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Abstract Use of vertical farms is increasing rapidly 
as it enables year-round crop production, made pos-
sible by fully controlled growing environments situ-
ated within supply chains. However, intensive plant-
ing and high relative humidity make such systems 
ideal for the proliferation of fungal pathogens. Thus, 
despite the use of bio-fungicides and enhanced bios-
ecurity measures, contamination of crops does hap-
pen, leading to extensive crop loss, necessitating the 
use of high-throughput monitoring for early detection 
of infected plants. In the present study, progression 
of foliar symptoms caused by Pythium irregulare-
induced root rot was monitored for flat-leaf parsley 
grown in an experimental hydroponic vertical farming 
setup. Structural and spectral changes in plant canopy 
were recorded non-invasively at regular intervals 

using a 3D multispectral scanner. Five morphomet-
ric and nine spectral features were selected, and dif-
ferent combinations of these features were subjected 
to multivariate data analysis via principal component 
analysis to identify temporal trends for early segre-
gation of healthy and infected samples. Combining 
morphometric and spectral features enabled a clear 
distinction between healthy and diseased plants at 
4–7 days post inoculation (DPI), whereas use of only 
morphometric or spectral features allowed this at 7–9 
DPI. Minimal datasets combining the six most effec-
tive features also resulted in effective grouping of 
healthy and diseased plants at 4–7 DPI. This suggests 
that selectively combining morphometric and spectral 
features can enable accurate early identification of 
infected plants, thus creating the scope for improving 
high-throughput crop monitoring in vertical farms.

Keywords Root rot · Machine vision · Plant 
stress · Hydroponics · Vertical farming · Multivariate 
analysis

Introduction

Vertical farming facilitates year-round crop produc-
tion, with higher yields per unit area and more effi-
cient utilisation of resources such as land, water, and 
nutrients than conventional farming (Rajan et  al., 
2019; Specht et  al., 2014). Such systems employ 
artificial lighting and soilless culture techniques to 
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maximize crop production under controlled environ-
mental conditions (van Delden et  al., 2021). Since 
vertical farms do not require large expanses of land, 
production points can be located closer to consumers 
on brownfield sites, potentially reducing the carbon 
footprint resulting from food transport (van Delden 
et  al., 2021). Further, physical isolation from the 
external environment provides a high level of bios-
ecurity, reducing the risk of plant pests, diseases, and 
pathogens associated with human food-borne illness 
compared to open field production systems.

Despite the presence of physical barriers, achiev-
ing complete exclusion of pathogens from vertical 
farms is practically challenging. Consequently, crop 
losses from unintentional bacterial or fungal con-
tamination may occur due to inefficient phytosanitary 
measures, inadequately treated seeds and substrates, 
or air-borne spores introduced through the ventila-
tion system (Roberts et  al., 2020). In addition, the 
combination of high-density production environment 
with recirculation of nutrient solutions within vertical 
farms exacerbates the situation by facilitating rapid 
pathogen spread. Furthermore, high humidity and 
favourable ambient temperature supports pathogen 
proliferation in such systems (Paulitz, 1997; Roberts 
et  al., 2020). Thus, there is a high risk of extensive 
crop loss when biosecurity measures are breached 
in vertical farms. Hence, early detection of diseased 
plants is crucial for controlling pathogen spread and 
minimising the risk of crop loss in vertical farms.

Conventionally, identification and scoring of plant 
diseases is performed by experts via visual inspec-
tion of samples (Bock et  al., 2010). However, this 
approach is reliant on the presence of visual symp-
toms, which can be subjective, inconsistent across 
practitioners, and inadequate for detecting diseases 
during their latent period when the pathogens are 
spreading without causing visible symptoms. Further, 
the process is time-consuming and labour-intensive, 
and is thus, practically feasible only for small sample 
sizes. In addition, large-scale hydroponic farms often 
maintain strict restrictions on the access of personnel 
around growing benches to ensure biosafety, making 
visual scoring highly improbable. As an advancement 
to manual inspection, molecular methods have revo-
lutionized plant disease diagnosis, accelerating patho-
gen detection and facilitating the screening of asymp-
tomatic plants, making the process less subjective 
(Martinelli et  al., 2015). However, such techniques 

require specialised infrastructure and experienced 
laboratory personnel, and are expensive to perform 
routinely, making it difficult for widespread use in 
commercial cultivation. In addition, the process 
would be destructive, and would be implementable on 
just a few samples in every batch of plants. Hence, 
the necessity of an alternative easy-to-use/automat-
able technology for crop monitoring has driven the 
development of machine vision-based techniques for 
identifying characteristic stress symptoms in plants 
to allow real-time assessment of diseases and health 
status. These methods can be deployed to collect data 
in real-time without generating significant additional 
costs.

Plant diseases typically induce various visible 
morphological changes, such as stunted growth and 
reduced canopy cover, as well as spectral aberra-
tions associated with disease symptoms, such as 
generalised or localised lesions, tissue chlorosis, and 
necrosis (Mutka & Bart, 2015). Plant image analysis 
for disease detection focuses on finding these irregu-
larities in growth patterns and spectral properties. In 
this context, multispectral imaging, especially RGB 
imaging, has emerged as a low-cost, high-throughput 
alternative for assessing plant health by identifying 
abnormalities in leaf colour features (Agarwal et al., 
2021; Martinelli et al., 2015; Waiphara et al., 2022). 
In addition, studies have also attempted to highlight 
the efficacy of 3D imaging for monitoring structural 
changes in plants under stress (Husin et al., 2020; Su 
et al., 2019).

Application of advanced data processing tech-
niques such as multivariate data analysis (MDA) and 
machine learning (ML) for plant image analysis has 
played a crucial role making in-depth assessment of 
image features feasible (Singh et al., 2021). Further, 
tremendous progress has been made over the past 
decade in the domain of image-based plant disease 
detection by the implementation of deep-learning, a 
more advanced information processing tool that can 
“learn” to recognise data patterns like a human brain 
(Nagaraju & Chawla, 2020). Although highly accu-
rate, this approach involves computationally inten-
sive algorithms that process thousands of pre-existing 
plant images to “train” the prediction model, and have 
predominantly been tested with RGB data. Further, 
suitability of such plant image analysis approaches 
for non-destructive monitoring of plant responses to 
biotic stressors has been investigated in detail mostly 
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for crops grown in field conditions (Mutka & Bart, 
2015; Singh et  al., 2021; Zhang et  al., 2019), while 
reports for hydroponic vertical farming systems are 
very limited.

