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Abstract Motivated by the elastic rod model for DNA with intrinsic curvature, we study
the solution space of the Euler-Lagrange equations governing isotropic, homogeneous, nat-
urally curved Kirchhoff’s elastic thin rods. Our studies show that for each given total energy
and twisting density, there are at most three solutions, aside from the case where the twist-
ing density is some particular constant. We also propose in this paper a reasonable condition
under which an improvement on the number of the solutions may be possible. Finally, nu-
merical calculations are presented to support our conclusions.
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1 Introduction

Kirchhoff’s theory of isotropic, homogeneous, elastic thin rods has been employed to study
the configurations of DNA, which play an important role in genome organization, replica-
tion, transcription, and recombination (there is a detailed description of how to treat DNA
as an elastic rod in [34]). In the beginning, owing to Watson-Crick model [33], these rods
were assumed to be naturally straight; see, for example, [3–7, 11–14, 16, 19, 26, 27, 29, 32]
and the references therein. Subsequently, DNAs with intrinsic curvature were substantially
documented: either occurring naturally [22, 38] or synthesized artificially [31]. Therefore,
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elastic rods modelling such DNAs do not have a straight undeformed state any longer; see,
for example, [10, 21, 23–25, 28, 30, 34–37] and the references therein. In this paper, we fo-
cus on these naturally curved elastic rods. As a matter of fact, the axis of their undeformed
state is restricted to a circular arc (including, a circle) or a circular helix so that Kirchhoff-
Clebsch conservation law of total energy [20] is sustained.

In order to obtain detailed information on DNA tertiary structures, one needs to solve
Euler-Lagrange equations that govern elastic rods (the equations are derived from the elastic
energy functional and appropriate conditions idealizing practical situations). This was suc-
cessful in the case of naturally straight rods: the Euler-Lagrange equations have closed-form
solutions, owing to the existence of two first integrals; see, (10) and (11) in [18]. Unfortu-
nately, solving the Euler-Lagrange equations for naturally curved equilibrium rods is more
difficult.

The procedure for solving the Euler-Lagrange equations for naturally straight equilibrium
rods is to first get constant twisting density, and next to use the values of the aforementioned
first integrals to solve for the axis curvature of the rods [18]. Therefore, we may conclude
that there are infinitely many solutions with the same total energy and twisting density. We
would like to investigate if this conclusion still holds in the case of naturally curved rods.
That is, we seek the answer to the following problem:

Multiplicity Problem How many solutions to the Euler-Lagrange equations governing nat-
urally curved rods have the same total energy and twisting density?

Before reporting the result of our investigation, let ρ, ρ̃ and tw denote the bending stiff-
ness, twisting stiffness and the twisting density of a rod, respectively (see [15] for the stiff-
nesses from the viewpoint of biological physics; both stiffnesses are constant), and let τ be
the axis geometric torsion of the undeformed state of the rod.

Theorem 1 Suppose tw is constant. If (2ρ − ρ̃)tw + ρ̃τ �= 0, then there are at most three
solutions with the same total energy and twisting density. However, if (2ρ − ρ̃)tw + ρ̃τ = 0,
then there are infinitely many solutions.

Theorem 2 There are at most three solutions with the same total energy and twisting den-
sity, provided the latter is nonconstant.

Our result suggests that the elasticity of naturally straight rods is very unique: as the axis
curvature of the undeformed state starts increasing from zero, the number of solutions with
the same total energy and twisting density is reduced greatly, and solutions with nonconstant
twisting density emerge.

The idea of our proof originates from the meaning of one of the Euler-Lagrange equa-
tions: the twisting density tw of each naturally curved equilibrium rod determines one of the
bending curvatures k1 of the rod. It is thus crucial to count the number of distinct k2’s, the
other bending curvature, of equilibrium rods with the same total energy and twisting density.
Since no two distinct k2’s can have the same data: k2(s0) and k̇2(s0) where s0 ∈ [0,L] and
L is the length of the rod axis (see Proposition 2), this is equivalent to counting the number
of data at a preferred point chosen according to some particular properties of the twisting
density.

