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Abstract The paper deals with second order nonlinear evolution inclusions and their ap-
plications. First, we study an evolution inclusion involving Volterra-type integral operator
which is considered within the framework of an evolution triple of spaces. We provide a
result on the unique solvability of the Cauchy problem for the inclusion. Next, we examine
a dynamic frictional contact problem of viscoelasticity for materials with long memory and
derive a weak formulation of the model in the form of a hemivariational inequality. Then,
we embed the hemivariational inequality into a class of second order evolution inclusions
involving Volterra-type integral operator and indicate how the result on evolution inclusion
is applicable to the model of the contact problem. We conclude with examples of the subd-
ifferential boundary conditions for different types of frictional contact.

Keywords Evolution inclusion · Pseudomonotone operator · Volterra-type operator ·
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Viscoelasticity · Clarke subdifferential
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1 Introduction

An important number of problems arising in Mechanics, Physics and Engineering Science
lead to mathematical models expressed in terms of nonlinear inclusions and hemivariational
inequalities. For this reason the mathematical literature dedicated to this field is extensive
and the progress made in the last decades is impressive. It concerns both results on the
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existence, uniqueness, regularity and behavior of solutions for various classes of nonlinear
inclusions as well as results on numerical approach of the solution for the corresponding
problems.

The purpose of this paper is to use a recent result on unique solvability of the following
second order evolution inclusion

u′′(t) + A
(
t, u′(t)

) + B
(
t, u(t)

) +
∫ t

0
C(t − s)u(s) ds + F

(
t, u(t), u′(t)

) � f (t)

which is considered on a finite time interval in the framework of evolution triple of spaces
(V ,H,V ∗) and show how the result on the evolution inclusion is applicable to the model of
the contact problem. We provide conditions on a unique solvability of the inclusion which
were studier earlier in [18, 19]. Subsequently, we consider the class of evolution hemivaria-
tional inequalities of second order of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈u′′(t) + A(t,u′(t)) + B(t, u(t)) + ∫ t

0 C(t − s)u(s) ds − f (t), v〉
+ ∫

�C
g0(x, t, γ u(t), γ u′(t), γ u(t), γ u′(t);γ v, γ v) d� ≥ 0

for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1,

where g0 denotes the generalized directional derivative of Clarke of a possibly noncon-
vex function g, γ is a trace map and 〈·, ·〉 stands for the duality pairing between V ∗

and V .
Our study includes the modeling of a mechanical problem and its variational analysis. We

derive the hemivariational inequality for the displacement field from nonconvex superpoten-
tials through the generalized Clarke subdifferential. The novelty of the model is to deal with
nonlinear elasticity and viscosity operators and to consider the coupling between two kinds
of nonmonotone possibly multivalued boundary conditions which depend on the normal
(respectively, tangential) components of both the displacement and velocity. We recall that
the notion of hemivariational inequality is based on the generalized gradient of Clarke [6]
and has been introduced in the early 1980s by Panagiotopoulos [33, 34]. We also note that
the existence of solutions to the second order evolution inclusions as well as to the corre-
sponding dynamic hemivariational inequalities has been studied, for instance, in Migórski
[22–25], Migórski and Ochal [27, 28] and Kulig [17, 18].

Finally, in order to illustrate the cross fertilization between rigorous mathematical de-
scription and Nonlinear Analysis on one hand, and modeling and applications on the other
hand, we provide several examples of contact and friction subdifferential boundary condi-
tions.

The paper is structured as follows. In Sect. 2 we recall some preliminary material. In
Sect. 3 we describe the dynamic viscoelastic contact problem and present its classical and
weak formulation. Next, we recall a result on the existence and uniqueness of solutions to
the Cauchy problem for the second order nonlinear evolution inclusion involving a Volterra-
type integral operator. We establish the link between a nonlinear evolution inclusion and the
hemivariational inequality, and apply the aforementioned results to the viscoelastic contact
problem with a memory term. The review of several examples of contact and friction subd-
ifferential boundary conditions which illustrates the applicability of our results is provided
in Sect. 4.
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2 Preliminaries

In this section we recall the notation and basic definitions needed in the sequel.
Given a Banach space (X,‖·‖X), we use the symbol w-X to denote the space X endowed

with the weak topology. The class of linear and bounded operators from X to X∗ is denoted
by L(X,X∗). If U ⊂ X, then we have ‖U‖X = sup{‖x‖X : x ∈ U}. The duality between X

and its dual is denoted by 〈·, ·〉X∗×X .
The linear space of second order symmetric tensors on R

d will be denoted by S
d . The

inner product and the corresponding norm on S
d is defined similarly to the inner product

on R
d , i.e.,

u · v = uivi, ‖v‖Rd = (v · v)1/2 for all u,v ∈ R
d ,

σ : τ = σij τij , ‖τ‖Sd = (τ : τ)1/2 for all σ, τ ∈ S
d .

The summation convention over repeated indices is used here and below.
Let � ⊂ R

d be a bounded domain with Lipschitz boundary �. In what follows we will
need the following Hilbert spaces with their inner products

H = L2
(
�;R

d
) 〈u,v〉H =

∫

�

u · v dx,

H = {
τ = {τij } | τij = τji ∈ L2(�)

} 〈σ, τ 〉H =
∫

�

σ : τ dx,

H1 = {
u ∈ H | ε(u) ∈ H

} 〈u,v〉H1 = 〈u,v〉H + 〈
ε(u), ε(v)

〉
H,

H1 = {τ ∈ H | Div τ ∈ H } 〈σ, τ 〉H1 = 〈σ, τ 〉H + 〈Divσ,Div τ 〉H .

Here ε : H 1(�;R
d) → L2(�;S

d) denotes the deformation operator, Div : H1 → L2(�;R
d)

stands for the divergence operator, where

ε(u) = {
εij (u)

}
, εij (u) = 1

2
(ui,j + uj,i), Divσ = {σij,j }.

The index following comma indicates a partial derivative.
Given v ∈ H1 we denote its trace γ v on � by v, where γ : H 1(�;R

d) → H 1/2(�;R
d) ⊂

L2(�;R
d) is the trace map. Let n denote the outward unit normal vector to �. Since � is

Lipschitz continuous, the normal vector is defined a.e. on �. For v ∈ H 1/2(�;R
d) we denote

its normal and tangential components by vN = v · n and vT = v − vNn.
Let V be a separable Banach space. We identify H with its dual and we consider a

Gelfand triple V ⊂ H ⊂ V ∗ where all embeddings are compact, dense and continuous (see
[7, 44]). We will need the following spaces V = L2(0, T ;V ) and W = {w ∈ V : w′ ∈ V ∗}.
The time derivative involved in the definition of W is understood in the sense of vector
valued distributions. It is well known that W is a separable Banach space equipped with the
norm ‖v‖W = ‖v‖V + ‖v‖V ∗ and W ⊂ V ⊂ L2(0, T ;H) ⊂ V ∗.

Let us recall some definitions needed in the next sections.

Measurable multifunction Let (�,�) be a measurable space, X be a separable Banach
space and F : � → 2X . The multifunction F is said to be measurable if for every U ⊂ X

open, we have F−(U) = {ω ∈ � : F(ω) ∩ U 
= ∅} ∈ �.
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Generalized directional derivative Let X be a Banach space. The generalized directional
derivative of Clarke of locally Lipschitz function h : X → R at x ∈ X in the direction v ∈ X,
denoted by h0(x;v), is defined by (cf. [6])

h0(x;v) = lim sup
y→x,λ↓0

h(y + λv) − h(y)

λ
.

Generalized gradient Let X be a Banach space. The generalized gradient of a function
h : X → R at x ∈ X, denoted by ∂h(x), is a subset of a dual space X∗ given by ∂h(x) =
{ζ ∈ X∗ | h0(x;v) ≥ 〈ζ, v〉X∗×X for all v ∈ X}.

Regular function A locally Lipschitz function h is called regular (in the sense of Clarke)
at x ∈ X if for all v ∈ X the one-sided directional derivative h′(x;v) exists and satisfies
h0(x;v) = h′(x;v) for all v ∈ X.

Finally we state results needed in a sequel whose proofs can be found in Kulig [18].

Lemma 1 Let X and Y be Banach spaces and ϕ : X × Y → R be such that

(i) ϕ(·, y) is continuous for all y ∈ Y ;
(ii) ϕ(x, ·) is locally Lipschitz on Y for all x ∈ X;

(iii) there is a constant c > 0 such that for all η ∈ ∂ϕ(x, y), we have

‖η‖Y ∗ ≤ c
(
1 + ‖x‖X + ‖y‖Y

)
for all x ∈ X, y ∈ Y,

where ∂ϕ denotes the generalized gradient of ϕ(x, ·).
Then ϕ is continuous on X × Y .

Proposition 2 Let X be a separable reflexive Banach space, 0 < T < ∞ and ϕ : (0, T ) ×
X → R be a function such that ϕ(·, x) is measurable for all x ∈ X and ϕ(t, ·) is locally
Lipschitz for all t ∈ (0, T ). Then the multifunction (0, T ) × X � (t, x) �→ ∂ϕ(t, x) ⊂ X∗ is
measurable, where ∂ϕ denotes the Clarke generalized gradient of ϕ(t, ·).

3 Dynamic Viscoelastic Contact Problem with Memory Term

In this section we present a short description of the modeled process, give its weak formu-
lation which is a hyperbolic hemivariational inequality and obtain results on existence and
uniqueness of weak solutions.

3.1 Physical Setting of the Problem

The physical setting and the process are as follows. The set � is occupied by a viscoelastic
body in R

d (d = 2, 3 in applications) which is referred to as the reference configuration. We
assume that � is a bounded domain with Lipschitz boundary � which is divided into three
mutually disjoint measurable parts �D , �N and �C with m(�D) > 0.

We study the process of evolution of the mechanical state in time interval [0, T ], 0 < T <

∞. The system evolves in time as a result of applied volume forces and surface tractions.
The description of this evolution is done by introducing a vector function u = u(x, t) =
(u1(x, t), . . . , ud(x, t)) which describes the displacement at time t of a particle that has
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the position x = (x1, . . . , xd) in the reference configuration. We denote by σ = σ(x, t) =
(σij (x, t)) the stress tensor and by ε(u) = (εij (u)) the linearized (small) strain tensor whose
components are given by (a compatibility condition) εij = εij (u) = 1

2 (ui,j + uj,i), where i,
j = 1, . . . , d . In cases where an index appears twice, we use the summation convention. We
also put Q = � × (0, T ).

Since the process is dynamic, we deal with the dynamic equation of motion representing
momentum conservation (cf. [11, 33]) and governing the evolution of the state of the body

u′′(t) − Divσ(t) = f0(t) in Q,

where Div denotes the divergence operator for tensor valued functions and f0 is the density
of applied volume forces such as gravity. We assume that the mass density is constant and
set equal to one.

In the model the material is assumed to be viscoelastic and for its description we suppose
a general constitutive law of the form

σ(t) = A
(
t, ε

(
u′(t)

)) + B
(
t, ε

(
u(t)

)) +
∫ t

0
C(t − s)ε

(
u(s)

)
ds in Q. (1)

Here A is a nonlinear operator describing the purely viscous properties of the material while
B and C are the nonlinear elasticity and the linear relaxation operators, respectively. Note
that the operators A and B may depend explicitly on the time variable and this is the case
when the viscosity and elasticity properties of the material depend on the temperature field
which plays the role of a parameter and whose evolution in time is prescribed. When C = 0
the constitutive law (1) reduces to a viscoelastic constitutive law (the so called Kelvin-Voigt
law) with short memory and in the case when A = 0, it reduces to an elastic constitutive law
with long memory.

Next, we describe the boundary conditions. The body is supposed to be held fixed on
the part �D of the surface, so the displacement u = 0 on �D × (0, T ). On the part �N

a prescribed surface force (traction) f1 = f1(x, t) is applied, thus we have the condition
σ(t)ν = f1 on �N × (0, T ). Here ν ∈ R

d denotes the outward unit normal to � and σ(t)ν

represents the boundary stress vector. The body may come in contact over the part �C of
its surface. As it is met in the literature (cf. [10, 11, 41, 42]) the conditions on the contact
surface are naturally divided to conditions in the normal direction and those in the tangen-
tial direction, cf. Sect. 5.4 of [11] for the normal approach and the tangential process. In the
model under consideration, the frictional contact on the part �C is described by the subdif-
ferential boundary conditions of the form

− σν(t) ∈ ∂j1

(
x, t, u(t), u′(t), uν(t)

) + ∂j2

(
x, t, u(t), u′(t), u′

ν(t)
)

− στ (t) ∈ ∂j3
(
x, t, u(t), u′(t), uτ (t)

) + ∂j4
(
x, t, u(t), u′(t), u′

τ (t)
)

on �C × (0, T ), where σν and στ , uν and uτ , u′
ν and u′

τ denote the normal and the tan-
gential components of the stress tensor, the displacement and the velocity, respectively. The
functions jk , k = 1, . . . ,4 are prescribed and locally Lipschitz in their last variables. The
component στ represents the friction force on the contact surface and ∂jk , k = 1, . . . ,4 de-
note the Clarke subdifferentials of the superpotentials jk , k = 1, . . . ,4 with respect to their
last variables. Concrete examples of contact models which lead to aforementioned subdif-
ferential boundary conditions will be provided in Sect. 4.

