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Abstract
Background Smokers are at increased risk of type 2 diabetes (T2D), but the underlying mechanisms are unclear. We inves-
tigated if the smoking-T2D association is mediated by alterations in the metabolome and assessed potential interaction with 
genetic susceptibility to diabetes or insulin resistance.
Methods In UK Biobank (n = 93,722), cross-sectional analyses identified 208 metabolites associated with smoking, of which 
131 were confirmed in Mendelian Randomization analyses, including glycoprotein acetyls, fatty acids, and lipids. Elastic net 
regression was applied to create a smoking-related metabolic signature. We estimated hazard ratios (HR) of incident T2D in 
relation to baseline smoking/metabolic signature and calculated the proportion of the smoking-T2D association mediated by 
the signature. Additive interaction between the signature and genetic risk scores for T2D (GRS-T2D) and insulin resistance 
(GRS-IR) on incidence of T2D was assessed as relative excess risk due to interaction (RERI).
Findings The HR of T2D was 1·73 (95% confidence interval (CI) 1·54 − 1·94) for current versus never smoking, and 38·3% 
of the excess risk was mediated by the metabolic signature. The metabolic signature and its mediation role were replicated in 
TwinGene. The metabolic signature was associated with T2D (HR: 1·61, CI 1·46 − 1·77 for values above vs. below median), 
with evidence of interaction with GRS-T2D (RERI: 0·81, CI: 0·23 − 1·38) and GRS-IR (RERI 0·47, CI: 0·02 − 0·92).
Interpretation The increased risk of T2D in smokers may be mediated through effects on the metabolome, and the influence 
of such metabolic alterations on diabetes risk may be amplified in individuals with genetic susceptibility to T2D or insulin 
resistance.
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Introduction

Cigarette smokers are at increased risk of developing type 
2 diabetes: Observational studies show a 20-60% elevated 
risk in smokers [1, 2], and Mendelian randomization (MR) 
studies support a causal relationship [3]. Smokers differ from 
non-smokers in levels of several metabolites such as lipids 
and amino acids, according to recent studies using high-
throughput metabolite data (metabolomics) [4–14]. Whether 
this reflects causal effects of smoking is not entirely clear, but 
a MR study indicated that smoking influences levels of glyco-
protein acetyls (an inflammatory biomarker), free fatty acids, 
and lipids in high-density lipoproteins (HDL) [15]. Previous 
observational studies on metabolomic effects of smoking 
were hampered by small sample sizes (< 1500). To elucidate 
the full range of metabolites affected by smoking, there is a 
need for large-scale studies and additional MR studies which 
are less susceptible to reverse causation and confounding bias 
than observational studies for causal inference.

Adverse effects of smoking, and specifically nicotine, 
on insulin sensitivity have been documented in experimen-
tal studies [16]. Abnormal levels of some of the smoking 
associated metabolites are detrimental to insulin sensitivity 
according to animal and cell culture studies [17, 18]. In addi-
tion, several of the metabolites have been linked to type 2 
diabetes [19]. Therefore, the mechanism linking smoking to 
type 2 diabetes and insulin resistance may involve modifica-
tions of the metabolome. People with genetic susceptibility 
to diabetes or insulin resistance may be more vulnerable to 
these alterations since smoking has been shown to exacer-
bate the genetic susceptibility to diabetes-related traits [20]. 
Whether this is the case remains to be investigated.

Leveraging metabolomics data in approximately 100,000 
UK Biobank (UKB) participants, our aim was to identify 
metabolites affected by smoking, create a metabolic sig-
nature of smoking, and investigate whether this signature 
mediates the association between smoking and incidence 
of type 2 diabetes. We externally validated this signature in 
the TwinGene study. We also assessed potential interactions 
between the metabolic signature and genetic susceptibil-
ity to insulin resistance or type 2 diabetes on incidence of 
type 2 diabetes. The overarching goal was to provide new 
insights on how smoking affects the development of diabe-
tes by modifying circulating metabolites.