One might think that the values of k2(s0) and k̇2(s0) may be arbitrary. This, however, is
nearly incorrect since the Euler-Lagrange equations induce a dependence of k̇2(s0) on k2(s0)

(when twisting density is not constant). Perhaps, it is more surprising to acknowledge that
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k2(s0) itself cannot be arbitrary either because it must be a root of a cubic equation derived
from the Euler-Lagrange equations (the cubic equation becomes void for the second case of
Theorem 1); see Proposition 3 for details.

This paper is organized as follows. Section 2 reviews Kirchhoff’s elasticity theory of
thin rods. Section 3 presents a proof of Theorem 1. Theorem 2 is proved in Sect. 4. In
Sect. 5, we discuss a possible improvement of Theorem 2 under a special condition that is
widely assumed in the elastic rod model for DNA structures. A few numerical calculations
supporting the improvement are also demonstrated in the last section.

2 Preliminaries

In addition to being cylindrical and slender, the configuration of any elastic rod studied in
this paper is assumed to be completely determined by an immersed curve C, called the
axis, and a unit normal vector field ν defined along C, called the material direction. We
further demand that all the rods are inextensible and unshearable, and that they have the
same undeformed state Ru.

The meaning of ends is clear for open rods, but ambiguous for closed rods. One way
to resolve the ambiguity is to mark a normal cross section such that two sides of the cross
section are considered ends of a closed rod. This resolution originates from [2] in which
the authors studied terminal twist induced writhe of elastic rings through a cut-rotate-seal
procedure performed on a normal cross section of the rings (type I topoisomerases change
topology of closed circular DNA by using a mechanism equivalent to this procedure [1]).
For any rod, we always assume that the arc length parameter s of the rod axis attains the
value L at the point on the axis that belongs to the normal cross section on which the twist
exerts.

An elastic rod gives rise to the so-called directors d1,d2 and d3, where d1 = ν , d3 is the
unit vector tangent to C and d2 = d3 × d1. Using rigid body motions of R

3, we may always
assume that for each rod the axis is at the origin of R

3 when s = 0, and d1(0),d2(0) and
d3(0) are respectively the standard basis vectors i, j and k of R

3. The infinitesimal changes
of the directors along C are encoded in the Darboux vector u as follows:

ddi

ds
= u × di for i = 1,2,3.

Let u be written as u = ∑3
i=1 uidi , then

u1 = −dd3

ds
· d2, u2 = dd3

ds
· d1 and u3 = dd1

ds
· d2.

Here, the dot between ddi/ds and dj is the standard inner product of R
3. The ui of Ru is in

particular denoted by σi for i = 1,2,3.
The elastic energy functional defined for rods is

1

2

∫ L

0
ρ(u1 − σ1)

2 + ρ(u2 − σ2)
2 + ρ̃(u3 − σ3)

2 ds.

A rod R is called an elastica if it is an equilibrium of the elastic energy functional among
all the rods obtained from applying infinitesimal perturbations to R that neither move nor
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rotate the ends of the rod. Therefore, the ui ’s of R satisfy the following Euler-Lagrange
equations:

ρu̇1 + (ρ̃ − ρ)u2u3 = lR · d2 + ρσ̇1 + ρ̃u2σ3 − ρu3σ2, (1)

ρu̇2 + (ρ − ρ̃)u1u3 = −lR · d1 + ρσ̇2 − ρ̃u1σ3 + ρu3σ1, (2)

ρ̃u̇3 = ρ̃σ̇3 + ρu1σ2 − ρu2σ1 (3)

where lR is some rod-dependent constant vector.
The preceding equations are derived by means of a rather unusual method involving

ideas of Riemannian geometry; see [17] for details. Briefly speaking, the directors of a rod
R give rise to a curve q on S3 starting at (1,0,0,0), while comparing with i, j,k [17,
Sect. II] (or see Appendix), where S3 = {q = (q1, q2, q3, q4) ∈ R

