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Abstract Several issues pertaining to the phenomenological description of rate-independent
plasticity in crystalline solids are discussed. These include energy dissipation, the specifica-
tion of initial plastic deformation, material symmetry and the modeling of scale-dependent
response.
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1 Introduction

We are concerned with several open questions in the phenomenological continuum theory
of plasticity as it applies to metallic crystals. Among these are the restrictions to be imposed
on constitutive equations ensuring that energy dissipation accompanies plastic evolution, the
connection between plastic deformation and the crystal lattice and its implications for the
initial value of plastic deformation, the issues of scale dependence and plastic spin, the effect
of plastic deformation on residual stress, and the role played by a local relaxed configuration
that encodes information about the intrinsic properties of the crystal. Attention is confined
to rate-independent response in the setting of a purely mechanical theory. We build on our
recent efforts to understand and clarify theories based on a factorization of the deformation
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gradient into elastic and plastic parts. Thus, the present work is a sequel to [1]. The ideas
discussed are based on Noll’s theory of materially uniform bodies with inhomogeneities [2],
the considerable potential of which is amply illustrated by the wide variety of applications
discussed in [3, 4] and elsewhere.

We use several standard notational devices, such as At , A−1, A∗, Sym A, Skw A,
Dev A, tr A and JA. These are respectively the transpose, the inverse, the cofactor, the sym-
metric part, the skew part, the deviatoric part, the trace and the determinant of a tensor A,

regarded as a linear transformation from a three-dimensional vector space to itself, the lat-
ter being identified with the translation space of the usual three-dimensional Euclidean point
space. We also use Sym,Skw, Orth and Orth+ to denote the sets of symmetric, skew, orthog-
onal and rotation tensors, respectively. We denote the standard tensor product of vectors by
interposing the symbol ⊗. The inner product of tensors A,B is denoted by A · B = tr(ABt ),
and the associated norm is |A| = √

A · A. Lastly, the notation FA stands for the tensor-valued
derivative of a scalar-valued function F(A) [5].

Section 2 contains a summary of various relevant equations, including equations of mo-
tion and conditions on the strain-energy and yield functions consistent with ideas about the
intrinsic properties of a basic crystal type that is deemed to constitute the material. In partic-
ular, the yield function is allowed to depend on dislocation density, both to introduce scale
effects into the model and to reflect ideas about the nature of yield in crystalline solids. In
Sect. 3 we introduce the dissipation and deduce restrictions on the response functions nec-
essary for any process involving plastic flow to be dissipative in the sense that the rate of
change of the mechanical energy of an arbitrary part of the body is non-positive. This leads
to the conclusion, for conservative boundary-value problems, that the potential energy of the
body is likewise non-increasing in such processes for which the initial velocity vanishes and
thus minimized by any asymptotically stable equilibria.

Following ideas prevalent in the subject, in Sect. 4 we adapt Il’yushin’s postulate [6–9]
and examine its consequences, including the maximization of dissipation by stresses belong-
ing to a current yield surface associated with the present value of the dislocation density.
There we also discuss the plastic spin and show that it may be suppressed at the constitutive
level without affecting the stress, dissipation or motion predicted by the theory. This is im-
portant for the determination of the plastic deformation, which in turn is necessary for the
specification of the dislocation density. Conversely, plastic spin affects neither elastic strain
nor dislocation density, and thus has no effect on the state of the material. These consid-
erations lead, in Sect. 5, to a normality rule giving the plastic deformation rate relative to
the current yield surface. The non-standard features of an associated consistency condition,
due to dislocation density, are also discussed. In Sect. 6 the role played by plastic defor-
mation in the formulation of the linear theory of elasticity for residually-stressed solids is
explored. Simple formulas are given connecting the residual stress and the stiffness to the
intrinsic properties of the underlying crystal. The model is specialized to cubic crystals in
Sect. 7, where the forms assumed by the strain-energy and yield functions are discussed and
a formula for the effect of dislocation on yield is proposed.

2 Outline of the Basic Theory

The variables that describe the evolution of an elastic-plastic solid in the purely mechani-
cal theory are the motion χ(X, t) and the plastic deformation tensor K(X, t), where X is
the position of a material point in a fixed reference placement κr of the body. The values
x = χ(X,t) are the positions of these points at time t and generate the current placement
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κt of the body as X ranges over κr . As is usual, we suppose positions in κr and κt to be
in one-to-one correspondence and thus the deformation gradient, F = ∇χ , to be invertible.
These variables are used to define the elastic deformation

H = FK. (1)

The measure of plastic deformation used most frequently in the literature is

G = K−1. (2)

We further suppose κr to be a kinematically possible configuration of the body, so that
JF > 0. The elastic deformation is assumed to be the value of the deformation gradient in
the absence of plastic deformation, this condition being defined by K = I, the identity for
second-order tensors. Thus, we impose JH > 0 and conclude that JK > 0. The elastic strain
energy of the body is

U =
∫

κt

ψ(H)dv, (3)

where ψ is the energy per unit volume of κt . We assume the material of the body to be
uniform in the sense that the strain-energy function does not depend explicitly on X.