Finally, we prescribe the initial conditions for the displacement and the velocity, i.e.,

u(0) = u0 and u′(0) = u1 in �,
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where u0 and u1 denote the initial displacement and the initial velocity, respectively. In what
follows we skip occasionally the dependence of various functions on the spatial variable
x ∈ � ∪ �.

Collecting the equations and conditions described above, we obtain the following formu-
lation of the mechanical problem: find a displacement field u : Q → R

d and a stress field
σ : Q → Sd such that

u′′(t) − Divσ(t) = f0(t) in Q, (2)

σ(t) = A
(
t, ε

(
u′(t)

)) + B
(
t, ε

(
u(t)

)) +
∫ t

0
C(t − s)ε

(
u(s)

)
ds in Q, (3)

u(t) = 0 on �D × (0, T ), (4)

σ(t)ν = f1 on �N × (0, T ), (5)

−σν(t) ∈ ∂j1

(
t, u(t), u′(t), uν(t)

) + ∂j2

(
t, u(t), u′(t), u′

ν(t)
)

on �C × (0, T ), (6)

−στ (t) ∈ ∂j3

(
t, u(t), u′(t), uτ (t)

) + ∂j4

(
t, u(t), u′(t), u′

τ (t)
)

on �C × (0, T ), (7)

u(0) = u0, u′(0) = u1 in �. (8)

The problem above represents the classical formulation of the viscoelastic frictional contact
problem. The conditions (6) and (7) introduce one of the main difficulties to the problem
since the superpotentials are nonconvex and nonsmooth in general. This is the reason why
the problem (2)–(8) has no classical solutions, i.e., solutions which posses all necessary
classical derivatives and satisfy the relations in the usual sense at each point and at each
time instant. In the following we formulate the above problem in a weak sense.

3.2 Weak Formulation of the Problem

In this section we give a weak formulation of the classical viscoelastic frictional contact
problem (2)–(8). Due to the Clarke subdifferential boundary conditions (6) and (7) this for-
mulation will be a hyperbolic hemivariational inequality. We introduce

V = {v ∈ H1 | v = 0 on �D}.
This is a closed subspace of H1 and so it is a Hilbert space with the inner product and the
corresponding norm given by (u, v)V = (ε(u), ε(v))H and ‖v‖ = ‖ε(v)‖H for u,v ∈ V .
By the Korn inequality ‖v‖H1 ≤ c‖ε(v)‖H for v ∈ V with c > 0 (cf. Sect. 6.3 of [31]), it
follows that ‖ · ‖H1 and ‖ · ‖ are the equivalent norms on V . Identifying H = L2(�;R

d)

with its dual, we have an evolution triple of spaces (V ,H,V ∗) with dense, continuous and
compact embeddings. For this evolution triple, analogously as in Sect. 2, we define the
spaces V = L2(0, T ;V ), Ĥ = L2(0, T ;H), V ∗ = L2(0, T ;V ∗) and W = {v ∈ V | v′ ∈ V ∗}.
The duality pairing between V ∗ and V is denoted by 〈·, ·〉.

We admit the following hypotheses on the data of the problem (2)–(8).

H(A): The viscosity operator A : Q × S
d → S

d is such that

(i) A(·, ·, ε) is measurable on Q for all ε ∈ S
d ;

(ii) A(x, t, ·) is continuous on S
d for a.e. (x, t) ∈ Q;
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(iii) ‖A(x, t, ε)‖Sd ≤ ã1(x, t) + ã2‖ε‖Sd for all ε ∈ S
d , a.e. (x, t) ∈ Q with ã1 ∈ L2(Q),

ã1, ã2 ≥ 0;
(iv) (A(x, t, ε1)− A(x, t, ε2)) : (ε1 −ε2) ≥ ã4‖ε1 −ε2‖2

Sd for all ε1, ε2 ∈ S
d , a.e. (x, t) ∈ Q

with ã4 > 0;
(v) A(x, t, ε) : ε ≥ ã3‖ε‖2

Sd for all ε ∈ S
d , a.e. (x, t) ∈ Q with ã3 > 0.

Remark 3 It should be remarked that the growth condition H(A)(iii) excludes terms with
power greater than one, but is satisfied within linearized viscoelasticity, and is satisfied by
truncated operators, cf. [11, 41].

H(B): The elasticity operator B : Q × S
d → S

d is such that

(i) B(·, ·, ε) is measurable on Q for all ε ∈ Sd ;
(ii) ‖B(x, t, ε)‖Sd ≤ b̃1(x, t)+ b̃2‖ε‖Sd for all ε ∈ S

d , a.e. (x, t) ∈ Q with b̃1 ∈ L2(Q), b̃1,
b̃2 ≥ 0;

(iii) ‖B(x, t, ε1) − B(x, t, ε2)‖Sd ≤ LB‖ε1 − ε2‖Sd for all ε1, ε2 ∈ S
d , a.e. (x, t) ∈ Q with

LB > 0.

Remark 4 If B(x, t, ·) ∈ L(Sd ,S
d) for a.e. (x, t) ∈ Q, the conditions H(B)(ii) and (iii) hold.

Thus the hypothesis H(B) is more general than the ones considered in [23–27, 32, 35] where
the elasticity operator is assumed to be linear (which corresponds to the Hooke law).

H(C): The relaxation operator C : Q × S
d → S

d is of the form C(x, t, ε) = c(x, t)ε and
c(x, t) = {cijkl(x, t)} with cijkl = cjikl = clkij ∈ L∞(Q).

H(f ): f0 ∈ L2(0, T ;H), f1 ∈ L2(0, T ;L2(�N ;R
d)), u0 ∈ V , u1 ∈ H .

The functions jk for k = 1, 2 satisfy the following

H(jk): The function jk : �C × (0, T ) × (Rd)2 × R → R is such that

(i) jk(·, ·, ζ, ρ, r) is measurable for all ζ , ρ ∈ R
d , r ∈ R,

jk(·, ·, v(·),w(·),0) ∈ L1(�C × (0, T )) for all v, w ∈ L2(�C;R
d);

(ii) jk(x, t, ·, ·, r) is continuous for all r ∈ R, a.e. (x, t) ∈ �C × (0, T ),
jk(x, t, ζ, ρ, ·) is locally Lipschitz for all ζ , ρ ∈ R

d , a.e. (x, t) ∈ �C × (0, T );
(iii) |∂jk(x, t, ζ, ρ, r)| ≤ ck0 + ck1‖ζ‖ + ck2‖ρ‖ + ck3|r| for all ζ , ρ ∈ R

d , r ∈ R, a.e.
(x, t) ∈ �C × (0, T ) with ckj ≥ 0, j = 0, 1, 2, 3, where ∂jk denotes the Clarke subdif-
ferential of jk(x, t, ζ, ρ, ·);

(iv) j 0
k (x, t, ·, ·, ·; s) is upper semicontinuous on (Rd)2 × R for all s ∈ R, a.e. (x, t) ∈

�C × (0, T ), where j 0
k denotes the generalized directional derivative of Clarke of

jk(x, t, ζ, ρ, ·) in the direction s.

The functions jk for k = 3, 4 satisfy the corresponding conditions with the last variable
being in R

d .
Moreover, we need the following hypothesis.

H(j)reg : The functions jk for k = 1, . . . ,4 are such that for all ζ , ρ ∈ R
d , a.e. (x, t) ∈

�C × (0, T ), either all jk(x, t, ζ, ρ, ·) are regular or all −jk(x, t, ζ, ρ, ·) are regular for
k = 1, . . . ,4.

The above hypotheses are realistic with respect to the physical data and the process mod-
eling. We will see this in the specific examples of contact laws which are given in Sect. 4.
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Next, let v ∈ V . We define f ∈ V ∗ by

〈
f (t), v

〉
V ∗×V

= 〈
f0(t), v

〉
H

+ 〈
f1(t), v

〉
L2(�N ;Rd )

for a.e. t ∈ (0, T ). Assuming that the functions in the problem (2)–(8) are sufficiently regu-
lar, using the equation of motion (2) and the Green formula (cf. [44]), we obtain

〈
u′′(t), v

〉 + 〈
σ(t), ε(v)

〉
H −

∫

�

σ (t)ν · v(x) d� = 〈
f0(t), v

〉
H

for a.e. t ∈ (0, T ). From the boundary conditions (4) and (5), we have

∫

�

σ (t)ν · v d� =
∫

�N

f1(t) · v d� +
∫

�C

(
στ (t) · vτ + σν(t)vν

)
d�.

On the other hand, the subdifferential boundary conditions (6) and (7) imply

−σν(t)r ≤ j 0
1

(
x, t, u(t), u′(t), uν(t); r

) + j 0
2

(
x, t, u(t), u′(t), u′

ν(t); r
)

for all r ∈ R,

−στ (t) · ξ ≤ j 0
3

(
x, t, u(t), u′(t), uτ (t); ξ

) + j 0
4

(
x, t, u(t), u′(t), u′

τ (t); ξ
)

for all ξ ∈ R
d .

Using the constitutive law (3) and the above relations, we obtain the following weak formu-
lation of the problem (2)–(8) which is called hemivariational inequality.

Problem (HVI): find u : (0, T ) → V such that u ∈ V , u′ ∈ W and

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈u′′(t), v〉 + 〈A(t, ε(u′(t))) + B(t, ε(u(t))) + ∫ t

0 C(t − s)ε(u(s)) ds, ε(v)〉H

+ ∫
�C

(j 0
1 (x, t, u(t), u′(t), uν(t);vν) + j 0

2 (x, t, u(t), u′(t), u′
ν(t);vν)

+ j 0
3 (x, t, u(t), u′(t), uτ (t);vτ ) + j 0

4 (x, t, u(t), u′(t), u′
τ (t);vτ )) d�

≥ 〈f (t), v〉 for all v ∈ V, a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1.

3.3 Evolution Inclusion for Hemivariational Inequality

In this section we state a result on the existence of solutions to second order evolution inclu-
sions and apply it to an abstract hemivariational inequality. To this end, let Z = Hδ(�;R

d),
δ ∈ (1/2,1) and γ : Z → L2(�C;R

d) be the trace operator. Let γ ∗ : L2(�C;R
d) → Z∗ stand

for the adjoint operator to γ .
Problem P : find u ∈ V such that u′ ∈ W and

⎧
⎪⎨

⎪⎩

u′′(t) + A(t,u′(t)) + B(t, u(t)) + ∫ t

0 C(t − s)u(s) ds

+ F(t, u(t), u′(t)) � f (t) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1,

where A, B : (0, T ) × V → V ∗ are nonlinear operators, C(t) is a bounded linear operator
for a.e. t ∈ (0, T ) and F : (0, T ) × V × V → 2Z∗

is a multivalued mapping. Let us notice
that the initial conditions in Problem P have sense in V and H since the embeddings {v ∈
V | v′ ∈ W} ⊂ C(0, T ;V ) and W ⊂ C(0, T ;H) are continuous (see [7, 44]). A solution to
Problem P is understood as follows.
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Definition 5 A function u ∈ V is a solution of Problem P if and only if u′ ∈ W and there
exists z ∈ Z ∗ such that
⎧
⎪⎨

⎪⎩

u′′(t) + A(t,u′(t)) + B(t, u(t)) + ∫ t

0 C(t − s)u(s) ds + z(t) = f (t) a.e. t ∈ (0, T ),

z(t) ∈ F(t, u(t), u′(t)) a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1.

We will need the following hypotheses on the data.

H(A): The operator A : (0, T ) × V → V ∗ is such that

(i) A(·, v) is measurable on (0, T ) for all v ∈ V ;
(ii) A(t, ·) is strongly monotone for a.e. t ∈ (0, T ), i.e. there exists m1 > 0 such that

〈A(t, v) − A(t,u), v − u〉 ≥ m1‖v − u‖2 for all u, v ∈ V , a.e. t ∈ (0, T );
(iii) ‖A(t, v)‖V ∗ ≤ a0(t) + a1‖v‖ for all v ∈ V , a.e. t ∈ (0, T ) with a0 ∈ L2(0, T ), a0 ≥ 0

and a1 > 0;
(iv) 〈A(t, v), v〉 ≥ α‖v‖2 for all v ∈ V , a.e. t ∈ (0, T ) with α > 0;
(v) A(t, ·) is hemicontinuous for a.e. t ∈ (0, T ).

