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Abstract Postharvest diseases of pome fruit are typi-
cally caused by a wide diversity of fungal pathogens,
and the list of confirmed causal agents is still growing.
There is considerable knowledge on the epidemiology
of wound pathogens, such as Botrytis cinerea and Pen-
icillium expansum. In contrast, knowledge on the occur-
rence of the different postharvest diseases caused after
latent (quiescent) infections during long-term storage
and their epidemiology is limited. Well-known patho-
gens causing postharvest losses after latent infections
are Neofabraea spp. and Colletotrichum spp., but in
many cases the causal agents that occur in a specific
region remain unknown and their control relies on the
routine use of fungicide applications. However, due to
the growing concern over the use of synthetic fungi-
cides, alternative control measures are highly desired.
Over the past years the use of physical treatments,
natural compounds, and biocontrol agents have been
investigated as alternatives. However, no single method
has emerged that can robustly and reliably control post-
harvest diseases of pome fruit in practice. In this review
it is argued to approach latent postharvest diseases as
complex problems that require multiple interventions at
different stages of the disease process in a systems

intervention approach for their control. Such approach
requires a deep understanding of the epidemiology of
the causal agents in the orchard, fruit defence mecha-
nisms against pathogens, and the molecular biology of
host-pathogen interactions in order to develop novel
disease control methods in which the deployment of
resistant cultivars can be a cornerstone.
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General introduction

Apples and pears (pome fruit) are important deciduous
fruit species cultivated on a worldwide scale. Mild and
humid climatic conditions, such as those prevalent in
North Western Europe, favour fungal diseases on pome
fruit, such as apple scab (Venturia inequalis), brown
spot of pear (Stemphylium vesicarium), European fruit
tree canker (Neonectria ditissima), and postharvest fruit
rots.

Production and storage of pome fruit in the Netherlands

Apple (Malus domestica) and pear (Pyrus communis)
are important fruit crops that are cultivated in the Neth-
erlands. The main apple cultivar is Elstar grown on 40%
of the total apple production area, while the main pear
cultivar is Conference grown on 75% of the pear pro-
duction area (CBS 2016). After harvest, fruit are stored
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for up to 11 months under specific controlled atmo-
sphere (CA) conditions, such as ultralow oxygen
(ULO) and dynamic controlled atmosphere (DCA), de-
pending on the cultivar and volume to be marketed
(Thewes et al. 2015; Van Schaik and Verschoor 2003).
However, as fruit are typically stored for extended pe-
riods of time, postharvest diseases have become a lim-
iting factor of significant concern.

Postharvest diseases of pome fruit

Postharvest diseases of pome fruit result in significant
economic losses during storage worldwide every year.
They are typically caused by a variety of fungal patho-
gens, although also bacterial and oomycete postharvest
pathogens can occasionally occur. Despite technological
advances in postharvest handling of fresh fruit, posthar-
vest fruit losses range from 5 to 20% with upwards of
50% on susceptible cultivars (Janisiewicz and Korsten
2002; Jones and Aldwinckle 1991; Jurick II et al. 2011).
For example, bull’s eye rot (Neofabraea spp.) is the main
disease of stored apples in Poland, causing up to 30–40%
of postharvest losses on susceptible apple cultivars
(Michalecka et al. 2016). Similarly, bull’s eye rot and
bitter rot (Colletotrichum spp.) have been reported to
cause up to 30% decay during storage of organically
grown apples in northern Germany (Maxin et al. 2014).

Postharvest diseases of apple and pear are caused by
a range of fungal pathogens (Sutton 2014). Wounds
caused by insects and birds, as well as by physical
damage that is inflicted before or during harvest, are
important entrance sites for pathogens such as Botrytis
cinerea, Penicillium expansum and Monilinia
fructigena, the causal agents of grey mould, blue mould,
and brown rot, respectively (Snowdon 1990). These
pathogens typically cause rapid decay of fruit in the
pre- and postharvest stage. Fungicide applications short-
ly before harvest and careful handling of fruits during
harvest are effective measures to significantly reduce
losses by these wound pathogens.

However, another group of pathogens infects devel-
oping, unwounded fruits during the growing season.
After infection these pathogens remain quiescent, i.e.
without causing symptoms during the growing season.
In epidemiology, there is a difference between latent and
quiescent infections. Briefly, a latent infection is a non-
symptomatic infection, whereas a quiescent infection is
an incipient visible infection (Jarvis 1994; Verhoeff
1974). This implies the quiescence is the passage from

symptomless internal infections (i.e. a latent infection)
to visible but non-expanding lesions, due for example to
environmental or physiological and biochemical chang-
es (De Silva et al. 2017; Prusky et al. 2013). In this
review we use the term latent synonymously with qui-
escent. Thus, after several months in CA storage symp-
toms start to appear, when certain physiological or bio-
chemical cues in the host are changed (Coates and
Johnson 1997; Lattanzio et al. 2001). Examples of fun-
gal pathogens causing postharvest losses are
Neofabraea alba (Chen et al. 2016; Soto-Alvear et al.
2013), Neonectria ditissima (Weber and Dralle 2013),
the Colletotrichum acutatum species complex (Spolti
et al. 2012), Cadophora malorum (Sugar and Spotts
1992), Phytophthora spp., Alternaria spp., and Fusari-
um spp. (Sever et al. 2012). Moreover, novel latent
postharvest pathogens are described continuously, such
as Phacidium lacerum (Wiseman et al. 2016),
Sphaeropsis pyriputrescens and Phacidiopycnis
washingtonensis (Kim and Xiao 2008; Weber 2011;
Xiao and Kim 2008). Postharvest pathogens are able
to pass or overcome the natural defence systems that
operate in fruit (Alkan et al. 2015). They infect through
wounds, direct penetration of intact tissue, or coloniza-
tion of natural openings such as lenticels, stems, and
pedicels (Prusky and Lichter 2007). Fruit maturity has
been implicated in the susceptibility of apples to partic-
ular fruit rot diseases. Brook (1977) observed that apples
did not show symptoms of bitter rot caused by
C. gloeosporioides until fruit were approaching maturi-
ty. Similarly, increasing maturity in apples resulted in
higher incidences of bull’s eye rot caused by
Neofabraea alba (Edney 1964) and also blue mould
caused by P. expansum (Vilanova et al. 2014). The
increased disease incidence towards the end of a grow-
ing season has been hypothesized to be due to changes
in the availability of natural openings in response to fruit
maturity (Aguilar et al. 2017). For instance, during fruit
maturation changes in mineral content but also environ-
mental factors may affect the breakdown of lenticels
(Turketti et al. 2012). Alternatively, the increased sus-
ceptibility could be due to fruit maturation-related deg-
radation of phenolic compounds that inhibit fungal
growth during fruit maturation (Edney 1964). Interest-
ingly, a recent study of Everett et al. (2018) has shown
that the incidence of infection of ‘Royal Gala’ apples by
C. acutatum was related to temperature rather than to
maturity of the fruit. However, in this case, only late in
the ‘Royal Gala’ cultivation season the mean daily
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temperatures exceeded 15 °C, so temperatures that are
permissive for infection only occurred when fruit were
more mature. Also high nitrogen (N) content in fruit has
been implicated in the incidence of bull’s eye rot, blue
mould and brown rot on apple fruit (Lysiak 2013;
Sharples 1985), potentially due to weaker cell walls
and thus greater sensitivity to fungal pectolytic enzymes
(Bateman and Basham 1976).