Methods

Study population

The UKB study enrolled half a million participants aged 
37–73 years from 22 assessment centers in the UK in 

2006–2010 [21]. Eligible for the present study were the 
118,019 participants who had metabolomics data collected 
at baseline. We excluded participants with diagnosed or 
undiagnosed (HbA1c ≥ 6·5% [48 mmol/mol] or taking glu-
cose-lowering drugs) diabetes, taking lipid-lowering drugs, 
or with missing data on age, fasting time, smoking status, 
body mass index (BMI), waist-to-hip ratio (WHR), alco-
hol intake, coffee consumption, tea consumption, or corre-
sponding metabolite for the analysis of smoking-metabolite 
associations (Fig. 1). The subsequent sample sizes ranged 
from 89,464 to 93,722 in the analyses of the available 
metabolites or derived measures (ratios or percentages, 
also called “metabolite” in the following sections for con-
venience) at baseline. Among them, 5,138 participants had 
metabolomics data collected again at a repeat assessment in 
2012–2013 and the sample sizes for each metabolite ranged 
from 3,632 to 3,797. The UKB study was approved by the 
North West Multi-center Research Ethics Committee [22]. 
Our study was performed under the UK Biobank Project 
84,778, with ethical approval from the Swedish ethical 
review board (2022-02293-01). All participants provided 
informed consent to participate.

Smoking and other lifestyle factors at baseline and 
repeat assessment

Participants were asked about current and past smoking sta-
tus, and classified as never, former, or current smokers. BMI 
was calculated from measured standing height and body 
weight, while WHR was calculated by dividing waist cir-
cumference by hip circumference. Consumption of different 
food items such as alcohol intake during the past 12 months 
was obtained from a short, touchscreen food frequency 
questionnaire (FFQ). Information on physical activity was 
also obtained through questionnaires.

Metabolomic profiling and genetic data

The metabolomic data was analysed in 2019–2020, from 
non-fasting EDTA plasma samples collected at baseline 
or the repeat assessment, using a high-throughput nuclear 
magnetic resonance(NMR)-based platform developed by 
Nightingale Health Ltd [23]. The NMR platform measured 
249 metabolites, including glycoprotein acetyls, lipids in 
14 subclasses, fatty acids, amino acids, ketone bodies, and 
glycolysis metabolites [23]. We constructed genetic risk 
scores for insulin resistance (GRS-IR) and type 2 diabetes 
(GRS-T2D) based on 5 [24] and 38 [25] independent SNPs 
genotyped in UKB participants, respectively. Such SNPs 
have been used by previous studies to create genetic risk 
scores [24, 25], calculated as the weighted (by effect sizes) 
sum of the number of risk alleles (0, 1, 2) [25] (eTable 1). 
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Participants were then categorized into low (quintile 1), 
intermediate (quintile 2–4), and high (quintile 5) genetic 
risk groups [25, 26].

Type 2 diabetes

Incident cases of diabetes was identified during follow-up 
until 2022. Type 2 diabetes was defined as a corresponding 
diagnostic code (UKB data field 130,709) identified from 
hospital admissions, primary care, or death register, or a dia-
betes diagnosis collected through verbal interview at repeat 
assessments. The date of diagnosis is defined as the earli-
est date of diabetes diagnosis recorded through either self-
report at repeat assessment, inpatient hospital data, primary 
care, or death register.

Statistical analysis

Smoking-related metabolites identified by cross-
sectional and MR analyses

Metabolites deviating from normal distribution were log-
transformed, and all metabolites were rescaled (divided by 
standard deviation [SD]). Each of the 249 metabolites mea-
sured at baseline was treated as the response variable with 
smoking status (current, former, or never) as the exposure 
in a linear model, with adjustment for age, sex, assessment 
center, education, ethnicity, Townsend deprivation index, 
fasting hours, BMI, WHR, physical activity, and consump-
tion of different food items such as alcohol and coffee. From 
these models, we also obtained the variance (R2) explained 
by smoking status and covariates for each metabolite. We 
repeated the linear regression for each of the 249 metabo-
lites using repeat assessment data.

The 249 metabolites are correlated with each other. We 
performed a principal component analysis and 42 principal 
components explained > 99% of variance in these metabo-
lites. We therefore corrected for multiple tests by setting 
p < 0·05/42 (accounting for the 42 independent components 
which explained the most variance in the metabolites) as 
the statistical significance threshold to identify metabolites 
associated with current smoking at baseline [27, 28]. We 
then performed two-sample MR analyses for the metabo-
lites identified at baseline (Fig. 1). The MR analyses were 
based on 94 independent SNPs as instrumental variables 
(IV) for smoking initiation in Europeans [29], and summary 
statistics for the SNP-metabolite associations from a recent 
genome-wide association study (GWAS) of metabolomics 
in UKB [30] (eMethod 1; eTable 2). A metabolite was con-
sidered potentially causally affected by smoking (referred 
as “smoking-related metabolite” below) if its association 

with smoking was in the same direction in the baseline 
(p < 0·05/42) and MR (p < 0·05) analyses.

