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Abstract
Aging is a multifaceted and intricate physiological process characterized by a gradual decline in functional capacity, leading 
to increased susceptibility to diseases and mortality. While chronological age serves as a strong risk factor for age-related 
health conditions, considerable heterogeneity exists in the aging trajectories of individuals, suggesting that biological age 
may provide a more nuanced understanding of the aging process. However, the concept of biological age lacks a clear 
operationalization, leading to the development of various biological age predictors without a solid statistical foundation. 
This paper addresses these limitations by proposing a comprehensive operationalization of biological age, introducing the 
“AccelerAge” framework for predicting biological age, and introducing previously underutilized evaluation measures for 
assessing the performance of biological age predictors. The AccelerAge framework, based on Accelerated Failure Time 
(AFT) models, directly models the effect of candidate predictors of aging on an individual’s survival time, aligning with the 
prevalent metaphor of aging as a clock. We compare predictors based on the AccelerAge framework to a predictor based 
on the GrimAge predictor, which is considered one of the best-performing biological age predictors, using simulated data 
as well as data from the UK Biobank and the Leiden Longevity Study. Our approach seeks to establish a robust statistical 
foundation for biological age clocks, enabling a more accurate and interpretable assessment of an individual’s aging status.
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Introduction

Aging is a multifaceted physiological process marked by 
functional decline, leading to increased disease risk and 
mortality [1]. While chronological age is a significant fac-
tor in aging-related outcomes [2], there is considerable 
variation in disease onset and mortality timing among older 

individuals [3, 4]. This variation suggests that chronologi-
cal age alone cannot capture the diverse aging rates among 
individuals. Hence, the concept of ‘biological age’ has been 
proposed, aiming to be a holistic measure reflecting one’s 
overall position in the lifespan [5].

Individual aging, which is what biological age aims to 
capture, is often described using the metaphor of a clock: 
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as if each of us possesses some latent clock that is tick-
ing slowly but surely towards death, with a rate that varies 
between individuals. This clock paradigm is not new; Alex 
Comfort, considered a founding father of the biological age 
prediction field [6], used the term ‘age clock’ in 1969 [7]. 
Apparently, clocks align with our conceptual framework 
for aging, as evident in recent publications where the terms 
‘(biological) age predictors’ and ‘aging clocks’ are used 
interchangeably [8].

The quest for reliable and valid biological age predic-
tors spans decades [7, 9, 10]. Where early attempts utilized 
low-dimensional clinical variables as ‘candidate markers’ 
(of aging), recent developments focus on high-dimensional 
markers, particularly epigenetic age predictors using DNA 
methylation data as the predictor variables and chronologi-
cal age as the outcome [11, 12]. The difference between 
predicted age and true chronological age was found to be 
associated with various age-related outcomes and hence 
interpreted as a measure of biological aging [13]. Since 
then, various other chronological age-trained biological age 
predictors have been developed using different sources of 
omics [14–18].

As chronological age-trained approaches rely on an 
untestable assumption [19], a second generation of biologi-
cal age clocks, focusing on time-to-mortality as the outcome 
of interest, has emerged. These mortality-trained predictors 
outperform first-generation chronological age-trained ones 
across various health conditions, physical and cognitive 
performance, age-related clinical phenotypes, and frailty 
measures [20–23]. Notable examples include PhenoAge [24] 
and GrimAge [25, 26]. PhenoAge, a DNAm-based predictor, 
predicts ’phenotypic age,’ a composite of nine clinical meas-
ures associated with time-to-mortality and chronological 
age. GrimAge is constructed by regressing time-to-mortality 
on age, sex, and a set of DNAm-based surrogate markers of 
plasma proteins and smoking pack-years (eight in the initial 
version and twelve in version 2 [26]).

Despite their advancements, existing biological age pre-
dictors lack a clear operationalization of biological age, 
impacting their statistical rigour and evaluation. When 
deciding on a prediction approach, defining the estimand, the 
measure or quantity of interest that a predictor should pre-
dict, is crucial. The concept of an estimand guides the choice 
of statistical methods and techniques to use. Clearly defining 
what measurable variable should be predicted is especially 
vital in biological age prediction, where biological age is a 
latent, i.e. not directly observable concept. Without a precise 
definition, different interpretations of ’biological age’ may 
arise. Therefore, the starting point of any biological age pre-
diction approach should be to operationalize this latent con-
cept into measurable variables or indicators: the estimands.

Existing biological age predictors, whether age-trained 
or mortality-trained, may benefit from a more thorough 

operationalization of the concept of biological age: cur-
rently, the estimand remains ambiguous for most of them. 
The absence of a formal operationalization leads to a per-
ceived ad hoc nature in constructing predictors. One con-
sequence of this ad hoc nature is that these predictors are 
constructed using statistical models that are not in line 
with the conceptual framework of aging-as-a-clock that 
is so ubiquitous within the aging field. It also poses chal-
lenges in evaluating the predictors’ predictive claims, as 
it is unclear what measurable quantity should be captured 
by the predictors. Presently, biological age predictors are 
generally only evaluated and compared by investigating to 
what extent the chronological age-independent part of the 
prediction (usually denoted by the symbol Δ and defined 
as the residuals after regressing predicted biological age 
on chronological age) is associated with time-to-mortality 
and other aging-related outcomes such as common health 
conditions, physical and cognitive performance, age-
related clinical phenotypes and frailty [20–23]. While 
necessary, this is insufficient; biological age predictions 
should not only be meaningful on a relative scale (as is the 
case when only evaluating Δ ), but the predictions should 
also be directly interpretable on an (absolute) age-scale. 
To assess the performance of biological age predictors on 
this characteristic, additional evaluation measures need to 
be considered.

