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Abstract A general approach to continuum thermodynamics that was advocated by R.S.
Rivlin is carried out for thermoelastic materials which can also depend on strain rate. An
entropy function is constructed (rather than assumed to exist). A method for treating ther-
momechanical internal constraints for such materials is also presented. In this method, the
properties of a constrained material are inherited from those of a related equivalence class
of unconstrained materials.
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1 Introduction

There is a vast literature on continuum thermodynamics, much of which is strongly influ-
enced by the work of Coleman and Noll (see [1, 2]), in which an entropy function is admitted
as a primitive variable. Carlson [3] adopts this approach in deriving a linearized theory of
thermoelasticity.

An alternative, more classical, approach to thermodynamics was proposed by Rivlin
[4-6], whereby for any given class of materials, special processes are specified which, in
conjunction with “Part 1” of the second law of thermodynamics, lead to the construction of
an entropy function.! Generally speaking, the more complicated the class of materials, the
more difficult it is to establish the existence of an entropy function. The advantage, however,

IRivlin’s approach to the thermodynamics of deformable media has been applied in [7-11].
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is that one is forced to be explicit about the conditions under which the entropy function can
be constructed. In contrast, in the postulational approach of Coleman and Noll [1, 2], en-
tropy is just assumed to exist and no indication is given of any process that would lead to its
construction.

After some preliminaries in Sect. 2, a general class of thermoelastic materials with vis-
cosity is considered in Sect. 3. As in classical thermodynamics, it is important to distinguish
between equations of state for such materials and the remaining constitutive equations. In
particular, e(X, t), the internal energy per unit mass at a particle X of a body at time 7,
is uniquely determined by the value of Lagrangian strain E at (X, ) and the value of the
absolute temperature 0(X, t), as indicated in (19);. This is an equation of state, the state
being uniquely specified by (E, 8).2 In contrast, as will become evident, only a portion of
the symmetric Piola-Kirchhoff stress tensor S is determined by (E, ), and hence (19), is
not an equation of state. However, (25),, which gives the value S° of S that would be mea-
sured if E and 6 were held fixed, is an equation of state, and S¢, like ¢, is a state function.
“Part 1” of the second law of thermodynamics enables us to construct other state functions,
in particular entropy 1 and Helmholtz free energy . Further, as shown in Sect. 3, for ther-
moelastic materials with viscosity, the equilibrium stress and entropy are obtainable from
as a potential function (see (40); ). The corresponding equilibrium value of Cauchy stress
is given by (43).

In Sect. 4, strain-temperature internal constraints for thermoelastic materials with vis-
cosity are considered, using a method introduced by Casey and Krishnaswamy [7]. In this
approach, the constraint manifold is used to partition the class of unconstrained materials
in Sect. 3 into disjoint equivalence classes. The materials in an equivalence class share cer-
tain properties on the constraint manifold. A unique constrained material is made to corre-
spond to each equivalence class of unconstrained materials. The properties of a constrained
material are inherited from those of the corresponding equivalence class of unconstrained
materials.

A list of references to other treatments of internally constrained materials may be found
in [7].

2 Preliminaries

Consider a deformable 3-dimensional continuum B moving in inertial space under the in-
fluence of forces and subject to heating. Let x denote the position vector of a particle X € B
in the body’s current configuration, at time ¢. Let X be the position vector of X in a fixed
occupiable reference configuration. Also, let 6 (> 0) be the absolute temperature at X in the

2In the spirit of classical thermodynamics, a state (or equilibrium state) of the particle X (in practice, a small
homogeneous body) of thermoelastic material with viscosity may be defined as the collection of all physical
properties that are uniquely determined by fixing the values of E and 6. Since all of the other thermodynamic
properties (or other “parameters of state”) are fixed once the values of E and 6 are given, there is a one-to-
one correspondence between the set of states and the 7-dimensional space to which the point (E, 6) belongs.
Thus, a state of the material point X may be represented by a point in the strain-temperature space. Clearly,
any topological image of the latter space could also be used to represent the states, corresponding to different
choices of independent variables. For a general process, (E, 0) becomes a parameterized function of time,
producing a curve in strain-temperature space; some variables, such as stress, will depend on the strain rate E,
while state functions are now determined by the instantaneous values of E and 6. For equilibrium processes,
the state remains fixed. It is always possible to hold X in equilibrium in any desired state, but in general
non-equilibrium processes, X must go through a 1-parameter family of states and cannot be expected to be
in equilibrium in any of them.
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current configuration of B, and let 6, be a uniform temperature field in the reference config-
uration. The motion and temperature history of B are then described by the two functions

x=xX,1), 0=0X,1). (€))

