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Abstract The commercial aspect of growing Bras-
sica crops has always been influenced by the worldwide
occurrence of the clubroot pathogen, Plasmodiophora
brassicae. Clubroot symptoms reduce crop yield dra-
matically and the resilient protist is hard to eradicate
from infested soils. Chemical treatments are not so effi-
cient and their use is allowed only in a few areas of the
world, none of them in the EU. The majority of clubroot
control is mediated by using resistant crops, but not all
species have good or durable resistance sources avail-
able, and these can be overcome by evolving or new
Plasmodiophora pathotypes. Some commercially avail-
able biocontrol agents have been tested and found to
reduce clubroot on crops such as rapeseed, cauliflower
and Chinese cabbage to some extent. More biocontrol
organisms have been isolated and described in recent
decades but for many commercial application is still a
long way off. In this review we summarize trends for
bacterial and fungal endophytes for clubroot biocontrol
as well as mechanisms behind the effects reported, such
as antibiosis, defense induction or competition for space
and nutrients. There are indeed plenty of studies on bio-
control of clubroot but not many have reached a point
where the biocontrol agents are ready to be applied at
field scale. The potential of endophytic microbes in pest
management against clubroot disease is huge.
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Introduction

Clubroot disease was first reported in the USA in
the year 1852 (cf. Hirai, 2006; Karling, 1968) and
the causal agent was identified in 1878 by Woronin
(Woronin, 1878). Not much later the disease was also
reported for the first time in Japan (cf. Hirai, 2006).
Clubroot has now been identified in many countries
around the world as one of the largest economic prob-
lems in Brassica crop cultivation (Botero et al., 2019;
Gossen et al., 2015; Ren et al., 2016; Zamani-Noor
et al., 2022). Clubroot-infected plants show large root
galls (=clubs) which ultimately turn the roots into
a strong metabolic sink of carbohydrates and other
nutrients from the leaf tissues (Keen & Williams,
1969; Malinowski et al., 2019). This leads to a dra-
matic reduction of green plant biomass compared to
healthy plants and causes large yield losses in Bras-
sica cultivars (Dixon, 2014).

The clubroot pathogen Plasmodiophora brassicae
is an aggressive unicellular protist with a complex
life cycle that makes management of the disease
with agrochemicals a challenge. The disease cycle
starts with durable resting spores of P. brassicae
left over from previously decayed plant root galls
that can stay dormant in contaminated soils for dec-
ades until presented with a suitable host. All weeds
from the Brassicaceae can be infected as well as
crop plants such as rapeseed / canola, swede (Bras-
sica napus), other crops from B. rapa and B. olera-
cea species like kale, turnip, white and red cabbage,
broccoli, cauliflower, and oil radish (Raphanus sati-
vus) (Dixon, 2009). During the primary infection,
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emerging zoospores of P. brassicae infect fresh root
hairs and form primary plasmodia in root hairs and
epidermal cells within 7 days of the initial zoospore
contact (Liu et al., 2020). The plasmodia in these
root hairs then develop into mature zoosporangia
which ultimately release secondary zoospores into
the lumen of epidermal root cells (Liu et al., 2020).
After this, secondary plasmodia develop in the inner
root cortex tissue and produce large amounts of rest-
ing spores in the cortical cells. The secondary infec-
tion is characterized by the typical swelling of root
tissue that can easily be observed as a trademark
symptom of the clubroot disease.

Chemical control of clubroot disease is challeng-
ing due to the biotrophic nature of the pathogen and
the durable resting spore deposits in agricultural
soil. Clubroot-reducing fungicides such as carben-
dazim, cyazofamid and fluazinam are banned in the
European Union which leaves sustainable crop man-
agement practices with resistant cultivars and bio-
control approaches as the only options here (Donald
& Porter, 2009; Liao et al., 2022; Peng et al., 2011;
Struck et al., 2022). Sustainable crop management
includes the maintenance of a healthy soil structure,
fertilizer input only as needed and measures that
ensure good soil health and great microbial diversity
(Zhang et al., 2019).