Because of their complicated biology, which in-
volves an enigmatic switch from a quiescent to a symp-
tomatic stage, latent postharvest pathogens are poorly
understood and their control is challenging. In this re-
view we focus on latent postharvest pathogens that are
responsible for late postharvest losses of pome fruit and
discuss how these pathogens can be controlled.

Specific latent postharvest pathogens

As stated, a growing list of fungi is reported to be
associated with latent postharvest fruit rots of pome
fruit. In order to develop effective control strategies, it
is necessary to assess which are the most important
latent postharvest pathogens that occur in a specific
region on the crop. Based on the current literature the
economically most important latent postharvest patho-
gens in most apple and pear growing areas are
Colletotrichum spp. and Neofabraea spp.

Colletotrichum spp.

Colletotrichum species are considered as major patho-
gens associated with pre- and postharvest fruit diseases
(Alaniz et al. 2015; Cannon et al. 2012; Dean et al.
2012; Phoulivong et al. 2010). Apple bitter rot caused
by Colletotrichum spp. is a widespread fruit disease
occurring in most countries where apples are cultivated
(Shi et al. 1996). C. acutatum species complex (SC)
infections on apples in Europe are frequently reported
with increasing numbers of recent reports from Bel-
gium, England, Italy, France, Norway and Slovenia
(Børve and Stensvand 2015; Grammen et al. 2019;
Mari et al. 2012; Munda 2014; Munir et al. 2016;
Nodet et al. 2016). Studies from Germany and Sweden
describe postharvest losses of apple fruits of 10 and
25%, respectively, by C. acutatum SC (Børve and
Stensvand 2017; Weber and Palm 2010).

In warmer climates, C. acutatum SC infections lead
to symptoms on apples during the summer growing

period while the fruits are still on the trees. However,
in cooler growing areas C. acutatum is more commonly
observed as a latent storage pathogen (Everett et al.
2018). Disease symptoms of bitter rot are characterised
by the development of small dark brown spots eventu-
ally expanding to light brown sunken lesions. After-
wards conidia are formed in acervuli concentrically in
the centre of the lesion (Damm et al. 2012). All apple
cultivars are susceptible to bitter rot, and in particular
those belonging to the late-harvest group, such as Gran-
ny Smith, Pink Lady, and Fuji (Velho et al. 2015). It is
considered that apple bitter rot has a higher destructive
potential than other apple rots and can result in losses up
to 50% at pre- and postharvest stages (Everett et al.
2015; Velho et al. 2015).

Besides Colletotrichum acutatum SC, also
C. gloeosporioides SC has been implicated in bitter
rot. In Japan, bitter rot is one of the most severe diseases
in apple production in general (Yokosawa et al. 2017).
In countries such as in Brazil (Crusius et al. 2002), USA
(Shi et al. 1996; Gonzales et al. 2006), and New Zealand
(Everett et al. 2015) both C. gloesporioides SC and
species within the C. acutatum complex occur together.

Both the species complexes of C. acutatum and
C. gloeosporioides are considered as hemibiotrophs. It
is assumed that they first have a biotrophic infection
stage in which they retrieve their nutrients from living
plant cells, and this is followed by a necrotrophic stage
in which they kill host tissue to obtain their nutrition
(Peres et al. 2005). It is known that these fungal species
overwinter on infected peach and blueberry buds and
twigs, but on apple the source of inoculum is not obvi-
ous (Peres et al. 2005). Recently, a few studies of the
aetiology and epidemiology on apples have been pub-
lished (Børve and Stensvand 2013, 2017). Also, a dis-
ease cycle for C. acutatum SC infecting apples and
causing bitter rot in New Zealand was proposed
(Everett et al. 2018). In this particular case it is sug-
gested that inoculum is most commonly rain-splashed
from inoculum sources, such as decaying petals, twigs
and infected fruitlets that have fallen to the ground since
spring. Infection is proposed to occur after conidiospore
deposition on fruit, leaves and buds if they formed, in
the presence of sufficient moisture and temperatures
above 15 °C when the spores germinate and form ap-
pressoria to establish quiescent infections (Peres et al.
2005). Infections of buds and leaves are symptomless,
because symptoms are not observed on leaves on the
tree in New Zealand and buds do not seem to be
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negatively affected in the following spring. In spring,
buds open and the cycle can begin again (Everett et al.
2018).

