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Abstract
Adiposity is associated with multiple diseases and traits, but little is known about the causal relevance and mechanisms 
underlying these associations. Large-scale proteomic profiling, especially when integrated with genetic data, can clarify 
mechanisms linking adiposity with disease outcomes. We examined the associations of adiposity with plasma levels of 
1463 proteins in 3977 Chinese adults, using measured and genetically-instrumented BMI. We further used two-sample 
bi-directional MR analyses to assess if certain proteins influenced adiposity, along with other (e.g. enrichment) analyses to 
clarify possible mechanisms underlying the observed associations. Overall, the mean (SD) baseline BMI was 23.9 (3.3) kg/
m2, with only 6% being obese (i.e. BMI ≥ 30 kg/m2). Measured and genetically-instrumented BMI was significantly associ-
ated at FDR < 0.05 with levels of 1096 (positive/inverse: 826/270) and 307 (positive/inverse: 270/37) proteins, respectively, 
with FABP4, LEP, IL1RN, LSP1, GOLM2, TNFRSF6B, and ADAMTS15 showing the strongest positive and PON3, NCAN, 
LEPR, IGFBP2 and MOG showing the strongest inverse genetic associations. These associations were largely linear, in 
adiposity-to-protein direction, and replicated (> 90%) in Europeans of UKB (mean BMI 27.4 kg/m2). Enrichment analyses of 
the top > 50 BMI-associated proteins demonstrated their involvement in atherosclerosis, lipid metabolism, tumour progression 
and inflammation. Two-sample bi-directional MR analyses using cis-pQTLs identified in CKB GWAS found eight proteins 
(ITIH3, LRP11, SCAMP3, NUDT5, OGN, EFEMP1, TXNDC15, PRDX6) significantly affect levels of BMI, with NUDT5 
also showing bi-directional association. The findings among relatively lean Chinese adults identified novel pathways by 
which adiposity may increase disease risks and novel potential targets for treatment of obesity and obesity-related diseases.
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Introduction

Worldwide obesity affects about 700 million adults and the 
prevalence continues to increase steadily in most countries, 
including China [1]. The effects of obesity, or more broadly 
of adiposity, on metabolic traits (e.g. lipids, blood glucose, 
and blood pressure), cardiovascular diseases, type 2 diabe-
tes, and certain cancers are well established [2–7]. However, 
substantial uncertainty persists about the aetiological role of 
adiposity for many other diseases and about the mechanisms 
linking adiposity with individual diseases.

In addition to acting as a location of energy storage, 
adipose tissue, whether located in the subcutaneous fat, 
peri-muscular fat, intra-peritoneal fat, between the internal 
organs, or even within the internal organs (e.g. liver), also 
functions as an endocrine organ [8]. Hence, adipose tissue 
produces hormones (e.g. leptin, oestrogen, and resistin), 
inflammatory biomarkers, fatty acids and adipo-cytokines 
[8], which can target multiple body systems and trigger the 
onset of multiple diseases, beyond established metabolic 
pathways. Moreover, it is likely that multiple novel biomark-
ers (e.g. circulating proteins and small molecules) associated 
with adiposity have yet to be identified.

The majority of druggable targets are proteins, including 
enzymes, protein kinases and transport proteins [9]. System-
atic characterisation of large number of circulating proteins 
in humans has only recently become possible with the advent 
of high-throughput proteomic assays [9–11]. Analyses of the 
observational and genetic associations of plasma levels of 
proteins with adiposity traits have implicated novel proteins 
in disease aetiology and molecular pathways linking adipos-
ity (and other risk factors) with multiple diseases [12–17]. 
However, the available evidence on proteomics has been 
constrained by studies involving relatively small numbers 
of proteins using targeted cardiometabolic or inflammation 
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panels [12–14], or restricted to Western populations in 
whom most were overweight or obese [13–17], or used 
self-reported measures of adiposity [15], and often lacked 
concomitant genetic analyses to assess the causal relevance 
and direction (i.e. whether in adiposity-to-protein direction, 
or vice versa) of these associations [14]. Comprehensive 
evaluation of the associations of adiposity with protein bio-
markers in Chinese adults should be particularly informative 
as mean adiposity levels (e.g. mean BMI of 22–24 kg/m2), 
body shape and genetic architecture differ importantly from 
those in Western populations.