However, what is biological control? The defini-
tion encompasses using living organisms to con-
trol plant pathogens or pests, so called biocontrol
agents, (Stenberg et al., 2021), and is different from
plant strengtheners or biostimulants such as seaweed
extracts that have been tested against clubroot as well
(Kammerich et al., 2014; Wite et al., 2015). One
challenge for cost efficient crop production is that the
most sustainable methods are often not the cheapest
ones on the market (Parnell et al., 2016). In order
to meet the EU goals of a 50% reduction of chemi-
cal pesticide use and prioritization of integrated pest
management as well as preventing disease resist-
ance, a strong focus on sustainable crop manage-
ment methods including biocontrol is needed (Sus-
tainable Use of Pesticides Directive 2009/128/EC;
https://eur-lex.europa.eu/eli/dir/2009/128/0j).  Since
chemical, genetic, or biological methods have differ-
ent targets during the life cycle of a pathogen, con-
trol approaches should be combined to achieve bet-
ter effects (Ludwig-Miiller, 2016; Peng et al., 2011;
Struck et al., 2022). For example, disease resistant

@ Springer

crops should be used together with other options to
control clubroot, and biological control is an option.

Strategies for the control and biocontrol of clu-
broot disease have been reviewed recently (Ahmed
et al., 2020; Struck et al., 2022). Struck et al. (2022)
provide a good overview of agricultural practices
useful for sustainable clubroot management. What is
missing so far is an overview of bacterial and fungal
biocontrol agents and the specific mode of action of
biocontrol microbes against clubroot which we aim to
provide here. In this review we focus on the biocon-
trol of clubroot by endophytic organisms. Endophytes
are microbes that live asymptomatically in plant tis-
sues and form a symbiotic relationship with their host
(Fesel & Zuccaro, 2016; Ludwig-Miiller, 2015; White
et al., 2019). Endophytic microorganisms are well
suited for biocontrol since they spend a considerable
part of their life cycle within living plant tissue and
are therefore well adapted to their host (Latz et al.,
2018). The majority of land plants are inhabited by
endophytic bacteria and fungi (Khare et al., 2018) and
they fulfill important functions for their host plant.
Endophytes enhance nutrient availability and adap-
tion to environments (Das & Varma, 2009), increase
the defense and stress tolerance of their host (Bul-
garelli et al., 2013; Busby et al., 2016) and influence
plant development (Khare et al., 2018).

Endophytes play an increasingly important role
as biocontrol agents (BCAs) of plant diseases and
are especially helpful against soil-borne pathogens
that are hard to control, such as the clubroot patho-
gen P. brassicae. Brassica species produce strong
antimicrobial compounds, the glucosinolates, which
might prevent them from forming beneficial mycor-
rhizal interactions (Glenn et al., 1988; Vierheilig
et al., 2000). Brassicas therefore benefit more from
endophytic interactions with bacteria and fungi
(Poveda et al., 2022).

Approaches with endophytes used as biocontrol
against clubroot disease

For this review, we surveyed the peer-reviewed litera-
ture for biocontrol microorganisms used against club-
root disease. Our search in November 2022 included
the words “biocontrol” and “Plasmodiophora” or
“clubroot”/’club root” in various combinations in
Web of Science and Google Scholar. Unfortunately,
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a few manuscripts were not accessible to us either
because of restrictions regarding the subscription of
our institution or due to language barriers for research
in languages other than English and German.

Our literature search revealed a total of eight fungal
and 18 bacterial species with several strains exhibiting
a potential for clubroot control (Table 1). Combinations
of microbial strains as mixtures for biocontrol were
also included, and at least eight combinations were
tested. An experimental setup close to conditions in the
field is preferable to study the effectiveness of BCAs
against clubroot disease since Brassicas are cultivated
in fields. However, this kind of setup is not accessible
to all researchers and many plant pathologists study
plant pathogen interactions in a controlled environment
like climate chambers and greenhouses. The research
we screened showed that the majority of experiments
were carried out in greenhouses (46% which represents
35 of the 76 reported experiments), followed by field
trials (29% with 22 experiments) and climate chambers
(25% with 19 experiments). Of all these studies, 10
used two different growth conditions for the host plant,
and one study used all three approaches.