Prevalence of root diseases is a major concern for 
commercial hydroponic operations (Suárez-Cáceres 
et  al., 2021). Zoosporic and wilt pathogen species 
such as Pythium, Phytophthora, and Fusarium have 
been most frequently reported to cause vascular and 
root diseases in various crops grown hydroponi-
cally (Paulitz, 1997; Suárez-Cáceres et al., 2021). In 
particular, root rot and damping-off due to various 
Pythium spp. is a serious issue affecting hydroponic 
production of various Apiaceae crops, including 
flat-leaf parsley (Petroselinum crispum var. neapoli-
tanum), a popular culinary herb (Minchinton et  al., 
2013). Early detection of root diseases is more chal-
lenging compared to foliar diseases as it is difficult to 
actively monitor roots, where the symptoms initially 
occur. However, morphological and spectral changes 
that appear on the canopy could be used as indirect 
indicators of root infections and be monitored for 
detecting such diseases (Salgadoe et al., 2018).

In this study, we examined changes in morpho-
metric and spectral attributes of flat-leaf parsley upon 
infection with Pythium irregulare in an experimen-
tal hydroponic vertical farming system. We aimed to 
ascertain the post-infection window for reliable early 
distinction of diseased plants using concurrent 3D 
and multispectral imaging. As an exploratory assess-
ment, the scope of segregating infected plants from 
the healthy ones by using morphometric and spectral 
attributes independently and simultaneously was eval-
uated via multivariate data analysis using principal 
component analysis (PCA), along with step-wise var-
iable reduction to determine the efficacy of minimal 

datasets for reliable comparison between infected and 
control samples at early stages of infection.

Material and methods

Plant growth trials

Flat-leaf parsley seedlings were raised from seeds 
in coco-peat plugs (Van der Knapp, The Nether-
lands) following dark germination under sterile con-
ditions in a nursery chamber (Aralab-InFarm UK 
Ltd., London, UK). A seedling density of ~ 25 seed-
lings/plug was maintained to replicate commercial 
production standards. After reaching a height of ca. 
2 cm, the seedlings were transferred to a customised 
experimental vertical farming setup (Fig.  1) having 
“deep water culture” hydroponic units in a growth 
chamber with regulated environment (Newcastle 
University, Newcastle upon Tyne, UK). Each hydro-
ponic unit comprised of a polypropylene container 
(dark grey, opaque; inner dimensions: L × W × H 
56 × 36 × 11 cm) with a tray-lid (white, opaque) hav-
ing a 7 × 4 array of circular empty slots. The container 
was filled with 18 L commercial hydroponics solu-
tion. Each unit received 26 seedling plugs, and a sub-
mersible water pump was used for root aeration along 
with a circulating water bath for maintaining constant 
water temperature. Plants were grown for 20  days 
at a temperature of 22 ± 1  °C and 75 ± 5% relative 
humidity, under 300–350  µmol.m−2   s−1 broad spec-
trum LED lighting (L28–NS12, Valoya Ltd., Finland) 
following a 16/8 h day-night cycle. Two experimen-
tal trials were carried out as follows: 1) preliminary 
trial to identify effects of infection on the morpho-
metric and spectral attributes over time; 2) main trial 

Fig. 1  Schematic layout of 
the experimental vertical 
farming setup with “deep 
water culture” hydroponics. 
Empty slots in the tray were 
used for cables connected 
to a submersible air pump 
(for root aeration) and pipes 
with circulating water bath 
to maintain water tempera-
ture
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to select the features and perform multivariate data 
analysis for temporal plant monitoring. In each trial, 
two units received P. irregulare inoculum (described 
later), and two were used as control.

Pathogen isolation and inoculation

P. irregulare was isolated from diseased plants grow-
ing in a commercial hydroponic vertical farm, and 
cultured on PARP + B (corn meal agar with pima-
ricin, 5  mg/L; ampicillin, 250  mg/L; rifampicin, 
10  mg/L; pentachloronitrobenzene, 50  mg/L; and 
benomyl 10  mg/L) semi-selective medium (Mat-
thiesen et al., 2016). Identity of the isolate was con-
firmed following PCR-based amplification of specific 
ITS and COX II genes (Online resource 1: Table S1) 
as reported earlier (Martin, 2000; White et al., 1990). 
The pathogen was grown in bulk using clarified-
V8 broth, with minor modifications to the proto-
col described by McGehee et  al. (2019). Briefly, a 
4-mm plug of the PARP+B medium inoculated with 
the pathogen was transferred to a sterile Petri dish. 
Subsequently, the Petri dish was filled with 20  mL 
of V8 broth, and incubated in the dark for 5 days at 
25  °C. Subsequently, the mycelial mats were liqui-
fied in  ddH2O for 2 min to obtain a final concentra-
tion of ~ 1 ×  104 mycelial fragments/mL. The resulting 

slurry was used to inoculate the seedling plugs at 
1 mL/plug at 5 days post nursery for the preliminary 
trial, and at 4  days post nursery in the main trial to 
induce the symptoms of infection earlier. Further, in 
the main trial two samples were randomly selected 
from each inoculated tray at 8 days post inoculation 
(DPI) to confirm the presence of pathogen using the 
same PCR-based method.

Multispectral 3D scanning

Sample trays were individually scanned using a 
PlantEye F500 multispectral LiDAR scanner (Phe-
nospex, The Netherlands, www. phenospex.com) 
to simultaneously record the spectral reflectance 
and 3D features of the plant canopy at 8, 11, and 15 
DPI in the preliminary trial, and at 2, 4, 7, 9, and 11 
DPI in the main trial. The device comprised of an 
overhead scanning unit equipped with in-built blue 
(B; λ = 460–485  nm), green (G; λ = 530–540  nm), 
red (R; λ = 620–645  nm), and near-infrared (NIR; 
λ = 720–750 nm) LEDs for sample illumination along 
with corresponding sensors for multispectral imaging, 
placed adjacent to a LiDAR laser source (λ = 940 nm) 
with a sensor for 3D imaging, and a horizontal plat-
form for placing the sample trays (Fig. 2). The scan-
ner moved along a horizontal track from one end of 

Fig. 2  Schematic layout of the imaging setup for 3D-cum-
multispectral scanning (left) and a sample output point-cloud 
image (right). The imaging setup comprised of an overhead 
scanner equipped with red, green, blue, and near-infrared 
LEDs along with corresponding sensors for multispectral 
imaging, as well as a LiDAR sensor for 3D imaging. The scan-

ner moved along a horizontal track from one end of the plat-
form to the other while scanning the samples, and the refer-
ence plate assisted in spectral and positional calibration. Boxes 
shown in the point-cloud image (right) correspond to individ-
ual samples (~ 10,000 data points) with a false-colour scheme 
being used to depict the data from one spectral channel