These and all other functions are assumed to be as smooth as needed. The pair {x, ®} is
called a process. Let

D 9 9
v=X_x=2%  p=2%X  _4etF (>0),
Dr By 9X
90 1 @
=, E=—-(F'F-1.
2o X 2( )

Here, F” denotes the transpose of F, I is the identity tensor, and the symmetric tensor E is
the Lagrangian strain tensor. When the velocity and temperature fields are represented by
their spatial descriptions, we may define their gradients L and g:
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We recall that
E =F'DF, “)

where D = %(L +L7) is the rate of deformation tensor.
The pair (E,6) may be regarded as a point in a 7-dimensional Euclidean strain-
temperature space £, equipped with an inner product

((E1,01), (E2,0,)) =E; - E; +6,6,, ©)

where A - B = tr(ATB) is the usual inner product between two tensors A and B. If the body
B is composed of unconstrained material, then it can undergo an arbitrary process, and, for
each particle X € B, (E(X, t), 0(X, t)) will describe a general curve C in the 7-dimensional
region of £ for which det(2E + I) > 0. Let this curve be parameterized by & = £(¢), with
é > 0. We then have an inverse function ¢ = 7(£). In the presence of an internal constraint,
(E(X,1),6(X, t)) will be confined to a 6-dimensional Riemannian manifold embedded in
£, as will be discussed in Sect. 3.
For any process {x, @}, we may define an associated process {x+, ©*} by

X H=Q)xX, 1) +e(t), tt=t+a,

(6)
O X, H=0Xn,
where Q(¢) is a proper orthogonal tensor-valued function, ¢(¢) is a vector-valued function,
and a is a constant. These processes correspond to superimposing rigid rotations Q and
translations ¢ on y, keeping the temperature the same, and shifting the origin of the time-
coordinate. Under the transformations (6), 3, the fields F, J, E, g, and gy transform as

DE* .
F'=QWF, J'=J E'=E S ==E g'=Q0s &=
)
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Let po (> 0) and p be the mass densities of B in its reference and current configurations,
respectively. Conservation of mass yields

,00=,OJ, (8)

and it is obvious that under the transformations (6); » 3,
ot =p. ©

Let b be the body force per unit mass and denote the Cauchy stress tensor by T. The
pointwise equations for balance of linear and angular momentum are Cauchy’s two laws

divT + pb = pv, T =T. (10)

For internally unconstrained materials, it is assumed that if a material can experience a
process {x, ®}, then it can also experience all the processes in (6) and that®

T =Q®)TQ (7). (11)

It then follows from (10); and (9) that v —b™ = Q(¢)(v — b).
The symmetric Piola-Kirchhoff stress tensor S is given by

JT =FSF’. (12)

From (7) 2, (11), and (12), it follows that ST = S.

Let ¢ be the internal energy per unit mass, and let » be the heat supplied per unit mass
per unit time. Also, let q and q, denote the spatial and referential descriptions of the heat
flux vector, so that

Jq=Fqo. 13)
The field equation representing energy balance is given in spatial form by
pé=pr—divq+T-D, (14)

and in referential form by
p0é = por —Divgo + S - E. (15)

In the absence of internal constraints, it is assumed that under the transformations (6); 7 3,
¢ and q become

eh =e, q" =Q(q, (16)

and then q(‘; = qo. Also, for internally unconstrained materials, it is clear from (9), (16), 5,
and (14) that r ¥ =r.

3For internally constrained materials, the “objectivity” condition (11) must be modified [12].
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3 Unconstrained Thermoelastic Materials with Viscosity

Consider a set M of materials defined by the constitutive relations
e=&F,0), T=T(FF0,g,  q=qFFo6g. (17)

We may set £(I, 6y) = 0. We assume that when the temperature gradient vanishes, there is
no heat flux:

G(F,F,0,0)=0. (18)

An element of the set M will be denoted by m. The form of the response functions in
(17)1 2,3 depend on the reference configuration. Also, for inhomogeneous materials, the vari-
able X may be understood to be added to the list of independent variables, in which case
they may be said to define a material point.