The majority of reports were from Asian coun-
tries (57%), among them China (31%), Japan (10%),
Korea (5%), Indonesia (5%), Philippines (5%)
and Nepal (2%), followed by North America with
Canada (17%), Europe (14%) with Germany (7%),
Estonia, Denmark and Poland (each 2%) and South
America (5%) with Brazil (2%) and Colombia (2%)
and Australia with New Zealand (5%). The main
inoculum sources for P. brassicae were field isolates
from naturally infested soil from the area in which
the studies were conducted, and in five studies the
predominant pathotype occurring in that area was
reported (15 reported sources, 35% of total reports).
For 13 experiments the inoculum source was not
reported or not specified, e.g. “root galls of Chinese
cabbage” (30%), for 10 studies infested field soil
was used (23%) and five studies (12%) used single
spore isolates of P. brassicae.

Many studies lacked a detailed description of the
BCA used. Six research groups used commercially avail-
able biopesticides (Botero et al., 2015; Gossen et al.,
2016; Kurowski et al., 2009; Lahlali & Peng, 2014;
Lahlali et al., 2011, 2013; Peng et al., 2011; Santos et al.,
2017). In total an estimated amount of at least 30 differ-
ent (labeled) strains were used as BCAs against clubroot
in the studies in Table 1.

Is biocontrol effective against clubroot?

Sustainable clubroot management involves a combi-
nation of resistant cultivars combined with field sani-
tation measures to prevent further spread of clubroot
resting spores, crop rotation, appropriate soil nutrition
and the use of biocontrol options (Peng et al., 2011;
Struck et al., 2022; Yu et al., 2015).

Figure 1 gives an overview of the relative biocon-
trol effect on the Disease Index (DI) of clubroot after
application of fungal, bacterial and mixed microbial
BCAs. The relative biocontrol effect is the efficacy
of the applied microbes to reduce symptoms in club-
root-infected plants. The majority of studies reported
a reduction of clubroot symptoms after BCA treat-
ment, and the overall efficacy ranged from -28% (more
severe symptoms observed with the BCA treatment)
up to 100% (no clubroot symptoms after BCA treat-
ment). These data present only a fraction of what
was researched in that area due to the lack of detailed
reporting of findings in the peer-reviewed studies con-
sidered for this paper and a publication bias towards
only positive results in general. Many reports on the
biocontrol of clubroot contain graphs to display the DI
but not all of them include the data used to generate
these figures or the calculated control effects for the
DI. The lack of detailed reporting prevents the cor-
rect assessment of the biocontrol effect on the disease
extent against clubroot and hinders replication efforts,
a known problem in phytopathology literature already
pointed out in other analyses (Ngugi et al., 2011;
Sparks et al., 2023). Several data points in Fig. 1 origi-
nate from only a few studies and some studies investi-
gated a low number of plants per treatment (< 10) so
the reliability of these results is hard to estimate (see
Supplement 1 for the data used to create Fig. 1).

The overall trend seen in Fig. 1 is very promis-
ing though, as it seems that the use of BCAs against
clubroot is a successful approach. It becomes clear
as well, that a more thorough research database for
specific species such as Heteroconium (Cladophi-
alophora) chaetospira helps to assess the poten-
tial profitability of using a BCA. It also shows
that commercially available biopesticides have a
similar efficacy against clubroot as strains isolated
from the local rhizosphere of clubroot-infested
fields. In summary, the overview of biocontrol effi-
cacy shows that there is still a lot of potential for
new BCAs against clubroot. To be marketable, the
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Fig. 1 Overview of the effect of biocontrol agents (BCA) on
the Disease Index (DI) of clubroot-infected plants. Shown is the
percentage of disease reduction, the relative biocontrol effect,
achieved through application of bacterial BCAs (panel A) and
fungal BCAs (panel B) in relation to clubroot-infected plants that
did not receive BCA treatment. The relative biocontrol effect was
calculated as percentage: 100-DI (plants treated with BCA and

application of many BCAs needs to be optimized,
i.e. formulations should be improved if necessary
to make them easier to apply, affordable and tested
under the specific growing conditions of the target
cultivar (Harman et al., 2010; Parnell et al., 2016).