Given the gaps and limitations of current biological age 
predictors, namely the lack of a proper operationalization, 
misalignment with the aging-as-a-clock paradigm, and 
challenges in evaluation, the aim of this paper is threefold. 
Firstly, we propose a clear operationalization of biological 
age. Secondly, we present the AccelerAge framework: an 
new approach to predict biological age based on lifespan, 
that follows directly from the proposed operationalization 
of biological age. The AccelerAge framework is based on 
Accelerated Failure Time (AFT) models [27]. Unlike cur-
rent second-generation prediction approaches, which rely on 
Proportional Hazard (PH) models [28], AFT models model 
the effect of candidate markers of aging on one’s survival 
time directly, aligning with the prevalent clock metaphor in 
aging research. The appeal—but underuse—of AFT models 
in the context of aging research has been noted before [29], 
but not in the context of biological age prediction. Thirdly, 
we present two new evaluation measures for biological age 
predictions, which directly evaluate the biological age pre-
dictions themselves. To illustrate our framework and our 
novel evaluation measures, we build predictors based on 
the AccelerAge framework and compare their performance 
to a predictor similar to GrimAge, currently considered the 
best-performing. Evaluation is conducted using simulated 
data, as well as data from the UK Biobank and the Leiden 
Longevity Study. With this we hope to contribute to a more 
solid statistical foundation for biological age clocks.
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Biological age operationalization

Biological age should be a measure of one’s position in their 
total lifespan or healthspan [5]. One of the earliest papers 
discussing biological age, from Benjamin [9], already 
defined biological age as such: “Biologic age may be defined 
once more through an example: A man (white, American, of 
upper cultural level) who has lived seventy years has a life 
expectancy of about nine years. He has, therefore, a chance 
to celebrate his seventy-ninth birthday. These are statistical 
figures based on national mortality reports of many thou-
sands of cases. The individual is not considered except as 
part of the population. The examination of this man shows 
that he has a favorable heredity, sound organs, and that he 
functions like a much younger man. The age estimation (to 
be described later on) makes him 15 years younger, that is to 
say, his condition corresponds to that of a man of 55, which 
would be his approximate biologic age.”

This idea to define biological age through life expec-
tancy and a comparison with some reference population is 
intuitively appealing. However, a formal operationalization 
is required, such that a proper prediction approach can be 
decided upon, resulting in a predictor that predicts this oper-
ationalized concept. Our proposal for a formal mathematical 
definition of biological age is given below.

Denote by B biological age, by C chronological age, by X 
a (set of) true marker(s) of biological age (defined as mark-
ers that, conditional on C, are associated with B) and by T 
age-at-death. Under our proposed operationalization, B is 
defined through some function of residual life. We consider 
mean residual life (mrl): define mean residual life at age t as 

mrl(t) = E(T − t|T > t) . Now we can define biological age 
as follows: individual i, with chronological age C = c

i
 and 

marker value X = x
i
 , has B = b

i
 if

This can also be written as: B = b
i
 if

Hence, we assume that biological age is closely related to 
expected residual life, and is defined with respect to some 
reference population: given a prediction of mrl(c

i
|x

i
) and a 

population life table of some reference population, biologi-
cal age is determined by checking which chronological age 
within the population corresponds to a mean residual life 
value of mrl(c

i
|x

i
) . For example, a heavy smoker aged 50 

might have a life expectancy of 20 years given his marker 
values X

i
 , while in the general male population a life expec-

tancy of 20 years corresponds with an age of 57. Then the 
heavy smoker’s biological age is defined as 57. This is visu-
alized in Fig. 1.

This operationalization hence suggests a two-step 
approach for prediction of B: the first step is to obtain 
m̂rl(c

i
|x

i
) by regression-based estimation of mrl(t|X) ; the 

second step is to obtain b̂
i
 using mrl(t) , which is generally 

taken from some external source.
Under this operationalization, someone’s biological age is 

per definition determined with respect to some reference popu-
lation. This allows for a meaningful and direct interpretation 
of predictions: a biological age of 50 means that someone has 
“the same life expectancy as the average person with chrono-
logical age 50 within the reference population”. If the reference 

(1)E(T − c
i
|T > c

i
,X = x

i
) = E(T − b

i
|T > b

i
).

(2)mrl(c
i
|x

i
) = mrl(b

i
).

Fig. 1  Illustration of step 2 of 
our biological age operation-
alization: going from a mean 
residual life prediction to a 
biological age prediction. The 
black line denotes mean residual 
life at chronological age t within 
some reference population. 
Someone with an estimated 
mean residual life of 20 years 
has a corresponding biological 
age of 57
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population changes, someone’s mean residual life prediction 
will not change, but the resulting biological age prediction 
will. A possible disadvantage of this is the flip side of the 
same coin: choosing a reference population might not always 
be straightforward and/or the appropriate life table might not 
always be available. However, this can be circumvented by 
using the training data set itself as a reference population, if it 
is large enough and covers a wide enough chronological age 
range.

For convenience’ sake we have considered mean residual 
life (mrl) here, but one could also use some other function of 
residual life, e.g. median residual life ( medrl ), without loss of 
generality. When considering time-to-mortality as the outcome 
of interest, we have found the differences between mrl and 
medrl to be negligible. The choice for a particular function of 
residual life can be based on practical arguments: e.g. avail-
ability of a corresponding life table (most life tables provide 
mrl ) and computational speed ( medrl is faster to compute).

There exist several statistical models that can be used to 
obtain conditional residual life estimates (e.g. m̂rl(t|X) or 
m̂edrl(t|X) ) using time-to-event data. In this paper we will do 
so using Accelerated Failure Time models, using chronologi-
cal age as the timescale t, which we believe to be a natural fit 
to the ‘aging as a clock’ paradigm. In contrast, for the Grim-
Age predictor the more frequently used semi-parametric Cox 
Proportional Hazards model is used, using time-on-study as 
the timescale t. We describe both models in more detail in the 
next section.

Proportional hazards and accelerated failure 
time

When working with survival data, two commonly encountered 
regression models are Proportional Hazards (PH) and Acceler-
ated Failure Time (AFT) models. They differ in the assumption 
on how predictor variables act on one’s survival. In this section 
we describe both models in detail.

Proportional Hazard (PH) models, due to Cox [28], are 
the most commonly used models for survival analysis. In this 
model, survival is modeled through the hazard function h(t), 
also known as the instantaneous failure rate. PH-based models 
assume that the exponent of the linear predictors has a multi-
plicative effect on the hazard:

where h0(t) denotes the baseline hazard. This implies the 
effect of the linear predictors on the survival curve S(t) is 
given by:

(3)h(t|X) = h0(t) × exp(�TX),

(4)S(t|X) = S0(t)
[exp(�TX)],

where S0(t) denotes the baseline survival. The semi-para-
metric Cox PH model is the most frequently encountered 
PH model; it is semi-parametric because it does not make 
assumptions about the specific form of the baseline hazard 
function, only about the effect of covariates on this hazard.