Using standard arguments, it may be shown that the invariance requirements (11) and
(16); 2 imply that (17); 2,3 can be expressed in the properly invariant form

e=2¢(E,0), S=S(E.E.0.g). Q= (E.E.0.g). 19)

Also £(0, 6y) =0.
It follows from (3),, (13), (17)3, (19)3, and (18) that

Go(E.E,0,0)=0. (20)

As mentioned in the Introduction, a state of a particle X satisfying the constitutive equa-
tions (19); 2.3 is uniquely determined by the value of the pair (E, 0). Thus, each point in
strain-temperature space £ represents a unique state of the material point.*

The constitutive equations (17); 23 hold for all processes, and in particular, for equilib-
rium processes, for which F is independent of time and 6 is constant, and the state of X is
then fixed. Let

T’ = T*(F, 6) = T(F, 0, 0, 0), 1)

i.e., the restriction of T gotten by setting F and g equal to zero. If the material were held
in equilibrium at the values F and 6, the value T¢ of Cauchy stress would be measured.
Equation (21) is an equation of state associated with the constitutive equation (17),. Without
any loss in generality, we may rewrite (17), as

T=T+T"F,F,0,g), (22)
with

T*(F, 0,6,0) = 0. (23)

4In classical parlance, the variables E and 6 are independent parameters of state. The dependent parameters of
state, such as ¢, can be expressed as functions of the independent parameters, yielding equations of state. The
independent variables F and 6, with which we started out in (17)1, also determine a unique state. However,
the invariance requirements led us to the reduced set of independent variables E and 6, with dimensionality
7 instead of 10. The variables E and g0 are not parameters of state, but can influence S and qg, as indicated
in (19)7 3.
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Similarly,
S =S°(E,0) +S*(E,E, 6, g), 24)

with

S¢(E,0) =S(E, 0,6,0), JT° =FS°F’, JT*=FS*F’,  S*(E,0,0,0)=0.
(25)
It is important to observe that for non-equilibrium processes, the state of X may change with
time in an arbitrary fashion, but nonetheless, the values of the functions £(E, 6) and S¢(E, 6)
are determined by the instantaneous values of E and 6.
A homothermal process is one for which the temperature is independent of position x,
and hence g = 0, and equivalently, by (3),, go = 0. By virtue of (20), for any homothermal
process, the energy equation (15) reduces to

poé = por +S-E, (26)

where ry signifies the heating that is associated with the homothermal process.
Employing the parameter £ (¢ > 0) for the curve C traced out by (E(¢), 6(¢)) in strain-
temperature space £, we may express (26) as

Deg +s. PE; 27
ZE — oor CE
Lo DE POTH DE
Let
- '
g = —. (28)
§
Then, (27) becomes
De S 4s DE 29)
2 = o0 Ry
Lo D& POT H DE
Inserting (24) in (29), we obtain
De Fu +{S°(E,0) +S*(E éDE 6,0 DE (30)
— = pof’ , E——.0, =,
Lo DE PorH DE DE

which holds for every homothermal process.

We now consider a family of homothermal processes, such that for each X € B,
(E(X, 1),0(X, 1)) generates the same oriented curve C in strain-temperature space, but tra-
verses it more and more slowly. In the limit as 5 — 0, (30) becomes

D oo+ (B, 0) - 2F 31)
pODS—pOFHO s Df’
where (25)4 has been invoked and
Fro=limry, (32)

£E—0

which is assumed to exist. We call the limit of the family of ever more slow homothermal
processes a “quasistatic homothermal process”.
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“Part 1” of the second law of thermodynamics may be regarded as asserting that the
Clausius integral

& =
I= / 1O ge (33)
&

is path-independent in strain-temperature space £. Path-independence leads immediately to
the existence of an entropy function n = 7(E, #), defined by

5 Fro
n= / — (a) do + const., (34)
) 0
where any path may be chosen between an arbitrary point (E(&), 8(£,)) and (E(£),6(£)).
We may choose the arbitrary constant in (34) such that 77(0, 6) = 0.
It follows from (34) that for every quasistatic homothermal process