Eur J Plant Pathol 

1 3
Vol.: (0123456789)

the platform to the other while scanning. A white 
metallic reference plate supplied with the device 
was placed at the starting point to assist in spectral 
and LiDAR sensor calibration. Plants were scanned 
maintaining a fixed distance of 100 cm between the 
scanner and the tray top, and the scanner moved at 
a fixed speed of 50  mm/s (Y-axis). This provided 
an approximate resolution of 0.7  mm X-axis, 1  mm 
Y-axis, and 0.2 mm Z-axis. The scans were processed 
immediately by the in-built HortControl software 
(Phenospex), wherein the spectral and LiDAR infor-
mation were automatically superimposed based on 
internal calibrations, creating point-cloud (.ply) data 
files which contained the spatial (X, Y, Z) and spec-
tral (R, G, B, NIR) values of each pixel. No additional 
light sources were used while scanning to ensure uni-
formity in spectral information recorded on differ-
ent days, and nullifying the need for further spectral 
calibrations.

Data pre-processing and feature extraction

Each scan was divided into a 7 × 4 array of identical 
sectors within the HortControl software as per the 
tray layout (Figs. 1 and 2) for obtaining sample-wise 
morphometric and spectral data. Each sector covered 
ca. 10,000 data points pertaining to each sample, of 
which at least 2,000 data points were used for calcu-
lating each plant feature depending on sample canopy 
size. The software automatically triangulated the spa-
tial coordinates to calculate morphometric features, 
and the multispectral data to calculate various spectral 
indices. This generated nine morphometric param-
eters as follows: mean plant height, maximum plant 
height, total leaf area (TLA), leaf area index (LAI), 

projected leaf area (PLA), digital biomass (DB), leaf 
angle, leaf inclination (LInc), and light penetration 
depth (LPD) (Table  1). Likewise, five spectral indi-
ces were generated by the software as follows: Green 
Leaf Index (GLI, [(2 × G)-R-B]/[(2 × G) + R + B]), 
Hue, Normalised Difference Vegetation Index (NDVI, 
[NIR-R]/[NIR+R]), Normalized Pigment Chlorophyll 
ratio Index (NPCI, [R-B]/[R+B]), and Plant Senes-
cence Reflectance Index (PSRI, [R-G]/NIR). Spectral 
information was augmented by extracting the raw R, 
G, B, and NIR reflectance data from the point-cloud 
files using Python programming (www. python. org) 
and by calculating R/G, G/R, R+G+B, R+G-B, 
R+G, G-minus-R (GMR) (Agarwal & Dutta Gupta, 
2018), and augmented green-red index (AGRI, 
[G-R] × G/R).

PCA for analysing temporal patterns in plant features

PCA was performed using diverse datasets for each 
interval individually to visualise the temporal trends 
in different features and how it influenced the segre-
gation of control and infected samples. As a prelimi-
nary step for reducing the number of PCA features, 
all twenty-five morphometric and spectral attributes 
were subjected to correlation analysis using the Data 
Analysis ToolPak (Microsoft Excel 365, Microsoft 
Corp., USA) to identify attributes exhibiting identi-
cal linear trends. Attributes with strong linear rela-
tions (r < -0.95, r > 0.95) were selectively omitted 
to minimise redundancy. The attributes that were 
retained, henceforth referred to as “selected fea-
tures”, were subjected to PCA to ascertain the possi-
bility of distinguishing between healthy and infected 
plants at different intervals post infection. PCA was 

Table 1  Definitions of 
morphometric indices 
measured by the scanner

Parameter Definition

Mean plant height Average height of the top 10% points within the canopy
Maximum plant height Height at the absolute highest point within the canopy
Total leaf area (TLA) Sum of all triangulated surfaces on the canopy
Leaf area index (LAI) TLA/sector area
Projected leaf area (PLA) Two-dimensional projection of TLA
Digital biomass (DB) Mean plant height × TLA
Leaf angle Weighted average of all angles for every face in the 

triangulated plant mesh
Leaf inclination (LInc) TLA/PLA
Light penetration depth (LPD) Lowest point in the canopy detectable by the laser

http://www.python.org
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performed in Python using the Scikit-learn mod-
ule (Pedregosa et  al., 2011), at a threshold of > 99% 
variance explained. The following subsets of selected 
features were used for PCA at each imaging interval: 
1) all morphometric attributes (M_all); 2) all spectral 
attributes (S_all); 3) all selected features (MS_all). 
Eigen values and percentage of variance explained 
were recorded for each principal component (PC), 
along with the PC loadings of each feature. PC load-
ings obtained from the MS_all dataset were used to 
calculate the weighted loading (WL) for each feature 
at every interval as follows:

Here, Exi and Li indicate proportion of variance 
explained (0–1) and loading of the feature for the ith 
PC, respectively, and n indicates the total number of 
PCs obtained. Features were assigned ranks based on 
WL values to indicate their performance at each inter-
val; higher WL earned a better rank, and vice versa. 
Overall performance ranks were assigned as per the 
mean of ranks obtained across all intervals. Based on 
this, PCA was performed using the best ranked vari-
ables collated in two subsets containing < 25% of the 
actual features (henceforth referred to as “minimal 
datasets”) as follows: 1) three best morphometric and 
three best spectral attributes (MS_3-3); and 2) top 
six attributes (MS_top6). This was done to assess the 
impact of total number of features and the balance 
between morphometric and spectral features on the 
analysis.

Biplots indicating the loadings and scores for the 
first two PCs were plotted for each PCA along with 
the 95% confidence ellipse for each class, i.e., healthy 
and infected, and the Euclidean distance between the 
centroids for all five feature subsets at each imaging 
interval to visualise the temporal trends in unsuper-
vised (without prior labelling) segregation of the two 
classes.