Remark 6 The hypothesis H(A) implies the operator A is pseudomonotone. Indeed, strong
monotonicity clearly implies monotonicity which with hemicontinuity entails (cf. Proposi-
tion 27.6(a), p. 586, of Zeidler [44]) pseudomonotonicity. We also recall (cf. Remark 1.1.13
of [8]) that for monotone operators, demicontinuity and hemicontinuity are equivalent no-
tions.

H(B): The operator B : (0, T ) × V → V ∗ is such that

(i) B(·, v) is measurable on (0, T ) for all v ∈ V ;
(ii) B(t, ·) is Lipschitz continuous for a.e. t ∈ (0, T ), i.e. ‖B(t, u)−B(t, v)‖V ∗ ≤ LB‖u−

v‖ for all u, v ∈ V , a.e. t ∈ (0, T ) with LB > 0;
(iii) ‖B(t, v)‖V ∗ ≤ b0(t) + b1‖v‖ for all v ∈ V , a.e. t ∈ (0, T ) with b0 ∈ L2(0, T ) and b0,

b1 ≥ 0.

H(C): The operator C satisfies C ∈ L2(0, T ; L(V ,V ∗)).

H(F): The multifunction F : (0, T ) × V × V → Pf c(Z
∗) is such that

(i) F(·, u, v) is measurable on (0, T ) for all u, v ∈ V ;
(ii) F(t, ·, ·) is upper semicontinuous from V × V into w-Z∗ for a.e. t ∈ (0, T ), where

V × V is endowed with (Z × Z)-topology;
(iii) ‖F(t, u, v)‖Z∗ ≤ d0(t) + d1‖u‖ + d2‖v‖ for all u, v ∈ V , a.e. t ∈ (0, T ) with d0 ∈

L2(0, T ) and d0, d1, d2 ≥ 0.

H(F)1: The multifunction F : (0, T ) × V × V → Pf c(Z
∗) satisfies H(F) and

(iv) 〈F(t, u1, v1) − F(t, u2, v2), v1 − v2〉Z∗×Z ≥ −m2‖v1 − v2‖2 − m3‖v1 − v2‖‖u1 − u2‖
for all ui , vi ∈ V , i = 1, 2, a.e. t ∈ (0, T ) with m2, m3 ≥ 0.

(H0): f ∈ V ∗, u0 ∈ V , u1 ∈ H .

(H1): α > 2
√

3ce(d1T + d2), where ce > 0 is the embedding constant of V into Z, i.e.,
‖ · ‖Z ≤ ce‖ · ‖.

(H2): m1 > m2 + 1√
2
m3T .
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Theorem 7 Under the hypotheses H(A), H(B), H(C), H(F)1, (H0), (H1) and (H2), Prob-
lem P admits a unique solution.

For the proof, we refer to Theorem 8 of [19].
We are now in a position to apply Theorem 7 to the hemivariational inequality problem

we are dealing with. We define the following operators A, B , C : (0, T ) × V → V ∗ by

〈
A(t,u), v

〉 = (
A

(
x, t, ε(u)

)
, ε(v)

)
H, (9)

〈
B(t, u), v

〉 = (
B
(
x, t, ε(u)

)
, ε(v)

)
H, (10)

〈
C(t, u), v

〉 = (
C(t)ε(u)

)
, ε(v))H (11)

for u, v ∈ V , a.e. t ∈ (0, T ).

Lemma 8 Under the hypothesis H(A), the operator A : (0, T ) × V → V ∗ defined by (9)
satisfies H(A) with a0(t) = √

2‖ã1(t)‖L2(�), a1 = √
2ã2, α = ã3, and m1 = ã4.

Proof By H(A)(iii) and Hölder’s inequality, we have

∣∣〈A(t, v),w
〉∣∣ ≤

∫

�

∥∥A
(
x, t, ε(v)

)∥∥
Sd

∥∥ε(w)
∥∥

Sd dx ≤ √
2
(∥∥ã1(t)

∥∥
L2(�)

+ ã2‖v‖)‖w‖ (12)

for all v, w ∈ V , a.e. t ∈ (0, T ). Hence the function (x, t) �→ A(x, t, ε(v)) : ε(w) is inte-
grable for all v, w ∈ V . By Fubini’s theorem, we have that t �→ 〈A(t, v),w〉 is measurable
for all v, w ∈ V . Hence, for all v ∈ V , the function t �→ A(t, v) is weakly measurable from
(0, T ) into V ∗. Since the latter is separable, from the Pettis measurability theorem, it fol-
lows that t �→ A(t, v) is measurable for all v ∈ V , i.e. H(A)(i) holds. Next, from H(A)(iv),
it follows

〈
A(t,u) − A(t, v), u − v

〉 =
∫

�

(
A

(
x, t, ε(u)

) − A
(
x, t, ε(v)

)) : (
ε(u) − ε(v)

)
dx

≥ ã4

∫

�

∥
∥ε(u − v)

∥
∥2

Sd dx = ã4‖u − v‖2

for all u, v ∈ V , a.e. t ∈ (0, T ). This shows H(A)(ii). Again from (12) we obtain that
H(A)(iii) is satisfied with a0(t) = √

2‖ã1(t)‖L2(�) and a1 = √
2ã2.

From the hypothesis H(A)(v), it follows

〈
A(t, v), v

〉 =
∫

�

A
(
x, t, ε(v)

) : ε(v) dx ≥ ã3

∫

�

∥
∥ε(v)

∥
∥2

Sd dx = ã3‖v‖2

for all v ∈ V , a.e. t ∈ (0, T ). Hence H(A)(iv) holds with α = ã3. Similarly H(A)(iv) implies
that A(t, ·) is monotone for a.e. t ∈ (0, T ). From Proposition 26.12 of Zeidler [44], we
know that the operator A(t, ·) is continuous for a.e. t ∈ (0, T ). Hence, in particular, it is
hemicontinuous proves that H(A)(v) is satisfied and ends the proof of the lemma. �

Lemma 9 Under the hypothesis H(B), the operator B : (0, T ) × V → V ∗ defined by (10)
satisfies H(B) with LB = LB , b0(t) = √

2‖b̃1(t)‖L2(�) and b1 = √
2b̃2.



Hyperbolic Hemivariational Inequalities for Dynamic Viscoelastic Contact 11

Proof The measurability of B(·, v) for all v ∈ V is shown analogously as in the proof of
Lemma 8. Indeed, using H(B)(ii) and Hölder’s inequality, we have

∣∣〈B(t, v),w
〉∣∣ ≤ √

2
(∥∥b̃1(t)

∥∥
L2(�)

+ b̃2‖v‖)‖w‖ (13)

for all v, w ∈ V , a.e. t ∈ (0, T ). From Fubini’s theorem, we know that t �→ 〈B(t, v),w〉 is
measurable for all v, w ∈ V . Clearly t �→ B(t, v) is weakly measurable from (0, T ) into V ∗

for all v ∈ V and since V ∗ is separable, by the Pettis measurability theorem, we deduce that
t �→ B(t, v) is measurable for all v ∈ V . This proves H(B)(i).

Using (13), we easily obtain that H(B)(iii) holds with b0(t) = √
2‖b̃1(t)‖L2(�) and b1 =√

2b̃2. Next, from H(B)(iii) and Hölder’s inequality, we get

∣∣〈B(t, u) − B(t, v),w
〉∣∣ ≤ LB

∫

�

∥∥ε(u) − ε(v)
∥∥

Sd

∥∥ε(w)
∥∥

Sd dx ≤ LB‖u − v‖‖w‖

for all u, v, w ∈ V , a.e. t ∈ (0, T ). Hence, H(B)(ii) follows. The proof of the lemma is thus
complete. �

Lemma 10 Under the hypothesis H(C), the operator C defined by (11) satisfies H(C).

Proof From the hypothesis H(C), we have

〈
C(t, u), v

〉 =
∫

�

c(x, t)ε(u) : ε(v) dx for u,v ∈ V, a.e. t ∈ (0, T ).

Since c(x, t) = {cijkl(x, t)} and cijkl ∈ L∞(Q), using the Hölder inequality we readily obtain
that C ∈ L2(0, T ; L(V ,V ∗)). �

We also observe that if H(f ) holds then (H0) is satisfied as well. Now, in order to for-
mulate Problem (HVI) in the form of evolution inclusion, we extend the pointwise rela-
tions (6) and (7) to relations involving multifunctions. To this end, we consider the function
g : �C × (0, T ) × (Rd)4 → R defined by

g(x, t, ζ, ρ, ξ, η) = j1(x, t, ζ, ρ, ξν) + j2(x, t, ζ, ρ, ην)

+ j3(x, t, ζ, ρ, ξτ ) + j4(x, t, ζ, ρ, ητ ) (14)

for ζ , ρ, ξ , η ∈ R
d and a.e. (x, t) ∈ �C × (0, T ).

In what follows, we will need the following hypotheses.

H(g): The function g : �C × (0, T ) × (Rd)4 → R satisfies the following

(i) g(·, ·, ζ, ρ, ξ, η) is measurable for all ζ , ρ, ξ , η ∈ R
d ,

g(·, ·, v(·),w(·),0,0) ∈ L1(�C × (0, T )) for all v, w ∈ L2(�C;R
d);

(ii) g(x, t, ·, ·, ξ, η) is continuous for all ξ , η ∈ R
d , a.e. (x, t) ∈ �C × (0, T ),

g(x, t, ζ, ρ, ·, ·) is locally Lipschitz for all ζ , ρ ∈ R
d , a.e. (x, t) ∈ �C × (0, T );

(iii) ‖∂g(x, t, ζ, ρ, ξ, η)‖(Rd )2 ≤ cg0 + cg1(‖ζ‖ + ‖ξ‖) + cg2(‖ρ‖ + ‖η‖) for all ζ , ρ, ξ ,
η ∈ R

d , a.e. (x, t) ∈ �C × (0, T ) with cg0, cg1, cg2 ≥ 0, where ∂g denotes the Clarke
subdifferential of g(x, t, ζ, ρ, ·, ·);
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(iv) g0(x, t, ·, ·, ·, ·;χ,σ) is upper semicontinuous on (Rd)4 for a.e. (x, t) ∈ �C × (0, T )

and all χ , σ ∈ R
d where g0 denotes the generalized directional derivative of Clarke

of g(x, t, ζ, ρ, ·, ·) in the direction (χ,σ ).

H(g)reg : The function g : �C × (0, T ) × (Rd)4 → R is such that either g(x, t, ζ, ρ, ·, ·) or

−g(x, t, ζ, ρ, ·, ·) is regular for all ζ,ρ ∈ R
d , a.e. (x, t) ∈ �C × (0, T ).

Lemma 11 Under the hypotheses H(jk) for k = 1, . . . ,4 and H(j)reg the function g defined
by (14) satisfies H(g) with cg0 = max1≤k≤4 ck0, cg1 = max{max1≤k≤4 ck1, c13, c33}, cg2 =
max{max1≤k≤4 ck2, c23, c43}. Additionally the following equality holds

g0(x, t, ζ, ρ, ξ, η;χ,σ) = j 0
1 (x, t, ζ, ρ, ξν;χν) + j 0

2 (x, t, ζ, ρ, ην;σν)

+ j 0
3 (x, t, ζ, ρ, ξτ ;χτ ) + j 0

4 (x, t, ζ, ρ, ητ ;στ ) (15)

for ζ , ρ, ξ , η, χ , σ ∈ R
d and a.e. (x, t) ∈ �C × (0, T ) where j 0

k denotes the generalized
directional derivative of jk(x, t, ζ, ρ, ·) for k = 1, . . . ,4.

Proof The conditions H(g)(i) and (ii) follow directly from the hypotheses on jk for k =
1, . . . ,4. For the proof of (15), let ζ , ρ, ξ , η ∈ R

d and (x, t) ∈ �C × (0, T ). Let us also
suppose that jk(x, t, ζ, ρ, ·) for k = 1, . . . ,4 are regular in the sense of Clarke. This means,
by definition, that for all r ∈ R and θ ∈ R

d the usual directional derivatives j ′
k(x, t, ζ, ρ, r; s)

for k = 1, 2 and j ′
k(x, t, ζ, ρ, θ;σ) for k = 3, 4 exist and

{
j ′
k(x, t, ζ, ρ, r; s) = j 0

k (x, t, ζ, ρ, r; s) for k = 1,2

j ′
k(x, t, ζ, ρ, θ;σ) = j 0

k (x, t, ζ, ρ, θ;σ) for k = 3,4
(16)

for all s ∈ R and σ ∈ R
d . Hence we deduce that the directional derivative g′

ξη of the function
g(x, t, ζ, ρ, ·, ·) also exists at every point (ξ, η) ∈ R

d × R
d and in any direction (χ,σ ) ∈

(Rd)2. By the definition of g, we can write g(x, t, ζ, ρ, ξ, η) = ∑4
k=1 ĵk(x, t, ζ, ρ, ξ, η),

where the functions ĵk : �C × (0, T ) × (Rd)4 → R are defined by

ĵ1(x, t, ζ, ρ, ξ, η) = j1(x, t, ζ, ρ, ξν), ĵ2(x, t, ζ, ρ, ξ, η) = j2(x, t, ζ, ρ, ην),

ĵ3(x, t, ζ, ρ, ξ, η) = j3(x, t, ζ, ρ, ξτ ), ĵ4(x, t, ζ, ρ, ξ, η) = j4(x, t, ζ, ρ, ητ ).