The penetration and infection is well described for
Colletotrichum spp. For instance, penetrating hyphae of
Colletotrichum appressoria develop within the cuticle
and uppermost epidermal cell layers of unripe fruit
without eliciting visible host reactions, suggesting that
fungal effectors that are secreted to support host coloni-
zation may interfere host response mechanisms (Giraldo
and Valent 2013; Kleemann et al. 2012). The appresso-
ria of Colletotrichum spp. are highly polarized cells
from which a needle-like penetration hypha emerges in
order to puncture the cuticle and epidermal cell wall
(Howard and Valent 1996; Latunde-Dada 2001). At this
stage, Colletotrichum is noted for its ability to maintain
itself in an extended quiescent state until fruit ripening
(Prusky et al. 2013).

Timely applications of fungicides are presumed to
reduce infections of buds during summer, and in that
way interrupt the disease cycle and could more effec-
tively control the disease (Everett et al. 2015). This may
provide a considerable improvement in reducing the
number of applications over the currently recommended
practice of calendar spraying throughout the season
(Sutton 2014). Over the past few years, resistance of
Colletotrichum spp. to the quinone-outside inhibitors
(QoI) group of fungicides have appeared (Forcelini
et al. 2018) and QoI resistant Colletotrichum isolates
have been recovered from apples (Munir et al. 2016).

Neofabraea spp.

Bull’s eye rot of apple and pear is an important posthar-
vest disease, occurring in major fruit-growing areas of
North America, Chile, Australia and Europe (Henriquez
et al. 2004, 2008; Soto-Alvear et al. 2013; Spotts et al.
2009). The disease commonly occurs in most apple
cultivars with an incidence of 10–20%, and may exceed
40% in years that are favourable to pathogen infection
(Cameldi et al. 2016; Soto-Alvear et al. 2013). In Eu-
rope, ‘Golden Delicious’ and several latematuring apple
cultivars, such as Pink Lady, are particularly susceptible
to the disease (Cameldi et al. 2016; Neri et al. 2009).
Bull’s eye lesions on apple and pear fruits are generally
caused byNeofabraea species, withN. vagabunda (syn.
N. alba) as the main causal agent. However, also
N. malicorticis, N. perennans, and N. kienholzii have
been described to cause the disease (Gariépy et al. 2005;

Michalecka et al. 2016; Pešicová et al. 2017; Soto-
Alvear et al. 2013; Spotts et al. 2009).

Besides symptoms on stored fruit, Neofabraea
spp. cause cankers on branches or develop saprophyt-
ically on pruning stubs and dead tree branches
(Henriquez et al. 2006; Verkley 1999). The pathogen
spreads by asexual sporulation on fruit mummies and
ba rk cankers (Spo t t s 1990 ; Weber 2012) .
Conidiospores are produced throughout the year,
but the highest sporulation levels occur during au-
tumn (Henriquez et al. 2006). Although rain splash is
considered the principal way for conidial dispersal,
conidia can also be splash-dispersed by over-tree
irrigation practices (Grove et al. 1992). Infections
typically occur in the orchard throughout the growing
season, anytime between petal fall and harvest, when
unripe fruits are penetrated through the lenticels.
Fruit susceptibility increases gradually during the
season (Aguilar et al. 2017; Cameldi et al. 2016;
Spotts 1990). After infection, the pathogen arrests
its growth and remains quiescent until the fruit
reaches a certain stage of ripeness when it can invade
fruit tissues. Typically, bull’s eye rot symptoms ap-
pear only after 3–4 months in cold storage, and
numerous lesions may develop on a single fruit
(Neri et al. 2009). Fruit lesions are circular, flat to
slightly sunken, brown and often with a lighter brown
center (Snowdon 1990).

Current management practices to control Neofabraea
spp. in the orchard include pruning of cankers from
infected trees to minimize the build-up of inoculum
during the fruit growing season, removal of fallen fruit
and dead tree branches from the orchard floor, and
reduced use of over-tree irrigation systems that may
promote splash dispersal of conidia from sporulating
cankers onto developing fruit (Creemers 2014). Further-
more, fungicide application is a common component of
bull’s eye rot management (Aguilar et al. 2018).

Postharvest pathogens of pome fruit in the Netherlands
and their control

Postharvest disease caused by Colletotrichum spp. and
Neofabraea spp. are generally not causing severe prob-
lems in the Netherlands, most likely because here the
main apple cultivar Elstar and pear cultivar Conference
are not susceptible to these pathogens. However, more
susceptible apple cultivars, such as Pinova and Topaz,
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are frequently affected by Neofabraea spp. also in the
Netherlands.

Until recently, it was unknown what the main causal
agents of postharvest decay of pome fruit in the Neth-
erlands were. In order to determine this, decayed apple
and pear fruit were sampled from commercial CA stor-
age facilities. In total, approximately 350 samples, de-
rived from orchards with various apple and pear culti-
vars and from various production areas in the Nether-
lands, were analyzed between 2012 and 2018. These
surveys revealed the presence of common postharvest
pathogens, such as Botrytis cinerea and Neofabraea
alba, but also a number of new and emerging posthar-
vest pathogens, such as Fusarium avenaceum on pear
and apple, Neonectria candida and Neofabraea
kienholzii on pear, and Colletotrichum godetiae and
Truncatella angustata on apple (Wenneker et al.
2016a, b, c, d, 2017a, b). In most cases these newly
described postharvest pathogens were isolated at low
incidences only. In contrast, two latent postharvest path-
ogens more frequently appeared: Cadophora luteo-
olivacea causing side rot on pears (Wenneker et al.
2016e), and Fibulorhizoctonia psychrophila as the caus-
al agent of lenticel spot on apples and pears (Wenneker
et al. 2017c). For both diseases incidences range from
very low to nearly 100% of stored fruits. Thus, these
latter two fungal species are presently considered as the
most important postharvest pathogens on pome fruit in
the Netherlands.