AFT models provide an alternative to PH models for the 
modelling of survival data [27]. In contrast to PH models, 
the AFT approach models survival times directly. AFT mod-
els assume that the effect of covariates on the baseline sur-
vival curve is to shrink or stretch this curve, i.e. accelerate 
or decelerate it by a factor exp(�TX):

In contrast to PH models, which are often semiparametric 
(i.e. no parametric distribution is assumed for the baseline 
hazard h0(t) ), it is common to fit parametric AFT models, 
which assume that the survival times T follow a known 
parametric distribution. In principle parametric models are 
more restrictive than semi-parametric models. However, for 
models where the event of interest is known to follow a cer-
tain distribution, it can be an advantage. For adult mortality 
this is the case: it has long been known that adult mortality 
(of many different species, amongst which humankind) is 
accurately described by the Gompertz distribution [30], with 
baseline hazard function h0(t) = a exp(bt) . A lack of fit has 
been reported for the extreme old, known as ‘late-life mor-
tality deceleration’—this phenomenon was in fact already 
reported by Gompertz himself [31]—but others have found 
this deceleration to be negligible until over 100 years of 
age [32]. A more recent study concluded that this mortality 
deceleration is notoriously difficult to prove [33]. Although 
it is sometimes stated that the Gompertz distribution can 
only be parameterized as a PH model, this is not correct: 
it can also be parameterized as an AFT model [34]. This is 
illustrated in section 1 of the Supplementary Information.

When modelling survival data, a choice has to be made 
about the appropriate timescale t. If subjects are followed 
from some well-defined event, e.g. randomization in a clini-
cal trial, the relevant timescale is time-on-study and all sub-
jects enter at time t

start
= 0 . In the context of cohort studies, 

however, it has long been argued that chronological age is 
the preferred timescale [35, 36]. Nevertheless, the PH model 
used in the construction of the GrimAge predictor uses time-
on-study at the timescale t (we refer section 2 of the Sup-
plementary Information for more details).

The appeal of AFT models in the context of biological 
age prediction is that the factor exp(�TX) in Eq. (5) can be 
directly interpreted as an individual aging rate. If exp(�TX) is 
greater than 1, a subject experiences accelerated aging: time 
t is multiplied by exp(�TX) . If exp(�TX) is smaller than 1, a 
subject experiences decelerated aging. AFT models there-
fore tie in nicely with the clock paradigm, as they provide an 

(5)S(t|X) = S0(t × exp(�TX)).
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intuitive measure of accelerated aging (a faster ticking clock) 
or decelerated aging (a slower ticking clock).

In Fig. 2 we visualize the effect of covariates on the 
hazard rate and the survival curve for both AFT and PH 
models. In the top row, the black line represents the base-
line survival curve. In the bottom row, the black shade 
represents the corresponding baseline hazard. The artifi-
cial plateau in midlife (where no one dies, i.e. the hazard 
is zero and hence the survival curve remains constant) 
was added to more clearly illustrate the difference between 
AFT and PH models. The topleft panel shows the effect on 
the survival curve for someone with ‘beneficial’ covari-
ates under the PH model: i.e. exp(�TX) is negative. At 
every point in time, this person experiences a lower haz-
ard, because the baseline hazard is multiplied by a factor 
exp(�TX) , in line with Eq. (3). Hence, at every given age 
baseline survival is shifted upwards, because it is raised to 
the power − exp(�TX) : it is as if this person is protected by 
some shield. The location of the plateau in midlife, how-
ever, does not change. The topright panel shows the effect 
on survival for someone with beneficial covariates under 
the AFT model. Now the survival curve is stretched out in 
the horizontal direction, in line with Eq. (5): the biological 
age clock of this person is ticking a factor exp(�TX) slower 

than the clock of the baseline population. As a result this 
person also experiences the hazard-free period in midlife 
at a later chronological age. The AFT model is hence a 
more natural fit to the aging-as-a-clock concept than the 
PH model.

The AccelerAge framework

In this section we introduce our new statistical framework 
for biological age prediction, using an Accelerate Failure 
Time model with chronological age as the timescale t. This 
framework is in line with our suggested operationaliza-
tion for biological age as given in section Biological age 
operationalization: i.e. biological age is based on (mean) 
residual life and determined relative to some reference 
population. This suggests a two-step approach for predic-
tion of B: 

1. Get m̂rl(c
i
|x

i
) by regression-based estimation of mrl(t|X);

2. Obtain b̂
i
 using mrl(t) (generally available from some 

external source) so that mrl(b̂
i
) = �mrl(c

i
|x

i
).

Fig. 2  Illustration of the effect 
of markers on baseline hazard 
and survival under the assump-
tion of Proportional Hazards 
(left panels) and Accelerated 
Failure Time (right panels)
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The first step in arriving at a prediction for biological age 
is to define a model for mean residual life mrl(t|X) , given 
that a subject has survived until time t. Here, X denotes a 
(set of) true marker(s) of aging. We choose an approach 
via the survival function. In terms of the survival function 
S(t), mrl(t|X) can be expressed as:

How exactly X affects S(t|X) depends on the underlying 
model. Since we assume the AFT assumption to hold, this 
relationship is given by Eq. (5).

For step 2, one must have access to the population life 
table of some reference population, in order to translate 
the mean residual life prediction to a biological age predic-
tion. We suggest to use the life tables as provided by the 
national statistics office of the country where the data was 
gathered. Alternatively, in some cases the data set used 
to fit the model in step 1 could also be used to construct 
a life table.

We call this approach the AccelerAge framework, to 
emphasize its close link with Accelerated Failure Time 
models. We chose the term ‘framework’—in the sense of 
a conceptual structure—to emphasize the fact that ‘Accel-
erAge’ refers both to the operationalization of biological 
age as well as to the modelling approach that is followed 
to construct a predictor. Hence, we distinguish between a 
framework (the structure used to define biological age), a 
prediction approach (all modelling steps required to arrive 
at a prediction) and a predictor (a fitted version of a par-
ticular framework, fitted on a particular dataset, following 
all steps of the modelling approach).

In this paper we deliberately present a framework 
instead of a predictor: our AccelerAge framework can be 
applied to any type of time-to-event data using any kind of 
predictor variables. The AccelerAge framework is based 
on a proper operationalization of biological age, is in line 
with the ‘aging as a clock’ paradigm and its predictions are 
directly interpretable on an age-scale. The names ‘Grim-
Age’ and ‘PhenoAge’ are generally considered to refer to 
predictors: these names refer to a specific fitted model, 
which can be applied to a specific set of predictor variables 
(DNA methylation data) to arrive at a prediction. Never-
theless, in principle the modelling approaches that were 
followed to construct the original GrimAge and PhenoAge 
can also be used in other settings (e.g. fitted on different 
candidate predictor variables) to produce ‘GrimAge-type’ 
and ‘PhenoAge-type’ predictors. An example that stayed 
close to the original is GrimAge2, which was constructed 
using the exact same modelling approach as was used 
for the original GrimAge predictor, but starting from a 
slightly larger set of candidate predictor variables [26].