4 : ‖q‖ = 1}. Through this
correspondence, an end-fixing variation of q on S3 means an inextensible and unshearable
perturbation which neither rotates both ends of R simultaneously nor moves the end of R
corresponding to s = 0 [17, Lemma 1]. Therefore, Lagrange multipliers are used to capture
the restriction left behind, that is, the end of R corresponding to s = L does not move (these
multipliers are written in vector form lR). In the upshot, through a series of calculations
employing geometry of some conformal S3 induced by the stiffnesses ρ and ρ̃, the equations
are obtained [17, Sect. IIIB]. Since the ui ’s of R are the components of the tangent vector of
q with respect to some frame naturally chosen on S3, (1)–(3) can be considered second-order
differential equations of the qi ’s (this also can be concluded by observing (18) in Appendix).

The sum of (ρu2
1 + ρu2

2 + ρ̃u2
3)/2 and lR · d3 is not always constant for any elastica,

unless all the σi ’s are constants [20]. The condition on the σi ’s limits the configuration of
Ru: the axis Cu is a line, a circular arc, or a circular helix, and the material direction νu

differs from the principal normal vector field nu of the axis Cu by a constant angle (note,
when Cu is a line, assumed to be lying on the z-axis, we choose (1,0,0) to be the nu since
the latter is not defined in this case).

In order to study elastic rods with a rather general undeformed state, for example, only
the axis is restricted to one of the aforementioned curves, let φ be the angle measured from
nu to νu, with respect to the orientation represented by the unit tangent vector field of Cu, at
each normal cross section; we may further assume φ(0) = 0 so that φ can be simply written
as φ(s) = ∫ s

0 σ3 ds. For any rod, define

e1 = d1 cosφ − d2 sinφ, e2 = d1 sinφ + d2 cosφ and e3 = d3. (4)

The bending curvatures k1, k2 and the twisting density tw of the rod are defined by

k1 = −de3

ds
· e2, k2 = de3

ds
· e1 and tw = de1

ds
· e2.

Then,

k1 = u1 cosφ − u2 sinφ, k2 = u1 sinφ + u2 cosφ and tw = u3 − φ̇. (5)

Using (5), the elastic energy functional becomes

1

2

∫ L

0
ρk2

1 + ρ(k2 − κ)2 + ρ̃(tw − τ)2 ds,
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where κ and τ are the curvature and the geometric torsion of Cu, respectively. Furthermore,
using (4), (5) and the fact that φ̇ = σ3, (1)–(3) can be rewritten as

ρk̇1 + (ρ̃ − ρ)k2tw − ρ̃τk2 + ρκtw = lR · e2, (6)

ρk̇2 + (ρ − ρ̃)k1tw + ρ̃τk1 = −lR · e1, (7)

ρ̃ṫw = ρκk1, (8)

and vice versa. This suggests that any elastica is a rod whose bending curvatures and twisting
density satisfy (6)–(8).

Because d1 and d2 depend on q , the terms lR · e1 and lR · e2 are functions of the qi ’s.
Hence, (6) and (7) are not differential equations of ki ’s, and we will not solve them for
the ki ’s. Instead, for a given elastica R, we write lR = −λ1e1 + λ2e2 + λ3e3. Since lR is
constant, l̇R = 0 and this gives

λ̇1 + λ2tw − λ3k2 = 0, (9)

−λ1tw + λ̇2 − λ3k1 = 0, (10)

λ1k2 + λ2k1 + λ̇3 = 0. (11)

Using (6) and (7) which respectively express λ2 and λ1 in terms of the bending curvatures
and twisting density of the elastica R, (11) becomes

ρk1k̇1 + ρk2k̇2 + ρκk1tw + λ̇3 = 0.