The use of synthetic fungicides is currently the main
means to control side rot and lenticel spot diseases.
However, despite the routine use of fungicide applica-
tions fruit infections during the orchard phase are a
growing problem. This may be due to the use of non-
effective chemicals, ineffective spray application tech-
nologies or inadequate timing of the applications. Ba-
sically, robust knowledge on how to control these
diseases with fungicide applications is lacking and
current management is largely practiced in an empiri-
cal fashion. This requires urgent attention in order to
ensure the deposition of sufficient quantities of active
ingredients on fruits for disease protection during the
entire storage period. However, the growing public
concern over the health and environmental risks asso-
ciated with high levels of fungicide residues on fruits,
as well as the development of fungicide resistance in
fungal pathogens, has resulted in the urge for develop-
ing alternative methods for disease control
(Wisniewski et al. 2016a).

Alternatives to chemical fungicides for controlling
postharvest diseases

Over the past decades the use of physical treatments,
natural compounds, and biocontrol agents have been
investigated as alternatives for the use of fungicides for
controlling postharvest diseases, including diseases
caused by latent infections. More recently, the fruit
microbiome is considered as an important factor for
controlling latent postharvest diseases (Droby and
Wisniewski 2018).

Physical treatments

Physical treatments, like hot water and hot air treat-
ments, radio frequencies and microwaves, hypobaric
and hyperbaric pressures and far ultraviolet radiation
(UV-C light) are considered as promising control means
to reduce or delay the development of postharvest path-
ogens (Maxin et al. 2012; Usall et al. 2016). In Europe
hot water dips are used for organic apples (Maxin et al.
2012). However, there are several disadvantages of hot
water dipping that include high investment costs, rela-
tively low throughput, additional labor during harvest
time, high running costs and negative CO2 footprint due
to the energy requirement (Maxin et al. 2014). Conse-
quently, hot water dipping is not implemented on larger
scales in the fruit industry. As reduction in application
time of the heat treatment could increase the interest in
commercial use, research efforts have focused on short
hot water treatments (rinsing) and expanding machine
capacities (Maxin et al. 2012).

Radio frequency and microwave heating may pro-
vide effective alternative means to control postharvest
diseases. The time required for microwave treatment is
more favorable for commercial application, but the de-
sign and production cost for an equipment currently still
obstructs its widespread application (Usall et al. 2016).

Among the remaining physical means, ultraviolet-C
light (UV-C) treatment was considered to be interesting
due to the simultaneous combination of direct activity
against pathogens through germicidal effects on fungal
spores with resistance induction through stimulation of
defence mechanisms in several postharvest commodi-
ties including stone, pome, citrus fruit and table grapes
(Nigro et al. 1998; Stevens et al. 1996; Valero et al.
2007;Wenneker et al. 2013). AlthoughUV-C irradiation
does not completely inhibit mycelial growth in vitro, a
reduction in growth and sporulation was recorded for
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most tested fungal species (Wenneker et al. 2013). How-
ever, UV-C has a superficial effect only due to the
limited penetrating capacities of the waves. Thus, the
potential for controlling latent infections will eventually
be limited. Also, control of wound infections is not
possible due to shielding effects by pores and irregular-
ities on the fruit surface (Lagunas-Solar et al. 2006).
Hormetic UV-C treatment of apples induced resistance
to postharvest diseases, although the effect was relative-
ly low (Stevens et al. 1996).

Presently, short hypobaric and hyperbaric pre-storage
treatments with low and high ambient air pressure,
respectively, are considered as promising alternative
treatments for postharvest disease control, although their
use remains largely unexploited to date (Usall et al.
2016).

Natural compounds

The application of microbial and plant volatile organic
compounds (VOCs) to control postharvest decay have
recently been reviewed byMari et al. (2016). It is shown
that plant-produced volatiles, including aldehydes, alco-
hols, essential oils, isothiocyanates and microbial vola-
tile organic compounds may prevent pathogenic infec-
tions in many horticultural commodities (Mari et al.
2011; Sivakumar and Bautista-Baños 2014). However,
the introduction of natural compounds into practice is
complicated due to the expense of registration and lim-
ited market for them as plant protection products. Also,
there are concerns about possible residues in fruit, and
negative effects on taste and smell of fruits (Mari et al.
2016).

Biological control agents

Biological control agents (BCA’s) have been the focus
of considerable research efforts (Droby et al. 2016;
Janisiewicz and Jurick II 2017), and are used to devel-
oped strategies to control postharvest decays of fruits.
Especially wound-invading necrotrophic pathogens turn
out to be sensitive to biocontrol (Janisiewicz 1988;
Janisiewicz 1998; Korsten et al. 1994; Wilson and
Wisniewski 1989). The control is facilitated because
the antagonists can be applied directly to the targeted
area (fruit wounds) by a single application using existing
systems such as drenches and line sprayers (Janisiewicz
and Korsten 2002). In addition to control of fruit wound

infections, biocontrol also has been demonstrated to be
effective for stem infection on pears (Janisiewicz 2006).

Several modes of action have been suggested to
explain the biocontrol activity of microbial antagonists.
The competition for nutrients and a niche between the
pathogen and the antagonist is still considered as the
major mode of action by which microbial agents control
pathogens causing postharvest decay (Droby et al. 1992;
Ippolito and Nigro 2000; Jijakli et al. 2001). Other
modes of actions comprise the production of antibiotics,
direct parasitism, and possibly induced resistance by
which the microbial antagonists suppress the activity
of postharvest pathogens on fruits (El-Ghaouth et al.
2004; Janisiewicz et al. 2000).

Several microbial antagonists have been identified
and artificially introduced on a variety of harvested
commodities including citrus, pome, and stone fruits,
and vegetables for control of postharvest diseases
(Sharma et al. 2009). More specifically for pome fruits,
the biocontrol potential of microbial antagonists was
reported to control decay caused by Botrytis cinerea
and Penicillium expansum by the bacterial antagonists
Pseudomonas cepacia, P. syringae, and P. fluorescens
(Janisiewicz et al. 1991; Mikani et al. 2008). Decay of
apple was also controlled by antagonistic yeasts such as
Candida sake (Teixidó et al. 1999; Usall et al. 2001),
C. oleophila (Wisniewski et al. 1995), and C. saitona
(El-Ghaouth et al. 1998).