(6)mrl(t|X) = ∫
∞

t

S(u|X)
S(t|X)

du.

Evaluation measures

The standard approach in the evaluation of biological age 
clocks is to check whether the chronological age-inde-
pendent part of a biological age prediction Δ̂ (also known 
as the ‘age acceleration’ and obtained by regressing B̂ on 
C) is associated with mortality and other aging-related 
outcomes, such as frailty or cardiovascular disease. How-
ever, the biological age prediction B̂ should not only be 
meaningful in relation to some other time, which is what is 
done when evaluating Δ̂ : B̂ itself should also be meaning-
ful. In this section we therefore introduce two new evalu-
ation measures of biological age predictions which evalu-
ate this: discrimination and calibration. Both are routinely 
evaluated aspects of (clinical) prediction models based on 
survival data [37].

To check to what extent individuals with a higher pre-
dicted biological age indeed die sooner—in other words, 
to what extent the predictor is able to discriminate—we 
propose to consider the concordance (also called C-index) 
of a predictor. The concordance can be interpreted as the 
fraction of pairs in the data where the observation with the 
higher observed residual life also has the lower biological 
age. We use Uno’s C-index, which does not depend on the 
study-specific censoring distribution [38].

To check to which extent the biological age predictions 
are on the proper scale—in other words, to what extent the 
predictor is well-calibrated—we propose to use calibration 
plots. For any biological age prediction, it is possible to 
obtain the corresponding X-year mortality probability for 
this age using the population life table. Individuals can 
then be grouped based on their predicted X-year mortality 
probability in N equally sized groups. Per group, the mean 
predicted mortality probability can be compared with the 
true observed mortality rate within this group. If the pre-
dictor is well-calibrated, these correspond closely.

Simulation study set‑up

We conducted a simulation study to check the predictive 
performance and behavior of predictors fitted using the 
AccelerAge framework and of a predictor fitted using the 
same approach as was used to construct GrimAge. Grim-
Age is currently considered the best-performing biological 
age predictor, as the age-independent part of GrimAge pre-
dictions has been found to be associated with more aging-
related outcomes than the age-independent part of Pheno-
Age-predictons [20, 22]. We compared the performance of 
these predictors under various realistic circumstances. In 
simulation studies, predetermined parameters govern the 
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data-generating process, which ensures a known underly-
ing “truth” (i.e. true biological age) and facilitates easier 
evaluation and comparison.

We generated data under a similar study design as that 
of real data sets used to train longitudinal biological age 
clocks, namely prospective cohort studies: people enter 
the study at a random chronological age C and are then 
followed-up over time. For each individual in our sim-
ulated data set we generate their marker values X, their 
age-of-death T (the distribution of which depends on the 
chosen baseline) and the chronological age C at which we 
would include them in our study. By excluding individuals 
for which T < C , we mimic the selection process that also 
takes place in real prospective cohort studies: people who 
have already died cannot be observed.

Data was generated assuming two true markers X1 
and X2 , constant over each person’s lifetime and follow-
ing a standard normal distribution at birth. Although the 
assumption that markers are constant over one’s lifetime 
is not a realistic one (most omics-based markers change 
over the course of a lifetime), it is in line with the original 
approach followed to construct the GrimAge predictor, in 
which the the composite markers are age-adjusted before 
inclusion in the PH model.

We considered three data-generating mechanisms: one 
in which the baseline hazard h0(t) follows a Gompertz 
distribution and the PH assumption holds (referred to as 
Gompertz-PH), one in which h0(t) follows a Gompertz 
distribution and the AFT assumption holds (referred to as 
Gompertz-AFT) and one in which h0(t) follows a Weibull 
distribution (referred to as Weibull), which per definition 
can be parameterized as both an AFT and a PH model 
at the same time. We included the Gompertz scenarios 
because the Gompertz distribution is known to accurately 
describe (human) lifespan. We included the Weibull sce-
nario to illustrate the effect of a misspecified baseline 
when fitting a parametric AFT model.

We independently generated observations of markers X1 
and X2 and chronological age C as follows:

• X1 ∼ N(0, �2
1
) — biomarker, constant over one’s life-

time;
• X2 ∼ N(0, �2

2
) — biomarker, constant over one’s life-

time;
• C ∼ U(c

min
, c

max
) — chronological age at which indi-

vidual would enter the study.

We used the following parameter values: �1 = �2 = 1 , 
c
min

= 20 and c
min

= 80.
Next we generated age-at-death T under each of the three 

data-generating mechanisms. For a given individual i, under 
the PH-assumption, age-at-death t

i
 given X

i
 (where X

i
 here 

denotes a vector of x
i1 and x

i2) can be drawn as follows:

where U follows a uniform distribution on the interval from 
0 to 1. Under the AFT-assumption, t

i
 given X

i
 can be gener-

ated as follows:

We provide the derivation of Eqs. (7) and (8) in section 3 of 
the Supplementary Information. The expression for H−1

0
(t) 

depends on the chosen baseline distribution: Gompertz 
for the first two scenarios, Weibull for the third. We chose 
the parameters of these distributions such that the result-
ing event times approximately resembled human lifes-
pan: for Gompertz, a = exp(−9) and b = 0.085 (where the 
baseline hazard is given by h0(t) = a exp(bt) ), for Weibull, 
� = 34−10 and � = 8 (using the operationalization as given 
in Bender et al. [39], where h0(t) = ��t�−1 ). For Gompertz-
PH, � = (0.3, 0.3) , for Gompertz-AFT, � = (0.05, 0.05) and 
for Weibull, � = (0.35, 0.35) . These coefficients cannot be 
directly compared between the three scenarios, since on a 
PH-scale the interpretation of an effect size is different than 
on an AFT-scale, but they were chosen such that the result-
ing age-of-death distribution was comparable between the 
three scenarios, as can be seen in Fig. 3

If for a given individual age-at-death t
i
 was smaller than 

chronological age c
i
 , this individual is not observed, since he 

or she has already died at the age that we otherwise would 
have observed them. Those cases were removed. For the 
remaining individuals, we determined their survival curve 
S
i
(t) via Eqs. (4) or (5).
We consider median residual life ( medrl ) instead of mean 

residual life ( mrl ) because medrl is considerably faster to 
compute than mrl , since there is no integration involved. A 
pilot simulation was conducted considering both mrl and 
medrl : results were very similar under the settings consid-
ered in this simulation. For each individual in the data set 
we determined m̂edrl(t = c

i
|X

i
) as follows. First, determine 

the time t = t
i,med at which survival is half the current value 

S
i
(t = c

i
) . Next, subtract c

i
 from t

i,med to obtain expected 
median residual life medrl(c

i
|X

i
).