Metabolic signature of smoking

We derived a smoking-related metabolic signature based on 
the identified smoking-related metabolites. First, metabo-
lites deviating from normal distribution were log-trans-
formed. Second, we regressed each metabolite on variables 
(except smoking) which explained parts of its variance and 
obtained standardized residuals from those regressions [14, 
31]. Third, an elastic net regression model was fitted with 
the standardized residuals as predictors and smoking status 
(current versus never) as the response variable at baseline, 
and the alpha and lambda parameters in the regression were 
chosen using a 10-fold cross-validation approach based on 
the minimum mean squared error [32]. The elastic net regres-
sion combines the Lasso and Ridge penalties and shows 
robust prediction performance in the existence of multicol-
linearity [33]. We calculated the smoking-related metabolic 
signature at baseline as the weighted sum of the metabolites 
selected by the elastic net regression using the correspond-
ing regression coefficients as weights [32] (Fig. 1). We also 
calculated metabolic signature at repeat assessment using 
regression coefficients obtained from baseline. The variance 
of the metabolic signature explained by smoking status was 
estimated by regressing the signature on smoking status and 
covariates at baseline (Fig. 1) and repeat assessment (for 
internal replication), respectively.

To assess the validity of the metabolic signature, we 
performed an external validation in TwinGene (n = 3626), 
a cohort nested in the Swedish Twin Register [34], by cal-
culating the signature with regression coefficients obtained 
from UKB analysis as the weights (Fig. 1, eMethod 2). We 
also applied eight cycles of internal-external cross-valida-
tion [35, 36] by splitting the full UKB cohort into two parts 
by assessment centers in each cycle, one part for training the 
model and the remaining part for external validation (Fig. 1, 
eMethod 3).

Prospective analyses of smoking/metabolic 
signature and incidence of type 2 diabetes

We calculated the duration of follow-up from baseline 
(2006–2010) to the occurrence of diabetes, death, loss to 
follow-up, or March 1st, 2022, whichever came first. We 
fitted Cox proportional hazards regression models to esti-
mate the hazard ratios (HRs) and 95% confidence intervals 
(CIs) for type 2 diabetes in relation to smoking status (cur-
rent vs. never), each individual smoking-related metabolite 
(per SD increase), and the smoking-related metabolic signa-
ture (per SD increase, or above versus below the median). 
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Fig. 1 Flow chart of the study design. UKB: the UK Biobank study; 
BMI: body mass index; WHR: waist-to-hip ratio; MR: Mendelian ran-
domization; SNP: single nucleotide polymorphism; GWAS: genome-
wide association study; MVP: the Million Veteran Program; GSCAN: 
the GWAS & Sequencing Consortium of Alcohol and Nicotine use 

study; GRS-IR: genetic risk score for insulin resistance; GRS-T2D: 
genetic risk score for type 2 diabetes. Participants were followed for 
incidence of type 2 diabetes from baseline 2006–2010 until 2022. * 
42 principal components explained > 99% of the variance in the 249 
metabolites
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consumed less fruit and whole grain and more unprocessed 
meat, processed meat, refined grain and coffee (Table 1).

Smoking and individual metabolites

Current smoking was positively associated with 107 metab-
olites and inversely associated with 101 metabolites as 
compared to never smoking at baseline (eTable 3–4). The 
MR analysis confirmed a possible causal relationship for 
131 metabolites (“smoking-related metabolites”), includ-
ing positive associations for 65 and inverse associations for 
66 metabolites, respectively. The 65 metabolites increased 
by smoking included glycoprotein acetyls, fatty acids (total 
fatty acids, monounsaturated fatty acid [MUFA] and satu-
rated fatty acid [SFA] and their ratios to total fatty acids), 
levels and average diameters of very-low-density lipopro-
tein (VLDL), levels of different lipids in VLDL, and tri-
glycerides in different lipoprotein particles (eTable 3). The 
66 metabolites decreased by smoking included histidine, 
fatty acids (degrees of unsaturation, docosahexaenoic acid 
(DHA), and the percentages of DHA, polyunsaturated fatty 
acids [PUFA], omega-6 fatty acids, omega-3 fatty acids, and 
linoleic acid to total fatty acids), levels and average diam-
eters of high-density lipoprotein (HDL) particles, levels of 
different lipids in HDL, the percentages of different lipids 
(except triglycerides) to total lipids in VLDL particles, and 
so on (eTable 4). The metabolites increased by smoking 
were in general associated with increased diabetes risks in 
individual analyses while most of the metabolites decreased 
by smoking were inversely associated with diabetes (eTable 
5–6).