We undertook observational and genetic analyses of adi-
posity with 1463 proteins in 3977 Chinese adults selected 
from the China Kadoorie Biobank (CKB). The main aims of 
the present study were to identify plasma proteins that were 
significantly associated with BMI and to clarify the shape, 
strength, and causal relevance of the observed associations. 
Moreover, we also used gene ontology (GO) enrichment 
analyses to explore whether particular classes of proteins are 
affected by BMI, and bi-directional MR analyses to examine 
whether certain proteins may also causally affect levels of 
BMI.

Methods

Study population

Details of the CKB design and methods have been previ-
ously reported [18, 19]. Briefly, 512,869 participants aged 
30–79 years were recruited during 2004–2008 from 10 (5 
urban, 5 rural) geographically diverse areas. At the baseline 
survey, participants completed an interviewer-administered 
laptop-based questionnaire on sociodemographic and life-
style factors (e.g. smoking, alcohol drinking and physical 
activity), and medical history and medication (e.g. statin), 
underwent physical measurements (e.g. blood pressure, 
heart rate, height and weight, and waist and hip circumfer-
ences), and provided a 10 mL non-fasting blood sample 
(with time since last meal recorded) for long-term storage. 
Prior international, national and regional ethical approvals 
were obtained and all participants provided written informed 
consent for participation.

Anthropometric measurements

Anthropometric measurements were recorded with partici-
pants wearing light clothing but without shoes, and usually 
to the nearest 0.1 cm or 0.1 kg. Weight was measured using 
a body composition analyser (TANITA-TBF-300GS; Tan-
ita Corporation), with subtraction of weight of clothing by 
0.5 kg in summer, 1.0 kg in spring/autumn and 2.0–2.5 kg in 

winter. BMI was calculated by weight in kilograms divided 
by the square of the height in metres (kg/m2).

Proteomics assay

The proteomics assay was conducted among 3977 CKB par-
ticipants, who had no prior history of cardiovascular dis-
eases, no use of lipid-lowering drugs (e.g. statins) at time 
of sample collection, but had genome-wide genotyping data 
available. Participants were selected as part of a nested case-
cohort study, involving 1951 incident IHD cases and 2026 
randomly selected subcohort individuals (eFigure 1).

Stored baseline plasma samples from participants were 
retrieved, thawed, and sub-aliquoted to multiple aliquots, 
with one (100 µL) shipped on dry ice to the OLINK Bio-
sciences Laboratory at Uppsala, Sweden, for proteomic 
analysis using a multiplex proximity extension assay. To 
minimize inter- and intra-run variation, the samples were 
randomized across plates and normalized using both an 
internal control (extension control) and an inter-plate con-
trol and then transformed using a pre-determined correction 
factor.

Details of the OLINK assay performance and validation 
have been reported elsewhere [10]. The LOD was deter-
mined using negative control samples (buffer without anti-
gen). A sample was flagged as having QC warning if the 
incubation control deviated more than a pre-determined 
value (± 0.3) from the median value of all samples on the 
plate (but values below LOD were included in the analy-
ses). The pre-processed data were provided in the arbitrary 
Normalized Protein eXpression (NPX) unit on a log2 scale.

The present analyses included a total of 1472 proteins, 
including 3 (IL6, IL8 and TNF) that were replicated in all 
four individual panels, resulting in 1463 unique proteins 
(eTable 1). The distributions of some proteins were skewed 
(eFigure 2), with relatively low number of QC warnings per 
protein among all samples (e.g. 106 proteins had QC warn-
ings involving 4.0% of all samples: eTable 2), which were 
included in the main analyses.

Genotyping and genetic instruments for BMI

Genotyping was conducted using a custom-designed 800 
K-SNP array (Axiom [Affymetrix]) for ~ 100,000 CKB 
participants which passed quality control (overall call 
rate > 99.97% for all variants), including a population-based 
sample of ~ 76,000 participants who were randomly selected 
from the overall cohort, from whom the sub-cohort of 2026 
individuals was selected [20]. BMI GS was derived using 
loci associated at genome-wide significance in sex-combined 
trans-ancestry GWAS in CKB and UKB: dosages of 816 
variants with minor allele frequency ≥ 0.01 associated with 
BMI, respectively, were weighted according to their effect 
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sizes in UKB [21]. The BMI-GS (F-statistic: 152) was strong 
instrument (with 3.7% of variance explained) and not associ-
ated with confounders such as smoking or alcohol consump-
tion (eTable 3). Genetic instruments for bi-directional MR 
were cis-pQTLs from GWAS for each protein.

