Skip to main content
Log in

Bacterial wilt symptoms are impacted by host age and involve net downward movement of Erwinia tracheiphila in muskmelon

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cucurbit bacterial wilt, caused by Erwinia tracheiphila, is a devastating disease of cucurbit crops in the Midwest and Northeast U.S. Current management of bacterial wilt relies primarily on insecticide applications to control striped and spotted cucumber beetles (Acalymma vittatum and Diabrotica undecimpunctata howardi, respectively), which vector E. tracheiphila. Development of alternative management strategies is constrained by a lack of understanding of bacterial wilt etiology. The impact of host age on rate on symptom development and extent of bacterial movement in the xylem of muskmelon (Cucumis melo cv. Athena) was evaluated following wound inoculation of 2- to 8-week-old plants in growth chamber experiments. Wilting occurred more rapidly in plants after inoculating E. tracheiphila into 2- or 4-week-old plants than 6- or 8-week-old plants. Recovery of viable cells from stem segments revealed that vascular spread of E. tracheiphila was more extensive below than above the inoculation point. These findings provide experimental evidence that host age impacts the rate of symptom development in cucurbit bacterial wilt and that movement of the xylem-inhabiting pathogen E. tracheiphila within muskmelon plants occurs primarily in the downward direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ayers, A. R., Ayers, S. B., & Goodman, R. N. (1979). Extracellular polysaccharide of Erwinia amylovora: A correlation with virulence. Applied and Environmental Microbiology, 38, 659–666.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bahar, O., De la Fuente, L., & Burdman, S. (2010). Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers. FEMS Microbiology Letters, 312, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Beck von Bodman, S., Majerczak, D. R., & Coplin, D. L. (1998). A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proceedings of the National Academy of Sciences of the United States of America, 95, 7687–7692.

    Article  Google Scholar 

  • Brust, G. E. (1997a). Differential susceptibility of pumpkins to bacterial wilt related to plant growth stage and cultivar. Crop Protection, 16, 411–414.

    Article  Google Scholar 

  • Brust, G. E. (1997b). Seasonal variation in percentage of striped cucumber beetles (Coleoptera: Chrysomelidae) that vector Erwinia tracheiphila. Environmental Entomology, 26, 580–584.

    Article  Google Scholar 

  • Cavanagh, A., Hazzard, R., Adler, L. S., & Boucher, J. (2009). Using trap crops for control of Acalymma vittatum (Coleoptera: Chrysomelidae) reduces insecticide use in butternut squash. Journal of Economic Entomology, 102, 1101–1107.

    Article  PubMed  CAS  Google Scholar 

  • de Mackiewicz, D., Gildow, F. E., Blua, M., Fleischer, S. J., & Lukezic, F. L. (1998). Herbaceous weeds are not ecologically important reservoirs of Erwinia tracheiphila. Plant Disease, 82, 521–529.

    Article  Google Scholar 

  • Fleischer, S. J., de Mackiewicz, D., Gildow, F. E., & Lukezic, F. L. (1999). Serological estimates of the seasonal dynamics of Erwinia tracheiphila in Acalymma vittata (Coleoptera : Chrysomelidae). Environmental Entomology, 28, 470–476.

    Article  Google Scholar 

  • Garcia-Salazar, C., Gildow, F. E., Fleischer, S. J., Cox-Foster, D., & Lukezic, F. L. (2000). Alimentary canal of adult Acalymma vittata (Coleoptera : Chrysomelidae): Morphology and potential role in survival of Erwinia tracheiphila (Enterobacteriaceae). Canadian Entomologist, 132, 1–13.

    Article  Google Scholar 

  • Herrera, C. M., Koutsoudis, M. D., Wang, X. L., & von Bodman, S. B. (2008). Pantoea stewartii subsp. stewartii exhibits surface motility, which is a critical aspect of Stewart's wilt disease development on maize. Molecular Plant-Microbe Interactions, 21, 1359–1370.

    Article  PubMed  CAS  Google Scholar 

  • Holland, R. M., Christiano, R. S. C., Gamliel-Atinsky, E., & Scherm, H. (2014). Distribution of Xylella fastidiosa in blueberry stem and root sections in relation to disease severity in the field. Plant Disease, 98, 443–447.

    Article  Google Scholar 

  • Ionescu, M., Zaini, P. A., Baccari, C., Tran, S., da Silva, A. M., & Lindow, S. E. (2014). Xylella fastidiosa outer membrane vesicles modulate plant colonization by blocking attachment to surfaces. Proceedings of the National Academy of Sciences of the United States of America, 111, E3910–E3918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koutsoudis, M. D., Tsaltas, D., Minogue, T. D., & von Bodman, S. B. (2006). Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii. Proceedings of the National Academy of Sciences of the United States of America, 103, 5983–5988.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latin, R. X. (2000). Bacterial wilt. In: APSnet features: Scary diseases haunt pumpkins and other cucurbits. http://www.apsnet.org/publications/apsnetfeatures/Pages/BacterialWilt.aspx.

  • Main, C. E., & Walker, J. C. (1971). Physiological responses of susceptible and resistant cucumber to Erwinia tracheiphila. Phytopathology, 61, 518–522.