As compared to never smokers, former smokers had 
higher levels of 33 and lower levels of 77 metabolites at 
baseline, zero and 2 of which were confirmed by repeat 
assessment, respectively (eTable 7–8). The differences in 
levels of metabolites between former and never smokers 
were much smaller than the differences between current and 
never smokers.

The variance in current smoking-related metabolites 
explained by smoking status ranged from 0·01% to 1·48% 
(eFigure 2). BMI, WHR, ethnicity, sex, age, alcohol and 
oily fish intake, and fasting time also contributed to the vari-
ance of these metabolites (eFigure 2). The smoking-metab-
olites were therefore regressed on these covariates before 
inclusion in the elastic net regression to create the smoking-
related metabolic signature.

Smoking-related metabolic signature

The elastic net regression selected 80 of the 131 smoking-
related metabolites to create the smoking-related metabolic 
signature, including 41 current smoking-raised metabolites 

The models were fitted with attained age as the time scale 
and adjusted for age groups, sex, assessment center, educa-
tion, ethnicity, Townsend deprivation index, BMI, physical 
activity, consumption of different food items, and family 
history of diabetes (main model). A Cox marginal structural 
model [37] was fitted to estimate the natural direct and indi-
rect effect of smoking and the proportion of smoking-dia-
betes association mediated through the metabolic signature 
(eFigure 1). We also did the above-mentioned analyses in 
men and women separately. We repeated such analyses in 
TwinGene (eMethod 2).

Interaction between smoking/metabolic signature 
and genetic susceptibility

We hypothesized that the coexistence of genetic suscepti-
bility and high levels of metabolic signature (or smoking) 
enhance their overall impact on type 2 diabetes (eFigure 1). 
We wanted to assess additive interaction since it is more of 
public health relevance than multiplicative interaction [38]. 
Additive interaction implies that the absolute risk reduction 
[38] by intervening on the metabolic signature (or smoking) 
is larger in those with high genetic susceptibility than that in 
those with low genetic susceptibility. The existence of both 
additive and multiplicative interactions is the strongest form 
of interaction [38]. We therefore also assessed multiplica-
tive interaction. We calculated the HR of diabetes in relation 
to combinations of metabolic signature levels (or smoking 
status) and GRS status (low, intermediate, or high) and esti-
mated potential additive interaction as the relative excess 
risk due to interaction (RERI) [39]. We also did the analy-
ses of smoking/metabolic signature and diabetes in different 
GRS-IR and GRS-T2D subgroups. Potential multiplicative 
interaction between the metabolic signature (or smoking) 
and GRS was tested by comparing models with and with-
out the interaction term, using the Likelihood ratio test. We 
used the same covariates as in the main model, except that 
we did not adjust for ethnicity or family history of diabetes 
and included adjustment for genotyping batch and the first 
10 genetic principal components. In a sensitivity analysis 
we excluded participants with at least one relative in UKB.

The elastic net regression and MR analyses were per-
formed in R 4.0.4 and other analyses were performed using 
STATA 17.0. Significance threshold were set at p < 0·05, 
unless stated otherwise.

Results

As compared to never smokers, current smokers were 
younger, more likely to be male, have lower educational 
attainment and have a family history of diabetes, and 
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metabolic signature was positively associated with type 
2 diabetes, with an HR of 1·31 (95% CI: 1·26 − 1·37) per 
SD increase in the metabolic signature and an HR of 1·61 
(1·46 − 1·77) for high (above the median value) vs. low 
levels (Fig. 3; eTable 10). Current smokers had a higher 
incidence of diabetes than never smokers (HR: 1·73, 95% 
CI: 1·54 − 1·94), and 38·3% of the increased risk was 
mediated through the metabolic signature (43·6% in men 
and 30·4% in women (eTable 10). The HR estimated for 
the natural direct effect of smoking on diabetes was 1·38 
(95% CI: 1·24 − 1·54; Fig. 3). In the validation analyses 
in TwinGene, per SD increase in the metabolic signature 
was associated with 26% increased incidence of type 2 
diabetes, mediating 55·1% of the adverse effect of smok-
ing (eTable 11).