The local equations of motion are

Div P + ρrb = ρr ẍ, PFt ∈ Sym in κr , (4)

where ρr(X) is the mass density in κr , Div is the referential divergence (i.e., the divergence
with respect to X), superposed dots are used to denote material derivatives (∂/∂t at fixed
X), b is the body force per unit mass, and

P = F� (5)

is the Piola stress, in which

� = J−1
K KSKt (6)

is the 2nd Piola-Kirchhoff stress relative to κr , and S = Ŝ(C), where

Ŝ(C) = 2ŴC, (7)

is that relative to an intermediate configuration κi in which H = I. The strain-energy function
referred to κi is

W(H) = JH ψ(H), (8)

and, in (7), Ŵ is the reduced strain energy defined by

Ŵ (C) = W(H), (9)

where

C = HtH (10)

is the elastic Cauchy-Green deformation tensor. That the strain energy should depend on H
via C is necessary and sufficient for the symmetry of the Cauchy stress T, related to P by
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P = TF∗ (see [1, 10]). This, of course, is equivalent to (4)2. The Cauchy stress is given in
terms of S by

JH T = HSHt . (11)

The strain-energy function is subject to the restriction

Ŵ (C) = Ŵ (RtCR) (12)

associated with the transformation H → HR, where the tensor R ∈ Orth+ is an arbitrary
element of the symmetry group for the material; i.e., the symmetry group relative to the
elastically undistorted configuration κi (see [1, 4] for further discussion). In particular, ma-
terial uniformity implies that this restriction is effective, with the same symmetry group, at
every material point. Using (7), it is straightforward to show that

S → RtSR (13)

under symmetry transformations and hence that T is invariant.
The system (4) is augmented by suitable boundary and initial data, the former typically

being of the type:

χ(X, t) and p(X,t) assigned on (∂κr)χ and (∂κr)p, respectively, (14)

where (∂κr)χ and (∂κr)p are complementary parts of the boundary ∂κr of κr , and

p = PN (15)

is the traction, N being the exterior unit normal to ∂κr . Initial data

χ(X, t0) = χ0(X), χ̇(X, t0) = χ̇0(X), K(X,t0) = K0(X) (16)

are imposed on the closure of κr , these being compatible with (14) at t = t0. A flow rule for
the evolution of K is discussed in Sect. 5.

Constitutive Hypothesis and the Intermediate Configuration

Following our earlier work [1], we suppose Ŵ (·) to be a strictly convex function with a
minimum at C = I. This restriction is appropriate for metallic crystals in the elastic range;
i.e., for C close to I. It implies, for a given motion χ and Cauchy stress T, that the inter-
mediate configuration κi is determined at any fixed instant t , apart from orientation, by an
equilibrium unloading process to a state of zero stress [1]. This process can be achieved in
principle [1], if only locally, and is independent of the processes that the present theory pur-
ports to describe. Thus, if, at fixed t, H1 and H2 are elastic deformations to (the translation
space of) κt from local configurations κi1 and κi2 , respectively, then there is a rotation A
such that

H1 = H2A. (17)

Let W1(H1) be the strain-energy function associated with κi1 . The Cauchy stress obtained
by using κi2 coincides with that derived by using κi1 , as assumed, if and only if the strain-
energy function associated with it is W2(H2) = W1(H2A) [1]. The rotation may be time-
dependent, but is held fixed when relating the strain-energy and stress-response functions
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pertaining to two local references in accord with the aforementioned unloading process,
performed at fixed time. In other words, at each instant elastic unloading to a state of zero
stress yields infinitely many local relaxed configurations that are related to each other by
rotations, these being associated with the considered instant and thus independent of time.
Equation (7) then yields the relation between the stresses relative to κi1 and κi2 as

S1 = AtS2A. (18)

Lattice Vectors and the Initial Plastic Deformation

The theory described here is applicable to single crystals. In conventional crystal-elasticity
theory, fixed linearly independent lattice vectors li (i ∈ {1,2,3}) are mapped to their images
ti in κt in accordance with the Cauchy-Born hypothesis. That is, they are regarded as mate-
rial vectors. Here, we retain this hypothesis insofar as the elastic deformation is concerned.
Thus, we suppose that ti = Hli where lj are the lattice vectors in κi. Indeed, we identify κi

with Span{l1, l2, l3}. The ti are observable in principle. In practice they are computed from
their duals ti , which are measured in X-Ray diffraction experiments [11].

It follows from (1) that ti = Fri , where ri = Kli are the lattice vectors in κr . The plastic
deformation is then given by K = ri ⊗ li , where the lj are the duals of the lj . To see this we
write K = KI with I = li ⊗ li . It follows similarly that H = ti ⊗ li . We assume the li associ-
ated with a material point to be fixed once and for all and thus to be material vectors. These
are the lattice vectors of the unstressed, undistorted lattice. The orientation of the associated
triad may be chosen arbitrarily. However, in view of our assumption of material uniformity,
once selected these vectors are extended to every material point and are therefore indepen-
dent of X. Stated differently, the set of lattice vectors is assumed to be an assigned property
of the uniform material. Accordingly, K̇(X, t) = ṙi (X, t) ⊗ li . We may thus interpret plastic
flow as the failure of the ri to be material vectors. Further, the initial value K0(X) in (16) is
given by r0

i (X) ⊗ li , where r0
i are the values of ri at time t0. If κr is identified with κt0 , then

these can be computed from their measurable duals.