The success of some of these microbial antagonists in
laboratory studies and pilot tests resulted in the com-
mercialization of bioproducts containing microbial an-
tagonists for control of postharvest diseases of fruits. For
apples such bioproducts comprise Bio-Save (active in-
gredient (a.i.) Pseudomonas syringae), Boni Protect (a.i.
Aureobasidium pullulans), Candifruit (a.i. Candida sa-
ke), Nexy (a.i. C. oleophila), Pantovital (a.i. Pantoea
agglomerans), Shemer (a.i. Metschnikowia fructicola)
and Yield Plus (a.i. Cryptococcus albidus) (Janisiewicz
and Jurick II 2017; Sharma et al. 2009). Nevertheless,
the commercial deployment of postharvest biocontrol
agents has met difficulties for widespread success,
which has been attributed to various problems, includ-
ing inconsistent performance, high cost relative to syn-
thetic fungicides, registration hurdles, difficulties in
mass production and formulation of the antagonist,
and lack of industry acceptance (Droby et al. 2009;
Droby et al. 2016). The limitations of biocontrol prod-
ucts may be addressed by enhancing the bio-efficacy of
microbial antagonists through: (i) manipulations in the
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physical and chemical environment during storage, (ii)
use of mixed cultures, (iii) addition of low doses of
fungicides in the microbial cultures, (iv) addition of salt
additives in the microbial cultures, (v) addition of nutri-
ents and plant products in microbial cultures, (vi) use of
the microbial cultures in association with physical treat-
ments, and (vii) use of the microbial cultures with other
approaches/additives (Janisiewicz 1996; Janisiewicz
and Jurick II 2017; Sharma et al. 2009).

Thus far, research on biocontrol of postharvest dis-
eases has mainly focused on identifying microorgan-
isms that are antagonistic to wound pathogens and the
effects of biocontrol agents on latent postharvest patho-
gens of pome fruit have hardy received attention in these
studies (Droby et al. 2009; Sharma et al. 2009). More-
over, biocontrol relying on preventive mechanisms e.g.
competition for limiting nutrients or space, which are
effective in controlling fruit decays originating from
wound infections, are not likely to succeed in this situ-
ation. Also, the strategy in most research studies pub-
lished over the last few years has been to identify a BCA
effective for a given pathogen, followed by testing its
efficacy against other pathogens, often with limited
success (Gava et al. 2018).

Currently, there is no specific biocontrol product
available to control fruit decays originating from latent
infections. According to Janisiewicz et al. (2011) this is
due to the lack of appropriate methods for selecting
effective biocontrol agents for controlling latent infec-
tions originating from appressoria and testing their ef-
fectiveness on fruit. Recently, they developed a novel
approach based on a direct interaction of the isolated
microorganisms with a pathogen (M. fructicola) latent
infection structure in vitro and further screening of the
selected potential antagonists for biocontrol effective-
ness on fruit under laboratory conditions. The next step
is to select those antagonists that are best adapted to
conditions occurring during storage and handling of the
fruit (Janisiewicz et al. 2011).

In addition to the development of novel biocontrol
agents to prevent latent infections, a biocontrol agent (as
well as a chemical compound) may be applied early in
the season or even during the flowering stage. There-
fore, application of biocontrol agents in the field during
the growing season has been suggested (Ippolito and
Nigro 2000; Lima et al. 1997; Lopes et al. 2015).
However, knowledge on epidemiology of the causal
agents of latent postharvest diseases is limited. Timing
of application is complicated as the precise infection

periods are often not known, may differ between the
various pathogens, and infections may occur during the
entire period from flowering until harvest.

The fruit microbiome

Microbial communities living on the surface of fruit
have been the source of most of biocontrol agents
(Janisiewicz 1987; Janisiewicz and Korsten 2002). They
may directly influence pathogen development through
antibiosis, parasitism or competition. The microbiota
may also have an indirect role by stimulating plant
defences. The commonly-used approach to identify
novel biocontrol agents involves the identification of a
single antagonist that can develop rapidly in wounded
fruit tissue, thus preventing pathogens from becoming
established. This approach, however, neglects interac-
tions of antagonists with other microbes that occupy the
same, or surrounding, niches as part of a microbial
network and as a component of a complete biological
system with the host (Droby et al. 2016).

Thus far, the overall diversity and composition of
microbial communities on harvested produce, how they
vary across produce types, and the factors that influence
their composition after harvest and during storage, has
been poorly studied (Droby and Wisniewski 2018).
Recently, massive sequencing of PCR amplicons of
specific barcode genes in amplicon metagenomics or
metabarcoding approaches have revealed microbial di-
versities and relative quantities of community members
in environmental samples (Abdelfattah et al. 2015;
Massart et al. 2015). Such technology can similarly be
used to characterize the composition of microbial com-
munities on fruit, and also to identify strains considered
as “helper microbial strains” or molecules involved in
improving these direct or indirect effects against plant
pathogens (Massart et al. 2015).

For example, Abdelfattah et al. (2016) demonstrated
that the diversity of the fungal microflora of harvested
apples differed significantly between fruit parts. Where-
as Penicilliumwas dominant in peel samples, Alternaria
was dominant in calyx- and stem-end samples. Niem
et al. (2007) showed that differing susceptibilities of cv.
Red Delicious and cv. Golden Delicious to core rot
decay were not determined by the initial colonization
of the blossom by the causal agent Alternaria alternata,
but rather by the capability of the pathogen to colonize
the host seed locule of the susceptible fruits. This type of
information needs to be considered when designing
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biocontrol systems for the management of postharvest
diseases. For mango it was recently shown based on
microbiome comparisons of stem ends that are resistant
and susceptible to stem end rot in red and green fruit,
respectively, that fungal and bacterial community
change with fruit peel colour, storage duration, and
storage temperature (Diskin et al. 2017).