The final step in simulating biological age B involves 
a population life table for median residual life, medrl(t) . 
The life tables were constructed using the true parameter 
values of the three different data-generating mechanisms. 
Finally, for each subject i, we determined their biological 
age by checking in the population life table for which t the 
median residual life prediction of a particular individual i, 
m̂edrl(c

i
|X

i
) , is equal to the population’s medrl(t).

We assumed individuals were followed-up for a period 
of 20 years. So if (t

i
− c

i
) > 20 , the age-of-death of this 

(7)t
i
= H

−1
0

[
− log(U)

exp(�TX
i
)

]
,

(8)t
i
=

H
−1
0
[− log(U)]

exp(�TX
i
)

.
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individual is censored and he/she is observed until age 
c
i
+ 20 . If (t

i
− c

i
) < 20 , this individual is observed until 

their age-of-death t
i
 . Figure 4 contains plots of chronologi-

cal age against biological age for a realization of each of 
the three data-generating mechanisms described.

We generated training data sets of sizes n
obs

 = 500, 
2500, 5000, 7500 and 10,000 under each of the three data-
generating mechanisms (Gompertz-AFT, Gompert-PH and 
Weibull) and generated test sets of size n

test
= 5000.

Three different prediction approaches were used to fit 
three different biological age predictors on the simulated 
training datasets: (1) a predictor based on the Acceler-
Age framework with a Gompertz baseline (AccelerAge-
Gompertz), (2) a predictor that, like the AccelerAge 
framework, works via residual life and life tables but 
assumes proportional hazards (PH-semipar) and (3) a pre-
dictor constructed following the approach that was used 
to construct the original GrimAge predictor (GrimAge-
type). An elaborate description of the approach we took 
to fit this predictor can be found in section 2 of the Sup-
plementary Information. Note that of these three predic-
tion approaches, GrimAge-type is the only one that uses 

time-on-study as timescale t and relies on an ad hoc trans-
formation to an age scale.

AccelerAge-Gompertz is correctly specified for the 
Gompertz-AFT data-generation mechanism. PH-semipar 
is correctly specified for the Gompertz-PH data-generating 
mechanism. Since PH-semipar is semiparametric, it is also 
correctly specified for the Weibull data-generation mecha-
nism. GrimAge-type is not based on an underlying defini-
tion or operationalization of biological age, so it is not clear 
under which data-generation mechanism it would be cor-
rectly specified. But since it uses a Cox PH regression, it is 
to be expected that it will do better under the Gompertz-PH 
and Weibull data-generating mechanisms than under the 
Gompertz-AFT data-generating mechanism.

We use root-mean-square error (RMSE) as the perfor-

mance measure: RMSE = 
√

1

nobs

Σ
nobs

i=1

(
b̂
i
− b

i

)2

 , where for 

individual i b̂
i
 denotes predicted biological age and b

i
 

denotes true biological age. The simulation study sample 
size is n

sim
= 200 (i.e. 200 simulated data sets of size 500, 

2500, 5000, 7500 and 10,000 for the three different data-
generation mechanisms is 200 × 4 × 3 = 2400 simulated 

Fig. 3  Histogram of the ages-
of-death (generated at birth) for 
different quantiles of the linear 
predictor for each of the three 
data-generating mechanisms 
considered
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training data sets in total). In a few cases the Gompertz 
AFT model could not be fitted on the simulated data set, 
as it is a numerically delicate model to fit: an error was 
thrown that the Hessian was singular or that the model did 

not converge. This was the case for 9 of the 2400 simulated 
training data sets. We left those data sets out. For each 
data-generation mechanism and for each n

obs
-size we 

report the average RMSE over the n
sim

 repetitions.

Fig. 4  Plots of chronological 
age against (true) biological age 
for a simulated dataset of size 
n
obs

= 5000 for each of the three 
data-generating mechanisms 
considered
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All analyses were performed using R version 4.1.0. The 
parametric AFT models were fitted using the eha package 
version 2.10.3 [40].

Simulation study results

The results for the Gompertz-PH, Gompertz-AFT and 
Weibull data-generating mechanisms are presented in 
Figs. 5, 6 and 7, respectively.

Fig. 5  Performance of the 
three different biological age 
predictors in terms of the 
root-mean-square error under 
the Gompertz-PH data-gener-
ating mechanism. Results are 
reported for data sets of varying 
sizes ( n

obs
 = 500, 2500, 5000, 

7500 and 10,000) as the average 
root-mean-square error over 
a simulation sample size of 
n
sim

= 200
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Fig. 6  Performance of the 
three different biological age 
predictors in terms of the 
root-mean-square error under 
the Gompertz-AFT data-
generating mechanism. Results 
are reported for data sets of 
varying sizes ( n

obs
 = 500, 2500, 

5000, 7500 and 10,000) as the 
average root-mean-square error 
over a simulation sample size of 
n
sim

= 200
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Figure 5 shows that under the Gompertz-PH data-generat-
ing mechanism, GrimAge-type does best if the training data 
sample size is small ( n

obs
= 500 ): the RMSE is lowest. This 

is likely due to the fact that GrimAge-type uses a Cox PH 
model to estimate the effect of candidate markers on mor-
tality, which matches the used data-generating mechanism 
here. GrimAge-type does not need to estimate the population 
baseline survival S0(t) to arrive at biological age predictions 
due to its ad hoc transformation of the linear predictors. The 
other predictors do: 500 observations in a training data set 
(of which a substantial number censored) apparently do not 
suffice to properly estimate baseline survival. This is advan-
tageous to GrimAge-type. However, whereas the RMSE of 
the other predictors keep decreasing with increasing training 
dataset size, GrimAge-type’s performance stops improving. 
AccelerAge-Gompertz and PH-semipar perform similarly 
and outperform GrimAge-type when the size of the training 
data is larger than approximately 1,500 samples. Although 
PH-semipar is correctly specified under this data-generat-
ing mechanism, this predictor also needs enough events to 
properly estimate S0(t) . And indeed, as n

obs
 increases, PH-

semipar eventually outperforms AccelerAge-Gompertz. 
Even though AccelerAge-Gompertz is misspecified under 
this data-generating mechanism, its performance is still quite 
good. This can likely be attributed to the fact that it assumes 
the correct underlying baseline distribution and the effect 
sizes � are relatively small.

