

(dRε

dx3

)
⇀

dR
dx3

weakly in L2((0,L) × (0,1)).

As a consequence, we obtain

T ∗
ε

(d2
Uε

dx2
3

)
= T ∗

ε

(dRε

dx3
∧ e3

)
⇀

dR
dx3

∧ e3 = d2
U

dx2
3

weakly in L2((0,L) × (0,1))3,

T ∗
ε

(dΘε

dx3

)
= T ∗

ε

(dRε

dx3
· e3

)
⇀

dΘ

dx3
weakly in L2((0,L) × (0,1)),
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1

ε
T ∗

ε

(duε,3

dx3

)
⇀

du3

dx3
weakly in L2((0,L) × (0,1)).

From the estimates (4.12) and (4.10), there exists ûα ∈ L2((0,L),H 1
1,per (0,1)) (α ∈ {1,2})

such that

T ∗
ε

(duε,α

dx3

)
⇀

duα

dx3
+ ∂ûα

∂X3
weakly in L2((0,L) × (0,1)).

(iv) From (4.11), (4.4)2 and (4.5), it follows that

‖T ∗
ε (uε)‖L2((0,L)×C) = 1

ε
‖uε‖L2(Ω∗

ε ) ≤ Cε2,

‖∇XT ∗
ε (uε)‖L2((0,L)×C) = ε‖T ∗

ε (∇uε)‖L2((0,L)×C) = ‖∇uε‖L2(Ω∗
ε ) ≤ Cε2

and, thus, for a subsequence, still denoted by {ε}, there exists u ∈ L2((0,L);H 1(C)) such
that the convergence (4.24)1 holds. The periodicity of u, that is u ∈ L2((0,L),H 1

1,per (C)),
can be proved in a similar way as in [13, Theorem 2.1]. From (4.24)1 and (4.4)2 we have
(4.24)2 and (4.24)3. �

Proof of Proposition 6 From (4.14)1,2, (4.18)1, (4.21)1 and (4.24)1, we obtain the conver-
gences (4.25).

By virtue of (4.9), (4.14)3, (4.18)2 and (4.21)2,3 we have

1

ε
T ∗

ε (e(Ue
ε)) ⇀

1

2

⎛

⎜
⎜
⎝

0 0 du1
dx3

− X2
dΘ
dx3

∗ 0 du2
dx3

+ X1
dΘ
dx3

∗ ∗ 2 du3
dx3

− 2X1
d2

U1
dx2

3
− 2X2

d2
U2

dx2
3

⎞

⎟
⎟
⎠+ 1

2

⎛

⎜
⎝

0 0 ∂û1
∂X3

∗ 0 ∂û2
∂X3∗ ∗ 0

⎞

⎟
⎠ .

Denote

û(x,X)
.=
⎛

⎝
u1(x,X) + û1(x3,X3)

u2(x,X) + û2(x3,X3)

u3(x,X)

⎞

⎠+ C,

where C is determined in order to get
∫

C û(·,X)dX = 0 a.e. in (0,L). And thus (4.26)1

follows. Then, taking into account the definition (2.3), we get (4.26)2.
To obtain the limit problem (4.27), let us introduce the following fields

(v, V, T) ∈ VM

and take the test function in (4.3) as

vε(x) = ε

⎛

⎝

1
ε
V1(x3) + v1(x3) − x2

ε
T(x3)

1
ε
V2(x3) + v2(x3) + x1

ε
T(x3)

v3(x3) − x1
ε

dV1
dx3

(x3) − x2
ε

dV2
dx3

(x3)

⎞

⎠+ ε2ϕ(x3)

⎛

⎝
ψε,1(x)

ψε,2(x)

ψε,3(x)

⎞

⎠ ,
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where ψε(x) = ψ
(

x
ε

)
, ψ ∈ H 1

1,per (C)
3
. Then

e(vε) = ε

2

⎛

⎜⎜
⎝

0 0 dv1
dx3

(x3) − x2
ε

dT
dx3

∗ 0 dv2
dx3

(x3) + x1
ε

dT
dx3

∗ ∗ 2 dv3
dx3

− 2 x1
ε

d2
V1

dx2
3

− 2 x2
ε

d2
V2

dx2
3

⎞

⎟⎟
⎠+ ε2

2

⎛

⎜
⎝

0 0 ∂ϕ

∂x3
ψ1

∗ 0 ∂ϕ

∂x3
ψ2

∗ ∗ 2 ∂ϕ

∂x3
ψ3

⎞

⎟
⎠

+ εϕ

⎛

⎜
⎜
⎝

∂ψ1
∂X1

1
2

(
∂ψ1
∂X2

+ ∂ψ2
∂X1

)
1
2

(
∂ψ1
∂X3

+ ∂ψ3
∂X1

)

∗ ∂ψ2
∂X2

1
2

(
∂ψ3
∂X2

+ ∂ψ2
∂X3

)

∗ ∗ ∂ψ3
∂X3

⎞

⎟
⎟
⎠ .

(B.9)

Applying the unfolding operator T ∗
ε to the stress tensor e(vε) (B.9) and passing to the limit

as ε → 0, we obtain

1

ε
T ∗

ε (e(vε)) → E(v,V,T) + eX(ψ)ϕ strongly in L2((0,L) × C)3×3. (B.10)

Unfolding the left-hand side of (4.3) gives

∫

Ω∗
ε

σ ε(uε) : e(vε) dx = ε

∫

(0,L)×C
T ∗

ε (σ ε(uε)) : T ∗
ε (e(vε)) dx3 dX

= ε3
∫

(0,L)×C

1

ε
T ∗

ε (σ ε(uε)) : 1

ε
T ∗

ε (e(vε)) dx3 dX.

Unfolding the right-hand side of (4.3) and applying (4.1) leads

∫

Ω∗
ε

fεvε dx = ε

∫

(0,L)×C
T ∗

ε (fε)T ∗
ε (vε) dx3dX = ε

3∑

i=1

∫

(0,L)×C
T ∗

ε (fi)T ∗
ε (vε,i) dx3dX

= ε3
∫

(0,L)×C

[
f1V1 + f2V2 + f3v3 − X2

2g3T − X2
1g3T + X2

1g1
dV1

dx3
+ X2

2g2
dV2

dx3

]
dx3dX.

Hence, taking into account (4.26), (B.10) and the convergences obtained above, we can pass
to the limit as ε → 0

∫

(0,L)×C
aijkl(Ekl(u,U,Θ) + eX,kl (̂u))(Eij (v,V,T) + ϕeX,ij (ψ)) dx3dX

=
2∑

α=1

{
|C|
∫

(0,L)

fαVα dx3 + Iα

∫

(0,L)

[
gα

dVα

dx3
− g3T

]
dx3

}
+ |C|

∫

(0,L)

f3v3 dx3.

Finally, since the tensor product D(0,L) ⊗ H 1
1,per (C) is dense in L2((0,L);H 1

1,per (C)), we
obtain the limit problem (4.27). �
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