Statistical analysis

One-way ANOVA was performed using the main 
trial dataset for all selected features to ascertain the 
significance of difference between the means of 
control and infected samples at individual intervals. 
The process was repeated with PC1 and PC2 scores 
for each grouped dataset, i.e., M_all, S_all, MS_all, 

(1)WL =

√∑n

i=1
(Ex

i
× L

i
)
2

MS_3-3, and MS_top6, following dataset transforma-
tion by PCA at each interval to obtain the dissimi-
larity of both classes in terms of F-statistic. Further, 
statistical difference of data distribution between the 
PCA scores of control and infected samples was also 
assessed by two-sample Kolmogorov–Smirnov (KS) 
test using the scipy.stats.ks_2samp library in Python 
(https:// docs. scipy. org/ doc/ scipy/ refer ence/ gener ated/ 
scipy. stats. ks_ 2samp. html), wherein KS = 1 implies 
no similarity and KS = 0 indicates identical data dis-
tribution. Overlap between the PCA scores of control 
and infected sample clusters was further assessed by 
calculating the Jaccard index (JI) and the Szymkie-
wicz–Simpson overlap coefficient (SS) using standard 
functions in Microsoft Excel 365 (Microsoft Corp.) 
as follows:

Here, RC and RI indicate the ranges for PCA scores 
of control and infected samples, respectively, the |R| 
function calculates the range size, ∩ and ∪ operators 
find the intersection and union of datasets, respec-
tively, and the min function identifies the smallest 
range. JI indicates the proportion of overlap across 
the entire data distribution, with JI = 0 and JI = 1 
implying no and complete overlap, respectively. Simi-
larly, SS indicates the proportion of the dataset with a 
smaller range overlapping with the dataset with big-
ger range, where SS = 0 implies no overlap and SS = 1 
indicates that the dataset with the smaller range lies 
entirely within the range of the dataset with the big-
ger range. Interquartile range was used to exclude any 
outliers while calculating JI and SS to improve the 
reliability of the results.

Results

Morphometric and spectral attributes

Plant growth and appearance was markedly affected 
by P. irregulare infection 7 DPI onwards, as observed 
in both trials (Fig.  3; Online resource 1: Fig.  S1). 
Clear signs of stress and tissue damage were visible 

(2)JI =
|R

C
∩ R

I
|

|R
C
∪ R

I
|

(3)SS =
|R

C
∩ R

I
|

min(|R
C
|, |R

I
|)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.ks_2samp.html
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Fig. 3  Digital biomass (a), plant height (b), leaf area index 
(c), leaf inclination (LInc; d), light penetration depth (LPD; 
e), Hue (f), Green Leaf Index (GLI; g), Normalised Differ-
ence Vegetation Index (NDVI; h), Plant Senescence Reflec-
tance Index (PSRI; i), Normalised Pigment Chlorophyll 
ratio Index (NPCI; j), green reflectance (G; k), near-infrared 
reflectance (NIR; l), green-minus-red reflectance (GMR; m), 

and Augmented Green-Red Index (AGRI; n) of flat-leaf pars-
ley infected with P. irregulare (main trial). Values have been 
expressed as mean ± SD (Control: n = 52; Infected: n = 52 for 
2–7 DPI, n = 48 for 9 and 11 DPI). “n.s.” indicates no statisti-
cally significant difference (p > 0.05) between the mean values 
of control and infected samples at the specified interval (DPI) 
following one-way ANOVA
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on leaves as well as roots (Online resource 1: Fig. S2). 
Morphometric attributes such as DB, mean plant 
height, and LAI indicated that growth was stunted in 
the infected plants, with the difference compared to 
control becoming more prominent in height and DB 
with the progression of infection (Fig. 3a–c). Spectral 
attributes such as Hue, GLI, NDVI, NPCI, and AGRI 
remained higher in healthy plants relative to the 
infected samples (Fig. 3f–h, j, n), whereas the oppo-
site trend was observed for PSRI, G, and NIR, i.e., the 
values for the healthy samples were generally lower 
than the infected plants (Fig. 3i, k, l). Other features, 
viz., LInc, LPD, and GMR exhibited significant simi-
larity between the control and infected samples espe-
cially at ~ 7 DPI (Fig. 3d, e, m).

Feature selection for MDA

As per the results of linear correlation analysis 
(Online resource 1: Table S2), five morphometric and 
nine spectral features, viz., DB, mean plant height, 
LAI, LInc, LPD, GLI, Hue, NDVI, NPCI, PSRI, G, 
NIR, GMR and AGRI, were selected for MDA via 
PCA. Eleven features, i.e., maximum plant height, 
leaf angle, TLA, PLA, R, B, R/G, G/R, R+G+B, 
R+G-B, and R+G, were omitted from subsequent 
analyses based on their strong correlation (r < -0.95, 
r > 0.95) with at least one of the selected features 
(Online resource 1: Table S3).

MDA of all selected features

PCA biplots for analyses using morphometric fea-
tures (M_all), spectral features (S_all), and both 
datasets combined (MS_all) revealed the scope 
of accurately segregating healthy and infected 
plants by machine vision at later stages of infec-
tion, i.e., 7 DPI and higher (Fig. 4; Online resource 
1: Fig.  S3). Analysing the MS_all dataset enabled 
better differentiation between the healthy and dis-
eased samples than the M_all and S_all datasets at 
7 DPI, as indicated by the 95% confidence ellipse 
and higher centroid distance. All biplots for sub-
sequent intervals showed this trend, suggesting 
that M_all and S_all could also be used to reli-
ably identify infected plants at 9 and 11 DPI, i.e., 
when the effects of infection became more promi-
nent. Cumulative variance explained (CVE) by 
PC1 and PC2 for the M_all dataset did not exhibit a 

clear trend, and varied between 76–83% for the five 
intervals (Online resource 1: Table S4). In contrast, 
CVE by PC1 and PC2 increased from 2 to 11 DPI 
for S_all and MS_all datasets, i.e., from 77.09% 
to 94.54% and from 64.71% to 81.6%, respectively 
(Online resource 1: Tables  S5 and S6), suggesting 
steady trends with disease progression.

MDA of minimal datasets

WL values calculated based on the PCA with MS_
all dataset revealed a clear variation in the perfor-
mance of all the selected features at different stages 
of infection (Table 2). The magnitudes of WL were 
close to 0.11 and 0.15 at 2 DPI for the lowest and 
highest ranked features, respectively, indicating 
relatively small variability in performance amongst 
the features. The range gradually increased with the 
duration of infection, and WL values reached 0.08 
and 0.22 at 11 DPI for the weakest and best features, 
respectively, suggesting a clear improvement in the 
performance of some features. Rankings based on 
WL values (Table  2) indicated that features such 
as GLI and NDVI performed well consistently 
(rank < 5), whereas LPD and LInc had consistently 
poor performance (rank > 11); the performance of 
all other features varied markedly at each interval.