Currently,Neofabraea spp. infection levels on apples
at the time of harvest and the microbial dynamics on the
apple skin during storage are characterized using a
metagenomics approach (Bühlmann, pers. comm.). Ul-
timately, this type of research may lead to the synthetic
design of microbial communities that can be used for
postharvest disease management. Maintaining the right
balance and diversity inside the consortium before and
after its application, however, may be difficult. Regula-
tory difficulties in registering a consortium, composed
of multiple microorganisms, as a biocontrol product
may also become a problem.

A systems intervention approach

Some of the alternative methods to chemical fungicides
for controlling latent postharvest diseases seem to hold
promise for future application if the remaining chal-
lenges are met. After all, significant gaps still exist
between the basic research that led to the discovery of
these methods and their implementation under commer-
cially relevant conditions. In order for suchmethod to be
applicable in practice, it must perform effectively and
reliably, and be profitable to the company that has
invested in its development, registration, and marketing.
The results of the search for alternatives to chemical
fungicides over the past thirty years show that, although
several novel approaches have been identified as poten-
tial alternatives, no single method has emerged to ro-
bustly and reliably control postharvest diseases of pome
fruit in practice. Thus, it may be advisable to move the
focus from finding a single ‘silver bullet’ intervention
that can be used to effectively control disease to com-
posing and integrated systems approach by selecting the
right set of control measures from a wide array of
alternatives (Wisniewski et al. 2016a).

Already many recent research efforts are focussing
on developing integrated control with biological control
as a central pillar in combination with other compatible
treatment(s), or combinations of alternative treatments
(see reviews by Di Francesco and Mari 2014;

Janisiewicz and Conway 2010; Palou et al. 2016;
Romanazzi et al. 2016b; Usall et al. 2015). In this
respect, this approach is well represented by the “hurdle
concept” that was developed for apples (Janisiewicz
2008, 2013), which follows the original idea that was
originally developed for food preservation (Leistner
2000). The “hurdle concept” explores the use of mild
treatments that collectively maintain fruit quality and
lower the incidence of postharvest decay (Palou et al.
2016). In the hurdle concept, each additional treatment
reduces the incidence/severity of the decay by a certain
percentage, and eventually results in the pathogen not
being able to overcome the final hurdle, resulting in
control of the fruit decay (Janisiewicz and Jurick II
2017). This view implies that latent postharvest diseases
are complex problems that require multiple interven-
tions at different stages of the disease process. Conse-
quently, understanding the epidemiology of latent post-
harvest pathogens in the orchard, fruit defence mecha-
nisms against pathogens, and the molecular biology of
their interactions is required in order to develop novel
integrated disease control methods (Droby et al. 2009;
Tian et al. 2016).

The inoculum pressure of latent postharvest
pathogens

There is considerable knowledge on the epidemiology
of typical wound pathogens such as P. expansum. How-
ever, knowledge on epidemiology of the causal agents
of latent postharvest diseases is limited. The control of
the complex diversity of postharvest pathogens in or-
chards is difficult. The precise infection periods are
often not known and may differ between the various
pathogens, and is often complicated because infections
may occur during the entire period from flowering until
harvest.

Recently, Köhl et al. (2018) showed that bothN. alba
and C. luteo-olivacea were consistently detected in leaf
litter of apple and pear and in necrotic tissues of dead
weeds and grasses, and in many cases high concentra-
tions of the pathogens were quantified. These are im-
portant new findings that may help to better understand
how complex population dynamics of these
necrotrophic pathogens depend on the availability of
various necrotic host and non-host tissues for survival
and multiplication. However, further research is still
needed to understand: (i) the relationships between the
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accumulation of pathogen inoculum on the various sub-
strates over time, (ii) the relative importance of different
substrates as inoculum sources for fruit infections, and
(iii) infection periods on developing fruits in the or-
chard. Eventually, this knowledge can be used for the
development of sanitation measures (Holb 2006;
Llorente et al. 2010), or measures to stimulate beneficial
microbiome inhabitants on those substrates that can
antagonize pathogen colonization, survival and sporula-
tion (Carisse and Rolland 2004; Llorente et al. 2006,
2010; Rossi and Pattori 2009).

The quiescent stage of postharvest pathogens

The quiescent phase, in this review also called latent
phase, is a dynamic equilibrium among host, pathogen,
and environment, which does not result in any visible
symptoms on the host (Jarvis 1994; Prusky et al. 2013).
During this stage, the fungal pathogens reside in the
cuticular wax or in the intercellular space until the fruits
ripen (Adaskaveg et al. 2000; Prins et al. 2000; Prusky
et al. 1981). Apparently, at a particular moment physio-
logical and biochemical responses of the host trigger
changes in that equilibrium that activate the pathogen
that is kept at a low metabolic level during the quiescent
stage to activate pathogenicity mechanisms, resulting in
active parasitic development in the host tissues (Prusky
1996). It has been proposed that the termination of the
quiescent stage is the result of: (i) induced accessibility
of disassembled cell wall substrates during fruit soften-
ing and ethylene induction; (ii) a decline in preformed
antifungal compounds, such as polyphenols, phyto-
alexins, and other fungitoxic substances; (iii) a decline
in inducible host-defence responses; and (iv) more
favourable pH conditions in the host tissue. The pH in
the fruit may change either naturally during fruit ripen-
ing or through induction by the pathogen that secretes
pH modulators such as ammonia and organic acids as
one of the first waves in their attack (Prusky et al. 2013;
Yakoby et al. 2000). Both increases and decreases of
ambient pH, for instance by secretion of ammonia and
organic acids, respectively, have been recorded depend-
ing on pathogen and host characteristics (Alkan et al.
2013). For example, Monilinia fruticola acidifies the
ambient pH by the secretion of gluconic acid (De Cal
et al. 2013), whileBotrytis cinerea (Manteau et al. 2003)
and Sclerotinia sclerotiorum (Cessna et al. 2000) secrete
oxalic acid to acidify the pH while enhancing their

polygalacturonase gene expression and other cell-wall-
degrading enzymes involved in tissue maceration
(Misaghi 1982; Prusky and Lichter 2007). The produced
endopolygalacturonases and pectin esterases may cause
cell wall maceration and death of affected host cells
(Paynter and Jen 1975). In contrast, Colletotrichum
spp. were found to alkalinize the infection court by the
secretion of ammonia to stimulate pathogenicity and
necrotrophic colonization through the activation of host
NADPH oxidases to generate reactive oxygen species,
thereby accelerating host cell death (Miyara et al. 2010;
Prusky et al. 2001).