Yield Criterion

Following conventional ideas for the description of rate-independent response we assume
plastic flow to be possible only if the material is in a state of yield. We express this as the
requirement that the elastic deformation belong to a manifold that may be parametrized by
other variables. For example, motivated by G.I. Taylor’s formula [12] giving the flow stress
as a function of dislocation density, and using the fact that the stress S may be expressed in
terms of C via (7), we assume yield to be possible if [1]

G(E,α) = 0, (19)

where G is a suitable yield function,

E = 1

2
(C − I) (20)

is the elastic strain and

α = JKK−1 Curl K−1 (21)

is the dislocation density. Relevant to the ensuing development is the current yield surface,
defined, for fixed α, by G(·,α) = 0. For simplicity’s sake we assume G to be differentiable.
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In (21), Curl is the referential curl operation defined in terms of the usual vector operation [5]
by

(Curl A)c = Curl(Atc) (22)

for any fixed vector c.
Plastic evolution; i.e., K̇�= 0, is deemed to be possible only when (19) is satisfied, and

the variables E,α are constrained to belong to the elastic range defined by G ≤ 0, assumed
to be a connected set in R

6 × R
9. In view of our restriction to materially uniform bodies we

require that the same yield function pertain to all material points.
In [1] it is shown that (19) is invariant under superposed rigid-body motions and (global)

changes of reference placement and is thus intrinsic to the material, provided that the func-
tion G is likewise invariant (see also [13, 14]). The same statement applies to the reduced
strain-energy function (9) and to the associated stress, defined by (7). In particular, the stated
invariance properties are possessed by the tensors C and α [1, 2, 13, 14]. Further, the yield
function is subject to the same material-symmetry restriction as that imposed on the strain-
energy function; i.e.,

G(E,α) = G(RtER,RtαR). (23)

It is important to note that the dislocation density is well-defined under symmetry transfor-
mations only if the symmetry group is discrete (see Theorem 8 of [2]). Accordingly, yield
functions of the kind considered are meaningful only for crystalline solids.

The body is dislocated if α does not vanish; in this case K−1 is not a gradient and from
(1) it follows that neither is H. In fact [1],

α = JH H−1 curl H−1, (24)

in which curl is the spatial curl. Then, κi has only local significance in the sense that it cannot
be identified with a global placement of the body in Euclidean space. That is, a differentiable
position field that identifies material points in κi does not exist.

In dislocation theory α is frequently referred to as the density of geometrically necessary
dislocations. Dislocations not accounted for by α are said to be statistically stored [15]. The
distinction is due to the implicit choice of length scale at which the theory is intended to
apply. In particular, if material points in the continuum theory correspond to many unit cells
of the crystal lattice, then there may be dislocations existing below the scale of a material
point that are not accounted for by the density α. These are classified as statistically stored.
They are not of the geometrically necessary variety because they occur either as dipoles or
as closed loops or self-terminating structures whose largest dimensions are smaller than the
smallest scale resolved by the considered continuum theory. These make no net contribution
to Burgers circuits [1, 14] in the continuum theory and so are not accounted for by α. Con-
sequently, the classification of dislocations is inherently scale dependent. If the continuum
theory is applicable at arbitrarily small length scales, then the associated density of statisti-
cally stored dislocations vanishes. This view is implicit in Taylor’s considerations [12]. On
the other hand, if the theory is designed for use at larger scales, then presumably the associ-
ated statistically stored dislocations should play a role in the constitutive equations for yield
and plastic flow. One possibility is to regard them as internal variables. They could then
affect yielding and evolve according to suitable flow rules. Although a number of propos-
als for associated constitutive equations have been advanced, it appears to us that the issue
is far from settled. However, a comprehensive theory of plasticity with (generic) internal
variables, compatible with the present framework, has been developed elsewhere [16, 17].
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We do not consider statistically stored dislocations in this work. Instead, we concentrate
on the non-standard features of the theory due to the presence of the density defined by
(21) in yield criteria. In particular, we note that the presence of the dislocation density in
the yield function introduces a natural length scale in the theory. Scale effects have been
documented in experiments [18] and their role in relevant boundary-value problems for
elastic-plastic materials has been studied [19, 20]. Thus, (19) furnishes an avenue for the
description of such effects regardless of its efficacy or otherwise as a comprehensive model
of the role played by dislocations per se in the plastic response of metals. Indeed, assuming
such effects to be attributable to the plastic deformation and its gradient, they necessarily
manifest themselves in constitutive equations through the tensor α [13, 14].

3 Energy Dissipation and Asymptotically Stable Equilibria

The power of the forces acting on an arbitrary part p of the body is

P (π, t) =
∫

∂π

p · ẋdA +
∫

π

ρrb · ẋdV, (25)

where π , with piecewise smooth boundary ∂π, is the region occupied by p in the reference
configuration κr . The sum of the kinetic and strain energies of p is

∫
π

�dV, where � = 	 + 1

2
ρr |ẋ|2 (26)

and

	(F,K) = JKW(FK) (27)

is the strain energy per unit volume of κr . The dissipation is denoted by D(π, t) and defined
as the difference between the power supplied to p and the rate of change of the total energy
in p. Thus,

D(π, t) = P (π, t) − d

dt

∫
π

�dV. (28)

The dissipation is assumed to be non-negative for every sub-body; i.e.,

D(π, t) ≥ 0. (29)

We are interested in potential applications of the theory to shock physics. Let s ⊂ κr be a
smooth shock surface propagating with speed U in the direction of its local orientation Ns .