Interaction with genetic susceptibility

Individuals with the combination of a high level on the 
metabolic signature and a high GRS-T2D had a HR of 3·18 
(95% CI: 2·46 − 4·12) compared to those with low levels of 
the metabolic signature and the GRS-T2D, with evidence 
of additive interaction (RERI 0·81, 95% CI: 0·23 − 1·38) 
(Table 2). There was also additive interaction between the 

and 39 current smoking-decreased metabolites (Fig. 2A-B). 
Metabolites contributing the most to the metabolic signa-
ture included glycoprotein acetyls, free fatty acids (degree 
of unsaturation, the ratios of linoleic acid and omega-3 fatty 
acids to total fatty acids), citrate, and some lipids. Such lip-
ids included phospholipids to total lipids percentage in large 
VLDL, phospholipids to total lipids percentage in small and 
medium HDL, triglycerides in different lipoproteins, free cho-
lesterol to total lipid percentage in VLDL and HDL particles, 
and esterified cholesterol to total lipids percentage in VLDL 
and HDL particles. Smoking status explained 6·96% of the 
variance in the metabolic signature at baseline and 2·06% 
at repeat assessment (Fig. 2C). The metabolic signature was 
externally validated, with 11·61% of variance explained by 
smoking in TwinGene (Fig. 2C). Across the eight cycles of 
internal-external cross-validation, smoking explained 5·43% 
to 7·55% of the variances in the metabolic signatures in 
assessment centers left out for validation (eTable 9; Fig. 2C).

Smoking, metabolic signature and incidence of type 
2 diabetes

During a median follow-up of 13·0 years, we identi-
fied 1869 type 2 diabetes cases. The smoking-related 

Table 1 Baseline characteristics of UK Biobank participants by smoking status
Baseline characteristics a Never smoking Former smoking Current smoking
Participants, n (%) 53,381 (56.9) 30,721 (32.7) 9,760 (10.4)
Age in years, mean 55.0 (8.1) 56.9 (7.9) 53.4 (8.0)
Men, % 38.9 45.6 51.2
Self-reported white background, % 94.1 96.7 94.6
Higher education, % 49.7 47.1 41.1
Current alcohol consumer, % 80.0 86.8 79.5
Ideal physical activity b, % 61.2 62.5 59.5
Intake of vegetable oil, % 50.4 47.1 43.0
≥ 3 servings/day of fruit, % 38.6 38.0 23.9
≥ 3 servings/day of vegetables, % 8.0 9.8 8.3
Oily fish intake in times/week, mean 1.1 1.1 1.0
Non-oily fish intake in times/week, mean 1.2 1.2 1.1
≤ 2 servings/week of unprocessed meat, % 69.5 69.2 64.0
≤ 1 serving/week of processed meat, % 70.6 70.6 63.1
Never consuming sugar-sweetened beverages, % 14.0 15.6 14.0
≥ 3 servings/day of whole grain, % 97.2 97.0 94.5
Consuming refined grain at least weekly, % 54.0 53.1 65.5
BMI in kg/m2, mean 26.8 27.3 26.5
WHR, mean 0.85 0.87 0.87
Fasting hours, mean 3.7 3.7 4.3
Coffee intake in cups/day, mean 1.8 2.1 2.8
Tea intake in cups/week, mean 3.4 3.4 3.7
Family history of diabetes, % 32.5 32.5 35.5
BMI: body mass index; WHR: waist-to-hip ratio;
a Means or proportions were estimated by adjusting for age and sex for all variables except the number of participants, age and sex
b An ideal level of physical activity is defined as ≥ 150 min/week of moderate or ≥ 75 min/week of vigorous or ≥ 150 min/week of mixed moder-
ate and vigorous activity
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the GRS-IR and GRS-T2D, without evidence of multiplica-
tive interaction (eFigure 4–5). The results were similar after 
excluding participants with at least one relative in the UKB 
study (eFigure 6–7).