Although not much is known for latent postharvest
pathogens specifically, recently a pH increase was re-
corded in apple tissue infected by N. vagabunda
(Cameldi et al. 2017). However, further research is
necessary to clarify the nature and the origin of the
alkalizing compounds and to understand the effects of
the pH modulation on N. vagabunda pathogenicity.

Plant and fruit defence mechanisms
against postharvest pathogens

Plants have an innate immune system that comprises a
wide variety of constitutive and inducible defence
mechanisms to protect themselves against pests and
pathogens (Cook et al. 2015; De Wit 2007; Tian et al.
2016). Constitutive or preformed defences include
physical barriers such as cell walls and epidermal cuti-
cles, but also chemicals such are antimicrobial
phytoanticipins and some pathogenesis-related (PR)
proteins (Van Loon et al. 2006). In addition to these
preformed barriers, plant cells have the ability to detect
invading pathogens and respond with inducible de-
fences (Cook et al. 2015; De Wit 2007). These can be
triggered when plant cells recognize microbe-associated
molecular patterns (MAMPs), including structural pro-
teins, lipopolysaccharides, and cell wall components
commonly found in microbes, through a set of cell
surface receptors, also referred to as pattern recognition
receptors (Nürnberger et al. 2004) or invasion pattern
receptors (Cook et al. 2015). In a study focused on
t oma t o f r u i t d e f e n c e r e s p o n s e s a g a i n s t
C. gloeosporioides, it was shown that the expression
of several fruit genes was induced even before
appressorial penetration. Such genes included PAMP
receptors and genes related to fatty acid biosynthesis,
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elongation, and the synthesis of cutin and waxes (Alkan
et al. 2015).

Upon recognition, various defence responses are in-
duced such as cell wall alterations, deposition of callose
and the accumulation of PR proteins that include
chitinases, glucanases and proteases that all negatively
affect microbial colonization (Van Loon et al. 2006).
Typically, also an oxidative burst occurs that involves
the release of highly reactive oxygen molecules that
damage the cells of invading organisms, cross-links host
cell-wall components and acts as a signalling molecule
to further enhance host immunity (Pitzschke et al.
2006).

Compatible pathogens can overcome the activation
of host immunity by the secretion of effectors that
perturb such responses (Kleemann et al. 2012;
Weiberg et al. 2013; Zhang et al. 2014). Thus, patho-
gen effectors are crucial molecules for disease estab-
lishment (Rovenich et al. 2014). However, in turn
plants have evolved receptors to recognize effectors
or effector-mediated perturbations of host targets
(Chisholm et al. 2006; Jones and Dangl 2006). These
receptors may reside on the cell surface, but also inside
the cy top l a sm to de t e c t ( t h e ac t i v i t y o f )
cytoplasmically-delivered pathogen effectors (Cook
et al. 2015). Often, the recognition of effectors has
been associated with the occurrence of a hypersensitive
response (HR); a localized programmed cell death
response that may limit pathogen access to water and
nutrients, and thus block further growth of the patho-
gen (De Wit 2007). However, necrotrophic pathogens
may actually benefit from such cell death response, and
have evolved in some cases to deliberately activate this
host immune response to their benefit (Cook et al.
2015; Lorang et al. 2012).

In tissues that are distal from the infection site, plants
are protected by so-called systemic acquired resistance
(SAR) (Grant and Lamb 2006). SAR is effective against
a broad range of pathogens and is dependent on various
plant hormones, including salicylic acid (SA), jasmonic
acid (JA), and ethylene (ET) (Grant and Lamb 2006).
More recently, however, also various other hormones,
such as auxin, abscisic acid (ABA), cytokinins (CKs),
and brassinosteroids have been implicated in the activa-
tion of defence responses (Robert-Seilaniantz et al.
2011). SAR requires the signal molecule SA and is
associated with accumulation of pathogenesis-related
(PR) proteins (Durrant and Dong 2004; Terry and
Joyce 2004).

Induced resistance against postharvest pathogens
of fruits

A large amount of data has been generated related to
priming of host plant defences and induce resistance
during postharvest of frui ts and vegetables
(Janisiewicz and Jurick II 2017; Romanazzi et al.
2016a). The elicitation of host defences may be
achieved by: (i) biocontrol agents, (ii) physical means
(such as ultraviolet-C (UV-C) light, heat, hypobaric and
hyperbaric treatments), (iii) natural and synthetic
chemicals (such as phytohormones and chemical elici-
tors, salicylic acid, benzothiadiazole), (iv) biological
elicitors (such as harpin and chitosan), (v) disinfecting
agents (such as ozone, electrolyzed water, ethanol), and
(vi) microbial and plant volatile organic compounds
(VOCs) (Romanazzi et al. 2016a). However, there are
a number of weaker points linked to the application of
strategies based on induced resistance, such as possible
inconsistent results or difficulties in their implementa-
tion in packinghouse practices. Moreover, to correctly
induce resistance in fruits, it is necessary to know and
understand the host–microbe interactions, and the ef-
fects on postharvest physiology and handling of the
different fruits (Da Rocha and Hammerschmidt 2005;
Tian et al. 2016).