Mechanistic insights into biocontrol of clubroot
disease

While many reports describe the mainly positive effect
of BCAs for different host—biocontrol combinations,
the mechanistic cause was addressed only in a few
experimental studies that went beyond the reduction of
clubroot, amount of pathogen or additional features that
help to increase the effect. We have identified three major
possible modes of action: competition, antibiosis through
e.g. enzyme secretion like chitinases, induction of plant
defense and/or plant endophyte defense mechanisms.

An antibiosis effect would be expected during ger-
mination or primary infection while the induction of
defense responses could have an effect on all stages

100

50 »

% o
ae

clubroot) x 100 / DI (plants with clubroot). Genus names used
here are those that originate from the literature base for the data
presented and do not necessarily present the current phyloge-
netic status of the BCA. Basis of this graph are 20 studies from
Table 1, see Supplement 1 for the data used for this figure

of infection, including the secondary infection phase
as described in detail below (e.g. Fu et al., 2018; Li
et al., 2014; Zhu et al., 2020). Since an antibiosis
effect can be measured by rather simple methods, for
example by applying organisms or extracts to resting
spores of P. brassicae, of which the germination rate
or viability is determined, these constitute the major-
ity of reports found in the literature.

Mode of Action 1: Competition for space and
nutrients.

The competition for space and resources starts in
the soil around the roots, in the rhizosphere (Latz
et al., 2018). A large number of BCAs show good
rhizosphere competence, i.e. they outcompete other
microbes in the struggle for nutrients, such as carbon
and nitrogen leaked by plant roots, and the ability to
enter plant roots and colonize plant tissues. Fungal
BCAs could compete for infection sites through the
formation of a dense hyphal network around young
host roots and thus hinder P. brassicae primary zoo-
spores from entering root hairs. Microscopy can help
to find the specific sites of inhibition during clubroot
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progression, for example whether root hair or cortex
invasion is targeted (Zhao et al., 2022; Zhu et al.,
2020) or resting spore germination is inhibited (Fu
et al., 2018; Zhu et al., 2020).

Several BCAs are able to inhibit root hair coloniza-
tion by P. brassicae and thus hinder the initial start of
the disease progression (Arif et al., 2021; Lahlali et al.,
2011, 2013; Zhu et al., 2020). A biofungicide that has
been on the market for some time contains Bacillus
subtilis (now renamed B. amyloliquefaciens) and is effi-
cient against clubroot of Brassica napus (Lahlali et al.,
2011, 2013). On the microscopic level this biofungicide
seems to inhibit root hair and cortical infection (Lahlali
et al., 2011) and mechanistically, the determination of
the expression of selected defense genes pointed to the
activation of jasmonic acid and ethylene-related defense
pathways (Lahlali et al., 2013).

While the competition effect seems more obvious
during primary infection, BCAs can also interfere with
reproduction during the second part of the infection
cycle in the cortex (Lahlali et al., 2011). During the end
of the secondary infection, the protist colonizes corti-
cal tissues to produce resting spores, and so completes
the life cycle. BCAs can colonize root tissue exten-
sively and thereby restrict the space in which P. bras-
sicae can undergo cell extension and extensive resting
spore production. Trichoderma fungi colonize Brassica
roots readily and compete for space and nutrients with
other microbes, leading to starvation of their competi-
tors (Khalid, 2017). Trichoderma sp. secretes cell wall
degrading enzymes such as cellulases, chitinases and
glucanases that hydrolyze microbial cell walls and
could therefore seriously harm the chitin-containing
cell walls of P. brassicae resting spores (Moxham &
Buczacki, 1983; Vinale et al., 2008). Competition for
space could also delay the progress of protist develop-
ment as has been observed with Acremonium alterna-
tum in B. napus roots (Auer & Ludwig-Miiller, 2014)
and in Arabidopsis thaliana (Jaschke et al., 2010); here,
microscopic observations have shown an ‘arrest’ at the
plasmodial stages. The co-inoculated roots had signifi-
cantly more cells containing mature plasmodia than
resting spores, while roots inoculated only with P. bras-
sicae at the same time point had more cells with resting
spores. The results were corroborated by gene expres-
sion analyses for selected P. brassicae genes that show
a shift of some genes expressed during plasmodial
development to later stages, but A. alternatum does not
inhibit resting spore germination (Jaschke et al., 2010).