By Proposition 2.3.3 of [6], we have

g0(x, t, ζ, ρ, ξ, η;χ,σ) ≤
4∑

k=1

(ĵk)
0(x, t, ζ, ρ, ξ, η;χ,σ), (17)

for every direction (χ,σ ) ∈ (Rd)2. Consider now the operators N1 ∈ L(Rd ,R) and N2 ∈
L(Rd ,R

d) given by N1ξ = ξν and N2ξ = ξτ for ξ ∈ R
d . From Theorem 2.3.10 of [6] applied

to the functions jk , k = 1, . . . , k and the operators N1 and N2, we get

(ĵ1)
0(x, t, ζ, ρ, ξ, η;χ,σ) ≤ j 0

1 (x, t, ζ, ρ, ξν;χν),

(ĵ2)
0(x, t, ζ, ρ, ξ, η;χ,σ) ≤ j 0

2 (x, t, ζ, ρ, ην;σν),

(ĵ3)
0(x, t, ζ, ρ, ξ, η;χ,σ) ≤ j 0

3 (x, t, ζ, ρ, ξτ ;χτ ),

(ĵ4)
0(x, t, ζ, ρ, ξ, η;χ,σ) ≤ j 0

4 (x, t, ζ, ρ, ητ ;στ ).
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The latter four inequalities together with (17) imply

g0(x, t, ζ, ρ, ξ, η;χ,σ) ≤ j 0
1 (x, t, ζ, ρ, ξν;χν) + j 0

2 (x, t, ζ, ρ, ην;σν)

+ j 0
3 (x, t, ζ, ρ, ξτ ;χτ ) + j 0

4 (x, t, ζ, ρ, ητ ;στ ) (18)

for ζ , ρ, ξ , η, χ , σ ∈ R
d and a.e. (x, t) ∈ �C × (0, T ). On the other hand, we have

g′
ξη(x, t, ζ, ρ, ξ, η;χ,σ)

= lim
λ↓0

1

λ

(
g
(
x, t, ζ, ρ, (ξ, η) + λ(χ,σ )

) − g(x, t, ζ, ρ, ξ, η)
)

= lim
λ↓0

1

λ

(
j1(x, t, ζ, ρ, ξN + λχν) + j2(x, t, ζ, ρ, ην + λσν)

+ j3(x, t, ζ, ρ, ξτ + λχτ ) + j4(x, t, ζ, ρ, ητ + λστ )

− j1(x, t, ζ, ρ, ξν) − j2(x, t, ζ, ρ, ην) − j3(x, t, ζ, ρ, ξτ ) − j4(x, t, ζ, ρ, ητ )
)

= j ′
1(x, t, ζ, ρ, ξν;χν) + j ′

2(x, t, ζ, ρ, ην;σν) + j ′
3(x, t, ζ, ρ, ξτ ;χτ )

+ j ′
4(x, t, ζ, ρ, ητ ;στ ),

which together with (18) and (16) implies

g′
ξη(x, t, ζ, ρ, ξ, η;χ,σ) ≥ g0(x, t, ζ, ρ, ξ, η; ξ, σ )

for all ξ , η, χ , σ ∈ R
d . As it follows directly from the definitions the opposite inequality

g′
ξη ≤ g0 is always true, so we deduce that g′

ξη(x, t, ζ, ρ, ξ, η;χ,σ) = g0(x, t, ζ, ρ, ξ, η;
χ,σ) for ζ , ρ, ξ , η, χ , σ ∈ R

d , a.e. (x, t) ∈ �C × (0, T ), which means that g(x, t, ζ, ρ, ·, ·)
is regular in the sense of Clarke. Thus (15) follows.

If for k = 1, . . . , k the functions −jk are regular in their last variables, then we
proceed in the same way as above and deduce the regularity of −g(x, t, ζ, ρ, ·, ·) for
(x, t) ∈ �C × (0, T ) and ζ , ρ ∈ R

d . We use the property (−g)0(x, t, ζ, ρ, ξ, η;χ,σ) =
g0(x, t, ζ, ρ, ξ, η;−χ,−σ) for all ζ , ρ, ξ , η, χ , σ ∈ R

d , a.e. (x, t) ∈ �C × (0, T ) (cf. Propo-
sition 2.1.1 of [6]), and again deduce (15).

In order to show H(g)(iii), let us take (χ,σ ) ∈ ∂g(x, t, ζ, ρ, ξ, η), where ζ , ρ, ξ , η, χ ,
σ ∈ R

d and (x, t) ∈ �C × (0, T ). By the definition of the subdifferential and (15), for all χ ,
σ ∈ R

d , we have
〈
(χ,σ ), (χ,σ )

〉
(Rd )2 ≤ g0(x, t, ζ, ρ, ξ, η;χ,σ)

= j 0
1 (x, t, ζ, ρ, ξν;χν) + j 0

2 (x, t, ζ, ρ, ην;σν) + j 0
3 (x, t, ζ, ρ, ξτ ;χτ )

+ j 0
4 (x, t, ζ, ρ, ητ ;στ ).

Using Proposition 2.1.2 of [6] and H(j1)(iii), we deduce

j 0
1 (x, t, ζ, ρ, ξν;χν) ≤ |χν |

(
c10 + c11‖ζ‖ + c12‖ρ‖ + c13|ξν |

)
.

Analogously, by H(jk)1(iii) for k = 2, 3, 4, we obtain the similar inequalities. Recalling that
|ξν | ≤ ‖ξ‖ and ‖ξτ‖ ≤ ‖ξ‖ for all ξ ∈ R

d , from the above, we have
〈
(χ,σ ), (χ,σ )

〉
(Rd )2 ≤ (

cg0 + cg1
(‖ζ‖ + ‖ξ‖) + cg2

(‖ρ‖ + ‖η‖))∥∥(χ,σ )
∥
∥

(Rd )2 ,
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where cg0 = max ck0, cg1 = max{max ck1, c13, c33}, cg2 = max{max ck2, c23, c43}. Hence
H(g)(iii) holds.

Finally, we suppose the hypotheses H(jk)(iv) for k = 1, . . . ,4 and H(j)reg . In order to
prove H(g)(iv), it is enough to show that g0(x, t, ·, ·, ·, ·;χ,σ) is upper semicontinuous on
(Rd)4 for all χ , σ ∈ R

d and a.e. (x, t) ∈ �C ×(0, T ). Let χ , σ ∈ R
d and (x, t) ∈ �C ×(0, T ),

and let {ζn}, {ρn}, {ξn}, {ηn} be sequences in R
d such that ζn → ζ , ρn → ρ, ξn → ξ and

ηn → η. By the hypothesis H(jk)(iv) for k = 1, . . . ,4 and equality (15), we find

lim supg0(x, t, ζn, ρn, ξn, ηn;χ,σ)

≤ lim sup j 0
1 (x, t, ζn, ρn, ξnν;χν) + lim sup j 0

2 (x, t, ζn, ρn, ηnν;σν)

+ lim sup j 0
3 (x, t, ζn, ρn, ξnτ ;χτ ) + lim sup j 0

4 (x, t, ζn, ρn, ηnτ ;στ )

≤ j 0
1 (x, t, ζ, ρ, ξν;χν) + j 0

2 (x, t, ζ, ρ, ην;σν)

+ j 0
3 (x, t, ζ, ρ, ξτ ;χτ ) + j 0

4 (x, t, ζ, ρ, ητ ;στ ) = g0(x, t, ζ, ρ, ξ, η;χ,σ).

Hence the condition H(g)(iv) follows. The proof of the lemma is complete. �

The next step is to study the integral functional corresponding to superpotentials
which appear in the boundary conditions. Let us consider the functional G : (0, T ) ×
L2(�C;R

d)4 → R defined by

G(t,w, z,u, v) =
∫

�C

g
(
x, t,w(x), z(x), u(x), v(x)

)
d� (19)

for w, z, u, v ∈ L2(�C;R
d), t ∈ (0, T ), where the integrand g is given by (14).

We introduce the following hypothesis.

H(G): The functional G : (0, T ) × L2(�C;R
d)4 → R is such that

(i) G(·,w, z,u, v) is measurable for all w, z, u, v ∈ L2(�C;R
d),

G(·,w, z,0,0) ∈ L1(0, T ) for all w, z ∈ L2(�C;R
d);

(ii) G(t,w, z, ·, ·) is Lipschitz continuous on bounded subsets of L2(�C;R
d)2 for all w,

z ∈ L2(�C;R
d), a.e. t ∈ (0, T );

(iii) ‖∂G(t,w, z,u, v)‖L2(�C ;Rd )2 ≤ cG0 + cG1(‖w‖ + ‖u‖) + cG2(‖z‖ + ‖v‖) for all w,
z, u, v ∈ L2(�C;R

d), a.e. t ∈ (0, T ) with cG0, cG1, cG2 ≥ 0, where ∂G denotes the
Clarke subdifferential of G(t,w, z, ·, ·);

(iv) For all w, z, u, v, u, v ∈ L2(�C;R
d), a.e. t ∈ (0, T ), we have

G0(t,w, z,u, v;u,v) =
∫

�C

g0
(
x, t,w(x), z(x), u(x), v(x);u(x), v(x)

)
d�, (20)

where G0 denotes the generalized directional derivative of G(t,w, z, ·, ·) at a point
(u, v) in the direction (u, v);

(v) G0(t, ·, ·, ·, ·;u,v) is upper semicontinuous on L2(�C;R
d)4 for all u,v ∈ L2(�C;R

d),
a.e. t ∈ (0, T ).

H(G)reg : The functional G : (0, T ) × L2(�C;R
d)4 → R is such that either G(t,w, z, ·, ·)

or −G(t,w, z, ·, ·) is regular for all w, z ∈ L2(�C;R
d), a.e. t ∈ (0, T ).

Lemma 12 Under the hypotheses H(g) and H(g)reg hold the functional G defined by (19)
satisfies H(G) with cG0 = cg0

√
5m(�C), cG1 = cg1

√
5, cG2 = cg2

√
5 and H(G)reg .
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Proof First, from H(g)(ii) and Lemma 1, it follows that g(x, t, ·, ·, ·, ·) is continuous
on (Rd)4 which together with H(g)(i) implies that g is a Carathéodory function. Hence
(x, t) �→ g(x, t,w(x), z(x), u(x), v(x)) is measurable for all w, z, u, v ∈ L2(�C;R

d) and
subsequently the integrand of (19) is a measurable function of x.

Next, applying the Lebourg mean value theorem (cf., e.g., Theorem 5.6.25 of [7]) to a
locally Lipschitz function g(x, t, ζ, ρ, ·, ·) (cf. H(g)(ii)), we deduce that there exist (ξ , η)

in the interval [0, (ξ, η)] ⊂ (Rd)2 and (ξ ∗, η∗) ∈ ∂g(x, t, ζ, ρ, ξ, η) such that

g(x, t, ζ, ρ, ξ, η) − g(x, t, ζ, ρ,0,0) = ((
ξ ∗, η∗), (ξ, η)

)
(Rd )2

for all ζ , ρ, ξ , η ∈ R
d , a.e. (x, t) ∈ �C × (0, T ). Hence, by H(g)(iii), we obtain

g
(
x, t,w(x), z(x), u(x), v(x)

)

≤ g
(
x, t,w(x), z(x),0,0

)

+ c
(∥∥u(x)

∥
∥ + ∥

∥v(x)
∥
∥)(

cg0 + cg1

(∥∥w(x)
∥
∥ + ∥

∥u(x)
∥
∥) + cg2

(∥∥z(x)
∥
∥ + ∥

∥v(x)
∥
∥))

for all w, z, u, v ∈ L2(�C;R
d), a.e. (x, t) ∈ �C × (0, T ) with a constant c > 0. From

H(g)(i), it is easy to see that (x, t) �→ g(x, t,w(x), z(x), u(x), v(x)) is integrable and from
Fubini’s theorem, we infer that G(·,w, z,u, v) is measurable and H(G)(i) holds.

Now, let w, z ∈ L2(�C;R
d) and let g̃ : �C × (0, T ) × (Rd)2 → R be defined by

g̃(x, t, ξ, η) = g
(
x, t,w(x), z(x), ξ, η

)
for ξ, η ∈ R

d , a.e. (x, t) ∈ �C × (0, T ).