metabolic signature and the GRS-IR (RERI 0·47, 95% 
CI: 0·02 − 0·92). Additive interaction was also observed 
between smoking status and the GRS-T2D but not with the 
GRS-IR (eFigure 3). Both smoking and the metabolic sig-
nature were associated with type 2 diabetes across strata of 

Fig. 2 Identification of metabolic signature for current smoking. (A) 
and (B) Weights of metabolites contributing to the calculation of the 
smoking-related metabolic signature in the full cohort; (C) Variance of 
the metabolic signature explained by smoking status in the full cohort 
and different assessment canters (internal-external cross-validation) at 
baseline, at repeat assessment (internal replication), and in TwinGene 
(external validation). Metabolic signatures were calculated as the 
weighted sum of the metabolites selected by the elastic net regres-
sions with 10-fold cross-validation, with regression coefficients as the 
weights for corresponding metabolites. DHA: docosahexaenoic acid; 
DHA/FA: docosahexaenoic acid to fatty acid ratio; FA: fatty acids; 
FAw3: omega − 3 fatty acids; FAw3/FA: omega − 3 fatty acid to total 
fatty acid ratio; FAw6: omega − 6 fatty acids; FAw6/FA: omega − 6 
fatty acid to total fatty acid ratio; HDL: high-density lipoproteins; 

HDL_D: high density lipoprotein particle diameter; IDL: intermedi-
ate-density lipoproteins; L: large; LA: linoleic acid; LDL: low-den-
sity lipoproteins; M: medium; MUFA: monounsaturated fatty acids; 
PG: phosphoglyceride; PUFA: polyunsaturated fatty acids; PUFA/
MUFA: polyunsaturated fatty acid to monounsaturated fatty acid ratio; 
S: small; SFA: saturated fatty acids; SFA/FA: saturated fatty acid to 
fatty acids; VLDL: very-low-density lipoproteins; XL: very large; XS: 
very small; XXL: extremely large; The suffix of “_P” means particle 
concentrations of lipoproteins; the suffix of “_L” means total lipids in 
lipoproteins; the suffix of “_PL” means phospholipids in lipoproteins; 
the suffix of “_TG” means triglycerides; the suffix of “_C” means cho-
lesterol; the suffix of “_CE” means esterified cholesterol; the suffix of 
“_FC” means free cholesterol; the suffix of “_pct” means percentage 
of certain lipids to total lipids in lipoproteins
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Table 2 Joint analysis of type 2 diabetes in relation to different combinations of smoking-related metabolic signature and genetic susceptibility in 
UK Biobank
Genetic risk scores Levels of metabolic signature Cases HR (95% CI) RERI (95% CI)
GRS-IR
Low low 111 Reference
Intermediate low 363 1.06 (0.85–1.31)
High low 125 1.22 (0.95–1.58)
Low high 172 1.48 (1.16–1.88)
Intermediate high 609 1.79 (1.46–2.19) 0.25 (-0.06, 0.57)
High high 226 2.18 (1.74–2.75) 0.47 (0.02, 0.92)
GRS-T2D
Low low 79 Reference
Intermediate low 316 1.31 (1.02–1.67)
High low 138 1.82 (1.38–2.40)
Low high 129 1.52 (1.14–2.01)
Intermediate high 509 2.12 (1.67–2.69) 0.31 (-0.08, 0.69)
High high 241 3.18 (2.46–4.12) 0.81 (0.23, 1.38)
GRS_IR: genetic risk score for insulin resistance; GRS_T2D: genetic risk score for type 2 diabetes; HR: hazard ratio; CI: confidence interval; 
RERI: relative excess risk due to interaction (additive)
Cox models were fitted with attained age as the time scale, with adjustment for age groups (through stratification), sex (through stratification). 
genetic batch, the first 10 genetic principal components, assessment center, education, Townsend deprivation index, body mass index, alcohol 
intake, physical activity, and consumption of vegetable oil, oily fish, non-oily fish, coffee, tea, fruits, vegetable, unprocessed meat, processed 
meat, sugar or foods/drinks containing sugar, whole grain, refined grain