Associated jump conditions holding on such singular surfaces are well known [21]. Thus,

[P]Ns = −ρrU [ẋ] and [ẋ] ⊗ Ns = −U [F] on s. (30)

Here, [·] = (·)+ − (·)− is the discontinuity on s, where superscripts ± are used to denote the
limits of functions as s is approached from the regions into which Ns and −Ns are directed,
respectively. The average of these limits is denoted by 〈·〉. Thus, 〈·〉 = 1

2 [(·)+ + (·)−] and it
follows immediately that [fg] = [f ]〈g〉 + 〈f 〉[g].

Regarding the balance (28), we have [21]

d

dt

∫
π

�dV =
∫

π

�̇dV −
∫

s′
U [�]dA, (31)
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where s ′ = s ∩ π. Using (15) and applying the divergence theorem to the subregions of
smoothness comprising π yields

∫
∂π

p · ẋdA =
∫

π

Div(Pt ẋ)dV +
∫

s′
[Pt ẋ] · NsdA. (32)

Next, we form the inner product of the material velocity with the local equation of motion
(4)1 holding in π \ s, obtaining

Div(Pt ẋ) + ρrb · ẋ =
(

1

2
ρr |ẋ|2

)·
+ P · Ḟ = �̇ + D, (33)

where [1]

D = E · K̇K−1 (34)

in which

E = 	I − FtP (35)

is Eshelby’s energy-momentum tensor.
The contribution of the integral over s may be reduced with the aid of the identities

[Pt ẋ] · Ns = ([Pt ]〈ẋ〉 + 〈Pt 〉[ẋ]) · Ns = [PNs] · 〈ẋ〉 + 〈P〉 · [ẋ] ⊗ Ns , (36)

which may be combined with the shock relation (30)1 and [ẋ] · 〈ẋ〉 = 1
2 [|ẋ|2] to derive

[Pt ẋ] · Ns = −1

2
ρr [|ẋ|2] − U〈P〉 · [F]. (37)

This is further reduced with the aid of (30) and [F] = [F]Ns ⊗ Ns . Thus,

〈P〉 · [F] = [F]Ns · 〈P〉Ns = Ns · [Ft ]〈P〉Ns = Ns · [FtP]Ns − ρrU
2Ns · 〈Ft 〉[F]Ns . (38)

In the final term we use Ns · 〈Ft 〉[F]Ns = Ns · [F]〈Ft 〉Ns = 1
2 Ns · [FtF]Ns and combine the

resulting expression with (25), (26), (28), (32) and (37), obtaining

D(π, t) =
∫

π

DdV +
∫

s′
DsdA, (39)

where D is defined by (34), and

Ds = UNs ·
(

[E ] + 1

2
ρrU

2[FtF]
)

Ns . (40)

Equation (39) applies to a subset π ′ of π containing no discontinuities; i.e.,

D(π ′, t) =
∫

π ′
DdV ≥ 0. (41)

Because π ′ is otherwise arbitrary, we have

D ≥ 0 a.e. in κ. (42)
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Application of (39) to a region π ′ intersecting s, followed by collapse of π ′ onto s, furnishes

D(π ′, t) =
∫

s′′
DsdA ≥ 0, (43)

where s ′′ = π ′ ∩ s. Localization now yields

Ds ≥ 0 on s. (44)

(see also [22]). Conversely, (42) and (44) yield (29).
It is immediate that (42) holds as an equality if K̇ = 0. Here, we assume that (42) holds

as an equality if and only if K̇ = 0. Then,

D > 0 if and only if K̇ �= 0 a.e. in κ. (45)

This is the hypothesis of strong dissipation introduced in [1], according to which plastic
evolution is inherently dissipative. It is shown there to imply that K is invariant under super-
posed rigid-body motions.

We apply (28) to the special case π = κ for which the traction p is assigned on a part
∂κp of the boundary and position is assigned on the complementary part. In the case of
conservative loading the body force in κ and traction on ∂κp are such that

P (κ, t) = d

dt
L, (46)

where L is a suitable load potential. It follows that

d

dt
[K(κ, t) + E(κ, t)] + D(κ, t) = 0, (47)

where

E = U − L (48)

is the total potential energy. Inequality (29) then implies that the mechanical energy K +
E of the body is dissipated. Further, (45) implies that the dissipation is strict at any time
when K̇ does not vanish at some point of the body. Accordingly, if {χ(X, t), K(X,t)}, with
χ̇(X,t0) = 0, is a trajectory tending to {χ∞(X), K∞(X)} a.e. as t → ∞, then E∞ ≤ E0,
where E0 and E∞ are the values of E at times t0 and infinity. It follows that asymptotically
stable states minimize the potential energy of the body.