In Fig. 6 it can be seen that under the Gompertz-AFT 
data-generating mechanism, the corresponding correctly 
specified predictor (AccelerAge-Gompertz) performs best 

from the start. GrimAge-type again does okay for smaller 
training data sets but here its performance also quickly stops 
increasing.

Figure 7 shows that under the Weibull data-generating 
mechanism, GrimAge-type performs worst of all predictors 
with a large margin. This is likely due to the fact that the 
Cox PH regression in GrimAge’s second step uses time-on-
study as the timescale instead of chronological age. This 
affects its performance. This mismodeling was less of an 
issue for the Gompertz-PH and Gompertz-AFT scenarios 
in Figs. 5 and 6, because the Gompertz distribution belongs 
to the so-called ‘exponential family’. For this family mis-
modeling of time in a Cox PH model does not matter (for an 
elaborate discussion, see Thiébaut and Bénichou[36]). The 
performance of the AccelerAge predictor and PH-semipar 
is in line with expectations: for larger data sets, the cor-
rectly specified PH-semipar performs best, closely followed 
by AccelerAge-Gompertz.

Real data illustration

In this section we evaluate and compare the performance 
of a predictor fitted using our newly proposed Acceler-
Age framework and a predictor fitted using the GrimAge 
framework on real data. We use data from the UK Biobank 
(UKB). The UKB is a large population-based prospective 
cohort study. Between 2006 and 2010, more than 500,000 
participants aged 37–73 were recruited from different sites 
across the United Kingdom. Participants’ health is being 

Fig. 7  Performance of the three 
different biological age predic-
tors in terms of the root-mean-
square error under the Weibull 
data-generating mechanism. 
Results are reported for data sets 
of varying sizes ( n

obs
 = 500, 

2500, 5000, 7500 and 10,000) 
as the average root-mean-square 
error over a simulation sample 
size of n

sim
= 200
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followed long-term. The study contains extensive pheno-
typic and genotypic detail about its participants, including 
biological measurements and biomarker values, and longitu-
dinal follow-up for a wide range of health-related outcomes, 
provided through a linkage with medical and health records 
[41]. Participants are free to withdraw from the UK Biobank 
at any time and request that their data is no longer used.

We use blood-based metabolic biomarkers as predictor 
variables. The metabolic biomarkers were quantified using 
the high-throughput nuclear magnetic resonance (NMR) 
targeted metabolomics platform of Nightingale Health Ltd. 
(Helsinki, Finland), known for its high repeatability over 
time and absence of batch effects [42, 43] Per EDTA plasma 
sample, 249 metabolic measures are provided (of which 168 
in absolute concentration units and 81 ratios). The majority 
of these biomarkers relate to lipoprotein metabolism. In the 
UKB the first tranche of NMR-metabolomics data became 
available in March 2021, for more than 120,000 samples 
(from approximately 118,000 participants at baseline and 
4,000 at repeat assessment, of which 1,500 at both) [44]. 
We only included subjects with measurements at baseline. 
Metabolic variables for which measurements were miss-
ing for more than 1 percent of all samples were excluded 
(excluding 7 of 249). Subjects with missing measurements 
in the remaining 242 metabolic variables were also excluded 
(excluding 1,647 of 104,296). This left a sample of size N 
= 102,649, of which 47,293 men and 55,356 women. Mean 
age at recruitment was 56.3 years (sd = 8.1, IQR = 50–63; 
see Figure 1 of the Supplementary Information for a histo-
gram). Table 1 of the Supplementary Information contains 

information on the prevalence of various (chronic) diseases 
among the included participants.

The absolute concentrations of the metabolic variables 
measured at baseline are known to be 5–10% diluted in the 
UKB data [45]. To still allow for validation of our fitted 
biological age predictors in an external dataset, we decided 
to scale and center each metabolic variable prior to analysis.

Prospective mortality (i.e. time-to-mortality) is the out-
come of interest. Follow-up data until November 2021 was 
available. Median follow-up time was 13.3 years (IQR = 
12.5–14.0). During follow-up 7,629 participants died. No 
participant was followed for more than 16.9 years. Since 
at inclusion no participant was older than 71, the popula-
tion survival curve of the participants is only well-defined 
from age 40 to age 85. That the population survival curve 
is not well-defined at its right tail has significant negative 
consequences for the semiparametric PH-semipar predictor 
considered in the simulation study. As there is no informa-
tion in the data on how the right tail of the survival function 
looks like in reality, these predictors cannot properly esti-
mate baseline survival S0(t) . We therefore decided to exclude 
PH-semipar from this real data illustration. This leaves two 
predictors: one based on our our AccelerAge Gompertz 
framework fitted on the metabolic biomarkers (referred 
to as metabo-Accelerage-Gompertz) and one based on the 
GrimAge approach, as described in the previous section, 
but now fitted on the metabolic biomarkers (referred to as 
metabo-GrimAge).

To construct population life tables, necessary for the 
residual-life based biological age prediction approaches, we 

Fig. 8  Comparison of sur-
vival curves of the included 
UKB participants, stratified 
by sex, and of the UK general 
population (the period life table 
of 2018–2020), stratified by 
sex, as provided by the Office 
for National Statistics. The 
population survival curves were 
scaled such that they only start 
decreasing from age 40 onward, 
to avoid an unfair comparison 
due to the immortal time bias 
present in the UKB data
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used data from the United Kingdom’s Office for National 
Statistics [46]. When comparing survival in the UKB popu-
lation with that of the general population, it becomes appar-
ent that the UKB participants on average live longer. This 
is shown in Fig. 8, using the most recent period life tables 
(2018–2020), stratified by sex, from the Office for National 
Statistics as a comparison. We scaled these curves such that 
they only start decreasing from age 40 onward, to avoid an 
unfair comparison due to the immortal time bias present in 
the UKB data, as no participant was included before age 
40. This figure also illustrates the limited age range of the 
UKB participants’ survival curves. We also compared sur-
vival of our subset of UKB participants, which consisted of 
those with metabolic biomarker measurements, with that of 
the entire UKB sample, but no difference in survival could 
be noted (see Figure 3 of the Supplementary Information). 
The fact that UKB participants are not representative of the 
general population, but seem to belong to a healthier subset, 
has been noted before; see e.g. Fry et al. [47].

The fact that we use sex-stratified population survival 
curves means that a man and a woman who have the same 
predicted mean residual life, will have a different predicted 
biological age: women live longer, so the woman’s biologi-
cal age will be higher.