Fig. 3 Smoking-type 2 diabetes association mediated by the smok-
ing-related metabolic signature in UK Biobank. HR: hazard ratio; 
CI: confidence interval. High vs. low metabolic signature: metabolic 
score > median value vs. metabolic score ≤ median value; Cox models 
were fitted with attained age as the time scale, and with adjustment for 
age groups (through stratification), sex (through stratification), assess-

ment center, education, ethnicity, Townsend deprivation index, body 
mass index, alcohol intake, physical activity, consumption of vege-
table oil, oily fish, non-oily fish, coffee, tea, fruits, vegetable, unpro-
cessed meat, processed meat, sugar or foods/drinks containing sugar, 
whole grain, refined grain, and family history of diabetes

 

1 3



Metabolic profiling of smoking, associations with type 2 diabetes and interaction with genetic susceptibility

observed [45] and gut microbiota is an important determi-
nant of metabolite levels [14, 46].

Our study is the first to quantify the overall mediation 
role of smoking-related alterations of the metabolome in the 
association between smoking and type 2 diabetes. We did 
this by integrating multiple metabolites influenced by smok-
ing into one metabolic signature. Our findings suggest that 
variation in this signature explains 38·3% of the excess risk 
of type 2 diabetes conferred by smoking. More than half of 
the smoking-diabetes association was not mediated by the 
smoking-related metabolic signature, indicating that other 
pathophysiological consequences of smoking play a role in 
diabetes development. Such mechanisms may include direct 
adverse effects of smoking on pancreatic tissue and β-cell 
function [47]. Part of the effects of smoking on type 2 dia-
betes may also be mediated by metabolites not measured 
in the NMR platform which primarily targeted lipid-related 
metabolites. This remains to be investigated. Nevertheless, 
non-biological factors such as misclassification of smoking 
status and measurement errors of the metabolites may also 
affect the estimated proportion and therefore the exact pro-
portion should be interpreted with caution.

Diabetes is a heterogenous metabolic disorder typically 
caused by the combination of insulin resistance and insulin 
deficiency [48]. Several of the smoking associated metabo-
lites are known to be associated with insulin resistance. As an 
example, glycoprotein acetyls is an inflammatory biomarker 
and inflammation is an important promotor of insulin resis-
tance [49]. Inflammation and insulin resistance may exac-
erbate each other [18]. Triglycerides, HDL cholesterol, and 
free fatty acids are also closely linked to insulin resistance 
[17, 50]. Metabolites can regulate insulin sensitivity directly 
by modulating components of the insulin signaling pathway, 
indirectly by altering the flux of substrates through multiple 
metabolic pathways such as lipogenesis and lipid oxidation 
and protein synthesis, and though post-translational modi-
fication of proteins [17]. The mediating role of the metabo-
lome in the association between smoking and type 2 diabetes 
thus seems to involve insulin resistance-related pathways. 
This is consistent with experimental studies showing that 
smoking causes insulin resistance [16]. Interestingly, there 
was additive interaction between the metabolic signature and 
GRS-IR but not between smoking and GRS-IR. Given the 
close relationship between smoking-related metabolites and 
insulin resistance, it is possible that GRS-IR interacts specif-
ically with the metabolic alterations caused by smoking (the 
metabolic signature) and not with other effects of smoking. 
The interaction between metabolic signature and GR-IR may 
reflect synergistic effects of inherited and acquired insulin 
resistance in the development of type 2 diabetes. Regard-
ing GRS-T2D, we observed additive interaction with both 
smoking and the metabolic signature. For smoking, previous 

Discussion

Main findings

Based on large-scale metabolomics data in UKB, we identi-
fied a wide range of metabolites causally affected by smok-
ing, including an inflammatory biomarker, fatty acids, and 
different lipids subclasses. Most of these metabolites were 
associated with type 2 diabetes, and when we aggregated 
them into a smoking-related metabolic signature, this signa-
ture mediated more than one third of the association between 
smoking and type 2 diabetes. The metabolic signature was 
confirmed by external validation, and it also mediated part 
of the smoking-diabetes association in the TwinGene study. 
We also observed additive interaction between the meta-
bolic signature and genetic susceptibility to type 2 diabetes 
or insulin resistance. This implies that smoking increases 
the risk of type 2 diabetes in part through effects on the 
metabolome and suggests that such effects are more pro-
nounced in individuals with genetic risk factors for diabetes.