@ Springer

Mode of Action 2: Antibiosis

Antibiosis, the production of compounds to out-
compete another microbe, has been observed in several
studies. If defense is not upregulated, it is often assumed
that an antibiosis effect has taken place. P. brassicae
cannot be cultivated outside of the plant host so a direct
inhibitory effect is difficult to measure. General antibi-
otic effects can be exploited to identify bacterial strains
that possess gene clusters for antibiotic synthesis. The
resulting information about possible compounds and
the clubroot control potential can then be correlated.

The targets for successful early biocontrol using
antibiotic effects lie directly after the release of the
resting spores into the soil. One possible mechanism is
inhibition of the perception of the germination stimu-
lus exuded by the host so that the resting spores will
not germinate, while another mechanism targets the
chemotaxis by which the zoospores would find their
host roots (Amponsah et al., 2021). The flagella of
the zoospores could also be direct targets. If these are
shed, then the spores cannot move in the soil water
and consequently do not reach their host roots. An
example of this has been described for the inhibitory
effect of Pseudomonas protegens on Chlamydomonas
reinhardtii motility, where treatment with bacteria
resulted in deflagellation of the algal cells (Rose et al.,
2021), but this has not yet been directly demonstrated
for clubroot. Some antagonistic bacteria from the gen-
era Bacillus, Lysobacter and Streptomyces prevent the
germination of P. brassicae resting spores (Arif et al.,
2021; Fu et al., 2018; Lahlali et al., 2011, 2013; Li,
2013; Li et al., 2014; Shakeel et al., 2016; Wang et al.,
2012; Zhao et al., 2016; Zhou et al., 2014).

Bacillus genera are able to make a plethora of differ-
ent antibiotic compounds (Zhu et al., 2020), including
several known antifungal compounds, albeit P. bras-
sicae is a protist and not a fungus. Li (2013) and Guo
et al.(2019) could place the antibiotic effect of Bacil-
lus subtilis strains XF-1 and NCD-2 on one compound,
fengycin, that was able to reduce clubroot symptoms
alone by lysing the resting spores. Fengycin belongs to
a class of cyclic lipopetides. Mutant extracts of B. subti-
lis XF-1 with elevated levels of fengycin also increased
their effectiveness against P. brassicae (Li et al., 2014).
Most likely, the mechanism is through destroying
the cell walls of resting spores (Li, 2013). Zhao et al.
(2016) identified and purified the water-soluble protein
PBT1 from B. subtilis XF-1, which disrupts the cell
wall of resting spores and has a chitinase-like activity.
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The genus Lysobacter also contains many prom-
ising producers of antibiotics or fungicidal compo-
nents. Therefore, strains or extracts from this genus
were successfully tested against P. brassicae devel-
opment or the inhibition of resting spore germina-
tion, respectively (Fu et al., 2018). The mechanism
of these strains is most likely also through antibiosis,
and the genus has further potential yet to be revealed.
Taken together, the antibiotic arsenal of compounds
against the clubroot pathogen could include special-
ized metabolites, peptides or proteins.

An indirect yet useful antibiosis effect is the addi-
tion of chitin as a soil amendment to enhance the sup-
pressiveness of soils against soil-borne pathogens
especially at a stage when they are dormant like Plas-
modiophora resting spores (Cretoiu et al., 2013; De
et al., 2006; Heller et al., 2007; Hjort et al., 2007).
The addition of chitin changes the microbial commu-
nity composition in suppressive soils towards enrich-
ment of chitinolytic microorganisms such as Strepto-
myces and Pseudomonas species. P. brassicae spores
are rich in proteins, lipids and chitin (Moxham &
Buczacki, 1983) and can serve as a nutrient source for
bacteria which could lower the amount of infectious
resting spores considerably as observed in a reduction
of clubroot infections in Chinese cabbage and broc-
coli (De et al., 2006; Heller et al., 2007; Hjort et al.,
2007). Heller et al. (2007) investigated a previously
clubroot-infested field plot with a 4-year break of
Brassica cultivation and used a chitin-nitrogen ferti-
lizer to suppress clubroot on the plots. They found an
81% reduction of gall production in broccoli plants
at the end of the season in comparison to the control
plot without chitin amendment. The regular addition
of soil amendments like chitin seems to preserve the
suppressiveness of soils over many years and could
be a promising long-term strategy against clubroot
(Cretoiu et al., 2013).