Given the large sample size available, we randomly 
selected 60,000 individuals to serve as the training data set 
and the remaining 42,649 individuals to serve as the test data 
set. As the metabolic variables are often strongly correlated, 
we fit our predictors on the training data using as predictor 
variables the first 22 principal components of the metabolic 
variables (together explaining at least 95 percent of the vari-
ance) and sex. Time-to-all-cause-mortality is the outcome.

We evaluated the biological age clocks using both stand-
ard and new evaluation measures, as introduced in section 
Evaluation measures. To calculate the concordance, we 
translated predicted biological age back to predicted mean 
residual life for metabo-AccelerAge-Gompertz, via the sex-
specific baseline survival curves. For metabo-GrimAge it is 
unclear whether predictions can be directly translated to a 
predicted mean/median residual life value. We did try this, 
but it resulted in a lower concordance than when using the 
predicted GrimAges directly. We hence went for the option 
most beneficial to metabo-GrimAge. To make the calibration 
plots, we considered 5-year mortality and placed participants 

in five equally sized groups based on their predicted 5-year 
mortality.

The results for the ‘traditional’ evaluation of biological 
age clocks, i.e. to what extent Δ is associated with all-cause 
mortality in a Cox PH model that also includes chronologi-
cal age and sex, can be found in Table 1. It can be seen that 
the Δ of both metabo-AccelerAge-Gompertz and metabo-
GrimAge is strongly associated with time to all-cause 
mortality.

Table 2 contains the results for one of our new proposed 
evaluation measures, the concordance. Both biological age 
predictors have a higher concordance than chronological 
age.

Calibration plots for metabo-AccelerAge-Gompertz 
and metabo-GrimAge can be found in Fig. 9. AccelerAge-
Gompertz is better calibrated: predicted all-cause mortality 
risk is closer to observed all-cause mortality risk. This result 
can be understood when plotting chronological age against 
predicted biological age, as done in Figs. 10 and 11. The 
metabo-GrimAge predictions are—by design—centered 
around the line C = B . For this particular data set that does 
not make sense, since we know that the UKB population 
lives longer than the average UK population (Fig. 8), so their 
biological ages should on average be somewhat lower than 
the line C = B . The predicted biological ages of our metabo-
AccelerAge-Gompertz predictor are on average also lower 
than the chronological ages.

We validated our findings that metabo-AccelerAge-
Gompertz and metabo-GrimAge perform equally well on 
discrimination but that metabo-AccelerAge-Gompertz is 
better calibrated in an external data set, the Leiden Lon-
gevity Study (LLS). The LLS tracks long-lived Dutch sib-
lings of Caucasian origin, their offspring and the partners 
of the offspring. Participants were recruited between March 
2002 and May 2006. Registry-based follow-up data until 
November 2021 was available. We used data on the offspring 
and the partners (N = 2312). Participants who dropped out 
(N = 10) or had missing values on the 242 included meta-
bolic variables (N = 46) were excluded, resulting in 1007 
men and 1249 women with a mean age of 59.2 years (sd = 
6.7, IQR = 54.7–63.9; see Figure 2 of the Supplementary 
Information for a histogram) at inclusion. Median follow-
up time was 16.3 years (IQR = 15.3–17.1) and 313 deaths 
were observed. Table 1 of the Supplementary Information 

Table 1  Hazard ratios for all-cause mortality associated with a stand-
ard unit increase in Δ in a Cox PH model adjusted for chronological 
age and sex, evaluated on the test set of the UKB data

HR (95% CI) p-value

Δ : metabo-GrimAge 1.61 (1.56–1.65) < 2e−16
Δ : metabo-AccelerAge-

Gompertz
1.56 (1.52–1.60) < 2e−16

Table 2  Concordance (Uno’s C) of the biological age predictions 
evaluated on the test set of the UKB data

Uno’c C (s.e.)

Chronological age 0.703 (0.007)
Biological age: metabo-GrimAge 0.739 (0.009)
Biological age: metabo-AccelerAge-Gompertz 0.739 (0.009)
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contains information on the prevalence of various (chronic) 
diseases among the included participants.

Table 3 shows to what extent age acceleration Δ is associ-
ated with all-cause mortality in a Cox PH model that also 
includes chronological age and sex on the LLS data. The 
Δ-values of both biological age predictors are still signifi-
cantly associated with mortality beyond chronological age. 
Nevertheless, the hazard ratios are much lower.

Table 4 contains the concordance of the biological age 
predictors on the LLS data. The two predictors still both 
discriminate slightly better than chronological age, but the 
difference is smaller.

Figure  12 contains the calibration plots for the two 
predictors on the LLS data. The metabo-AccelerAge-
Gompertz predictor is still better calibrated than metabo-
GrimAge, although the difference is smaller. In this case the 
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Fig. 9  Calibration metabo-GrimAge and metabo-AccelerAge-Gompertz based on 5-year survival in the test set of the UKB data

Fig. 10  Chronological age plot-
ted against predicted biological 
age in the test set of the UKB 
data for metabo-AccelerAge-
Gompertz. The orange line 
has slope 1: it denotes where 
chronological age is equal to 
predicted biological age
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biological age predictions of metabo-AccelerAge-Gompertz 
are slightly too low, especially for the group with the high-
est predicted mortality probability: the true event rates are 
slightly higher than the predicted probabilities.

Discussion

In this paper we presented a new statistical framework for 
biological age prediction, AccelerAge, based on Acceler-
ated Failure Time models. We proposed this new framework 
because most existing biological age predictors are not based 
on a formal operationalization of the concept of biological 
age, are not in line with the aging-as-a-clock idea and are 

challenging to evaluate, because the estimand is ambiguous. 
In an attempt to overcome these limitations, we started by 
formally defining the concept of biological age via residual 
life, and subsequently based the AccelerAge framework on 
this operationalization. The discussion on what (biological) 
aging exactly entails is vivid and ongoing, but our proposed 
definition can serve as a starting point for further discus-
sion. We explained why biological age predictors based on 
AFT models are in line with the ubiquitous clock metaphor 
in the aging field, while predictors based on Proportional 
Hazards models are not. Besides the more natural interpre-
tation of biological age predictors based on AFT models, 
another advantage of AFT models is that they are robust to 
covariate omission: neglecting true covariates might lead to 
a distribution outside the parametric family considered, but 
it does not affect the regression-part of the model. This is 
not true for the PH model [34]. Another appealing aspect of 
the AccelerAge framework is that the AFT-model is fitted 
using chronological age as the timescale t instead of time-
on-study. This is the preferred timescale in the context of 
cohort studies [35, 36]. Finally, in this paper we introduced 
two new evaluation measures into the context of biological 
age clocks, namely concordance and discrimination. This 
allows for a broader evaluation and validation of biological 
age predictors. AccelerAge predictions are directly interpret-
able on an age-scale, which means that the biological age 
prediction itself is meaningful, not just the age-independent 
part Δ.