4 I’llyushin’s Postulate and Its Consequences

I’llyushin’s postulate is the requirement that the net work performed on an arbitrary sub-
body be non-negative in every closed cycle of deformation [6–9]. Here, ‘closed’ refers to
the restriction that deformations, as well as velocities, coincide at times t1 and t2 [5]; in par-
ticular, χ(·, t1) = χ(·, t2) and F(t1) = F(t2). Using (25), (28), (31)–(33) and the localization
theorem [5], we derive from this postulate the inequality

∫ t2

t1

P · Ḟdt ≥ 0, (49)
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holding at every material point in the interior of the body not located on a singular surface.
Equations (26) and (33) are then used to obtain

∫ t2

t1

(	̇ + D)dt ≥ 0. (50)

Suppose plastic evolution occurs in the prescribed interval [ta, tb] ⊂ [t1, t2]. Thus, K̇ and
the dissipation are non-vanishing only for some t ∈ [ta, tb]. In particular, K(t1,2) = K(ta,b),

respectively. Inequality (50) becomes

	(F(t1),K(tb)) − 	(F(t1),K(ta)) +
∫ tb

ta

Ddt ≥ 0, (51)

where we have used F(t1) = F(t2). This may be recast as

∫ tb

ta

[	K(F(t1),K(t)) · K̇(t) + D(t)]dt ≥ 0, (52)

where the derivative in the first term is calculated at fixed F. Dividing by tb − ta, using the
mean-value theorem, and passing to the limit tb → ta yields

	K(F(t1),K(ta)) · K̇(ta) + D(ta) ≥ 0. (53)

From (27) it is straightforward to show [1] that

	K(F(t1),K(t)) = −E (F(t1),K(t))K(t)−t , (54)

where E is defined by (35). Combining this with (34) we reduce (53) to

[E (F(ta),K(ta)) − E (F(t1),K(ta))] · K̇(ta)K(ta)
−1 ≥ 0. (55)

This is a restriction on the state which, at time t1, lies within the elastic range that is current
at time ta. For, (55) involves the plastic deformation only through K(ta); the associated
dislocation density is then fixed at the value α(ta) defined by (21). Further, (55) implies that
the dissipation is maximized at states that lie on the current yield surface.

We note that (55) is equivalent to

[E ′(C(ta)) − E ′(C(t1))] · K(ta)
−1K̇(ta) ≥ 0, (56)

where [1]

E ′ = Ŵ (C)I − CŜ(C) (57)

is the push-forward to κi of the Eshelby tensor, defined by

E ′ = JKKt E K−t . (58)

Small Elastic Strain

In view of our interest in metallic crystals, it is appropriate to restrict the elastic strain to be
small. Accordingly, the strain energy and stress are approximated by

Ŵ � W̃ (E) = 1

2
E · C[E] and S � S̃(E) = C[E], (59)
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respectively, where C is the fixed fourth-order tensor of elastic moduli pertaining to the
undistorted crystal, possessing the usual major and minor symmetries. The convexity hy-
pothesis of Sect. 2 implies that C is positive definite on the linear space of symmetric tensors.
From (20) and (57), E ′ = −S + o(|E|), and, to leading order, (56) reduces to

[S(ta) − S(t1)] · Ġ(ta)G(ta)
−1 ≥ 0, (60)

where S(t) = S̃(E(t)) and E(t1) is such that G(E(t1), α(ta)) ≤ 0; i.e., the elastic deformation
at the start of the cycle belongs to the elastic range that is current at time ta . Our constitutive
hypothesis also implies that S̃(E) is invertible, and hence that the yield function may be
expressed in terms of S instead of E. We write

F(S,α) = G(Ẽ(S),α), (61)

where Ẽ(·) is the inverse of the function S̃(·). The current yield function is

H(·) = F(·,α) (62)

and the current elastic range is defined by H ≤ 0.

To the same order in elastic strain, the dissipation inequality (42) is reduced, with the aid
of (34) and (58), to the statement

S · ĠG−1 ≥ 0 for all Ġ, (63)

and the strong dissipation hypothesis (45) reduces to

S · ĠG−1 > 0 if and only if Ġ �= 0. (64)

Accordingly, the plastic spin, Skw ĠG−1, plays no role in dissipation. Thus, to simplify
matters, we assume that

ĠG−1 ∈ Sym . (65)

Irrelevance of Plastic Spin

We emphasize the fact that the elastic deformation, being defined in terms of a restriction
on the stress (Sect. 2), is simultaneously both kinematical and constitutive in character. Our
hypothesis of strong dissipation implies the same for the plastic deformation; that is, plas-
tic deformation is here defined, in part, in terms of a restriction on material response. This
contrasts with conventional ideas in continuum mechanics, according to which kinematical
and dynamical variables have meaning in their own right, independent of any constitutive
framework. In [1] our interpretation is exploited to justify the imposition of (65) as a con-
stitutive hypothesis. That is, plastic spin plays no role in the storage or dissipation of energy
by the material, and so material properties are deemed to be insensitive to it. Accordingly,
as far as constitutive behavior is concerned, (65) may be imposed without loss of generality.