Mode of Action 3: Induction of plant or plant
endophyte defense mechanisms.

Two analyses have provided extensive transcrip-
tomics datasets, one for a bacterium (Luo et al.,
2018a, b) and one for a fungus (Auer, 2015). To inter-
pret such results, the effectiveness of the BCA needs
to be considered. While with the fungus Acremonium
alternatum the reduction of clubroot in Arabidopsis
was only 15% at a high P. brassicae inoculum dose of
2107 spores per plant, the bacterium Zhihengliuella
aestuarii reduced clubroot symptoms in Brassica

Jjuncea quite substantially by up to 63% (Auer, 2015;
Luo et al., 2018a).

The endophytic fungus A. alternatum most likely
induces defense responses after challenging the roots
of various host plants (Auer & Ludwig-Miiller, 2015)
which resulted in the reduction of symptoms on
Arabidopsis and Chinese cabbage roots (Doan et al.,
2010). Auer (2015) showed in a microarray experi-
ment that the defense response is possibly activated
via the SA pathway. The defense induction via prim-
ing is likely as cell wall extracts of A. alternatum
induced a reduction of disease symptoms and gene
expression responses similar to the living fungus
(Auer, 2015).

Transcriptome analysis of Brassica juncea roots
after co-inoculation of P. brassicae and primed by
the bacterial biocontrol strain Z. aestuarii indicated
the upregulation of defense-related genes, among
them PR genes with different annotations (Luo
et al., 2018a, b). The authors compared their results
to transcriptome data of a resistant and susceptible
Brassica rapa line (Chen et al., 2016) to confirm the
genes putatively involved in the resistance response.
In addition, they reported that both Pattern Triggered
Immunity and Effector Triggered Immunity defense
pathways were upregulated after treatment of roots
with the biocontrol agent. The last set of differentially
upregulated genes includes respiratory burst oxidase
and mitogen-activated protein kinase (MAPK) cas-
cade genes, as well as cell wall modification genes.
They reported the upregulation of the PRI gene, a
marker for salicylic acid-dependent defense as well
as the gene encoding the salicylic acid (SA) recep-
tor NPRI (Luo et al., 2018a, b). SA is an inducer of
systemic acquired resistance, but also mediates local
resistance. P. brassicae has a methyltransferase that
can methylate SA, possibly leading to the (partial)
suppression of that pathway (Ludwig-Miiller et al.,
2015) since overexpression of this methyltransferase
gene in Arabidopsis results in increased susceptibility
(Bulman et al., 2019). In line with these observations,
plants with elevated SA levels are more resistant to
clubroot (Lovelock et al., 2016; Mencia et al., 2022).
However, other bacterial strains seem to use differ-
ent defense pathways to alleviate clubroot symptoms.
Good biocontrol results were attributed by Jia et al.
(2022) to the involvement of PR2 and EIN3 expres-
sion, after treatment of P. brassicae-inoculated Chi-
nese cabbage roots with Alcaligenes faecalis Juj3.
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The two genes indicate that next to SA the ethylene
response pathway has to be involved.

The induction of antioxidative enzymes can also
contribute to stress resistance and may contribute
to the biocontrol effect of a Bacillus cereus strain
against clubroot of pak choi (Arif et al., 2021). The
authors found an increase in catalase, superoxide dis-
mutase and peroxidase activities in roots treated with
the BCA and P. brassicae compared to P. brassicae
alone. However, peroxidases can also be involved in
plant defense responses (Almagro et al., 2009).

The effect of a biocontrol fungus, Heteroconium
chaetospira, was analyzed by Lahlali et al. (2014) on
B. napus clubroot development. In a similar setup as
used for Serenade (Bacillus subtilis), they determined
a selection of defense marker genes and found that
jasmonic acid and ethylene-related defense pathways
were upregulated. Another commercial biofungi-
cide (Prestop) consisting of a fungus, Clonostachys
rosea, also showed efficient control against clubroot
by using the defense induction of jasmonic acid and
ethylene pathways in addition to an antibiosis effect
(Lahlali & Peng, 2014). It could be that other path-
ways are also involved but the respective genes were
not within the selection.