By virtue of (8), we rediscover the so-called Kirchhoff-Clebsch conservation law [20], stat-
ing that the function

ρ

2

(
k2

1 + k2
2

) + ρ̃

2
t2
w + λ3,

called the total energy of the elastica R, is always constant. We denote this constant by ε

from here on.
For the rest of this paper, we study the ki ’s of an elastica through (8)–(10) where λ1, λ2

and λ3 are respectively replaced by

ρk̇2 + (ρ − ρ̃)k1tw + ρ̃τk1, ρk̇1 + (ρ̃ − ρ)k2tw − ρ̃τk2 + ρκtw

and

ε − ρ

2
(k2

1 + k2
2) − ρ̃

2
t2
w

for some constant ε. If x denotes the transpose of the vector-valued function (k1, k2, tw,

k̇1, k̇2) defined on [0,L], then (8)–(10) can be rewritten as ẋ = F(x) where

F(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

k̇1

k̇2

ρκ
ρ̃

k1

2ρ−ρ̃
ρ

twk̇2 + ρ̃τ
ρ

k̇2 + k1(
ε
ρ

− 1
2 (k2

1 + k2
2) + 2ρ−3ρ̃

2ρ
t2
w) + κ(ρ−ρ̃)

ρ̃
k1k2 + ρ̃τ

ρ
k1tw − ρκ2

ρ̃
k1

ρ̃−2ρ
ρ

twk̇1 − ρ̃τ
ρ

k̇1 + k2(
ε
ρ

− 1
2 (k2

1 + k2
2) + 2ρ−3ρ̃

2ρ
t2
w) + κ(ρ̃−ρ)

ρ̃
k2

1 + ρ̃τ
ρ

k2tw − κt2
w

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Proposition 1 The bending curvatures and the twisting density of an elastica are real ana-
lytic. Therefore, the pre-image of any number under any one of the functions is a finite subset
of [0,L] if the function is not constant.

Proof Because F is a real analytic vector-valued function of x, any solution to ẋ = F(x)

is real analytic [8]. As a result, k1, k2 and tw are real analytic. Since the pre-image of any
number under a nonconstant real analytic function has no limit point and [0,L] is compact,
it is finite. �

Because tw determines k1 via (8), we sometimes use a triplet (ε, k2, tw) to denote a solu-
tion to (8)–(10) with total energy ε.

Proposition 2 Let (ε, k2, tw) and (ε, k̃2, tw) denote two solutions. If there exists a point

s0 satisfying k2(s0) = k̃2(s0) and k̇2(s0) = ˙̃k2(s0), then k2 and k̃2 are identical. Namely, if
u = k2 − k̃2, then u2 + (u̇)2 is either zero or positive over [0,L].

Proof We first rewrite (9) as

k̈2 = ρ̃(ρ̃ − 2ρ)

ρ2κ
twẗw + ρ̃(ρ̃ − ρ)

ρ2κ
(ṫw)2 − κt2

w − ρ̃2

ρ2κ
τ ẗw + ρ̃

ρ
τk2tw

+ 1

ρ
k2

(

ε − ρ

2
k2

2 − ρ̃2

2ρκ2
(ṫw)2 + 2ρ − 3ρ̃

2
t2
w

)

.

Then it is easy to see that the higher-order derivatives of k2 are determined by its lower-order
derivatives (and, of course, also by ρ, ρ̃, κ, tw and tw’s derivatives that we suppress at the
moment). So if there are two solutions satisfying the hypotheses, then k

(n)

2 = k̃
(n)

2 at s0 for
n ∈ N ∪ {0}. Since k2 and k̃2 are real analytic, they are identical in an interval containing
s0. Furthermore, they are the same on [0,L] because the set where two distinct real analytic
functions are equal must be discrete. �

From now on, we are only interested in the case of nonzero κ .