Considering the overall performance and rank-
ing, three morphometric features, viz., DB, mean 
plant height, and LAI, and four spectral features, 
viz., GLI, NDVI, AGRI, and G, were selected for 
further analyses using minimal datasets as fol-
lows: the MS_3-3 dataset consisted of DB, mean 
plant height, LAI, GLI, NDVI, and AGRI, whereas 
the MS_top6 dataset had G instead of LAI. PCA 
using the minimal datasets yielded effective seg-
regation (95% confidence interval) of the healthy 
and infected samples at 7 DPI (Fig.  5). Notably, 
the MS_3-3 dataset resulted in a more compact 
clustering of the two sample classes compared 
to the MS_top6 at 9 and 11 DPI (Online resource 
1: Fig.  S4). CVE by PC1 and PC2 increased from 
83.82% to 95.29% over 2 to 11 DPI for MS_3-3 
(Online resource 1: Table  S7), whereas the values 
increased from 78.67% to 95.11% for the MS_top6 
dataset over the same interval (Online resource 1: 
Table S8), indicating steady improvement in sample 
clustering with disease progression.
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Similarity and overlap of PCA clusters

Results of the two similarity and two overlap tests indi-
cated that distinctiveness between the PC1 scores of 
control and infected samples increased from 2 to 11 
DPI for all datasets, whereas no clear trend was visible 
for PC2 scores likely due to its highly variable nature 
(Table  3). Considering the early stages of infection, 
F-values of PC1 for M_all and S_all were closer to the 
F-critical value of 3.938 as compared to the MS_all, 
MS_3-3, and MS_top6 datasets at 2 DPI, whereas at 4 
DPI it was highest for MS_all, followed by MS_top6. 
Moreover, at 7 DPI all three datasets with morphometric 

and spectral features combined had F-values > 1.16 
times higher than the M_all and S_all datasets. Simi-
larly, a distinct increase in the dissimilarity of data distri-
bution between control and infected samples from 2 to 7 
DPI was also evident from the KS values, with a higher 
KS value indicating greater dissimilarity. Notably, while 
the S_all dataset had the lowest KS value at 2 DPI, it 
was lowest for M_all at 4 DPI, although the dissimilarity 
became very high (KS > 0.9) for all datasets at 7 DPI. 
Although overlap in data range at 4 DPI was relatively 
lower for the MS_all and MS_top6 datasets (JI < 0.2, 
SS < 0.4), it was least for MS_3-3 and MS_top6 datasets 
for 7 DPI (JI = 0.06, SS < 0.2).

Fig. 4  PCA of morphometric and spectral features for healthy 
(green, diamonds) and infected (red, triangles) plants at 2, 4, and 
7 days post inoculation (DPI). Biplots represent the first two prin-
cipal components (PCs) for the analyses with morphometric attrib-
utes (a; M_all, 5 features), spectral attributes (b; S_all, 9 features), 
and both datasets combined (c; MS_all, 14 features). Values in 
parentheses indicate the percentage of variance explained by the 

corresponding PC. Ellipses represent the 95% confidence interval 
for each class, viz. healthy and infected (n = 52). ΔC indicates the 
Euclidean distance between the centroids of both groups. Order of 
the features: DB, Height, LAI, LInc, LPD (a; morphometric); GLI, 
Hue, NDVI, NPCI, PSRI, G, NIR, GMR, AGRI (b; spectral); mor-
phometric followed by spectral in the same order (c). Plots for 9 
and 11 DPI are presented in Online Resource 1: Fig. S3
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Discussion

Application of machine vision for real-time high-
throughput non-invasive monitoring of plant health 
status and growth has been explored for a wide vari-
ety of crops (Bock et  al., 2010; Singh et  al., 2021; 
Waiphara et al., 2022; Zhang et al., 2019). In this con-
text, 3D scanners have been implemented for charac-
terising growth and stress-related structural changes 
in various crops, including maize (Friedli et  al., 
2016; Su et al., 2019), wheat, soybean (Friedli et al., 
2016), peanut (Yuan et  al., 2019), oil palm (Husin 
et al., 2020), sugar beet (Xiao et al., 2020), and potato 
(Mulugeta Aneley et al., 2022). However, the use of 
3D imaging for crop disease detection is still in the 
conceptualisation stage (Zhang et al., 2019). In con-
trast, use of multispectral sensors has been inves-
tigated in depth for detecting various crop diseases, 
including sheath blight (Qin & Zhang, 2005), pow-
dery mildew, leaf rust (Franke & Menz, 2007), root 
rot (Yang et  al., 2010), late blight (Sugiura et  al., 

2016), mosaic virus disease (Raji et al., 2016), huan-
glongbing (DadrasJavan et  al., 2019), and light leaf 
spot (Veys et  al., 2019). Notably, only a small per-
centage of such studies have attempted to amalgamate 
the information obtained via simultaneous implemen-
tation of both types of sensors (Lazarević et al., 2021; 
Manavalan et al., 2021).

Herein, we aim to highlight the potential of 
machine-vision for co-monitoring morphometric and 
spectral attributes using P. irregulare infection in 
flat-parsley as a model system to assess the health of 
crops grown hydroponically in a vertical farm, with 
emphasis on better segregation of samples based on 
disease symptoms using MDA following tempo-
ral data acquisition. In the current study, multiple 
exploratory trials were initially conducted using dif-
ferent inoculation methods, inoculum concentrations, 
and inoculation intervals (data not shown), and were 
tested to establish the pathogenesis model to be used 
for the intended analysis. The design yielding the 
best result (described in the methods section) was 

Fig. 5  PCA of minimal datasets with specific morphometric 
and spectral attributes of healthy (green, diamonds) and infected 
(red, triangles) plants at 2, 4, and 7 days post inoculation (DPI). 
Biplots represent the first two principal components (PCs) for 
analyses performed by combining the  three best morphomet-
ric and three best spectral features (a, MS_3-3), as well as the 
top six features (b, MS_top6). Values in parentheses indicate 

the percentage of variance explained by the corresponding PC. 
Ellipses represent the 95% confidence interval for each class, 
viz., healthy and infected (n = 52). ΔC indicates the Euclidean 
distance between the centroids of both groups. Features are in 
the order: DB, Height, LAI, GLI, NDVI, AGRI (a, MS_3-3); 
DB, Height, GLI, NDVI, G, AGRI (b, MS_top6). Plots for 9 and 
11 DPI are presented in Online Resource 1: Fig. S4
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considered as the preliminary trial, and was followed 
in the main trial for temporal MDA. The preliminary 
trial presented clear indications of shoot and root tis-
sue damage in infected plant samples, and provided 
a tentative timeframe for attempting early monitor-
ing of disease symptoms (Online resource 1: Fig. S1). 
In this trial, data was collected from 8 DPI onwards 
when disease symptoms such as leaf yellowing and 
slower growth compared to the control became very 
clear upon visual inspection.