D _
2n _rao (35)
D¢ 0
The Helmbholtz free energy function ¢ = U (E, ) is given by
Y =& —nb. (36)
Note that 9/ (0, 6) = 0. Clearly,
D De D Do
_lﬂ:___ﬁ —-—n—. (37)
D§ D& D& D§
It follows from (31), (35), and (37) that for quasistatic homothermal processes
Dy DE DO
— =8°E,0)  — — —. 38
P he (E,0) Y (38)
Hence,
CIA DE CL Do
— —S(E,0) ¢ - — — E,0); - —=0 39
!POBE ( )} D§+p0[39+n( )} DE (39)

for all quasistatic homothermal processes.’ Since the terms in parentheses are independent
of g—? and g—g, it follows that
o . oy
S°(E, 0) = pp— (E, 0), E,0)=——(E,0). 40
(E,0) pan( ) n(E, 6) 36( ) (40)
Since each term in (40); and (40), is independent of both time rates and the gradient g,
these equations hold for all processes. They are called the Gibbs relations. Note that only the

rate-independent part of the stress S is derivable from the Helmholtz free energy function.
By virtue of (40), for any process, we have

oot = S¢(E, 0) - E — poii(E, 0)6. (41)

5The notation “% ” is used as an abbreviation for the symmetric tensor %{% + (g—E)T }.
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98 J. Casey

This is the Gibbs equation. Equivalently, in view of (36),
poé = S°(E, 0) - E+ po6)i, 42)

which again holds for all processes.
The Gibbs relation (40), for S¢ yields

~

CLV.
T¢(F, 0) = pF—F", 43
F.0)=p o (43)

where (8) and (25), have been invoked. Similarly, (41) and (42) furnish
pyr =T¢(F,6)-D — pnb (44)

and
pé=T(F,0)-D+ pon, 45)

where (4) has also been employed.®
With the help of (45) and (22), the energy equation (14) may be expressed in the form

pnd = pr —divq + T*(F,F, 0, g) - D. (46)
Similarly, (15) may be expressed as
o = por —Divgo + S*(E, E, 0, g)) - E, 47)

where use has been made of (42) and (24).

We observe that a material m € M may now be specified by providing constitutive equa-
tions for the functions v/ (E, 0), S*(E, E, 6, g), and §o(E, E, 6, g). The functions S¢(E, 0)
and n(E, 6) can then be obtained from the Gibbs relations (40); », while S(E, E, 0, go) can
be found from (24) and (19), and £(E, ) can be obtained from (36).

As “Part 2” of the second law of thermodynamics, one may adopt any appropriate entropy
inequality. For example, the Clausius-Duhem inequality implies that [1, 2]

pitf = pr —divq + L8 (48)
for all processes {x, @}, the functions 1 and q being provided by (40), and (17)3. The in-
equality (48) will place restrictions on the response functions, and hence on which members
of M are thermodynamically allowable. For the class of materials being considered here, it
follows from (46) and (48) that

T*(F,F,O,g)-D—% > 0. (49)

For homothermal processes, (49) becomes

T*(F,F,6,0)-D > 0. (50)

61t is worth observing that in view of (45), entropy changes can be expressed in terms of changes in measur-
able quantities.
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If T* were independent of g, an inequality of the form (50) would hold for all processes.
If we set F = 0 in (49), we obtain

qF,0,0,2)-g=<0. (S
If q were independent of F, an inequality of the form (51) would hold for all processes.

Remark I The class of thermoelastic materials is obtained from (17); » 3 by taking the re-
sponse functions T and q to be independent of the rate F. The Cauchy stress tensor T then
coincides with T¢, defined by (21). For thermoelastic materials, the Gibbs relation (43) holds
for T. Likewise, (40), holds for S. The rate-dependent variables in (46), (47), and (49) dis-
appear. For more details, see [7, 10, 11].