3 The Solutions of Constant Twisting Density

In this section, tw is a constant. Thus (8) gives k1 = 0. Moreover, (9) and (10) become

ρk̈2 + (
(ρ̃ − ρ)k2 + ρκ

)
t2
w − ρ̃τk2tw − k2λ3 = 0,

(
(2ρ − ρ̃)tw + ρ̃τ

)
k̇2 = 0,

(12)

respectively. The first equation can be further written as

k̈2 = −1

2
k3

2 +
(

ε

ρ
+ 2ρ − 3ρ̃

2ρ
t2
w + ρ̃

ρ
τ tw

)

k2 − κt2
w. (13)

If k2 is a constant, then there are at most three choices for that constant since (13) be-
comes a cubic equation of k2. So there are at most three solutions. In fact, each solution gives
rise to an elastica whose axis would be a line, a circular arc, or a circular helix; moreover,
the geometric torsion of the axis equals tw .
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For the rest of this section, k2 is assumed nonconstant. Then (12) immediately yields
(2ρ − ρ̃)tw + ρ̃τ = 0. Multiplying both sides of (13) by 2k̇2 and then integrating, one obtains

(k̇2)
2 = −1

4
k4

2 +
(

ε

ρ
−

(

1 + ρ̃

2ρ

)

t2
w

)

k2
2 − 2κt2

wk2 + c1 (14)

where c1 is a constant of integration.
Let Q(x) be the following quartic polynomial:

Q(x) = x4 − 4

(
ε

ρ
−

(

1 + ρ̃

2ρ

)

t2
w

)

x2 + 8κt2
wx − 4c1.

Then (14) becomes (k̇2)
2 + Q(k2)/4 = 0. Consider the discriminant D of Q(x):

D = D(c1) = −4096

(

4

(

c1 − 1

3
c2

2

)3

+ 27

(
2

3
c1c2 − κ2t4

w + 2

27
c3

2

)2)

where

c2 = ε

ρ
−

(

1 + ρ̃

2ρ

)

t2
w.

Choosing c1 carefully so that it is not a root of D, then the roots of Q(x) are mutually
distinct. Because k2 satisfies (14) and is not constant, Q(x) has to be negative somewhere
in [0,L]. In addition, Q(x) → +∞ as x → ±∞. So Q(x) has real roots. Moreover, the
number of real roots is either two when D < 0, or four when D > 0. In the former case, we
use (259.00) of [9] to solve k2 from (14). In the latter case, let pi ’s, for 1 ≤ i ≤ 4, denote
the roots of Q(x) with the ordering p1 > p2 > p3 > p4. Then k2 can be solved by means
of (252.00) or (253.00) of [9] if p4 ≤ k2 ≤ p3 is assumed, and (256.00) or (257.00) of [9] if
p2 ≤ k2 ≤ p1 is assumed.

At each root ri of D, where 1 ≤ i ≤ m and m is either 1 or 3, there exists a level set
Li ⊂ R

2 of the following function:

	(x,y) = y2 + 1

4
x4 −

(
ε

ρ
−

(

1 + ρ̃

2ρ

)

t2
w

)

x2 + 2κt2
wx.

Each Li , if not degenerate, is a real algebraic curve which is possibly singular and con-
sists of at most two components. Let (x0, y0) be a point of R

2 \ (L1 ∪ · · · ∪ Lm) so that
(D ◦ 	)(x0, y0) < 0, for example, it is very distant from the origin. Since D ◦ 	 is continu-
ous on R

2, there is a connected open neighborhood of (x0, y0), call it N , so that D ◦ 	 < 0
in N . Since 	 is never constant and is continuous in N , 	(N) is an infinite subset of R.
Because each number of 	(N) determines a unique solution through (259.00) of [9], there
are infinitely many solutions with the same total energy ε and twisting density tw . So, The-
orem 1 is proved.

4 Proof of Theorem 2

Because of (8), we consider (9) and (10) differential equations of k2 with variable coeffi-
cients. More precisely, (9) and (10) can be written as

ρk̈2 −
(

ε − ρ

2
k2

2 − ρ̃2

2ρκ2

(
ṫw

)2 + 2ρ − 3ρ̃

2
t2
w

)

k2 = f (tw), (15)
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((2ρ − ρ̃) tw + ρ̃τ ) k̇2 + (ρ − ρ̃)ṫwk2 − ρ̃

2κ
ṫwk2

2 = g(tw), (16)

respectively, where

f (tw) = − ρ̃

ρκ
((2ρ − ρ̃) tw + ρ̃τ ) ẗw + ρ̃(ρ̃ − ρ)

ρκ

(
ṫw

)2 − ρκt2
w,

g(tw) = ρ̃

κ
t (3)
w − ρ̃

ρκ
ṫw

(

ε − ρ̃2

2ρκ2

(
ṫw

)2 + 2ρ − 3ρ̃

2
t2
w + ρ̃τ tw

)

+ ρκṫw.