In the main trial, recording morphometric and 
spectral data intermittently from 2 DPI onwards 
helped provide a clear picture of how the infection 
affected the plants over time (Fig.  3). While some 
parameters such as DB and plant height increased 
steadily in healthy samples from 2 to 11 DPI, attrib-
utes such as LAI, GLI, NDVI, and PSRI plateaued 
around 4 to 7 DPI. In contrast, the infected samples 
did not exhibit any considerable change in DB and 
plant height, whereas a steady decline in GLI and 
AGRI was recorded after 4 DPI. As recorded in the 
healthy plants, LAI, NDVI, and PSRI showed pla-
teauing around 4 to 7 DPI in the infected plants as 

well, although the magnitudes differed considerably 
between the two groups. Such differences in relative 
temporal trends of the different imaging attributes 
highlight the complexity in automatic identifica-
tion of diseased plants using individual parameters, 
because the numerical trends and efficacy of disease 
detection using each attribute may vary with time. 
However, co-interpretation of feature trends following 
MDA by PCA helped overcome this limitation.

The selected features were subjected to PCA to 
obtain a holistic overview of the temporal trends via 
dimensional reduction. As an initial feature elimi-
nation step prior to PCA, eleven out of the twenty-
five recorded attributes were omitted based on their 
strong correlation (r < -0.95, r > 0.95) with one or 
more selected features (Online resource 1: Tables S2 
and S3). This helped minimise redundancy in infor-
mation, reduced the computational load, and simpli-
fied data analysis. In addition, removing redundant 
variables also reduced the likelihood of biasing fea-
ture rankings without affecting the quality of analy-
sis, which would otherwise have a negative impact 
on subsequent computations and interpretations. 

Table 3  Similarity and 
overlap of principal 
component scores between 
the control and infected 
datasets

F F-statistic obtained 
from one-way ANOVA, 
JI Jaccard Index, 
KS Kolmogorov–
Smirnov index, PC1 and 
PC2 principal components 
1 and 2, SS Szymkiewicz–
Simpson overlap coefficient. 
*F-critical = 3.938

PC1 PC2

Test Dataset 2 DPI 4 DPI 7 DPI 9 DPI 11 DPI 2 DPI 4 DPI 7 DPI 9 DPI 11 DPI

F* M_all 23.74 130.7 247.9 362.7 331.9 25.53 0.14 1.23 0.14 0.17
S_all 7.83 181.7 276.2 243.0 201.4 43.32 0.23 3.88 5.86 1.96
MS_all 69.36 232.4 368.0 329.3 274.1 0.04 0.73 3.70 3.23 1.44
MS_3-3 67.98 182.3 321.7 362.9 330.6 1.31 5.26 5.40 1.20 0.63
MS_top6 49.46 228.7 440.1 428.1 355.6 4.84 0.70 1.07 3.24 4.51

KS M_all 0.48 0.73 0.92 0.94 0.88 0.46 0.12 0.15 0.17 0.19
S_all 0.35 0.83 0.98 0.9 0.9 0.5 0.12 0.25 0.23 0.19
MS_all 0.6 0.87 0.98 0.92 0.9 0.15 0.15 0.19 0.27 0.15
MS_3-3 0.58 0.81 0.92 0.92 0.88 0.17 0.27 0.29 0.19 0.15
MS_top6 0.56 0.85 0.98 0.92 0.92 0.25 0.21 0.17 0.21 0.29

JI M_all 0.6 0.26 0.11 0.06 0.12 0.65 0.97 0.63 0.8 0.55
S_all 0.65 0.21 0.09 0.08 0.16 0.47 0.81 0.8 0.63 0.86
MS_all 0.45 0.14 0.09 0.05 0.11 0.89 0.78 0.84 0.77 0.8
MS_3-3 0.48 0.26 0.06 0.1 0.14 0.95 0.7 0.63 0.87 0.71
MS_top6 0.53 0.15 0.06 0.01 0.14 0.92 0.72 0.75 0.92 0.7

SS M_all 0.77 0.56 0.25 0.13 0.21 0.8 1 1 1 1
S_all 0.93 0.43 0.33 0.49 0.7 0.66 1 0.9 1 0.93
MS_all 0.63 0.3 0.28 0.16 0.48 1 1 0.92 1 1
MS_3-3 0.69 0.43 0.13 0.24 0.37 1 0.98 1 1 1
MS_top6 0.77 0.34 0.14 0.02 0.49 0.97 1 1 0.97 1
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This was confirmed by performing PCA with all 
twenty-five features (data not shown), wherein exten-
sive overlap between highly correlated features was 
observed, with no significant improvement in the 
clustering of healthy and infected samples.

Results of PCA using all data subsets, viz., M_all, 
S_all, MS_all (Fig.  4; Online resource 1: Fig.  S3), 
MS_3-3, and MS_top6 (Fig.  5; Online resource 1: 
Fig.  S4), revealed that the infected samples could 
be segregated from the control most reliably at 
later stages, i.e., 7 DPI onwards, when the symp-
toms became more prominent. Since members of 
the Pythium genera are root necrotrophs, they pref-
erentially attack the root tissue and cause root rot 
(Okubara & Paulitz, 2005). This leads to a gradual 
systematic decline in overall plant health and pos-
sibly even death. Considering the indirect impact 
of Pythium on above-ground plant parts, a delay in 
the appearance of foliar symptoms is highly likely. 
Hence, spectral attributes such as GLI, Hue, and 
AGRI (Fig.  3) present a decline in infected plants 
from around 4 DPI, which indicates deteriorating 
plant health. Although a steady increase in the mor-
phometric attributes was noticeable for healthy plants 
4 DPI onwards, these attributes did not change con-
siderably in the infected plants (Fig.  3). Neverthe-
less, multivariate analysis of all datasets enabled a 
considerable proportion of the infected samples to 
be distinguished from the healthy samples even at 2 
DPI (Figs. 4 and 5). This suggests that samples which 
got affected more severely could be distinguished 
via MDA of spectral and morphometric attributes as 
early as 2 DPI.