Statistical analysis

The prevalence or mean values of baseline characteristics 
were calculated by BMI quintiles, standardised to the age 
(5-year groups), sex and study area structure of the cases 
and subcohort. Plasma protein levels were standardized 
(i.e. values of each protein were divided by their SD) and 
analysed as continuous variables. In observational analysis, 
linear regression was used to assess the associations of BMI 
with protein biomarkers, adjusted for age,  age2, sex, study 
area, fasting time, ambient temperature, plate ID and case-
subcohort ascertainment. For each biomarker, adjusted dif-
ferences and 95% CIs associated with 1-SD higher levels of 
adiposity were estimated.

In genetic (i.e., MR) analysis, we related the genetically-
instrumented BMI with proteins using the 2-stage least 
squares estimator method. First, the associations between 
the BMI GS and BMI measures were examined using linear 
regression, adjusting for age,  age2, sex, study area, fasting 
time, ambient temperature, case-subcohort ascertainment 
and the first 12 national principal components. Second, the 
associations of the resulting predicted BMI values with pro-
teomics measurements were examined using linear regres-
sion with the same adjustments (including plate ID) except 
principal components. We calculated the genetically-instru-
mented associations per 3.6 kg/m2 higher BMI (correspond-
ing to 1-SD higher levels in the observational analyses) of 
measured proteins levels, to permit comparisons with the 
observational analyses. To replicate the main study find-
ings, we also undertook separate observational and genetic 
analyses in UKB, involving the same 1463 OLINK Explore 
proteins in about 50,000 participants. [16]

To examine the shape of the associations in observa-
tion analyses, adjusted means of individual proteins were 
calculated within each of BMI quintiles using multiple lin-
ear regression and then plotted against mean BMI within 
each of quintiles. Similarly, in genetic analyses, we under-
took non-linear MR analyses by stratifying GS-free BMI 
based on its quintiles. GS-free BMI was calculated as the 
residuals from the regression of BMI on GS, centered on 
the overall population mean BMI (23.9 kg/m2) [22]. We 
then calculated causal estimates for each stratum using the 
ratio method. The overall estimate of the BMI-GS asso-
ciation was used as the denominator, with the numerator 
being the estimate from the association of GS with each 
protein, within each of the GS-free BMI quintiles. The 
piecewise linear method was used to estimate the mean of 

each GS-free BMI stratum, using the causal estimate as the 
slope of the line in each stratum. Each line segment begins 
where the previous segment ends. The intercept was set 
to the population mean BMI. The CIs were estimated by 
bootstrapping the associations of the GS with protein bio-
markers in samples of each GS-free BMI strata, and the 
χ2 values for trend and quadratic test were calculated for 
the causal estimates across the GS-free BMI startum for 
each protein.

In sensitivity analyses, we (i) restricted analyses to 
subcohort participants only; (ii) excluded values with QC 
warnings; (iii) adjusted for additional covariates (e.g. edu-
cation, smoking, alcohol drinking, and physical activity); 
(iv) excluded individuals with prior diseases. We also per-
formed sex-specific analyses to check the consistency of 
results between men and women.

For proteins that passed Bonferroni-corrected threshold 
in the genetic analyses (adiposity-to-protein direction), we 
conducted GO and KEGG enrichment analyses using clus-
terProfiler (v.4.2.2) [23], to determine which biological 
functions or processes were significantly enriched based 
on hypergeometric tests.

In GWAS analyses of CKB participants, pQTLs were 
determined using the COJO method [24], with a threshold 
at P < 5 ×  10–8 for statistical significance. Moreover, for 
all proteins with available cis-pQTLs (± 500 kb around 
the encoded gene region), a two-sample bi-directional MR 
was conducted using (i) cis-pQTLs obtained from GWAS 
of CKB, with lookups separately in BBJ (n = 173,430) 
[25] and (ii) cis-pQTLs obtained from GWAS of UKB, 
with lookups in GIANT with (n ∼ 700,000) [26] or with-
out (n ~ 210,000) UKB participants [27]. Both analyses 
used the two-stage least squares estimation and Wald 
ratio methods. [28, 29] For those proteins showing sig-
nificant associations in 2SMR, the causal direction of each 
extracted SNP to the levels of protein and BMI was tested 
using MR Steiger filtering [30]. For proteins of interest, we 
also undertook colocalisation analyses using coloc (v5.2.1) 
to investigate whether they shared the same causal variants 
with BMI, and explored the protein–protein interaction 
using the STRING database (v11.5). Protein expression 
database of GTEx (v8) [31] was screened to examine the 
tissue-specific role of the causal proteins in obesity, and 
tissues involved in energe metabolism or endocrine control 
of food intake were selected. We further searched PhenoS-
canner (v2) and GWAS Catalog (v1.0.2) for associations 
of cis-pQTLs from both CKB and UKB with a range of 
phenotypes using a P value threshold of 5 ×  10–8.