Proposition 3 Given a number ε and a function tw , there exists a cubic polynomial P

of variable coefficients, depending on ε,ρ, ρ̃, κ, τ, tw and the derivatives of tw , so that
P (k2) = 0 on [0,L], if (ε, k2, tw) represents a solution to (8)–(10).

Proof For the solution (ε, k2, tw), using (16) to eliminate the k̇2 term occurring in the result
of ρ×(16)′ − ((2ρ − ρ̃)tw + ρ̃τ )× (15), where (16)′ denotes the first derivative of (16), one
obtains

ξ0k
3
2 + ξ1k

2
2 + ξ2k2 + ξ3 = 0 (17)

with

ξ0 = ρ̃2

κ2

(
ṫw

)2 + ((2ρ − ρ̃) tw + ρ̃τ )
2
,

ξ1 = ρ̃

κ

(
((2ρ − ρ̃) tw + ρ̃τ ) ẗw + (4ρ̃ − 5ρ)

(
ṫw

)2
)

,

ξ2 = 2ρ̃

κ
g(tw)ṫw + ρ̃2

ρ2κ2
((2ρ − ρ̃) tw + ρ̃τ )

2 (
ṫw

)2 + 2(3ρ − 2ρ̃)(ρ − ρ̃)
(
ṫw

)2

− 2(ρ − ρ̃) ((2ρ − ρ̃) tw + ρ̃τ ) ṫw − ((2ρ − ρ̃) tw + ρ̃τ )
2
(

2ε

ρ
+ 2ρ − 3ρ̃

ρ
t2
w

)

,

ξ3 = 2 ((2ρ − ρ̃) tw + ρ̃τ ) ġ(tw) − 2

ρ
((2ρ − ρ̃) tw + ρ̃τ )

2
f (tw) − 2(3ρ − 2ρ̃)g(tw)ṫw.

That is, if P (x) denotes the cubic polynomial ξ0x
3 + ξ1x

2 + ξ2x + ξ3, then P (k2) = 0 for
the solution (ε, k2, tw). �

We now prove Theorem 2. Choose a point of [0,L] arbitrarily, call it s0. If there exists a
solution (ε, k2, tw), then, as a root of the cubic polynomial P with the coefficients evaluated
at s0, there are at most three numbers that k2(s0) possibly assumes. Except for the case of
2ρ = ρ̃ and τ = 0, we may suppose (2ρ − ρ̃)tw + ρ̃τ �= 0 at s0. Then each k2(s0) determines
a unique k̇2(s0) by means of (16). Therefore, through Proposition 2 we conclude that there
are at most three solutions with the total energy ε and twisting density tw .

The proof when 2ρ = ρ̃ and τ = 0 proceeds as follows. Suppose (ε, k2, tw) and
(ε, k2 + u, tw) are two distinct solutions. Let J = {s ∈ [0,L] : ṫw(s) = 0}. Because k2 + u

satisfies (16), one obtains u = 0 or −2k2 − κ at any point of [0,L] but outside J . We may
further assume k2 �= −κ/2 at some such point, call it s0, since otherwise u has already been
zero over [0,L] (note, J is finite since tw is not constant by virtue of Proposition 1). Next,
consider the first derivative of (16):

ρ(k2
2 + κk2)ẗw + ρ(2k2 + κ)k̇2 ṫw = −κġ(tw).
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By substituting k2 + u for k2 in the last equation, one obtains

ρu (u + 2k2 + κ) ẗw + 2ρuk̇2 ṫw + ρ (2u + 2k2 + κ) ṫwu̇ = 0.