4 Strain-Temperature Internal Constraints

Consider an internal constraint of the form
$(F.0) =0, (52)

where q~§ is a sufficiently smooth scalar-valued function, with ¢~5(I, 6p) = 0. If (52) is satisfied
by a process {x, ®}, we assume that it is also satisfied by the processes {x, ©®*} defined
in (6) 2.3. It then follows that (52) can be expressed in the properly invariant form

¢(E,0) =0, (53)

with ¢ (0, 6y) = 0. Note that the internal constraint is described by a function ¢ of state. We
assume that (g—;‘;, %) # 0, so that (53) defines a 6-dimensional hypersurface S embedded in
the strain-temperature space £. S is called the constraint manifold. In general, its geometry
is Riemannian.
For any process satistying (53), (E(¢), 6(t)) will trace out a curve lying on S, and
o . ¢ .
8E'E+806—0. (54)
The vector (E, é) lies in the tangent space TpS to S at the point P = (E, 6) and (%, g—‘g) is
orthogonal to S.
Following the procedure of Casey and Krishnaswamy [7], we utilize the constraint man-
ifold S to induce an equivalence class structure on the set of unconstrained materials M.
Let m; and m, be any two materials in M, specified as follows:

mi: Yi(E,0), SHE.E,0,8), quEE, 0,g),

. ) . (55)
my: Yo (E,0), S3E.E,0,8), qnEE,0,g).

We may write

. U .
S, =S{(E,0)+S{(E,E,0,8)= poﬂ(E, 0) +ST(E,E, 0, g),
E
R (56)
Y

S, =S5(E, 0) + Si(E,E,0,g) = e

(E,0) +S3(E, K, 0, g)
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100 J. Casey

and
A 99 A 92
E,0)=——(E,9), E, 0)=——(E,9), 57
m(E, 0) 80( ) n(E, 0) 80( ) (57)
where the Gibbs relations (40); , have been employed for both m, and m,.

The Helmholtz functions ¥, (E, #) and v, (E, 8) of the unconstrained materials m; and
m, can always be evaluated on the constraint manifold S and, in general, will not coincide
with each other there. However, it is evident that for any given ¥, (E, 8), there are infinitely
many materials in M whose Helmholtz functions do coincide with ¥ (E, 6) on S. We may
define an equivalence relation “~” on M by m; ~ m, if and only if 7

V1 (E,0) = Y (E, 6),
S*(E,E,6,8) =S;(E,E,0,g), (58)
a1 (E.E, 0,g) = @ (E,E, 0, g)

for all (E, 0) € S, and for arbitrary values of E and go. When m; ~ m,, we say that m,
“matches” m, on the constraint manifold S. The equivalence class

M(@m)={neM:n~m} 59)

consists of all the materials in M that match a given material m on S. The equivalence
relation “~” partitions M into mutually disjoint nonempty equivalence classes. The set of
equivalence classes, the quotient set, is denoted by M/ ~.

Consider any two materials m; and m, that belong to the same equivalence class M. For
each of these materials, the Gibbs equation (41) holds for all processes:

povr = S{(E, 0) - E — poi; (E, 6)6,

. . ) (60)
pov2 =85(E, 0) - E — poi, (E, 0)6.

Let both m; and m, undergo any process {x, ®@} that satisfies the constraint equation
(53). Since these two materials match one another on S, it follows from the condition (58),
that

Yvo=1v1 (onS) (61)
for the process {x, ®@}. In view of (61) and (60),
S5(E, 0) - E — poii2 (E, 0)8 = S$(E, 0) - E — poii; (E, 0)8 (62)

for all E and 6 that satisfy (54). Introducing a Lagrange multiplier A(E, 60), (E,0) € S, we
deduce from (62) and (54) that

o) - 3p ) .
{S;(E,O)—Si(E,G)—A%’-E+{—poﬁg(E,9)+pof)1(E,9)—A%}0:0 (63)

TRecall that an equivalence relation on a set is reflexive, symmetric, and transitive, i.e., m ~ m, m ~ n implies
that n ~ m, and m ~ n and m ~ p imply that m ~ p, for arbitrary elements m, n, p of the set.
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Nonlinear Thermoelastic Materials with Viscosity 101

forall P € S and for all (E, §) lying in the tangent space TpS. Since the terms in parentheses
in (63) are independent of rates, we conclude that

0 R R 0
SS(E,9>=si<E,9>+xa—§ ponz(Eﬁ):pom(E,e)—x% (nS).  (64)

Thus, the quantity (S5(E,0), —pon2(E, 6)) evaluated on S for material m, is equal to
(S5 (E, 0), —pon: (E, 0)) for material m; plus a component A(g—g, g—g’) which is orthogonal
to S.3 If m, and m, are two specific materials in M (m,), then the function A(E, 0) in (64), ,
has a definite value at each point P € S.