All statistical analyses were performed using R version 
4.1.2. Significance thresholds used Benjamini–Hochberg 
FDR or the more stringent Bonferroni-corrected thresholds 
(0.05/1463) to correct for multiple testing.
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Results

Of the 3977 participants studied, the mean (SD) baseline age 
was 57.3 (11.6) years, and the mean BMI was 23.9 (3.3) kg/
m2, with 6% being obese (i.e. BMI ≥ 30 kg/m2). Participants 
with higher BMI had higher levels of blood pressure, were 
more likely to be urban residents and women, and less likely 
to be smokers (in men only) (Table 1). These associations 
were broadly similar in IHD cases and subcohort partici-
pants, although IHD cases had higher mean levels of blood 
pressure than subcohort participants (eTable 4).

Observational associations of BMI with proteins

Overall, BMI was significantly associated at FDR < 0.05 
with plasma levels of 1096 proteins, with 826 being posi-
tive and 270 inverse (Fig. 1a and eFigure 3). After apply-
ing Bonferroni significance threshold, 798 (625 positive, 
173 inverse) proteins remained significantly associated 
with BMI. Almost all associations of BMI with individual 

proteins were linear throughout the full ranges of BMI exam-
ined (eFigure 4), although the strength of the associations 
varied, with effect sizes per SD higher BMI ranging from 
0.01 to 0.55 for positive associations and from − 0.45 to 
− 0.01 for inverse associations (Fig. 2a). The proteins show-
ing the strongest positive associations with BMI were leptin, 
FABP4, SSC4D and CDHR2, and FURIN, while the pro-
teins showing strongest inverse associations were IGFBP2, 
IGFBP1, PON3, WFIKKN2 and LEPR. The results for BMI 
with all individual proteins are shown in eTable 5.

In sensitivity analyses restricted to subcohort partici-
pants, BMI was associated at FDR < 0.05 with 984 proteins 
(eFigure 5), with > 97% overlapping with the main analyses 
and all were directionally consistent. Moreover, the overall 
or leading panel-specific proteins were identical to those in 
the main analyses. Similarly, the results were not materi-
ally altered by additional exclusion of individuals with (i) 
prior history of diabetes, kidney disease or cancer, or (ii) QC 
warnings in particular assays, or (iii) by additional adjust-
ment for other covariates (eTable 6).

Table 1  Baseline characteristics of participants by quintiles of measured baseline BMI in CKB

SD standard deviation; BMI body mass index; SBP systolic blood pressure; MET metabolic equivalent of task
a Adjusted for age, sex and study area, as appropriate
b Based on self-report, while for diabetes, those with screen-detected cases at baseline were also included

Characteristicsa Quintiles of BMI, kg/m2 All (n = 3977)

Q1 (n = 796) Q2 (n = 789) Q3 (n = 812) Q4 (n = 785) Q5 (n = 795)

Age and socioeconomic factors
Age, years (SD) 58.8 (15.1) 56.2 (12.5) 56.3 (11.9) 56.9 (12.1) 56.9 (12.8) 57.3 (11.6)
Women, % 52.9 51.2 53.0 51.0 62.6 53.7
Urban, % 28.1 39.2 53.0 59.6 65.6 48.8
≥ 6 years of education, % 43.4 45.8 46.7 46.4 44.4 45.1
Anthropometry and blood pressure, mean (SD)
BMI, kg/m2 19.2 (1.3) 21.9 (0.6) 23.7 (0.5) 25.7 (0.6) 29.2 (1.9) 23.9 (3.3)
Waist circumference, cm 70.5 (5.1) 77.2 (5.5) 81.6 (5.4) 86.6 (5.1) 94.1 (9.5) 81.9 (9.1)
SBP, mmHg 129.8 (21.8) 133.6 (19.3) 138.8 (22.0) 142.1 (21.9) 146.5 (23.7) 138.3 (22.0)
Fasting time 4.4 (4.9) 4.7 (4.3) 4.9 (4.1) 4.7 (3.8) 4.3 (3.5) 4.7 (4.1)
Lifestyle factors
Ever regular smoker, %
Men 82.8 75.4 73.2 70.0 75.8 75.0
Women 5.6 7.4 6.2 4.0 5.1 5.8
Regular alcohol consumption, %
Men 34.6 35.4 36.4 36.0 31.0 34.6
Women 3.2 2.5 2.0 4.1 3.6 3.0
Physical activity, MET-h/day (SD) 17.6 (11.2) 17.4 (10.5) 17.2 (12.1) 17.4 (10.3) 16.0 (10.0) 17.3 (10.7)
Medical history and health statusb, %
Self-rated poor health 13.2 16.5 16.6 18.7 18.0 16.6
Diabetes 5.9 7.9 11.1 13.3 17.7 11.2
Chronic kidney disease 1.0 1.0 1.6 1.7 1.5 1.4
Cancer 0.8 0.8 0.4 0.4 0.9 0.6
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In sex-specific analyses of all participants, 921 and 970 
proteins were significantly associated at FDR < 0.05 with 
BMI in men and women (Pearson’s correlation r = 0.87), 
respectively. There were 786 overlapping proteins between 
men and women and with exception of nine proteins, all the 
associations were directionally consistent (eFigure 6).