So u̇ = −2k̇2 at s0. Therefore, through Proposition 2 we conclude that there are at most two
solutions with the total energy density ε and twisting density tw .

5 Discussions

In the proof of Theorem 2, we also described the difference between two distinct so-
lutions with the same total energy and twisting density, if they exist, when 2ρ = ρ̃

and τ = 0. As s0 = 0 is assumed for sake of convenience, it suggests that the solution
with the initial data (k1(0), k2(0), tw(0), k̇1(0), k̇2(0)) and the solution with the initial data
(k1(0),−k2(0)−κ, tw(0), k̇1(0),−k̇2(0)) have the same twisting density, provided they have
the same total energy. Figure 1 demonstrates the plots of the twisting density and its first and
second derivatives of two such solutions. They were produced by a computer program in-
corporating an ODE solver of MATLAB, called ode45, which implements the Runge-Kutta
method.

Fig. 1 The initial data for the solution whose twisting density and its first and second derivatives are plotted
by solid lines are k1(0) = 0.5, k2(0) = 1, tw(0) = 0.2, k̇1(0) = 0.1, k̇2(0) = 0.1. The initial data for the solu-
tion whose twisting density and its first and second derivatives are plotted by dashdot lines are the same as
the ones for the solid lines, except k2(0) = −2, k̇2(0) = −0.1. Here, we set ρ = 0.5, ρ̃ = 1, ε = 1, κ = 1 and
L = 1, the stepsize is default
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Fig. 2 The top and bottom rods
are constructed by using the
numerical solutions whose
twisting densities were plotted by
the solid line and the dashdot line
in Fig. 1, respectively. For both
rods, d1 is in the lighter gray
color and d2 is in the darker gray
color

Using the numerical solutions, we can construct the configurations of the two elasticas,
see Fig. 2. For simplicity, we set σ3 = 0 so that the undeformed state of the rods has zero
twisting density. (In Appendix, we shall briefly explain how to construct the configuration
of a rod from a solution.)

Clearly, the twisting densities plotted in Fig. 1 are different. To illustrate that the trunca-
tion error of Runge-Kutta method is not responsible for the difference, in Fig. 3 we show
four plots of ṫw with smaller and smaller stepsizes h = 10−2,10−3,10−4 and 10−5. We also
compare these with the plot of ṫw from Fig. 1. The readers can easily see that these plots are
almost identical one another.

Our numerical computation suggests that there are no two distinct solutions with the
same total energy and twisting density when 2ρ = ρ̃ and τ = 0. We also acknowledge that
the argument used to prove Theorem 2 is not thorough enough to completely confirm the
multiplicity of the solutions. So it is reasonable to ask the following question: Is it possible
to improve Theorem 2 so that there is exactly one solution for the prescribed total energy and
twisting density which is not constant? The next example, however, shows that the desired
improvement is impossible in general.
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Fig. 3 Plots with different step sizes

Example Let (ε, k2, tw) denote a force-free solution, namely lR = 0, where tw is noncon-
stant. Using (7) and (8) one gets

k2 = ρ̃(ρ̃ − ρ)

2ρ2κ
t2
w − ρ̃2τ

ρ2κ
tw + y,

where y is a constant of integration. Seemingly, the above equation gives infinitely many
k2’s because of the presence of y. But if there are indeed two such k2’s, then (6) yields
(ρ̃ − ρ)tw − ρ̃τ = 0 on [0,L]. Because tw is not constant, the last equation holds only when
ρ = ρ̃ and τ = 0. So there is at most one force-free solution with total energy ε and twisting
density tw , unless ρ = ρ̃ and τ = 0. From now on, let us focus on this exceptional case
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Fig. 4 These two rods are
constructed by setting
ρ = ρ̃ = 1, κ = 1,L = 1, σ3 = 0,