To elaborate, consider the dissipations relative to two local configurations κi1 and κi2

related by a time-dependent rotation A(t) for t belonging to an open interval I . At each
fixed t ∈ I , we invoke the unloading process discussed in Sect. 2 to conclude that both local
configurations deliver the same deformation and Cauchy stress, provided that G2 = AG1 at
that—hence every—instant in I . Thus, differentiation with respect to time is meaningful
and yields

Ġ2G−1
2 = A(Ġ1G−1

1 + At Ȧ)At . (66)
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Accordingly, from (18), applied at some t ∈ I,

S1 · Ġ1G−1
1 = S2 · Ġ2G−1

2 , (67)

and the dissipations relative to the two local configurations coincide. The same statement ap-
plies to the exact expression for the dissipation given by (34). Further, the dislocation density
remains invariant modulo rotation [1]; i.e., α1 = Atα2A, and the rule G1(E1, α1) = G2(E2,
α2) ensures that the two local configurations furnish the same predictions with respect to
yield.

We now impose (65) on κi2; i.e., we require that Ġ2G−1
2 ∈ Sym and set W(t) =

Skw Ġ1G−1
1 in (66), obtaining

ȦtA = W. (68)

It follows that (65) entails no loss of generality insofar as the deformation, the dissipation
or the Cauchy stress are concerned, provided that a rotation A(t) exists such that (68) is
satisfied for any smooth W(t) ∈ Skw. To see that this is so, consider the initial-value problem

Ḃ = WB; B(0) = B0, (69)

where B0 ∈ Orth+, for which standard theory yields the existence of a unique solution. As
in [5] we define Z(t) = BBt and obtain Ż = W(t)Z − ZW(t) with Z(0) = I. The unique
solution is Z(t) = I; therefore, B(t) ∈ Orth . To show that B(t) ∈ Orth+, we compute J̇B =
B∗ · Ḃ = JB tr W = 0, yielding JB(t) = JB(0) = 1 and hence the claim. The desired rotation
is then given by A = Bt . Thus, at each instant, a local reference κi may be found to nullify
the instantaneous plastic spin induced by the use of any alternative choice.

Remark The conventional theory of crystal plasticity [23–25] rests on a purely kinematical
interpretation of plastic deformation according to which the rate of plastic deformation is
presumed to be expressible in the form

ĠG−1 =
∑

νisi ⊗ni (70)

in which the νi are the slips and the si and ni are orthonormal vectors specifying the ith
slip system. The sum ranges over the currently active slip systems. This is clearly at odds
with (65). To make contact between this hypothesis and the present work we choose Ġ1G−1

1
equal to the right-hand side of (70) and put

Ġ2G−1
2 = A(Sym Ġ1G−1

1 )At , (71)

as required by (66) and (68). Defining s̄i = Asi and n̄i = Ani , we obtain

Ġ2G−1
2 =

∑
νi Sym(s̄i ⊗ n̄i ). (72)

We assume the s̄i and n̄i to have vanishing material time derivatives in accordance the
fact that slip-system vectors are fixed relative to the lattice vectors [23], which have vanish-
ing material derivatives by hypothesis (cf. Sect. 2). The present model thus incorporates the
conventional interpretation of plastic deformation provided that the si and ni are permitted
to be time-dependent. By convention, the latter are considered to be fixed in the standard
interpretation and any change in slip-system orientation is attributed to the elastic deforma-
tion [23–25]. In the present framework we would regard solutions G2 to (72) as the plastic
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deformations while retaining the assumption of fixed slip-system vectors, here denoted by
s̄i and n̄i .

This discussion is intended for those wishing to interpret the present work in the context
of the standard theory of crystal plasticity. However, unlike conventional crystal plasticity
theory the present framework is entirely independent of hypotheses such as (70) pertaining
to the representation of plastic deformation. In particular, we make no use of constitutive
concepts from the standard theory. Instead, the present theory rests entirely on the continuum
mechanics of anisotropic media.

5 Plastic Flow

Invoking well-known facts in convex analysis [8, 26, 27], we conclude from (60) and (62)
that the current elastic range is a convex set and that Ġ(ta)G(ta)

−1 is directed along the
exterior unit normal to the current yield surface at S(ta), the latter being the limit as |S+ −
S−| → 0 of the normalized vector S+ − S− ∈ N (S(ta)), where H(S+) > 0, H(S−) < 0,

and N (S(ta)) is the normal space—the orthogonal complement of the tangent space—to the
current yield surface at S(ta). It follows that a scalar λ(X,t) ≥ 0 exists such that

ĠG−1 = λFS, (73)

wherein the partial derivative on the right-hand side is evaluated at fixed α and for S such
that F(S,α) = 0. Thus, for plastic deformation to evolve (Ġ �= 0), it is necessary that λ > 0.

Inequality (64) then furnishes the restriction

S · FS > 0 (74)

on the associated values of the arguments of the yield function. Integration of (73) yields the
plastic deformation in principle, this being necessary for the determination of the evolving
dislocation density via (2) and (21).

Because (60) is the first-order approximation to (56) for small elastic strain, it is likewise
valid to first order in the stress given by (59). We are referring to the dimensionless stress
obtained on dividing S by the largest eigenvalue of C, the associated norm being on the order
of that of the elastic strain. Accordingly, because (73) derives from (60), for consistency we
approximate the derivative on the right-hand side of (73) to first order in stress and thus
confine attention to yield functions that are quadratic in stress. An example is discussed in
Sect. 7.