Genetic associations of BMI with proteins

In genetic analyses, 307 (270 positive, 37 inverse) proteins 
were significantly associated at FDR < 0.05 with genetically-
derived BMI (Fig. 1), compared with 55 (43 positive, 12 

inverse) proteins when applying Bonferroni correction. Of 
these 307 proteins, 279 (91%) also showed significant asso-
ciations in the observational analyses (Fig. 2b), with direc-
tionally consistent results for all (242 positive, 34 inverse) 
except three proteins (CKMT1A_CKMT1B, MMP12 and 
SLAMF7; all inverse in observational but positive in genetic 
analyses). There was a strong correlation between the beta 
coefficients from observational and MR estimates, with 
Pearson’s correlation coefficients of 0.69 (0.66–0.72) for 
BMI, increasing to 0.85 (0.81–0.88) after removing all non-
significant proteins. Moreover, the associations were broadly 
linear throughout the range of BMI examined  (Ptrend < 0.05) 

Fig. 1  Overview of analytic approaches and key findings
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(Fig. 3). Conversely, among the 1156 proteins without sig-
nificant linear genetic associations with BMI, 91 (7.9%) 
showed evidence of quadratic associations with BMI (eFig-
ure 7), although none of them were significant after multiple 
testing adjustment.

The magnitude of the genetic associations per 1 SD 
higher predicted BMI ranged from 0.01 to 0.60 for positive 
associations and from − 0.55 to − 0.01 for inverse associa-
tions. The proteins showing the strongest positive associa-
tions with BMI were FABP4, followed by leptin, GOLM2, 

Fig. 2  Associations of 1-SD higher BMI with 1463 proteins in con-
ventional and genetic analyses in CKB and comparisons of genetic 
associations between CKB and UKB. Analyses were adjusted for 
age, age square, sex, study area, fasting time, ambient temperature, 
ascertainment status, plate ID, and the first 12 PCs (for genetic analy-
ses only). The dotted lines in a and b indicate multi-testing adjusted 

threshold for statistical significance with red dots showing significant 
positive associations and blue dots showing significant inverse associ-
ations, with names given for certain selected proteins. The solid black 
dots in c and d are proteins significantly associated with BMI in both 
conventional and genetic analyses in CKB (left panel) or in both CKB 
and UKB (right panel), with names given for certain selected proteins
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LSP1 and ADAMTS15 (Fig. 2b and eFigure 8). The pro-
teins showing strongest inverse associations with BMI were 
PON3, followed by NCAN, LEPR, B4GAT1 and CHGB. 
The MR results for all individual proteins are shown in 
eTable 7.

In sensitivity analyses confined to the subcohort partici-
pants, there were fewer (83) significant associations (eFig-
ure 9). Of these 83 proteins, 80 (96%) overlapped with the 
main results, all were directionally consistent (57 positive, 
23 inverse). Moreover, the overall top proteins profile were 
identical to those in the main analyses.

In sex-specific analyses, 59 and 72 proteins were signifi-
cantly associated at FDR < 0.05 with genetically-derived 
BMI in men and women, respectively. There were 18 over-
lapping proteins, with no discrepancies in the direction 
of the associations (13 positive, 5 inverse) but somewhat 
greater effect sizes in men than in women (a Pearson’s cor-
relation r of 0.56 [0.52–0.59] between their beta coefficients) 
(eFigure 6).