Our UK Biobank application illustrates that metabo-
AccelerAge-Gompertz is a worthy competitor to our Grim-
Age-implementation, metabo-GrimAge, in terms of predic-
tion performance. Using the often-used evaluation measure 

Fig. 11  Chronological age plot-
ted against predicted biological 
age in the test set of the UKB 
data for metabo-GrimAge. 
The orange line has slope 1: it 
denotes where chronological 
age is equal to predicted bio-
logical age
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Table 3  Hazard ratios for all-cause mortality associated with a stand-
ard unit increase in Δ in a Cox PH model adjusted for chronological 
age and sex, evaluated on the LLS data

HR (95% CI) p-value

Δ : metabo-GrimAge 1.39 (1.23–1.57) 1.58e−7
Δ : metabo-AccelerAge-

Gompertz
1.35 (1.21–1.52) 1.82e−7

Table 4  Concordance (Uno’s C) of the biological age predictions 
evaluated on the LLS data

Uno’c C (s.e.)

Chronological age 0.723 (0.016)
Biological age: metabo-GrimAge 0.739 (0.014)
Biological age: metabo-AccelerAge-Gompertz 0.740 (0.014)
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of checking whether the age-independent part of a biological 
age prediction ( Δ ) is significantly associated with prospec-
tive mortality, the hazard ratio for metabo-AccelerAge-
Gompertz was slightly lower than that for our GrimAge-
implementation, but metabo-AccelerAge-Gompertz was 
better calibrated in both the UKB data and the LLS data, 
used as the external validation set. On concordance the two 
predictors scored similarly. This implies that opting for the 
approach with a more robust methodological foundation and 
aligned with hypothesized biological reality does not require 
any sacrifices in performance.

The real data application highlights the need for having 
more than one evaluation measure in biological age pre-
diction. A true biological age predictor should be directly 
interpretable on an age-scale. Calibration plots can be used 
to assess the ability of a predictor to do so; checking whether 
Δ is significantly associated with time-to-mortality cannot. 
In addition, only relying on the association of Δ with age-
related outcomes might paint a too optimistic picture of the 
(clinical) usefulness of a biological age predictor. Although 
we found that both metabolite-based biological age clocks 
performed better than chronological age on discrimina-
tion, the differences with chronological age were small. 
One potential reason for this is that we only considered the 
metabolic variables as measured by the Nightingale NMR 
platform as predictor variables. Using more of the human 
metabolome, or using other sources of omics, might capture 
more of the aging process and hence further improve the 
discriminative ability of a predictor.

Our AccelerAge framework can be applied to any kind of 
time-to-event outcome and any type of predictor variables. 

Naturally, the conclusions resulting from the comparison 
with a GrimAge-based predictor might change if different 
predictor variables or outcomes are considered. We plan to 
extend the framework to also allow for regularization. Incor-
porating multiple predictor types, e.g. multiple omics, would 
be possible with a group-wise penalty term. In addition, it 
would be interesting to see how AccelerAge develops within 
individuals over time: this would e.g. also make it possible 
to investigate if certain (early-life) interventions contribute 
to achieving a lower predicted biological age, either imme-
diately or later in life.

There are several limitations to our work. The Acceler-
Age framework is only based on lifespan, not healthspan, 
because healthspan tables are generally not available. This 
can be considered a (too) narrow view of what it means to 
age. In addition, our operationalization requires that one has 
access to a life table of the reference population of inter-
est. This might not always be the case, in particular not for 
outcomes other than mortality. In certain cases it might be 
feasible to simply construct a table based on the training 
data set itself, but then the ability to detect whether the refer-
ence population differs from the sample is lost. The reliance 
of the AccelerAge approach on life tables can in itself be 
seen as a limitation, as it forces one to decide on a reference 
population. If the reference population changes, the resulting 
biological age predictions also change. However, we would 
like to point out that any prediction approach that makes pre-
dictions on an age-scale uses a reference population, albeit 
implicit: if not, the resulting age cannot be interpreted. For 
instance, GrimAge uses the mean and standard deviation of 
chronological age in the training data to obtain predictions in 

Fig. 12  Calibration metabo-
GrimAge and metabo-Acceler-
Age-Gompertz based on 5-year 
survival in the LLS data
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units of years. The AccelerAge is different from most other 
biological age approaches in that it first predicts remaining 
lifespan, instead of directly prediction (biological) age, and 
that it makes the use of a reference population explicit.

We illustrated the AccelerAge framework using a fully 
parametric AFT model, based on the Gompertz distribution. 
As it has long been known that the Gompertz distribution 
describes adult mortality well, this parametric approach suf-
ficed for our real data application, in which time-to-mortality 
was our only outcome of interest. AFT models can also be 
fit using a semiparametric [48–51] or flexible parametric 
[52] approach. We initially included these two approaches 
in our simulation study as well: results can be found in sec-
tion 5 of the Supplementary Information. Our semiparamet-
ric approach, based on the weighted least squares method, 
is described in section 6 of the Supplementary Information. 
We found that especially the fitting of flexible parametric 
AFT models can be inconsistent and suffer from conver-
gence issues. However, as developing robust flexible para-
metric AFT models is an area of active research [53], we 
believe the flexible parametric AccelerAge approach will 
soon become an appealing alternative to our fully parametric 
approach. It should however be noted that, in order to fit any 
AccelerAge model that is not fully parametric, the data must 
cover the whole of human lifespan to properly estimate the 
baseline survival curve or hazard function (which must be 
fully specified, because it needs to be integrated over). In 
the UK Biobank data, the oldest included participant was 
85. Semiparametric prediction approaches therefore would 
have no data to estimate baseline survival or hazard at ages 
after 85.

In conclusion, our work represents a substantial advance-
ment in the field of biological age research. By introduc-
ing AccelerAge, a new AFT-based statistical framework to 
predict biological age based on a solid operationalization of 
biological age, and incorporating previously underutilized 
evaluation measures, namely discrimination and concord-
ance, we have laid a robust statistical foundation for the 
development and validation of biological age clocks.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10654- 024- 01114-8.
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