Taken together, both types of defense pathways
seem to play a role in the reduction of disease symp-
toms by endophytes.

The role of soil properties and microbiomes

Abiotic soil properties such as moisture and pH
have been found to affect the outcome of biocontrol
experiments and influence the reduction of clubroot
(Gossen et al., 2016). For example, Heteroconium
chaetospira was only able to reduce clubroot under a
certain moisture regime (Narisawa et al., 2005). Fur-
thermore, the authors reported that commercial horti-
cultural soils often contain excess nutrients and retard
the growth of endophytic fungi thus exerting nega-
tive effects for certain BCAs (Narisawa et al., 2005).
If the soil properties need to be individually adjusted
this would not make biocontrol popular. Gossen et al.
(2016) used four different soil types to test altera-
tions in the efficacy of commercial BCAs, B. subti-
lis and C. rosea. The biopesticide Prestop (C. rosea)
was often more effective than Serenade (B. subtilis) at
reducing clubroot levels on peat and mineral soils, but

@ Springer

less effective than Serenade on sand. They concluded
that such variations could explain why biocontrol
works in some areas, but not in others (Gossen et al.,
2016). In addition, they reported that the soil density
also affected the outcome, namely that more compact
soil was less favorable for biocontrol effects.

Living organisms in the soil, the rhizobiome and
microbiome predators such as other protists, nematodes
and arthropods can all influence the survival and there-
fore establishment and efficacy of biocontrol microor-
ganisms against clubroot through competition, antibio-
sis or predation. So far, hardly anything is known about
this complex topic in regard to clubroot, yet a recent
study showed nonspecific consumption of P. brassicae
resting spores by other protists (Schwelm et al., 2023).

The phytobiome of host plants as well as the soil
microbial diversity influences the efficacy of biocon-
trol and likely the mechanisms involved (Daval et al.,
2020; Yu et al., 2015; Zhang et al., 2022; Zhao et al.,
2017). For example, Trichoderma harzianum isolates
were able to increase the number of Bacillus strains
in the rhizosphere of Chinese cabbage that reduced
clubroot incidences (Li et al., 2020) and which may
contribute via antibiosis and / or defense priming to
clubroot tolerance (Lahlali et al., 2011, 2014). Hu
et al. (2021) also attributed the biocontrol effect of a
Streptomyces alfalfae strain to changes in the micro-
biome. They not only identified bacteria, but also
many fungal genera enriched during Streptomyces
treatments so the effect cannot be attributed only to
enrichment of one organism.

Concluding remarks

The potential of beneficial microbes in pest manage-
ment against clubroot disease is huge. During our litera-
ture research we came across several additional non-peer
reviewed sources specifically from South America and
Asia that did not make it into this review. This shows that
researchers and farmers across the globe test out and use
biocontrol against clubroot at likely a much larger scale
than the peer-reviewed literature suggests. Unfortunately,
the success of such attempts is hard to assess. It is also
likely that there is a strong bias toward only effective
attempts making it into the citable literature body, thus
concealing negative results against clubroot disease that
would be equally valuable for the scientific community.
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Our literature review shows that the majority of
studies used greenhouse or field conditions to assess
the efficiency of biocontrol. Not surprisingly, the
extent of clubroot control in the field will always
depend on other biotic and abiotic factors in the soil
such as the persistence of BCAs in the rhizosphere
of target plants and their ability to colonize the plant
roots sufficiently. Only rhizosphere competent BCAs
should be considered for widespread application (Niu
et al., 2020). Furthermore, the mode of application
of BCAs will be a critical factor in their success and
crucial for the economic feasibility of this biocontrol
approach. As long as the organisms are not persistent
in the field or their application is expensive and eco-
nomically unfeasible, the BCA-based measures will
not provide value over traditional control methods.
Another promising approach is to use microbial con-
sortia in the field against clubroot (Niu et al., 2020;
Zhang et al., 2022). It will remain crucial to maintain
soil health, nutrient availability and good soil struc-
ture for optimal plant growth and efficient recruitment
of plants for the endophytes that will benefit the plant.
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