From (i) and (ii) of H(g), it follows that g̃(·, ·, ξ, η) is measurable for all ξ , η ∈ R
d ,

g̃(·, t,0,0) ∈ L1(�C) for a.e. t ∈ (0, T ) (by invoking again Fubini’s theorem) and g̃(x, t, ·, ·)
is locally Lipschitz for a.e. (x, t) ∈ �C × (0, T ). Moreover, by employing H(g)(iii), we have

∥
∥∂g̃(x, t, ξ, η)

∥
∥

(Rd )2 = ∥
∥∂g

(
x, t,w(x), z(x), ξ, η

)∥∥
(Rd )2

≤ cg0 + cg1

(∥∥w(x)
∥
∥ + ‖ξ‖) + cg2

(∥∥z(x)
∥
∥ + ‖η‖)

= ω(x) + max{cg1, cg2}
(‖ξ‖ + ‖η‖)

with ω ∈ L2(�C). At this stage we use Aubin-Clarke’s theorem (cf. Theorem 5.6.39 of [7]) to
deduce that the functional G(t,w, z, ·, ·) is well defined, finite and Lipschitz continuous on
bounded subsets of L2(�C;R

d) for all w, z ∈ L2(�C;R
d), a.e. t ∈ (0, T ). Hence H(G)(ii)

is satisfied. Furthermore, for w, z, u, v ∈ L2(�C;R
d) and a.e. t ∈ (0, T ), we have

∂G(t,w, z,u, v)

⊂ {
(u, v) ∈ L2

(
�C;R

d
)2 | (u(x), v(x)

) ∈ ∂g
(
x, t,w(x), z(x), u(x), v(x)

)
a.e. x ∈ �C

}
.

(21)

Hence, by H(g)(iii), we thus obtain that for all (u, v) ∈ ∂G(t,w, z,u, v), u, v ∈ L2(�C;R
d),

we have
∥
∥(u, v)

∥
∥

L2(�C ;Rd )2 ≤ √
5
(
cg0

√
m(�C) + cg1

(‖w‖ + ‖u‖) + cg2

(‖z‖ + ‖v‖)),

which entails that the condition H(G)(iii) holds with the aforementioned constants cg0, cg1

and cg2.
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Next, by the Fatou lemma, we have

G0(t,w, z,u, v;u,v)

≤
∫

�C

lim sup
(u′,v′)→(u,v), λ↓0

1

λ

(
g
(
x, t,w(x), z(x), u′(x) + λu(x), v′(x) + λv(x)

)

− g
(
x, t,w(x), z(x), u′(x), v′(x)

))
d�

=
∫

�C

g0
(
x, t,w(x), z(x), u(x), v(x);u(x), v(x)

)
d�

for all w, z, u, v, u, v ∈ L2(�C;R
d), a.e. t ∈ (0, T ).

Since the function g(x, t, ζ, ρ, ·, ·) is regular in the sense of Clarke. By exploiting the
Fatou lemma and the above, we obtain

G0(t,w, z,u, v;u,v)

≥ lim inf
λ↓0

1

λ

(
G

(
t,w, z, (u, v) + λ(u, v)

) − G(t,w, z,u, v)
)

≥
∫

�C

lim inf
λ↓0

1

λ

(
g
(
x, t,w(x), z(x), u(x) + λu(x), v(x) + λv(x)

)

− g
(
x, t,w(x), z(x), u(x), v(x)

))
d�

=
∫

�C

g0
(
x, t,w(x), z(x), u(x), v(x);u(x), v(x)

)
d� ≥ G0

(
t,w, z,u, v;u,v

)

for all w, z, u, v, u, v ∈ L2(�C;R
d), a.e. t ∈ (0, T ). Hence G′

(u,v)(t,w, z,u, v;u,v) exists
and

G′
(u,v)

(
t,w, z,u, v;u,v

) = G0
(
t,w, z,u, v;u,v

)

which means that G(t,w, z, ·, ·) is regular for all w, z ∈ L2(�C;R
d) and a.e. t ∈ (0, T ). The

two above also imply that H(G)(iv) holds.
When −g(x, t, ζ, ρ, ·, ·) is regular in the sense of Clarke, we proceed analogously as

above and deduce the regularity of −G(t,w, z, ·, ·). From the property

(−G)0
(
t,w, z,u, v;u,v

) = G0
(
t,w, z,u, v;−u,−v

)

for all w, z, u, v, u, v ∈ L2(�C;R
d), a.e. t ∈ (0, T ) (cf. Proposition 2.1.1 of [6]), we again

get equality (20).
Finally, we suppose the hypotheses H(g)(iv). Let t ∈ (0, T ), w, z, u, v, u, v ∈

L2(�C;R
d) and {wn}, {zn}, {un}, {vn} be sequences in L2(�C;R

d) such that wn → w,
zn → z, un → u and vn → v in L2(�C;R

d). We may assume by passing to subsequences,
if necessary, that wn(x) → w(x), zn(x) → z(x), un(x) → u(x) and vn(x) → v(x) in R

d

for a.e. x ∈ �C , ‖wn(x)‖ ≤ w0(x), ‖zn(x)‖ ≤ z0(x), ‖un(x)‖ ≤ u0(x) and ‖vn(x)‖ ≤ v0(x)

with w0, z0, u0, v0 ∈ L2(�C;R
d). By the Fatou lemma and H(g)(iv), we obtain

lim supG0
(
t,wn, zn, un, vn, u, v

)

= lim sup
∫

�C

g0
(
x, t,wn(x), zn(x), un(x), vn(x);u(x), v(x)

)
d�
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≤
∫

�C

lim supg0
(
x, t,wn(x), zn(x), un(x), vn(x);u(x), v(x)

)
d�

≤
∫

�C

g0
(
x, t,w(x), z(x), u(x), v(x);u(x), v(x)

)
d� = G0(t,w, z,u, v,u, v)

for all u, v ∈ L2(�C;R
d) and a.e. t ∈ (0, T ). This means that G0(t, ·, ·, ·, ·, u, v) is upper

semicontinuous on L2(�C;R
d)4 for all u, v ∈ L2(�C;R

d) and a.e. t ∈ (0, T ). This com-
pletes the proof that the functional G satisfies H(G)(v). The proof of the lemma is done. �

Now we are in a position to carry out the last step of the construction of the multifunction
which will appear in the evolution inclusion. We introduce the following operators

R : Z × Z → L2
(
�C;R

d
)2

by R(z1, z2) = (γ z1, γ z2) for all z1, z2 ∈ Z,

R∗ : L2
(
�C;R

d
)2 → Z∗ × Z∗ by R∗(u, v) = (

γ ∗u,γ ∗v
)

for all u,v ∈ L2
(
�C;R

d
)
,

S : Z∗ × Z∗ → Z∗ by S
(
z∗

1, z
∗
2

) = z∗
1 + z∗

2 for all z∗
1, z

∗
2 ∈ Z∗.

We define the following multivalued mapping F : (0, T ) × V × V → 2Z∗
by

F(t, u, v) = SR∗∂G
(
t,R(u, v),R(u, v)

)
for u,v ∈ V, a.e. t ∈ (0, T ), (22)

where ∂G denotes the Clarke subdifferential of the functional G = G(t,w, z,u, v) defined
by (19) with respect to (u, v).

Before we establish the properties of the multifunction F given by (22), we need the
following auxiliary lemma (cf. [18]).

Lemma 13 Let (�,�) be a measurable space, Y1, Y2 be separable Banach spaces,
A ∈ L(Y1, Y2) and let G : � → Pwkc(Y1) be measurable. Then the multifunction F : � →
Pwkc(Y2) given by F(ω) = AG(ω) for ω ∈ � is measurable.

Lemma 14 Under H(G) and H(G)reg , the multifunction F : (0, T )×V ×V → 2Z∗
defined

by (22) satisfies H(F) with d0(t) = cG0‖γ ‖, d1 = 2cecG1‖γ ‖2 and d2 = 2cecG2‖γ ‖2.

Proof The fact that the mapping F has nonempty and convex values follows from the
nonemptiness and convexity of values of the Clarke subdifferential of G (cf. Proposi-
tion 2.1.2 of [6]). Because the values of the subdifferential ∂G(t,w, z, ·, ·) are weakly closed
subsets of L2(�C;R

d), using H(G)1, we can also easily check that the mapping F has
closed values in Z∗.

To show that F(·, u, v) is measurable on (0, T ) for all u, v ∈ V , let w, z, u,
v ∈ L2(�C;R

d). Since, by the hypothesis H(G)1, G(·,w, z,u, v) is measurable and
G(t,w, z, ·, ·) is locally Lipschitz on L2(�C;R

d)2 (being Lipschitz continuous on bounded
subsets) for a.e. t ∈ (0, T ), according to Lemma 2, we know that

(0, T ) × L2
(
�C;R

d
)2 � (t, u, v) �→ ∂G(t,w, z,u, v) ⊂ L2

(
�C;R

d
)2

is measurable. Hence, by Proposition 2.4.3 of [7], we infer that also the multifunction
(0, T ) � t �→ ∂G(t,w, z,u, v) is measurable, and clearly it is Pwkc(L

2(�C;R
d)2)-valued.

On the other hand, we can readily verify that SR∗ : L2(�C;R
d)2 → Z∗ is a linear con-

tinuous operator. These properties ensure the applicability of Lemma 13. So we have



18 A. Kulig

that (0, T ) � t �→ SR∗∂G(t,w, z,u, v) is measurable. As a consequence the multifunction
F(·, u, v) is measurable for all u, v ∈ V .

Next we will prove the upper semicontinuity of F(t, ·, ·) for a.e. t ∈ (0, T ). According to
Proposition 4.1.4 of [7], we show that for every weakly closed subset K of Z∗, the set

F−(K) = {
(u, v) ∈ V × V | F(t, u, v) ∩ K 
= ∅}

is closed in Z × Z. Let t ∈ (0, T ), {(un, vn)} ⊂ F−(K) and (un, vn) → (u, v) in Z × Z.
We can find ζn ∈ F(t, un, vn) ∩ K for n ∈ N. By the definition of F , we have ζn = ζ 1

n + ζ 2
n ,

(ζ 1
n , ζ 2

n ) = (γ ∗η1
n, γ

∗η2
n) with (η1

n, η
2
n) ∈ L2(�C;R

d) and

(
η1

n, η
2
n

) ∈ ∂G(t, γ un, γ vn, γ un, γ vn) for a.e. t ∈ (0, T ). (23)

Using the continuity of the trace operator, we have γ un → γ u, γ vn → γ v in L2(�C;R
d).

Since by H(G)(iii) the operator ∂G(t, ·, ·, ·, ·) is bounded (it maps bounded sets into
bounded sets), from (23), it follows that the sequence {(η1

n, η
2
n)} remains in a bounded subset

of L2(�C;R
d)2. Thus, by passing to a subsequence, if necessary, we may suppose that

η1
n → η1, η2

n → η2 weakly in L2
(
�C;R

d
)

for some η1, η2 ∈ L2(�C;R
d). Now, we will use the fact that the graph of ∂G(t, ·, ·, ·, ·)

is closed in L2(�C;R
d)4 × (w-L2(�C;R

d)2)-topology for a.e. t ∈ (0, T ), which will be
showed at the end of this proof. Hence and from (23), we obtain

(
η1, η2

) ∈ ∂G(t, γ u, γ v, γ u, γ v).

Furthermore, since {ζn} also remains in a bounded subset of Z∗, we may assume that ζn → ζ

weakly in Z∗. Because ζn ∈ K and K is weakly closed in Z∗, it follows that ζ ∈ K . By the
continuity and linearity of the operator γ ∗, we obtain

γ ∗η1
n → γ ∗η1, γ ∗η2

n → γ ∗η2 weakly in Z∗.

Hence

ζn = γ ∗η1
n + γ ∗η2

n → γ ∗η1 + γ ∗η2 = ζ 1 + ζ 2 weakly in Z∗

and ζ = ζ 1 +ζ 2, where (ζ 1, ζ 2) = (γ ∗η1, γ ∗η2) and (η1, η2) ∈ ∂G(t, γ u, γ v, γ u, γ v). This,
by the definition of F implies that ζ ∈ F(t, u, v). As a consequence, once ζ ∈ K , we know
that F−(K) is closed in Z × Z. Hence H(F)(ii) follows.