Further, if (64), » and (58), 3 hold for any two materials m, m, € M, then these materials

must belong to the same equivalence class. For, if (64), , hold for any m;, m, € M, then

. 9 . . 0 .
(S508,0) — S{(E.0) B =100 k. pol—in(E,0) + i1 (B.0)) -0 =220 0, (65)

for all P € S and (E, é) € TpS. Adding (65); to (65),, and taking note of (54), we de-
duce that (62) must hold. Hence, in view of the Gibbs equation (40), applied to each of the
materials, the relation (61) must hold. Therefore,

Vn(E,0) = ¥, (E, 0) 4+ const.  (on S). (66)

But, 1/72 0,6) =0= 1/}1 (0, 8y), and the constant must be zero. Therefore (58); is satisfied.
Since we are supposing that (58), 3 hold, it follows that m, ~ m. In other words, it is not
possible for (64); » to hold between materials that belong to distinct equivalence classes in
M/ ~.

For any two materials m, m, belonging to the same equivalence class M, it follows from
(64)1, (58),, and (56)1’2 that

d¢
S$:=S1+r— 67
2 1+ 9E (67

for all (E,0) € S, and for arbitrary values of E and g,. Correspondingly, in terms of Cauchy
stress,

¢

A
T,=T,+ -F-—=
2 1+J 9E

F' ((E,0)€9), (63)
where (12) has been applied.

Using the partition M/ ~ of the set M of unconstrained materials into equivalence
classes, we now construct an associated set M’ of materials by creating a unique element
m' for each equivalence class M € M/ ~, and by assigning distinct elements to distinct
equivalence classes. This defines a one-to-one correspondence (i.e., a bijection) @ between

8In general, (S¢, —po7n1) will have a component orthogonal to S as well as a component lying in the tangent
space to S.

@ Springer



102 J. Casey

the sets M/ ~ and M’ :m’ = ® (M), M = &~ (m'). For each m’ € M’, we assume that

(a) An internally constrained material m’ can experience only processes that
satisfy the strain-temperature constraint equation (53).

(b) Let an internally constrained material m’ undergo any given process that
satisfies the constraint (53). Let m be any (unconstrained) material in
the equivalence class M = @~!(m’), and let m be subjected to the same
process. Then, the values of S, ¢, and q that m possesses during the (69)
process can also be experienced by m’.

(c) If an internally constrained material m’ can experience values S, ¢’, and
q; in any given process, then there exists some (unconstrained) mater-
ial m € M = @~'(m’) that can take on these same values in the given
process.

We proceed to investigate the properties of these newly defined internally constrained
materials. Let m’ be any member of M’ and let it undergo any process that satisfies the
constraint equation (53). Suppose that m’ experiences values §', &', and q in this process.
Let M = @~!(m’) be the equivalence class corresponding to m’. Then, by part (c) of (69),
there exists some material m; € M that can experience these same values. But, since m| €
M, the values are given by constitutive equations. Thus,

S'=S,(E.E.0,8), ¢=5%(E0), q,=quEE 06, g), (70)

with (E, 0) restricted to S. As shown in Sect. 3, m; possesses an entropy function, and the
Gibbs relations (40), , are satisfied. We will assign the values

¥'(E,0) =1 (E,0), n =(E06) (onS) (71)

to the constrained material m’ for the given process.

Let m, be any other member of M, and let it undergo the same process. It will experience
values S,, €;, qo; that are given by the constitutive equations for m,. According to part (b) of
(69), the constrained material m’ can also experience the values S,, €,, qo,. Thus, the values

S=S:(E.E0,2), &=&ESH, §=04nEE0 ), (72)
for (E, 6) € S and arbitrary E, g, are also possible values for m’. We will assign the values
V'(E,0) = yn(E,0), 7' =i(E.0) (onS) (73)

to m' as also being possible. A A
Since m ~ mo, it follows from (58); 2 3 that ¥, S7, and q; coincide with v, 8%, and qp,
respectively, for (E, #) € S and arbitrary values of E and g. In particular, it is evident from