For (73) to qualify as a bona fide constitutive equation it must be invariant under com-
patible (i.e., differentiable) changes of reference placement and superposed rigid-body mo-
tions. Such invariance requires that λ be likewise invariant. That this is so may be easily
proved from the invariance of the function F, following, for example, the procedure given
in [1]. Equation (73) must also be form-invariant under material symmetry transformations
characterized by H → HR and G → RtG, where R is any element of the (fixed, discrete)
symmetry group intrinsic to the material, these leaving the Cauchy stress and deformation
unchanged (cf. Sect. 2). This in turn requires that λ → λ under such transformations, this
following from (13), (23), (61), (73) and the consequent transformation FS → RtFSR.

To determine λ we assume that there exists an open interval of time during which plastic
deformation evolves, this being necessary for the existence of a continuous, non-vanishing
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derivative Ġ. Our constitutive hypotheses imply that F vanishes identically in this interval,
and hence the consistency condition

FS · Ṡ + Fα · α̇ = 0. (75)

Here, we use (21) to derive

α̇ = − tr(ĠG−1)α + (ĠG−1)α + J−1
G G(Curl Ġ). (76)

Substituting (73) yields an expression linear in λ and its referential gradient, ∇λ. Accord-
ingly, (75) furnishes a linear constraint on Ṡ and ∇λ jointly, which we do not pause to write
explicitly.

For stresses belonging to the current yield surface, elastic unloading, and the concur-
rent cessation of plastic flow, is associated with stress increments that furnish a stress lying
within the current elastic range. Accordingly, elastic unloading is identified by the condi-
tions H(S) = 0, λ = 0, FS · Ṡ < 0. The alternative, referred to as plastic loading, is asso-
ciated with the conditions F(S,α) = 0, λ > 0 and FS · Ṡ ≥ 0. Equation (75) applies in this
case, and thus implies that Fα · α̇ ≤ 0 during plastic loading. This subsumes neutral loading,
defined by FS · Ṡ = 0 and Fα · α̇ = 0.

Suppose plastic evolution occurs in some region in κr . Suppose that an elastic-plastic
boundary exists, separating the region in question from one in which plastic evolution has
ceased. The field λ vanishes on this boundary, furnishing Cauchy data for the consistency
condition. It is possible to show that the coefficient of ∇λ in the consistency condition
vanishes if and only FαFS ∈ Sym. In such cases the condition reduces to a linear algebraic
equation for λ.

6 Residual Stress and Linear Elasticity Theory

The present framework furnishes a basis for a model of linearly-elastic materials with resid-
ual stress, as well as a means to quantify residual stress in terms of the intrinsic properties
of the material. Thus, to characterize the residual stress in the reference placement κr , we
evaluate (5) at F = I, obtaining

P = �0(X), (77)

with

�0(X) =J−1
K0

K0S0Kt
0, (78)

where

S0(X) = 1

2
C[Kt

0K0 − I], (79)

is the intrinsic stress.
Conventionally, the residual-stress problem is specified by requiring κr to be an equi-

librium placement under no body force with nil traction assigned on the entire bound-
ary [28–30]. Thus,

Div�0 = 0 in κr and �0N = 0 on ∂κr . (80)

This represents an underdetermined system for the field K0(X) and thus for the lattice-vector
fields r0

i (X). Accordingly, equilibrium considerations alone do not suffice to determine the
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residual stress. Further conditions must be given. For example, the prescription of Curl K−1
0

has yielded definite results in some circumstances [31]. In principle, the field K0(X) should
be viewed as an element of an equilibrium state, if any, of the dynamical system that de-
scribes the evolution of the body. This field is then obtained by identifying κr with the
associated equilibrium placement. Consistency with this view requires that

F(S0,α0) < 0 (81)

at all X in κr , where α0 follows from K0 via (21).
Consider a displacement field u(X,t) superposed on κr . The induced deformation gradi-

ent and strain are given respectively by

F = I + ∇u (82)

and

ε = ε + 1

2
(∇u)t (∇u), where ε = Sym(∇u). (83)

The associated elastic strain is

E = 1

2
(Kt

0K0 − I) + Kt
0εK0, (84)

and we assume S = C[E] to be such that F(S,α0) < 0. Accordingly, (5), (6) and (59) may
be combined to obtain the linear approximation [28–30]

P = �0(X) + (∇u)�0(X) + L(X)[ε] + o(|∇u|), (85)

where L is defined by

L(X)[A] =J−1
K0

K0{C[Kt
0AK0]}Kt

0 (86)

for all A ∈ Sym. These results render explicit the roles played by the intrinsic material
properties C as well as the plastic deformations K0(X) admitted by (78)–(80).