Next, we show that F satisfies H(F)(iii). Let t ∈ (0, T ), u, v ∈ V and z∗ ∈ Z∗, z∗ ∈
F(t, u, v). The latter is equivalent to z∗ = z∗

1 +z∗
2, z∗

1, z∗
2 ∈ Z∗, (z∗

1, z
∗
2) = (γ ∗η1, γ

∗η2) where
η1, η2 ∈ L2(�C;R

d) and (η1, η2) ∈ ∂G(t, γ u, γ v, γ u, γ v). Using the estimate H(G)(iii),
we have

∥∥z∗∥∥
Z∗ ≤ ∥∥γ ∗∥∥‖η1 + η2‖L2(�C ;Rd ) ≤ ∥∥γ ∗∥∥(

cG0 + 2cG1‖γ u‖L2(�C ;Rd ) + 2cG2‖γ v‖L2(�C ;Rd )

)

≤ cG0‖γ ‖ + 2cecG1‖γ ‖2‖u‖ + 2cecG2‖γ ‖2‖v‖

where ‖γ ∗‖ = ‖γ ‖ denotes the norm in L(L2(�C;R
d),Z∗) and ce > 0 is the embedding

constant of V into Z. This implies that F satisfies H(F)(iii) with d0(t) = cG0‖γ ‖, d1 =
2cecG1‖γ ‖2 and d2 = 2cecG2‖γ ‖2.
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To complete the proof, it is enough to show that the graph of ∂G(t, ·, ·, ·, ·) is closed
in L2(�C;R

d)4 × (w-L2(�C;R
d)2)-topology for a.e. t ∈ (0, T ). This is a simple conse-

quence of H(G)(v). Indeed, let t ∈ (0, T ), {wn}, {zn}, {un}, {vn} be sequences in L2(�C;R
d)

such that wn → w, zn → z, un → u, vn → v in L2(�C;R
d), let {(η1

n, η
2
n)} ⊂ L2(�C;R

d)2,
(η1

n, η
2
n) → (η1, η2) weakly in L2(�C;R

d)2 and (η1
n, η

2
n) ∈ ∂G(t,wn, zn, un, vn). The latter

means that

〈(
η1

n, η
2
n

)
, (u, v)

〉
L2(�C ;Rd )2 ≤ G0(t,wn, zn, un, vn;u,v) for all u,v ∈ L2

(
�C;R

d
)
.

The hypothesis H(G)(v) implies

〈(
η1, η2

)
, (u, v)

〉
L2(�C ;Rd )2 ≤ lim supG0(t,wn, zn, un, vn;u,v) ≤ G0(t,w, z,u, v;u,v)

for all u, v ∈ L2(�C;R
d) which entails (η1, η2) ∈ ∂G(t,w, z,u, v). The above finishes the

proof that the graph is closed. This argument completes the proof of the lemma. �

In order to prove that the multifunction F defined by (22) satisfies the hypothesis H(F)1,
we need additional conditions on the superpotentials jk for k = 1, . . . ,4.

H(j1)1: j1 : �C × (0, T ) × (Rd)2 × R → R is such that

∣
∣∂j1(x, t, ζ1, ρ1, r1) − ∂j1(x, t, ζ2, ρ2, r2)

∣
∣ ≤ L1

(‖ζ1 − ζ2‖ + ‖ρ1 − ρ2‖ + |r1 − r2|
)

for all ζ1, ζ2, ρ1, ρ2 ∈ R
d , r1, r2 ∈ R, a.e. (x, t) ∈ �C × (0, T ) with a constant L1 ≥ 0.

H(j2)1: j2 : �C × (0, T ) × (Rd)2 × R → R is such that

(
∂j2(x, t, ζ1, ρ1, r1) − ∂j2(x, t, ζ2, ρ2, r2)

)
(r1 − r2)

≥ −L2
(‖ζ1 − ζ2‖ + ‖ρ1 − ρ2‖ + |r1 − r2|

)|r1 − r2|

for all ζ1, ζ2, ρ1, ρ2 ∈ R
d , r1, r2 ∈ R, a.e. (x, t) ∈ �C × (0, T ) with a constant L2 ≥ 0.

H(j3)1: j3 : �C × (0, T ) × (Rd)3 → R is such that

∥
∥∂j3(x, t, ζ1, ρ1, θ1) − ∂j3(x, t, ζ2, ρ2, θ2)

∥
∥ ≤ L3

(‖ζ1 − ζ2‖ + ‖ρ1 − ρ2‖ + ‖θ1 − θ2‖
)

for all ζ1, ζ2, ρ1, ρ2, θ1, θ2 ∈ R
d , a.e. (x, t) ∈ �C × (0, T ) with a constant L3 ≥ 0.

H(j4)1: j4 : �C × (0, T ) × (Rd)3 → R is such that

(
∂j4(x, t, ζ1, ρ1, θ1) − ∂j4(x, t, ζ2, ρ2, θ2), θ1 − θ2

)

≥ −L4
(‖ζ1 − ζ2‖ + ‖ρ1 − ρ2‖ + ‖θ1 − θ2‖

)‖θ1 − θ2‖

for all ζ1, ζ2, ρ1, ρ2, θ1, θ2 ∈ R
d , a.e. (x, t) ∈ �C × (0, T ) with a constant L4 ≥ 0.

Remark 15 The hypothesis H(j2)1 (and H(j4)1) has been introduced and used earlier
in [23] (under the name of relaxed monotonicity condition) in the case when j2 (and j4)
does not depend on the variables ζ and ρ.
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Lemma 16 Assume that the hypotheses H(jk) hold for k = 1, . . . ,4, and that either

jk(x, t, ζ, ρ, ·) are regular and jk satisfy H(jk)1 for k = 1, . . . ,4 or (24)

−jk(x, t, ζ, ρ, ·) are regular and − jk satisfy H(jk)1 for k = 1, . . . ,4. (25)

Then the multifunction F : (0, T ) × V × V → 2Z∗
defined by (22) with the functional G

given by (19) and its integrand g defined by (14), satisfies the condition H(F)1 with m2 =
cek1‖γ ‖2 and m3 = cek2‖γ ‖2.

Proof It is clear that under the hypotheses, the condition H(j)reg holds. By Lemma 11 we
know that the integrand g given by (14) satisfies H(g) and H(g)reg . Hence by Lemma 12, it
follows that the functional G given by (19) satisfies H(G). Using Lemma 14, under H(G),
we obtain that the multifunction F satisfies H(F).

Now, it is enough to prove that the multifunction F satisfies H(F)1(iv). We suppose (24),
the case when (25) holds can be treated analogously. We show that the following inequality
holds:

(
∂g(x, t, ξ1, η1, ξ1, η1) − ∂g(x, t, ξ2, η2, ξ2, η2), (η1 − η2, η1 − η2)

)
Rd×Rd

≥ −k1‖η1 − η2‖2 − k2‖η1 − η2‖‖ξ1 − ξ2‖ (26)

for all ξi , ηi ∈ R
d , i = 1, 2, a.e. (x, t) ∈ �C × (0, T ) with k1, k2 ≥ 0. Under (24), it fol-

lows that g(x, t, ζ, ρ, ·, ·) is regular for all ζ , ρ ∈ R
d , a.e. (x, t) ∈ �C × (0, T ). Using this

regularity, by Theorem 2.3.10 of [6] and Proposition 5.6.33 of [7], we have

∂g(x, t, ζ, ρ, ξ, η) ⊂ ∂ξg(x, t, ζ, ρ, ξ, η) × ∂ηg(x, t, ζ, ρ, ξ, η)

= (
N∗

1 ∂j1(x, t, ζ, ρ,N1ξ) + N∗
2 ∂j3(x, t, ζ, ρ,N2ξ)

)

× (
N∗

1 ∂j2(x, t, ζ, ρ,N1η) + N∗
2 ∂j4(x, t, ζ, ρ,N2η)

)

= (
∂j1(x, t, ζ, ρ, ξν)ν + (

∂j3(x, t, ζ, ρ, ξτ )
)
τ

)

× (
∂j2(x, t, ζ, ρ, ην)ν + (

∂j4(x, t, ζ, ρ, ητ )
)
τ

)
,

where ∂g denotes the subdifferential of g with respect to (ξ, η), N1 ∈ L(Rd ,R), N2 ∈
L(Rd ,R

d) are operators defined by N1ξ = ξν, N2ξ = ξτ for all ξ ∈ R
d with their adjoints

N∗
1 ∈ L(R,R

d), N∗
2 ∈ L(Rd ,R

d) given by N∗
1 r = rν, N∗

2 ξ = ξτ for all r ∈ R, ξ ∈ R
d i.e.,

N∗
2 = N2.

Let (χi, σ i) ∈ ∂g(x, t, ξi, ηi, ξi , ηi), (x, t) ∈ �C × (0, T ) with ξi , ηi ∈ R
d , i = 1, 2.

For simplicity of notation we omit the dependence on (x, t). Then for k = 1,2 we
have χk ∈ ∂j1(x, t, ξk, ηk, ξkν)ν + (∂j3(x, t, ξk, ηk, ξkτ ))τ and σ k ∈ ∂j2(x, t, ξk, ηk, ηkν)ν +
(∂j4(x, t, ξk, ηk, ηkτ ))τ which means that

χ1 = α1ν + γ1τ , σ 1 = β1ν + δ1τ , χ2 = α2ν + γ2τ , σ 2 = β2ν + δ2τ ,

with

αi ∈ ∂j1(x, t, ξi, ηi, ξiν), βi ∈ ∂j2(x, t, ξi, ηi, ηiν),

γi ∈ ∂j3(x, t, ξi, ηi, ξiτ ), δi ∈ ∂j4(x, t, ξi, ηi, ηiτ )
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for i = 1, 2. By the hypotheses H(jk)1 for k = 1,3, we have

∣
∣(∂jk(x, t, ξ1, η1, ξ1ν) − ∂jk(x, t, ξ2, η2, ξ2ν)

)
(η1ν − η2ν)

∣
∣

≤ Lk

(
2‖ξ1 − ξ2‖ + ‖η1 − η2‖

)‖η1 − η2‖,
whereas for k = 2,4 we have

(
∂jk(x, t, ξ1, η1, η1ν) − ∂j(x, t, ξ2, η2, η2ν)

)
(η1ν − η2ν)

≥ −Lk

(‖ξ1 − ξ2‖ + 2‖η1 − η2‖
)‖η1 − η2‖.

Using the last four inequalities and the fact that (ζτ , ρ)Rd = (ζ, ρτ )Rd for all ζ , ρ ∈ R
d , we

calculate

(
∂g(x, t, ξ1, η1, ξ1, η1) − ∂g(x, t, ξ2, η2, ξ2, η2), (η1 − η2, η1 − η2)

)
Rd×Rd

= (
χ1 − χ2, η1 − η2

)
Rd + (

σ 1 − σ 2, η1 − η2

)
Rd

= (α1 − α2)(η1ν − η2ν) + (β1 − β2)(η1ν − η2ν)

+ (γ1 − γ2, η1τ − η2τ )Rd + (δ1 − δ2, η1τ − η2τ )Rd

≥ −k1‖η1 − η2‖2 − k2‖η1 − η2‖‖ξ1 − ξ2‖,
with k1 = max{L1,2L2,L3,2L4} and k2 = max{2L1,L2,2L3,L4}. Hence the proof of the
property (26) is complete.