(58)1, (71)1, and (73), that

V'(E.0) =y'(E,6) (on). (74)
Even though m ~ m,, it is not the case, in general, that S{(E, ) coincides with S5(E, 6)

on S. Instead, they are related by (64);. Similarly, S; and S, are related by (67). Further, the
entropy functions 7, (E, ) and 7, (E, 0) are related by (64),.
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It follows from (70)y, (72), (67)1.2, (71)2, (73)2, and (64), that, in any given process
satisfying (53), the values of the symmetric Piola-Kirchhoff stress S and the entropy 7 that
a constrained material can experience are

S=S=Si(E,E,0,g)+ kz—z, pon = poii’ = poi1 (E, 0) — k% (onS). (75
Thus, for a constrained material m’, the pair (S, —pon) has a determinate component which
is obtained from the constitutive equation for any material m, belonging to the equivalence
class @' (m’) and a component A(%, %) which is orthogonal to the tangent space T»S;
the Lagrange multiplier A can have any of the infinitely many values that are permissible
in (67) and (64); », which hold for any two materials in the same equivalence class @ ! (m’).
In general, the determinate component does not lie just in 7pS, but also has a component

orthogonal to TpS.

Remark 2 We note that the sets M and M’, of unconstrained and internally constrained
materials, have no members in common, since for all the materials in M, the pair (S, —po7)
is fully determined by constitutive equations, whereas for every constrained material, there
is an arbitrary component A(22, %) 'which can be made non-vanishing by choosing A to be

9E’ 36
nonzero. Thus, M N M’ = (.

Remark 3 In equation (75);, S; is the stress in a particular unconstrained material 2, and
obeys the objectivity requirement S| = S; under the transformations (6); 3. The constraint
function ¢ is also objective. However, the essential arbitrariness of the Lagrange multiplier
A precludes the assumption that AT = L. We therefore cannot conclude that the stress S in
an internally constrained material is unaltered under the transformations (6)1,24,3.9

Remark 4 Each internally constrained material m’ is associated with a unique equivalence
class M = @~ (m’) of unconstrained materials. By (58),, all of the materials in M share
the same values of Helmholtz free energy ¥ (E, 6) on the 6-dimensional constraint manifold
S embedded in 7-dimensional strain-temperature space £. We have assigned this common
value of &(E, 0), (E,0) € S, to the constrained material m’. If we place 6 curvilinear coor-

dinates ¢“ on S and take partial derivatives %, a=1,2,...,6, we can obtain a formula
for the component of (S, —pyn) that lies in the tangent space TpS (see Sect. 6 of [7]).'°
However, m’ always also possesses a component which is orthogonal to T»S. The represen-
tations (75) 2, which do not identify the tangential components of (S, —ppn) explicitly, are

more convenient in practice.

Remark 5 A theory paralleling the present one may be developed for strain-entropy con-
straints of the form

¢*(E,n) =0. (76)

9Casey and Carroll [12] offer the example of a rigid body, which is fully constrained internally. Under an ar-
bitrary applied force system, an (ideal) rigid body undergoes a rigid motion. There is no constitutive equation
for Cauchy stress T; T is entirely reactive. At rest, T may be zero, but in motion, it generally cannot be zero.
If (11)1 were to hold, and if T were zero at rest, it would have to vanish for all motions. Thus, we are led to
a contradiction.

10por internally constrained hyperelastic materials, Carlson and Tortorelli [13] showed that the tangential
component of stress is equal to the tangential derivative of the strain energy function.
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An equivalence relation ~* is defined on the set M of unconstrained materials by replac-
ing the Helmholtz free energy function 1/7(E, 0) with the internal energy function &(E, n),
evaluated on the strain-entropy constraint manifold. A new partition M/ ~* is thereby ob-
tained. Instead of (41), equation (42), written in terms of E and 7, is employed to obtain
expressions for (S, 8) for materials belonging to the same equivalence class M* € M/ ~*.
A set M* of internally constrained materials is constructed by placing the members of M*
into one-to-one correspondence with the equivalence classes in M/ ~*.

For thermoelastic materials, this procedure is carried out in detail in [11]. Other types
of internal constraints, such as stress-temperature constraints, have been considered in [14].
Different types of internally constrained materials exhibit interestingly different features and
invite further investigation.

Open Access  This article is distributed under the terms of the Creative Commons Attribution Noncommer-
cial License which permits any noncommercial use, distribution, and reproduction in any medium, provided
the original author(s) and source are credited.
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