7 Example: Cubic Crystals

For cubic crystals the strain-energy function W and the yield function F are invariant under
the group consisting of the rotations that map a cube to itself. To specify W (cf. (59)) we
require the invariant functions that are homogeneous of degree two in the elastic strain E,
these being common to each of the five subclasses of cubic symmetry. They are [32]

(tr E)2, E11E22 + E11E33 + E22E33 and E2
12 + E2

13 + E2
23, (87)

where Eij = E · Sym(ei ⊗ ej ) and {ei} is an orthonormal basis aligned with the cube axes
(i.e.; with the elements of the set {li} of lattice vectors, or their duals). We emphasize the fact
that the orthonormal basis, and hence the orientation of the cube, is arbitrary. Once chosen,
it is considered to remain fixed at the material point in question, and, for materially-uniform
bodies, carried over to all such points. The choice does, however, affect K0(X) (cf. Sect. 2),
this being a natural consequence of the fact that {li} is involved in the definition of plastic
deformation. These points are significant for the practical implementation of the theory.
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To elaborate, consider the set {l∗i } of lattice vectors given by l∗i = Ali , where A is a fixed,
spatially uniform rotation. Then, l∗i = Ali and the plastic deformation based on the starred
lattice is (cf. Sect. 2) G∗ = AG. This satisfies the flow rule (cf. (73))

Ġ∗(G∗)−1 = λA(FS)At = λF ∗
S∗ , (88)

where S∗ = ASAt is the stress relative to the starred lattice and F ∗(S∗,α∗) = F(S,α), with
α∗ = AαAt , is the associated yield function. It follows that if G(t) is a plastic deformation
with G(t0) = G0, then G∗ is the same plastic deformation, modulo rotation, provided that
G∗(t0) = AG0. The sole effect of an alternative choice of lattice is to alter the initial value
of plastic deformation by a uniform rotation. Given the field {r0

i (X)}, the specification of the
initial plastic deformation is thus tantamount to a selection of lattice vectors.

Returning to the discussion of cubic symmetry, some simplification is achieved by using
the deviatoric strain Ē = Dev E. This yields

E11E22 + E11E33 + E22E33 = 1

3
(tr E)2 − (Ē2

11 + Ē2
22 + Ē2

33), (89)

and so the strain-energy function is expressible in the form [33]

W̃ (E) = 1

2
[C1(tr E)2 + C2(Ē

2
11 + Ē2

22 + Ē2
33)] + C3(E

2
12 + E2

13 + E2
23), (90)

where Ci are the (constant) moduli, giving the strain energy as a linear combination of
three independent quadratic forms. Because each is positive definite, the relevant constitutive
hypothesis is met if and only if each Ci > 0. The associated stress, obtained by equating
S̃(E) · Ė to (W̃ (E))·, is

S̃(E) = C1(tr E)I + C2(Ē11e1 ⊗ e1 + Ē22e2 ⊗ e2 + Ē33e3 ⊗ e3)

+ C3[E12(e1 ⊗ e2 + e2 ⊗ e1) + E13(e1 ⊗ e3 + e3 ⊗ e1)

+ E23(e2 ⊗ e3 + e3 ⊗ e2)]. (91)

Turning to the yield function, we simplify matters by assuming that its dependence on
stress and dislocation density can be decoupled. Mainly for illustrative purposes, we also
adopt the widespread assumption that pressure, proportional to tr T, has negligible effect on
yield, this effectively limiting the applicability of the model to circumstances in which the
pressure is not too large. To examine the implications, we use (10) and (11) to obtain tr T =
J−1

H tr(CS); Equations (20) and (59) then furnish tr T = tr S + o(|E|). Consistency with our
previous assumptions thus implies that the current yield function H(·) = F(·,α) should
depend on S via S̄ = Dev S; we write H(S) = F̄ (S̄). To represent this function we require
the scalar invariants of S̄ under the cubic symmetry group up to quadratic order (cf. Sect. 5).
The only linear invariant, tr S̄, vanishes identically, leading to a function homogeneous of
degree two:

F̄ (S̄) = 1

2
A1(S̄

2
11 + S̄2

22 + S̄2
33) + A2(S

2
12 + S2

13 + S2
23), (92)

where A1,2 are constants. Then,

FS = A1(S̄11e1 ⊗ e1 + S̄22e2 ⊗ e2 + S̄33e3 ⊗ e3)

+ A2[S12(e1 ⊗ e2 + e2 ⊗ e1) + S13(e1 ⊗ e3 + e3 ⊗ e1)

+ S23(e2 ⊗ e3 + e3 ⊗ e2)], (93)
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and we obtain

S · FS = A1

∣∣S̄∣∣2 + 2(A2 − A1)(S
2
12 + S2

13 + S2
23). (94)

Accordingly, (74) is satisfied if and only if S̄ �= 0 and

A1 > 0, A2 > A1. (95)

We observe, from (73) and (93), that tr ĠG−1 = 0 and thus that JG = JG0 . An expression
for the yield function equivalent to (92) is given in [34].

It follows from (95) that F̄ (·) is positive definite. To allow for yielding in a manner
consistent with our assumptions, it is thus necessary that the yield function be expressible in
the form

F(S,α) = F̄ (S̄) − K(α), (96)

where K(·) is positively valued function subject to the material-symmetry restriction
K(α) = K(RtαR). The form that this function should take in applications to real crystals
remains open, although it is possible to advance some proposals on the basis of current ideas
on the subject of scale dependence [35]. One, compatible with cubic symmetry, is

K = (k0 + k1 |α|p)2, (97)

where p, k0,1 are positive constants,
√

K then being proportional to the yield stress as-
sociated with a pair of shear tractions exerted on opposing faces of a cube and directed
parallel to its axes. This expression models the hardening of the crystal due to the presence
of dislocations [12]. However, we note that the development of a predictive theory of strain
hardening has yet to be achieved, this shortcoming arguably posing the main open problem
in the subject.
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