Next we will prove that the subdifferential ∂G of the functional G defined by (19) satis-
fies the condition

〈
∂G(t,w1, z1,w1, z1) − ∂G(t,w2, z2,w2, z2), (z1 − z2, z1 − z2)

〉
L2(�C ;Rd )2

≥ −k1‖z1 − z2‖2
L2(�C ;Rd )

− k2‖z1 − z2‖L2(�C ;Rd )‖w1 − w2‖L2(�C ;Rd ) (27)

for all wi , zi ∈ L2(�C;R
d), a.e. t ∈ (0, T ) with k1, k2 ≥ 0, where ∂G denotes the subd-

ifferential of G(t,w, z, ·, ·). Similarly as in the proof of Lemma 12 and Theorem 2.7.5 of
Clarke [6], we use the property that if (u, v) ∈ ∂G(t,w, z,u, v) for a.e. t ∈ (0, T ) then

(
u(x), v(x)

) ∈ ∂g
(
x, t,w(x), z(x), u(x), v(x)

)
for a.e. (x, t) ∈ �C × (0, T ),

for every w, z, u, v, u, v ∈ L2(�C;R
d). For the proof of (27), let wi , zi , ui , vi ∈ L2(�C;R

d)

with (ui, vi) ∈ ∂G(t,wi, zi,wi, zi) for i = 1, 2, a.e. t ∈ (0, T ). From the aforementioned
property, we know that

(
ui(x), vi(x)

) ∈ ∂g
(
x, t,wi(x), zi(x),wi(x), zi(x)

)

for a.e. (x, t) ∈ �C × (0, T ). Exploiting the inequality (26), we have

((
u1(x), v1(x)

) − (
u2(x), v2(x)

)
,
(
z1(x) − z2(x), z1(x) − z2(x)

))
Rd×Rd

≥ −k1

∥∥z1(x) − z2(x)
∥∥2 − k2

∥∥w1(x) − w2(x)
∥∥∥∥z1(x) − z2(x)

∥∥

for a.e. x ∈ �C . Integrating this inequality over �C and applying the Hölder inequality, we
obtain
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〈(
u1, v1

) − (
u2, v2

)
, (z1 − z2, z1 − z2)

〉
L2(�C ;Rd )2

=
∫

�C

((
u1(x) − u2(x)

) · (z1(x) − z2(x)
) + (

v1(x) − v2(x)
) · (z1(x) − z2(x)

))
d�

≥ −k1‖z1 − z2‖2
L2(�C ;Rd )

− k2‖z1 − z2‖L2(�C ;Rd )‖w1 − w2‖L2(�C ;Rd ),

which means that (27) is satisfied.
Finally we show that the multifunction F defined by (22) satisfies H(F)1(iv). Let ui ,

vi ∈ V , t ∈ (0, T ) and zi ∈ F(t, ui, vi) for i = 1, 2. By the definition of F , we have

z1 = a1 + a2, (a1, a2) = R∗(η1, η2) = (
γ ∗η1, γ

∗η2

)
,

(η1, η2) ∈ ∂G(t, γ u1, γ v1, γ u1, γ v1),

z2 = b1 + b2, (b1, b2) = R∗(ξ1, ξ2) = (
γ ∗ξ1, γ

∗ξ2

)
,

(ξ1, ξ2) ∈ ∂G(t, γ u2, γ v2, γ u2, γ v2),

with ai , bi ∈ Z∗ and ηi , ξi ∈ L2(�C;R
d), i = 1, 2. Exploiting (27) and the continuity of the

trace operator, we obtain

〈z1 − z2, v1 − v2〉Z∗×Z = 〈a1 + a2 − b1 − b2, v1 − v2〉Z∗×Z

= 〈
(η1, η2) − (ξ1, ξ2), (γ v1 − γ v2, γ v1 − γ v2)

〉
L2(�C ;Rd )2

≥ −k1ce‖γ ‖2‖v1 − v2‖2 − k2ce‖γ ‖2‖v1 − v2‖‖u1 − u2‖,
where ce > 0 is the embedding constant of V into Z and ‖γ ‖ is the norm of the trace
operator. Thus the condition H(F)1(iv) holds with m2 = cek1‖γ ‖2 and m3 = cek2‖γ ‖2. The
proof of the lemma is complete. �

In order to formulate and prove the results on the existence and uniqueness of solutions
to the hemivariational inequality in Problem (HVI), we need the following two lemmas.

Lemma 17 Under hypotheses H(A), H(B), H(C), H(f ) and H(jk) for k = 1, . . . ,4, every
solution of the Problem P with the multivalued mapping of the form (22), with G : (0, T ) ×
L2(�C;R

d)4 → R of the form (19) and its integrand g : �C × (0, T ) × (Rd)4 → R given by
(14), and the operators A, B and C defined by (9), (10) and (11) respectively, is a solution
to Problem (HVI).

Proof Let u ∈ V with u′ ∈ W be a solution of Problem P . Then there exists z ∈ Z ∗ such
that

u′′(t) + A
(
t, u′(t)

) + B
(
t, u(t)

) +
∫ t

0
C(t − s)u(s) ds + z(t) = f (t) a.e. t,

z(t) ∈ SR∗∂G
(
t,R

(
u(t), u′(t)

)
,R

(
u(t), u′(t)

))
a.e. t ∈ (0, T ),

u(0) = u0, u′(0) = u1.

(28)

Hence, by the definition of the multivalued term, we obtain z(t) = z1(t) + z2(t),
(z1(t), z2(t)) = (γ ∗η1(t), γ

∗η2(t)) and (η1(t), η2(t)) ∈ ∂G(t, γ u(t), γ u′(t), γ u(t), γ u′(t))
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for a.e. t ∈ (0, T ), where ηi ∈ L2(0, T ;L2(�C;R
d)), i = 1, 2. The last inclusion, by the

definition of the subdifferential is equivalent to

〈
η1(t), u

〉
L2(�C ;Rd )

+ 〈
η2(t), v

〉
L2(�C ;Rd )

≤ G0
(
t, γ u(t), γ u′(t), γ u(t), γ u′(t);u,v

)
(29)

for all u, v ∈ L2(�C;R
d) and a.e. t ∈ (0, T ). On the other hand, by Lemmas 11 and 12, we

have

G0
(
t, γ u(t), γ u′(t), γ u(t), γ u′(t);u,v

)

=
∫

�C

(
j 0

1

(
x, t, u(t), u′(t), uν(t);uν

) + j 0
2

(
x, t, u(t), u′(t), u′

ν(t);vν

)

+ j 0
3

(
x, t, u(t), u′(t), uτ (t);uτ

) + j 0
4

(
x, t, u(t), u′(t), u′

τ (t);vτ

))
d� (30)

for all u, v ∈ L2(�C;R
d), a.e. t ∈ (0, T ). By (28), (29) and (30), for all v ∈ V and a.e.

t ∈ (0, T ), we deduce

〈
f (t) − u′′(t) − A

(
t, u′(t)

) − B
(
t, u(t)

) −
∫ t

0
C(t − s)u(s) ds, v

〉

= 〈
z(t), v

〉
Z∗×Z

= 〈
η1(t), γ v

〉
L2(�C ;Rd )

+ 〈
η2(t), γ v

〉
L2(�C ;Rd )

≤
∫

�C

(
j 0

1

(
x, t, u(t), u′(t), uν(t);vν

) + j 0
2

(
x, t, u(t), u′(t), u′

ν(t);vν

)

+ j 0
3

(
x, t, u(t), u′(t), uτ (t);vτ

) + j 0
4

(
x, t, u(t), u′(t), u′

τ (t);vτ

))
d�,

which means that u is a solution to Problem (HVI). The proof of the lemma is complete. �

Lemma 18 Assume the function definitions and hypotheses of Lemma 17. If either j1 =
j3 = 0 or j2 = j4 = 0, then u is a solution to Problem (HVI) if and only if u is a solution to
Problem P .

Proof In view of Lemma 17, it is enough to show that every solution to Problem (HVI)
is a solution to Problem P . Let u ∈ V with u′ ∈ W be a solution of Problem (HVI), i.e.,
u(0) = u0, u′(0) = u1 and

〈
f (t) − u′′(t) − A

(
t, u′(t)

) − B
(
t, u(t)

) −
∫ t

0
C(t − s)u(s) ds, v

〉

≤
∫

�C

(
j 0

1

(
x, t, u(t), u′(t), uν(t);vν

) + j 0
2

(
x, t, u(t), u′(t), u′

ν(t);vν

)

+ j 0
3

(
x, t, u(t), u′(t), uτ (t);vτ

) + j 0
4

(
x, t, u(t), u′(t), u′

τ (t);vτ

))
d� (31)

for all v ∈ V , a.e. t ∈ (0, T ), where the operators A, B and C are defined by (9), (10)
and (11), respectively. From H(j)reg , by Lemmas 11 and 12, we know that equalities (15)
and (20) hold, which implies
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∫

�C

(
j 0

1

(
x, t, u(t), u′(t), uν(t);vν

) + j 0
2

(
x, t, u(t), u′(t), u′

ν(t);vν

)

+ j 0
3

(
x, t, u(t), u′(t), uτ (t);vτ

) + j 0
4

(
x, t, u(t), u′(t), u′

τ (t);vτ

))
d�

= G0
(
t, γ u(t), γ u′(t), γ u(t), γ u′(t);γ v, γ v

)
(32)

for all v ∈ V , a.e. t ∈ (0, T ). Suppose now that j1 = j3 = 0. Then g is given by
g(x, t, ζ, ρ, ξ, η) = j2(x, t, ζ, ρ, ην) + j4(x, t, ζ, ρ, ητ ) for all ζ , ρ, ξ , η ∈ R

d , a.e. (x, t) ∈
�C × (0, T ) and is independent of ξ , and consequently G is given by

G(t, ŵ, ẑ, û, v̂) =
∫

�C

(
j2

(
x, t, ŵ(x), ẑ(x), v̂ν(x)

) + j4

(
x, t, ŵ(x), ẑ(x), v̂τ (x)

))
d�

for ŵ, ẑ, û, v̂ ∈ L2(�C;R
d), a.e. t ∈ (0, T ) and is independent of û. We denote the latter by

G1, i.e.,

G(t, ŵ, ẑ, û, v̂) = G1(t, ŵ, ẑ, v̂) for ŵ, ẑ, û, v̂ ∈ L2
(
�C;R

d
)
, a.e. t ∈ (0, T ), (33)

with G1 : (0, T ) × L2(�C;R
d)3 → R. We observe that

G0(t, ŵ, ẑ, û, v̂;u,v) = G0
1(t, ŵ, ẑ, v̂;v) (34)

for all ŵ, ẑ, û, v̂, u, v ∈ L2(�C;R
d), a.e. t ∈ (0, T ), where G0

1 denotes the generalized
derivative of G1(t, ŵ, ẑ, ·), and

∂G(t, ŵ, ẑ, û, v̂) = {0} × ∂G1(t, ŵ, ẑ, v̂) (35)

for all ŵ, ẑ, û, v̂ ∈ L2(�C;R
d), a.e. t ∈ (0, T ), where ∂G1 denotes the generalized gradient

of G1(t, ŵ, ẑ, ·). From (31)–(34), we obtain

〈
f (t) − u′′(t) − A

(
t, u′(t)

) − B
(
t, u(t)

) −
∫ t

0
C(t − s)u(s) ds, v

〉

≤ G0
1

(
t, γ u(t), γ u′(t), γ u′(t);γ v

)
(36)

for all v ∈ V , a.e. t ∈ (0, T ). Using the equality

G0
1

(
t, γ u(t), γ u′(t), γ u′(t);γ v

) = (G1 ◦ γ )0
(
t, γ u(t), γ u′(t), u′(t);v)

(which is a consequence of Theorem 2.3.10 of [6] and the regularity of G1(t, ŵ, ẑ, ·)), from
(36), it follows that

f (t) − u′′(t) − A
(
t, u′(t)

) − B
(
t, u(t)

) −
∫ t

0
C(t − s)u(s) ds

∈ ∂(G1 ◦ γ )
(
t, γ u(t), γ u′(t), u′(t)

) = γ ∗∂G1

(
t, γ u(t), γ u′(t), γ u′(t)

)
(37)

for a.e. t ∈ (0, T ). The last equality follows from Theorem 2.3.10 of [6].
On the other hand, we observe that the multifunction F defined by (22), with G given

by (33), is now of the form
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F(t, ũ, v) = SR∗∂G
(
t,R(̃u, v),R(̃u, v)

) = SR∗({0} × ∂G1

(
t,R(̃u, v), γ v

))

= S
({0}, γ ∗∂G1

(
t,R(̃u, v), γ v

)) = γ ∗∂G1(t, γ ũ, γ v, γ v)

for all ũ, v ∈ V , a.e. t ∈ (0, T ). Therefore, from (37), we have

f (t) − u′′(t) − A
(
t, u′(t)

) − B
(
t, u(t)

) −
∫ t

0
C(t − s)u(s) ds ∈ F

(
t, u(t), u′(t)

)

for a.e. t ∈ (0, T ) which means that u is a solution Problem P .
The case when j2 = j4 = 0 can be treated in an analogous way. This completes the proof

of the lemma. �

The following are the existence result for the hemivariational inequality in Prob-
lem (HVI) which are the direct conclusion from the lemmas above and Theorem 7.

Theorem 19 Under the hypotheses H(A), H(B), H(C), H(f ), H(jk) for k = 1, . . . ,4,
either (24) or (25), and the following conditions

ã3 > 4
√

15c2
e‖γ ‖2

(
T max

{
max

1≤k≤4
ck1, c13, c33

}
+ max

{
max
1≤k≤4

ck2, c23, c43

})

and

ã4 > ce‖γ ‖2

(
max{L1,2L2,L3,2L4} + T√

2
max{2L1,L2,2L3,L4}

)
,

Problem (HVI) admits a solution.

Theorem 20 Assume the hypotheses of Theorem 19. If, in addition, either j1 = j3 = 0 or
j2 = j4 = 0, then the hemivariational inequality in Problem (HVI) admits a unique solution.