Distinguishing infected samples from healthy ones 
using the absolute values of individual attributes 
would have been particularly challenging at 2 DPI 
owing to the considerable overlap between the range 
of values between the two classes (Fig. 3). In contrast, 
multivariate data analysis via PCA allowed the vari-
ations for all selected features to be assessed simul-
taneously and be concatenated to provide an over-
all depiction of the difference between the samples 
(Figs.  4, 5, Table  3). Dimensionality reduction by 
PCA further simplified data interpretation by generat-
ing PCs, i.e., hypothetical variables formed by linear 
combinations of all features, which allowed the infor-
mation from numerous real variables (in this case 
five to fourteen) to be presented in a two-dimensional 
biplot. Thus, co-assessing morphometric and spectral 

attributes via PCA aggregated even minor differences 
between the healthy and diseased plant samples, 
which could potentially enable isolation of infected 
plants based on pre-symptomatic changes.

Abnormalities in plant health may not be clearly 
perceptible very early if only morphological traits are 
being used. In addition, a major conundrum related 
to this is that morphological features such as plant 
height, leaf area, and dry biomass tend to remain 
unchanged in stressed plants, which necessitates the 
presence of a healthy plant for reference. In contrast, 
alterations in leaf pigmentation, which closely repre-
sent changes in plant physiological status, start occur-
ring following the onset of stress and lead to char-
acteristic deviations in spectral properties (Nilsson, 
1995). Thus, temporal monitoring of spectral attrib-
utes in conjunction with morphometric measurements 
could provide a better insight into plant health status. 
This is indicated by the PCA biplots for 4 and 7 DPI 
(Fig. 4) as well as the comparative statistics for data 
similarity and overlap (Table 3), wherein MS_all and 
S_all datasets result in better separation of the healthy 
and infected plants than M_all.

It is worth mentioning that multispectral measure-
ments allow numerous hypothetical spectral indices 
to be generated from only a few wavebands, which 
creates more potential features to be analysed. For 
instance, in this study reflectance values from four 
spectral regions, viz., R, G, B, and NIR, were used 
to calculate twelve theoretical spectral indices. In 
contrast, since the morphometric features represent 
“physical” or “tangible” traits, the same level of flex-
ibility for generating hypothetical morphometric 
features may not be present due to the likelihood of 
new hypothetical morphometric traits being physi-
cally unrealistic or ambiguous. Hence, this limits the 
scope of expanding the morphometric  feature subset 
by creating additional traits with the available mor-
phometric measurements, as was done for the spectral 
features.

In the present study, the smaller number of mor-
phometric features (n = 5) compared to spectral fea-
tures (n = 9) used for MDA could have arguably 
biased the results in favour of spectral attributes. In 
addition, the MS_all dataset had a high proportion 
of spectral attributes, which could have skewed the 
outcome as well. Thus, in addition to testing the pos-
sibility of using a smaller number of features for iso-
lating infected plants accurately, analyses with fewer 
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features (n = 6), i.e., MS_3-3 and MS_top6, were per-
formed to better understand how the total number of 
features and the balance between morphometric and 
spectral features impacted the analysis. Similar to the 
test with MS_all, PCA with both minimal datasets 
produced strongly non-overlapping clusters (JI = 0.06, 
SS = 0.13–0.14; Table 3) for the healthy and infected 
samples at 7 DPI, albeit using less than half the fea-
tures as MS_all (n = 14 features). Since features hav-
ing better overall WL in previous analyses (Table 2) 
were selected for this step, it may be inferred that the 
quality of features being used was more important 
than the total number of features.

Notably, the best-ranked features, viz., GLI, NDVI, 
AGRI, G, DB, and mean plant height (Table  2), 
showed distinct temporal trends individually, with 
limited overlap between the two classes (Fig.  3). In 
contrast, features such as NPCI, LPD, and LInc, 
which were ranked the lowest based on WL (Table 2), 
exhibited irregular trends or had considerable over-
lap between the healthy and infected plants (Fig. 3), 
which corroborates the selection and exclusion of 
features based on WL. Further, the analysis was not 
affected significantly by the ratio of morphomet-
ric and spectral features (Fig.  5) as long as features 
exhibiting clear trends were being used. Notably, all 
three datasets combining both types of features, i.e., 
MS_all, MS_3-3, and MS_top6, resulted in better 
segregation of healthy and infected samples, as indi-
cated by the biplots and cluster comparisons for 7 
DPI (Figs. 4, 5, Table 3). This clearly indicates that 
using a combination of morphometric and spectral 
attributes improves the scope for early identification 
of unhealthy plants. Hence, inclusion of morphomet-
ric data in addition to multispectral (RGB) data could 
improve plant disease detection via ML by bringing 
in a totally diverse set of informative attributes repre-
senting plant health status, which could enable more 
accurate analysis even with fewer total features.

Earlier studies have performed plant image analy-
sis via various ML methods for disease detection 
(Ahmad et al., 2023; Singh et al., 2021). For instance, 
ML approaches such as Support Vector Machines, 
Random Forest, Decision Trees, Naïve Bayes, and 
K-Nearest Neighbours have been deployed for the 
identification of diseased samples using images of 
bell-pepper (Anjna et  al., 2020), maize (Panigrahi 
et  al., 2020), tomato (Agarwal et  al., 2020; Hara-
kannanavar et  al., 2022), and rice (Shrivastava & 

Pradhan, 2021; Zamani et  al., 2022). Further, appli-
cation of more advanced computational tools such 
as deep-learning has greatly improved information 
processing for plant health assessment following data 
acquisition via machine vision (Ghosal et  al., 2018; 
Nagasubramanian et  al., 2019; Yamamoto et  al., 
2017). A wide variety of deep-learning algorithms 
implementing unique iterations of convolutional neu-
ral networks have  also been successfully tested for 
plant disease detection in various crops, such as cas-
sava (Sambasivam & Opiyo, 2021), tomato (Abbas 
et al., 2021; Agarwal et al., 2020; Chowdhury et al., 
2021; Harakannanavar et al., 2022), maize (Li et al., 
2020), peach (Bedi & Gole, 2021), and strawberry 
(Shin et al., 2021). Moreover, studies have also been 
carried out to compare the performance of various 
ML and deep-learning approaches (Harakannana-
var et al., 2022; Sujatha et al., 2021). While all these 
studies focussed on implementing different learning 
methods for processing RGB images, other studies 
have reported the use of Linear Discriminant Analy-
sis along with Support Vector Machines for disease 
detection using thermal and hyperspectral images of 
winter-wheat (Zhang et  al., 2012), olive (Calderón 
et al., 2015), and almond (López-López et al., 2016).