Comparison with previous studies

Our finding that smoking affects a variety of metabolites 
confirms those of previous, smaller observational studies 
[4–13] (eTable 12) and a one-sample MR-study [15]. The 
observation that most of them also associate with incidence 
of type 2 diabetes is consistent with previous prospective 
studies [19, 40, 41]. For free fatty acids, we observed a gen-
eral pattern where smoking seemed to decrease the degrees 
of unsaturation, leading to higher levels of saturated (SFA) 
and monounsaturated fatty acids (MUFA), and lower per-
centages of polyunsaturated ones such as DHA, omega-6 
fatty acids, and omega-3 fatty acids. Previous studies find 
that smoking is positively associated with triglycerides and 
LDL cholesterol [42], and inversely associated with HDL 
cholesterol [43] and HDL particle sizes. We extend these 
observations by showing that smoking was associated with 
larger VLDL particle sizes, higher levels of VLDL regardless 
different particle sizes, higher levels of triglycerides regard-
less of types/particle sizes of lipoproteins, lower levels of 
all forms of cholesterols (total cholesterol, free cholesterol, 
or esterified cholesterol) in HDL regardless of particle sizes, 
and lower levels of different forms of cholesterols in IDL. 
We and others [5, 12, 44] observed associations between 
smoking and some amino acids but since our MR analyses 
did not confirm most of them, they are probably not causal. 
Importantly, our findings in former smokers indicated that 
most smoking-related metabolic changes are reversible after 
smoking cessation. The exact biological pathways linking 
smoking to metabolic changes warrant deeper exploration. 
Notably, the effect of smoking on gut microbiota has been 
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appears that individuals with genetic susceptibility to insu-
lin resistance or type 2 diabetes are particularly susceptible 
to such metabolic alterations. Our findings provide insights 
into how smoking impacts the development of diabetes and 
emphasizes the significance of refraining from or quitting 
smoking to prevent diabetes, particularly for individuals 
with a high genetic risk. Further studies are needed to deter-
mine to what extent the metabolic effects we observed in 
relation to smoking also contributes to other adverse health 
effects resulting from smoking.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10654-
024-01117-5.
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studies either did not investigate interaction on the additive 
scale [20] or did not find evidence of additive interaction [51, 
52], which might be due to limited statistical power. GRS-
T2D primarily captures β-cell function and insulin secretion 
[53, 54] while the metabolic signature mainly encompassed 
indicators of insulin resistance. Therefore, our findings 
indicated that individuals with inherited tendency towards 
dysfunctional insulin secretion may be more susceptible to 
adverse effects of acquired insulin resistance. Of note, inter-
action was detected solely on the additive scale and not on 
both additive and multiplicative scales, which is considered 
the strongest form of interaction. Further studies on the topic 
are clearly warranted.

Strengths and limitations

The strengths of this study include the use of large-scale 
metabolomics data and the integration of both observational 
and MR analyses which allowed us to identify metabolites 
influenced by smoking. We also had access to genomic 
information and could, for the first time, investigate if 
smoking induced alterations of the metabolome interacts 
with genetic susceptibility on diabetes incidence. We used 
elastic net regression to derive an overall smoking-related 
metabolic signature for mediation analysis. Such a model 
works well for data with high collinearity and has been used 
by previous metabolomics studies [32, 55]. The robust-
ness and generalizability of the metabolic signature was 
supported by external validation in TwinGene and internal 
cross-validation in UKB. A further strength was the abil-
ity to adjust for potential confounding from a wide range 
of lifestyle factors including diet. Both smoking status and 
metabolite levels may change during the follow-up, but this 
is most likely to underestimate the associations of smok-
ing and the metabolite signature with diabetes. Furthermore, 
we confirmed the metabolites identified at baseline by MR 
analyses and many of the smoking-related metabolites were 
also associated with current smoking at repeat assessment. 
MR analyses assume no pleiotropy. We accounted for this 
issue by applying the MR pleiotropy residual sum and out-
lier approach (MR-PRESSO) estimator to detect and cor-
rect for potential pleiotropy. This study was conducted in 
people of primarily European origin, and it remains to be 
explored if our findings are generalizable to non-European 
populations.

Conclusions

We find that smoking affects a wide range of metabolites, 
and these metabolic changes seem to mediate part of the 
excess risk of type 2 diabetes observed in smokers. It also 
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