ε = 0.645,A = 0.2,B = 0.5, and
y = 1 for the top rod and y = −1
for the bottom one. For both rods,
d1 is in the lighter gray color and
d2 is in the darker gray color

in which k2 degenerates into the constant y and (6) becomes ẗw + κ2tw = 0. It is easy to
obtain tw = A cosκs + B sinκs where A and B are two constants. Owing to Kirchhoff-
Clebsch conservation law [20], the constants A,B satisfy A2 +B2 = 2ε/ρ −y2. As a result,
there are two y’s, namely y = ±√

2ε/ρ − A2 − B2. Therefore, there are indeed two distinct
solutions of the same total energy and nonconstant twisting density. The configurations of
such rods are shown in Fig. 4; they are constructed by using ρ = ρ̃ = 1, κ = 1,L = 1, σ3 =
0, ε = 0.645,A = 0.2 and B = 0.5.

Suggested by the preceding example, we therefore restrict ourselves to one of the fol-
lowing cases: (i) τ �= 0, and (ii) τ = 0 and ρ �= ρ̃, while attempting to answer the question.
We are particularly interested in the second case, for the condition τ = 0 refers to the natu-
rally circular elastic rods that have been employed to simulate the tertiary structure of DNA
with intrinsic curvature; the condition ρ �= ρ̃ has been applied in many studies employing
numerical methods, for example, ρ = 2.70×10−19 erg-cm and ρ̃ = 2.04×10−19 erg-cm for
a DNA molecule in a solution of dilute NaCl [34].
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Appendix

The directors of a rod give rise to a curve in SO(3) starting at the identity matrix I , while
comparing with i, j,k. Through a 2-fold covering map p : S3 → SO(3), the curve in SO(3)

can be lifted to a unique curve in S3 starting at (1,0,0,0). Here, the covering map is defined
by p(q)(v) = q−1vq , where v = (v1, v2, v3) ∈ R

3 is any vector that is also identified with a
purely imaginary quaternion v = iv1 + jv2 + kv3, q = q1 + iq2 + jq3 + kq4 is a quaternion
corresponding to q = (q1, q2, q3, q4) ∈ S3, and the expression q−1vq is a product of quater-
nions q−1, v and q (note, q−1 = q = q1 − iq2 − jq3 − kq4, called the conjugate of q , since
q ∈ S3). Because d1 = p(q)(i),d2 = p(q)(j) and d3 = p(q)(k), we have

d1 =
⎛

⎝
q2

1 + q2
2 − q2

3 − q2
4

2 (q2q3 − q1q4)

2 (q1q3 + q2q4)

⎞

⎠ , d2 =
⎛

⎝
2 (q1q4 + q2q3)

q2
1 − q2

2 + q2
3 − q2

4
2 (q3q4 − q1q2)

⎞

⎠ ,

d3 =
⎛

⎝
2 (q2q4 − q1q3)

2 (q1q2 + q3q4)

q2
1 − q2

2 − q2
3 + q2

4

⎞

⎠ .

According to the definitions of ui and the fact of q ∈ S3, we have

⎛

⎜
⎜
⎝

q2 −q1 q4 −q3

q3 −q4 −q1 q2

q4 q3 −q2 −q1

q1 q2 q3 q4

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

q̇1

q̇2

q̇3

q̇4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1
2u1
1
2u2
1
2u3

0

⎞

⎟
⎟
⎠ , (18)

or equivalently
⎛

⎜
⎜
⎝

q̇1

q̇2

q̇3

q̇4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

q2 q3 q4 q1

−q1 −q4 q3 q2

q4 −q1 −q2 q3

−q3 q2 −q1 q4

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

1
2u1
1
2u2
1
2u3

0

⎞

⎟
⎟
⎠ . (19)

Our scheme of obtaining the configuration of an equilibrium rod from a solution to the
Euler-Lagrange equations is to use (5) to get ui ’s from k1, k2 and tw (to avoid complexity,
our previous demonstrations were done by assuming σ3 = 0 which implies φ = 0), and next
apply any numerical method to solve (19) with the initial conditions: q1(0) = 1, q2(0) =
q3(0) = q4(0) = 0, and finally integrate d3 to obtain the rod axis.
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