Although very advantageous for high-throughput 
plant stress detection, application of intensive ML and 
deep-learning modelling has certain limitations as 
well. For instance, various supervised learning mod-
els require training samples to be manually annotated 
by an expert, making the method labour-intensive, 
subjective, and prone to errors (Singh et  al., 2021), 
and focus on less labour-intensive ML methods is 
gaining interest. Moreover, a majority of the reports 
on ML and deep-learning mentioned earlier imple-
mented huge datasets with thousands of images from 
pre-existing repositories to generate the prediction 
models, making the process less conducive if a pre-
viously-unexamined plant or disease was being moni-
tored. As an example, Sambasivam and Opiyo (2021) 
and Chowdhury et al. (2021) utilised 10,000+  images 
in their deep-learning tests to generate robust predic-
tion models. On the other hand, Bedi and Gole (2021) 
reported a method for reducing the number of useful 
training parameters to 9914, compared to other stud-
ies where more than a million parameters had been 
used to generate high-performance prediction mod-
els (Mohanty et  al., 2016; Shin et  al., 2021). Fur-
ther, such reports on the application of deep-learning 
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algorithms implemented “black-box” models (Saleem 
et al., 2020; Chowdhury et al., 2021; Sambasivam & 
Opiyo, 2021; Shin et  al., 2021; Tiwari et  al., 2021), 
which are difficult to depict, making their interpre-
tation challenging for plant scientists with limited 
knowledge of advanced ML (Singh et al., 2021).

Owing to the bottlenecks of these computation-
ally intensive learning approaches adopted for plant 
monitoring, alternative analytical approaches that are 
more flexible and explicit must be chosen for explora-
tory studies. Hence, in the present study, a simplified 
model-free approach employing MDA via PCA was 
adopted for identifying temporal trends in the can-
opy features of diseased plants, bypassing the issues 
mentioned previously. Since the present study was 
exploratory, with the main aim of understanding and 
depicting temporal changes in sample segregation 
by the use of diverse datasets from multiple sensors, 
PCA-based analyses were chosen to represent the 
entire process in a more comprehensible manner. A 
fundamental difference between PCA and intensive 
supervised classification modelling is that while the 
former finds the maximum variance in data across 
multiple variables, the latter can be used to predict 
sample category (healthy or infected) based on pre-
vious datasets, i.e., a trained model. Hence, at least 
one adequate sample dataset is needed for reference 
in all supervised learning operations, which may not 
always be available for all crops and/or diseases, as 
was the case here. In contrast, PCA condenses the 
readily available information for numerous variables 
into fewer dimensions, and displays the alignment of 
each sample with respect to the different features in 
the biplot. Thus, PCA was used here to create a quali-
tative gradient based on numerous parameters instead 
of directly determining the fate of a sample.

Salient characteristics of the data analysis method 
adopted herein are as follows: 1) combining the infor-
mation from diverse sensors improved data segrega-
tion; 2) unsupervised data processing allowed fully 
objective analysis, with no human intervention and 
minimal preprocessing; 3) it did not require elaborate 
training datasets for model generation; 4) could be 
implemented and interpreted with limited computa-
tional expertise; 5) could be implemented with a lim-
ited sample size. Moreover, as the method described 
here is totally non-specific, i.e., it is model-free and 
does not rely on any previously-generated informa-
tion, it could be easily adapted or customised for 

other crops and diseases as well. Nonetheless, this 
method does yield PCs, i.e., linear combinations of 
the original features, which could be used for further 
characterisation of new samples from the same crop 
imaged under the same conditions.

Since the method presented in the study is unsuper-
vised, it focused on maximising separability between 
samples based on multiple canopy features, but did 
not tag samples as “healthy” or “infected”. Thus, in 
practice users could follow this approach to locate 
divergent samples by using a set of known reliable 
features to identify the cluster of stressed plants based 
on their relative location on the biplot. For example, 
as observed in our analyses, features such as NDVI or 
AGRI always pointed towards the healthier samples, 
whereas G was directed towards the unhealthier sam-
ples (Fig. 5b). However, knowledge of feature trends 
for healthy and unhealthy samples would be needed 
to correctly interpret the clustering.

Inability to inherently account for feature redun-
dancy might bias the results of PCA, necessitating 
stringent feature selection prior to plant monitoring 
via the presented method. Another limitation of the 
PCA-based approach presented here is that it would 
not be able to perform well if all the samples being 
analysed were infected and were showing very simi-
lar canopy symptoms as the process does not rely on 
earlier trials or datasets. In addition, since this study 
aimed at identifying disease symptoms in an indoor 
farming system with controlled lighting, data pre-pro-
cessing was minimal, i.e., only linear correlation anal-
ysis was performed for reducing redundancy. How-
ever, if the protocol is adapted for operations with a 
variable light source (e.g., sunlight) as in the field or a 
glasshouse, colour balancing would be needed as the 
first data pre-processing step to compensate for vari-
ations in light environment at each imaging interval. 
Hence, relevant considerations would be required 
before implementing the proposed method to achieve 
better results for different crops, diseases, cultiva-
tion systems, and sensors. Use of supervised ML and 
deep-learning tools for multi-sensor dataset analysis 
could also expand the scope of implementing such 
crop monitoring systems.

Although machine vision is very advantageous for 
crop monitoring, practical application of the technol-
ogy in vertical farms poses certain challenges that are 
not encountered in field studies (Tian et al., 2022). For 
instance, installation of imaging sensors within the 
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growing area is not feasible because such crop produc-
tion systems aim at maximising vertical space utilisation 
and have crops growing in multiple tiers. Additionally, 
illumination spectrum could be another limiting factor 
for in  situ imaging in vertical farms that employ non-
white LED lighting, as leaf spectral reflectance charac-
teristics would change according to incident light, neces-
sitating reconfiguration of spectral indices that have 
been established using white light. A solution to these 
issues is the use of mobile cultivation beds that may be 
transferred intermittently to a fixed imaging platform for 
crop monitoring. Use of a fixed and optimised lighting 
regime during imaging would allow better standardisa-
tion of spectral data collection in such systems. Cam-
era resolution and planting density would also affect 
the overall accuracy of the process, and image analysis 
protocols would require careful spatial calibration as 
per planting layout to identify trends at individual plant 
level. The present study highlights the efficacy of unsu-
pervised and simultaneous implementation of spectral 
and morphometric features for early detection of root 
rot in hydroponics using flat-parsley as a model system. 
Investigations with other plant species and diseases are 
needed to further expand this knowledge base, and use 
of other imaging systems such as thermal, hyperspectral, 
and fluorescence cameras along with multispectral and 
3D imaging will be especially helpful in providing fur-
ther insights into the scope of applying machine vision 
for early disease detection in vertical farms.
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