Breeding for resistant cultivars to postharvest
diseases

In general, fruit breeding objectives include high fruit
quality, good agronomic performance and sometimes a
durable disease resistance. In the latter case, in apple
breeding mainly focussing on apple scab (Venturia
inaequalis), fire blight (Erwinia amylovora), and pow-
dery mildew (Podosphaera leucotricha) (Baumgartner
et al. 2015). However, the success of newly developed
disease resistant apple varieties is largely dependent on
their fruit quality (Baumgartner et al. 2015). It should be
emphasized that classic pome fruit breeding is a long-
term and labor-intensive approach. The first fruits can
usually be expected at the earliest in the fourth year after
crossing. However, usually the first fruit quality selec-
tion step is carried out at the fifth to the seventh year
after crossing. Currently, cultivated apples have often no
resistance to fungi causing fruit decay as breeders sel-
dom evaluate for resistance to postharvest diseases
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(Ahmadi-Afzadi et al. 2013; Janisiewicz et al. 2008;
Volk et al. 2015).

Fruit cultivars may show a large variation in suscep-
tibility to (latent) postharvest diseases (Tian et al. 2016),
as was demonstrated among apple cultivars for bull’s
eye rot caused by Neofabraea spp. (Blazek et al. 2007;
Hortova et al. 2014; Soto-Alvear et al. 2013) and for
Colletotrichum spp. (Biggs and Miller 2001; Grammen
et al. 2019). Unravelling resistance mechanisms in fruits
can be very helpful to make progress in breeding
programs.

A number of new methods that allow a more precise
selection of tree and fruit characters in breeding pro-
grams were developed in recent years (Laurens et al.
2018). For instance, marker assisted selection (MAS)
facilitates the selection of novel cultivars in a shortened
period for evaluation. Patocchi et al. (2005) developed a
strategy called genome scanning approach (GSA) for
traits that are primarily controlled by single major genes.
This method can be used to identify linked molecular
markers without generating a complete genetic map. For
traits controlled by multiple genes, the quantitative trait
loci (QTL) mapping is generally applied (Tian et al.
2016; Wisniewski et al. 2016b). In peach breeding pro-
grams, Pacheco et al. (2014) and Martínez-García et al.
(2013) have identified QTLs for brown rot response
traits, while preliminary results from apple breeding
programs have identified QTLs for blue mould resis-
tance in Malus sieversii (Norelli et al. 2014) and a
mapping population of ‘Royal Gala’ ×M. sieversii
PI613981 (Wisniewski et al. 2016b).

In order to understand mechanisms involved in apple
resistance to postharvest pathogens an approach involv-
ing temporal and spatial regulation of the transcriptome,
proteome and metabolome combined with pathological
analysis must be undertaken (Abdelfattah et al. 2015,
2016; Prusky et al. 2013). In this respect, sequencing of
the genome ofColletotrichum species and transcriptome
analysis of fungal–fruit interactions has revealed genes
and key enzymes that are involved in the biosynthesis of
fungal secondary metabolites that are important for
pathogenicity and fruit defence responses (Alkan et al.
2015; Moraga et al. 2018). Nevertheless, typically, an-
notation processes and gene functional analyses are
tedious and complicated. However, significant progress
has been made in the determination of transcriptomic
and proteomic factors that may lead to resistance in
cultivated apples (Buron-Moles et al. 2015a, b;
Vilanova et al. 2014), and several studies have provided

data on genetically determined levels of resistance to
P. expansum in apple cultivars (Ahmadi-Afzadi 2015;
Tahir et al. 2015), and wild apples (Janisiewicz et al.
2016; Norelli et al. 2014).

Recently, a number of fruit crop genomes has been
sequenced, including those of grapevine (Jaillon et al.
2007), apple (Velasco et al. 2010), banana (D’Hont et al.
2012), citrus (Xu et al. 2013), peach (Verde et al. 2013),
and pear (Chagné et al. 2014). Also, the genomes of
several postharvest pathogens have been sequenced,
including those of B. cinerea (Amselem et al. 2011),
several species of Alternaria (Dang et al. 2015),
Colletotrichum (Gan et al. 2013), P. expansum and
P. italicum (Ballester et al. 2015; Li et al. 2015). The
genetic information that has been disclosed by these
projects will provide insights in the virulence factors
of these important postharvest pathogens, which can
again be used in breeding and selection programs. In
addition, genome-editing technologies involving
CRISPR/Cas9 (Hsu et al. 2014) may be used to manip-
ulate molecular regulators and edit promoters of apple
fruit defence genes to enhance decay resistance in apple
cultivars (Janisiewicz and Jurick II 2017). However,
first of all, this requires a deeper knowledge of the
fruit-pathogen-environment interactions at the physio-
logical, biochemical and molecular level. Considering
that combining plant genomics with classical breeding is
a challenge for molecular biologists as well as for tradi-
tional breeders, an increased understanding of the basis
of effective resistance mechanisms against the causal
agents of postharvest pathogens is required. Eventually,
such resistance mechanisms can be introduced into
breeding programs to obtain postharvest disease resis-
tant cultivars.

Concluding remarks and future perspectives

Losses due to the postharvest decay of pome fruits still
represent a major concern from an economic point of
view. However, it should be realized that fruit decay is a
natural process to release seeds from mature fruit in
order to start a new generation of the plant genotype.
Currently, chemical fungicides represent the main tool
for controlling the major postharvest pathogens as well
as the deployment of optimal storage conditions. Inter-
e s t i n g l y, t h e s y n t h e t i c c y c l i c o l e f i n 1 -
methylcyclopropene (1-MCP) that blocks ethylene re-
ceptors and that is used to extend fruit firmness during
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storage and marketing (Köpcke 2015) has also been
shown to delay of onset of storage rots (McArtney
et al. 2011) such as bull’s eye rot on pears (Spotts
et al. 2007) and on apples (Maxin and Weber 2011;
Cameldi et al. 2016). Due to the growing concern over
the use of synthetic fungicides, alternative measures to
control postharvest diseases are sought. However, most
of the alternative treatments developed so far have lim-
itations that impede their effectiveness as single treat-
ments. Combining different treatments within an inte-
grated latent postharvest disease management strategy
needs further development. Such integrated control
methods should focus on reduction of the inoculum
pressure of latent postharvest pathogens, interference
of the typical latent stage of late postharvest pathogens
and maximum exploitation of the plant’s own immune
system.
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