4 Applications to Viscoelastic Mechanical Problems

The aim of this section is to explain, by providing several examples, formulations of multi-
valued boundary conditions of mechanics. We consider boundary conditions resulting from
convex or nonconvex and nonsmooth potentials using the concept of a subdifferential. We
restrict ourselves to one-dimensional examples, referring to Chap. 4.6 of [30] for two- and
three-dimensional contact laws. We present specific examples of contact and friction laws
which can be met in mechanics and which lead to the subdifferential boundary conditions
of the form

−σν(t) ∈ ∂j1
(
x, t, u(t), u′(t), uν(t)

) + ∂j2
(
x, t, u(t), u′(t), u′

ν(t)
)
, (38)

−στ (t) ∈ ∂j3

(
x, t, u(t), u′(t), uτ (t)

) + ∂j4

(
x, t, u(t), u′(t), u′

τ (t)
)

(39)

on �C × (0, T ).
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4.1 Prescribed Normal Stress and Nonmonotone Friction Laws

Let us consider the following boundary conditions on �C × (0, T ):

−σν(t) = S(t), (40)

−στ (t) ∈ ∂j4

(
x, t, u(t), u′(t), u′

τ (t)
)
. (41)

Equation (40) states that the normal stress is prescribed on �C × (0, T ) and is given by
S = S(x, t) ≥ 0. Such a condition makes sense when the real contact area is close to the
nominal one and the surfaces are conforming. Then S = S(x, t) is the contact pressure and
it is given by the ratio of the total applied force to the nominal contact area. It is considered
(see Chaps. 2.6 and 10.1 of Shillor et al. [41]) to be a good approximation when the load is
light and the contact surface is transmitted by the asperity tips only. This law is of the form
(38) with j1(x, t, ζ, ρ, r) = S(x, t)r and j2 = 0, where S ∈ L∞(�C × (0, T )), S ≥ 0 is a
given normal stress. It is clear that j1(x, t, ζ, ρ, ·) is convex (hence regular), and that H(j1)

and H(j1)1 hold.

4.1.1 Nonmonotone Friction Independent of Slip and Slip Rate

We consider the nonmonotone friction laws which are independent of the slip displacement
and the slip rate. This is the case when the superpotential j4 = j4(x, t, ζ, ρ, θ) is independent
of (ζ, ρ) and nonconvex in θ . Then the friction law (41) takes the form

−στ (t) ∈ ∂j4

(
x, t, u′

τ (t)
)

on �C × (0, T ). (42)

This law appears (cf. Sect. 7.2 of Panagiotopoulos [34]) in the tangential direction of the
adhesive interface and describes the partial cracking and crushing of the adhesive bond-
ing material. Several examples of zig-zag friction laws from Sect. 2.4 of Panagiotopou-
los [34] can be formulated in the form (42). For instance, let j4 : R → R be given by
j4(r) = min{ϕ1(r), ϕ2(r)}, where ϕ1(r) = ar2, ϕ2(r) = a

2 (r2 + 1), r ∈ R (for simplicity
we also drop the (x, t)-dependence) and a > 0. Its subdifferential is as follows:

∂j4(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ar r ∈ (−∞,−1) ∪ (1,+∞),

2ar r ∈ (−1,1),

[a,2a] r = 1,

[−2a,−a] r = −1.

By Theorem 2.5.1 of [6], we know that ∂j4(r) ⊂ co{ϕ′
1(r), ϕ

′
2(r)} and that the subdifferential

∂j4 has at most linear growth. Since j4 is the minimum of the strictly differentiable functions,
the function −j4 is regular. From the above and Proposition 2.1.1 of [6], the hypothesis
H(j4) holds.

Another example of nonmonotone friction law can be obtained from the nonconvex func-
tion j4 : R

d → R given by

j4(ξ) =
{

‖ξ‖2 if ‖ξ‖ ≤ M,

M2 if ‖ξ‖ > M
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for ξ ∈ R
d , where M is a positive constant. This function can be represented as a difference

of convex functions, i.e., j4(ξ) = ϕ1(ξ) − ϕ2(ξ) for ξ ∈ R
d , where ϕ1(ξ) = ‖ξ‖2 and

ϕ2(ξ) =
{

0 if ‖ξ‖ ≤ M,

‖ξ‖2 − M2 if ‖ξ‖ > M.

Since ∂ϕ1(ξ) is a singleton for ξ ∈ R
d , by Lemma 14 of [29], we deduce that −j4 is regular

and ∂j4(ξ) = ∂ϕ1(ξ) − ∂ϕ2(ξ) for ξ ∈ R
d . Additionally, it is easy to observe that j4 satisfies

H(j4).

4.1.2 Contact with Nonmonotone Normal Damped Response

This contact condition is of the form (38) with j1 = 0 and it models the situations with
granular or wet surfaces in which the response of the foundation depends on the normal
velocity of the body. For simplicity, we describe the case when

−σν(t) ∈ ∂j2

(
u′

ν(t)
)

on �C × (0, T ).

The specific example of the nonmonotone normal damped response condition is given by
the following nonconvex, regular and d.c. function

j2(r) =

⎧
⎪⎨

⎪⎩

0 if r < 0,

− 1
2 r2 + r if 0 ≤ r < 1,

1
2 if r ≥ 1,

∂j2(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < 0,

[0,1] if r = 0,

−r + 1 if 0 < r < 1,

0 if r ≥ 1.

It is clear that |∂j2(r)| ≤ 1 + |r| for r ∈ R; The function j2 can be represented as the differ-
ence of convex functions, i.e. j2(r) = ϕ1(r) − ϕ2(r), r ∈ R, where

ϕ1(r) =

⎧
⎪⎨

⎪⎩

1
2 r2 − r + 1 if r < 0,

1 if 0 ≤ r < 1,
1
2 r2 − r + 3

2 if r ≥ 1,

ϕ2(r) = 1

2
r2 − r + 1.

Since ϕ1, ϕ2 are convex functions, ∂ϕ1, ∂ϕ2 have a sublinear growth with ∂ϕ2 being a sin-
gleton, we deduce by Lemma 14 of [29] that j2 is regular. From the above and the Proposi-
tion 2.1.1 of [6], it is obvious that H(j2) holds. Next, we verify that η1 ≤ η2 − (r1 − r2)

for all r1 < r2 and ηi ∈ ∂j2(ri), i = 1, 2 which implies relaxed monotonicity condition
(∂j2(r1) − ∂j2(r2))(r1 − r2) ≥ −|r1 − r2|2 (cf. Remark 15), as well as H(j2)1.

4.2 Viscous Contact with Tresca’s Friction Law

We consider a model of damped response contact with time-dependent Tresca’s friction law.
In this model the contact is characterized by the following boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−σν(t) = k(x)|u′
ν(t)|q−1u′

ν(t),

‖στ (t)‖ ≤ ψ(t) with

‖στ (t)‖ < ψ(t) ⇒ u′
τ (t) = 0,

‖στ (t)‖ = ψ(t) ⇒ ∃λ ≥ 0 : στ (t) = −λu′
τ (t)



28 A. Kulig

on �C × (0, T ), where k ∈ L∞(�C), k > 0 a.e. on �C , 0 < q ≤ 1, ψ ∈ L∞(�C × (0, T ))

and ψ ≥ 0 a.e. on �C × (0, T ), cf. Shillor and Sofonea [40] and Chap. 13 of Han and
Sofonea [11]. These boundary conditions are of the form (38) and (39) with j1 = j3 = 0,
j2(x, t, ζ, ρ, r) = k(x)

q+1 |r|q+1 and j4(x, t, ζ, ρ, θ) = ψ(x, t)‖θ‖. Therefore

∂j2(x, t, ζ, ρ, r) = k(x)|r|q−1r,

∂j4(x, t, ζ, ρ, θ) = ψ(x, t)∂‖θ‖ =
{

ψ(x, t)B(0,1) if η = 0,

ψ(x, t)
η

‖η‖ if η 
= 0.

Thus H(j2)1 holds with c20 = c23 = ‖k0‖L∞(�C), c21 = c22 = 0 while j4 satisfies H(j4)1 with
c40 = ‖ψ‖L∞(�C×(0,T )), c41 = c42 = c43 = 0 and H(j4)2; j4 is also convex (so regular) in θ

and H(j4)3 holds. Classically the Tresca friction law is characterized by a given constant
friction bound, that is, ψ(x, t) = const., cf., e.g., Amassad and Fabre [1], Amassad and So-
fonea [2, 3], Duvaut and Lions [10], Han and Sofonea [11], Panagiotopoulos [33], Selmani
and Sofonea [40].

4.3 Other Nonmonotone Friction Contact Laws

In this part we comment on the boundary conditions expressed in the form

−στ (t) ∈ ∂j3
(
x, t, u(t), u′(t), uτ (t)

)
. (43)

This relation describes the tangential contact law between reinforcement and concrete
in a concrete structure. In literature, cf. Chap. 2.4 in Panagiotopoulos [34] (diagrams of
Fig. 2.4.1), Chap. 1.4 in Naniewicz and Panagiotopoulos [30] (diagrams of Fig. 1.4.3), one
can find a couple of examples of the superpotential j3 which describes such type of contact.
We give two examples of nonconvex functions which appear in (43).

In the first example the superpotential j3 : R → R and its subdifferential are of the form

j3(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < 0,

2r2 if 0 ≤ r < 1,

− 1
3 r3 + r2 + 3r − 5

3 if 1 ≤ r < 3,
22
3 if r ≥ 3,

∂j3(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < 0,

4r if 0 ≤ r < 1,

−r2 + 2r + 3 if 1 ≤ r < 3,

0 if r ≥ 3.

It is easy to check that the function j3 satisfies H(j3). Furthermore, j3 can be represented as
the difference of convex functions, j3(r) = ϕ1(r) − ϕ2(r), r ∈ R with

ϕ1(r) =
{

0 if r < 0,

2r2 if r ≥ 0,
ϕ2(r) =

⎧
⎪⎨

⎪⎩

0 if r < 1,
1
3 r3 + r2 − 3r + 5

3 if 1 ≤ r < 3,

2r2 − 22
3 if r ≥ 3.

Since ϕ1, ϕ2 are convex functions and ∂ϕ1 is a singleton, from Lemma 14 of [29] we deduce
that the function −j3 is regular. Moreover, its subdifferential ∂j3 is Lipschitz which implies
that the condition H(j3)1 is fulfilled.
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In the second example, we consider the function j3 : R → R such that

j3(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < 0,

r2 if 0 ≤ r < 1,
1
8 r4 − r3 + 9

4 r2 − 3
8 if 1 ≤ r < 3,

3 if r ≥ 3,

∂j3(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < 0,

2r if 0 ≤ r < 1,
1
2 r3 −3r2 + 9

2 r if 1 ≤ r < 3,

0 if r ≥ 3.

Similarly to the previous case, j3 satisfies H(j3)1. It can be also represented as the difference
of convex functions, j3(r) = ϕ1(r) − ϕ2(r), r ∈ R, where

ϕ1(r) =
{

0 if r < 0,

r2 if r ≥ 0,
ϕ2(r) =

⎧
⎪⎨

⎪⎩

0 if r < 1,

− 1
8 r4 + r3 − 5

4 r2 + 3
8 if 1 ≤ r < 3,

r2 − 3 if r ≥ 3.

Again, from the fact that ϕ1 and ϕ2 are convex functions and ∂ϕ1 is a singleton, we conclude
that −j3 is regular.

We end this section with indications on specific applications of research on contact prob-
lems. It is of importance to provide various applications of the theoretical results to contact
problems arising in real world. The applications concern the following areas.

Construction and exploitation of machines The understanding of contact problems are ex-
tremely important in various branches of engineering such as structural foundations, bear-
ings, metal forming processes, drilling problems, the simulation of car crashes, the car brak-
ing system, contact of train wheels with the rails, a shoe with the floor, machine tools,
bearings, motors, turbines, cooling of electronic devices, joints in mechanical devices, ski
lubricants, and many more, cf., e.g., Andrews et al. [4], Chau et al. [5], Kuttler and Shillor
[20, 21], Rochdi et al. [37] and Sofonea and Matei [43].

Biomechanics The applications concerns the medical field of arthoplasty where bonding
between the bone implant and the tissue is of considerable importance. Artificial implants of
knee and hip prostheses (both cemented and cement-less) demonstrate that the adhesion is
important at the bone-implant interface. These applications are related to contact modeling
and design of biomechanical parts like human joints, implants or teeth, cf. Panagiotopou-
los [34], Rojek and Telega [38], Rojek et al. [39], Shillor et al. [41] and Sofonea et al. [42].

Plate tectonics and earthquakes predictions Results may be applicable to models with
nonmonotone strain-stress laws in rock layers. Frictional contact between rocks are de-
scribed by several models, cf. Dumont et al. [9], Ionescu et al. [12, 14], Ionescu and
Nguyen [13], Ionescu and Paumier [15, 16] and Rabinowicz [36].

Medicine and biology Results are applicable to nonmonotone semipermeable membranes
and walls (biological and artificial), cf. Duvaut and Lions [10]. In particular, contact prob-
lems for piezoelectric materials will continue to play a decisive role in the field of ultrasonic
transducers for imaging applications, e.g., medical imaging (sonogram), nondestructive test-
ing and high power applications (medical treatment, sonochemistry and industrial process-
ing), cf. Shillor et al. [41], Sofonea et al. [42].
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