    Article  Google Scholar 

  • Mattick, J. S. (2002). Type IV pili and twitching motility. Annual Review of Microbiology, 56, 289–314.

    Article  PubMed  CAS  Google Scholar 

  • McElrone, A. J., Sherald, J. L., & Forseth, I. N. (2003). Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine. Journal of Experimental Botany, 54, 419–430.

    Article  PubMed  CAS  Google Scholar 

  • Meng, Y. Z., Li, Y. X., Galvani, C. D., Hao, G. X., Turner, J. N., Burr, T. J., & Hoch, H. C. (2005). Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. Journal of Bacteriology, 187, 5560–5567.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller, D. S., Gleason, M. L., Sisson, A. J., & Massman, J. M. (2006). Effect of row covers on suppression of bacterial wilt of muskmelon in Iowa. Plant Health Progress. https://doi.org/10.1094/PHP-2006-1020-02-RS

  • Panter, S. N., & Jones, D. A. (2002). Age-related resistance to plant pathogens. Advances in Botanical Research, 38, 251–280.

    Article  Google Scholar 

  • Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345–353.

    Article  Google Scholar 

  • Saalau Rojas, E., & Gleason, M. L. (2012). Epiphytic survival of Erwinia tracheiphila on muskmelon (Cucumis melo L.) Plant Disease, 96, 62–66.

    Article  Google Scholar 

  • Saalau Rojas, E., Gleason, M. L., Batzer, J. C., & Duffy, M. (2011). Feasibility of delaying removal of row covers to suppress bacterial wilt of muskmelon (Cucumis melo). Plant Disease, 95, 729–734.

    Article  Google Scholar 

  • Saile, E., McGarvey, J. A., Schell, M. A., & Denny, T. P. (1997). Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by Ralstonia solanacearum. Phytopathology, 87, 1264–1271.

    Article  PubMed  CAS  Google Scholar 

  • Sanogo, S., Etarock, B. F., & Clary, M. (2011). First report of bacterial wilt caused by Erwinia tracheiphila on pumpkin and watermelon in New Mexico. Plant Disease, 95, 1583–1583.

    Article  Google Scholar 

  • Sasu, M. A., Seidl-Adams, I., Wall, K., Winsor, J. A., & Stephenson, A. G. (2010). Floral transmission of Erwinia tracheiphila by cucumber beetles in a wild Cucurbita pepo. Environmental Entomology, 39, 140–148.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, L. (2012). A to ZYMV guide to Erwinia tracheiphila infection: An ecological and molecular study. Doctoral thesis, Pennsylvania State University, p. 160.

  • Sharabani, G., Shtienberg, D., Borenstein, M., Shulhani, R., Lofthouse, M., Sofer, M., Chalupowicz, L., Barel, V., & Manulis-Sasson, S. (2013). Effects of plant age on disease development and virulence of Clavibacter michiganensis subsp. michiganensis on tomato. Plant Pathology, 62, 1114–1122.

    Article  CAS  Google Scholar 

  • Sherf, A. F., & MacNab, A. A. (1986). Bacterial wilt in Vegetable Diseases and Their Control (pp. 307–311). New York: Wiley Interscience.

  • Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102, 381–389.

    Article  PubMed  Google Scholar 

  • Thomas, P., & Upreti, R. (2014). Influence of seedling age on the susceptibility of tomato plants to Ralstonia solanacearum during protray screening and at transplanting. Am. J. Plant Science, 5, 1755–1762.

    Google Scholar 

  • Toussaint, V., Ciotola, M., Cadieux, M., Racette, G., Duceppe, M. O., & Mimee, B. (2013). Identification and temporal distribution of potential insect vectors of Erwinia tracheiphila, the causal agent of bacterial wilt of cucurbits. Phytopathology, 103, 147–147.

    Google Scholar 

  • Vrisman, C. M., Deblais, L., Rajashekara, G., & Miller, S. A. (2016). Differential colonization dynamics of cucurbit hosts by Erwinia tracheiphila. Phytopathology, 106, 684–692.

    Article  PubMed  CAS  Google Scholar 

  • Watterson, J. C., Williams, P. H., & Durbin, R. D. (1971). Response of cucurbits to Erwinia tracheiphila. Plant Disease Report, 55, 816–819.

    Google Scholar 

  • Zehnder, G., Kloepper, J., Yao, C. B., & Wei, G. (1997). Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. Journal of Economic Entomology, 90, 391–396.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by a Specialty Crop Research Initiative (SCRI) Program Grant (2012-51181-20295) from the U.S. Department of Agriculture National Institute of Food and Agriculture (NIFA). We thank Jean C. Batzer and Xiaoyu Zhang for technical advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Gleason.

Ethics declarations

Conflicts of interest

There are no conflicts of interest.

Research involving human participants and/or animals

None.

Informed consent

None of the research presented here entails a need for informed consent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Beattie, G.A., Saalau Rojas, E. et al. Bacterial wilt symptoms are impacted by host age and involve net downward movement of Erwinia tracheiphila in muskmelon. Eur J Plant Pathol 151, 803–810 (2018). https://doi.org/10.1007/s10658-018-1418-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-1418-7

Keywords

Navigation