Replication analyses in the UK Biobank

In replication analyses of 49,736 UKB participants [16] we 
found 1379 (94%) proteins were significantly associated at 
FDR < 0.05 with BMI (mean 27.4 kg/m2) in conventional 
observational analyses (Fig. 1). Of these 1379 proteins, 
1064 (97%; 1064/1096) were also significantly associated 
with BMI in CKB, with a Pearson correlation between the 
effect sizes of the overlapping proteins of 0.86 (0.84–0.87). 
In genetic analyses, 935 proteins showed significant asso-
ciations with genetically-derived BMI (Fig. 1), which repli-
cated most of the proteins identified in CKB (96%; 295/307; 
Fig. 2d), with a high correlation (0.88; 0.84–0.90) between 
the effect sizes of the overlapping proteins.

Enrichment analyses

In enrichment analyses of top 55 BMI-associated pro-
teins that passed Bonferroni-corrected threshold in CKB, 
there was strong evidence of GO enrichment for proteins 
in biological processes related to atherosclerosis (e.g. mac-
rophage derived foam cell differentiation, lipid metabolism), 

inflammation (IL-6 production), immune function (e.g. T 
cell activation, mononuclear cell proliferation, immune 
effector process), and other biological processes (e.g. 
cell–cell adhesion, exocrine system development, cytokine-
mediated signaling pathways; Fig. 4a). eTable 8 provide 
details of all significantly enriched biological process terms 
for BMI-related proteins beyond the top 10 terms. In sen-
sitivity analyses comparing all 1463 OLINK proteins to all 
proteins with annotations, a total of 547 significant terms 
were identified (at FDR < 0.05), but their relative importance 
differed from those in the main analyses (eTable 9). In simi-
lar analyses using KEGG method (Fig. 4b and eTable 10), 
a total of eight pathways were annotated, including those 
related to tumour progression (e.g. ECM-receptor interac-
tion, Rap1 signalling pathway), immune function (e.g. viral 
protein interaction with cytokine and cytokine receptor), and 
cell proliferation, movement and adhesion (e.g. cell adhesion 
molecules).

Bi‑directional MR analyses

In CKB, cis-pQTL were identified in GWAS for 742 of the 
1463 proteins, which were used in further bi-directional 
two-sample MR analyses (Fig. 1b). In two-sample MR of 
CKB and BBJ, eight proteins (ITIH3, LRP11, SCAMP3, 
NUDT5, OGN, EFEMP1, TXNDC15, and PRDX6) were 
significantly associated with BMI (i.e. in protein-to-BMI 
33direction) after correction for multiple testing, with 
NUDT5 also showing bi-directional association (Table 2). 
Moreover, independent two-sample MR analyses involving 
384 cis-pQTLs identified in UKB GWAS for these same pro-
teins and GIANT replicated associations for three proteins 
(ITIH3, OGN and TXNDC15). One protein (ITIH3) was 
also replicated in two-sample MR using earlier GIANT data-
sets without UKB. In sensitivity analyses using MR Steiger 
test, there was no evidence of reverse causality for these 
eight proteins, nor evidence of any significant interactions 
among them. In colocalisation analyses, there was no strong 
evidence (Posterior Probability H4 < 0.8) of shared causal 
genetic variants of these eight proteins with BMI.

In PheWAS analyses of the eight proteins, cis-pQTLs for 
6 proteins (ITIH3, LRP11, SCAMP3, NUDT5, OGN, and 
EFEMP1) were associated, based on PhenoScanner, with 
several adiposity traits, including BMI, WC and body com-
position. TXNDC15 cis-pQTL was associated with height, 
while there were no previously reported associations of 
PRDX6 cis-pQTLs with any traits and disease outcomes. 
The PheWAS analyses using different leading cis-pQTLs 
in UKB for eight proteins found similar results (eTable 11). 
Moreover, these eight proteins were not strongly correlated 
with proteins with established associations with regulation 
of appetite or satiety (r < 0.24), including AGRP, GHRL, 
NPY, and PYY (eFigure 10). In PheWAS analyses involving 

Fig. 3  Genetic associations of BMI with 20 selected proteins, by 
OLINK panel. Non-linear MR analyses was used to investigate the 
shape of the genetic associations. Within each panel, top 5 (4 posi-
tive and 1 inverse) BMI-associated proteins were included. Piecewise 
linear method was used to calculate the estimates (adjusted for age, 
age squared, sex, and study area [ten groups], ascertainment, plate ID, 
and 12 national PCs). Each line segment begins where the previous 
segment finished (black lines) and the intercept was set to the popula-
tion mean BMI (red dot). The 95% CI are represented by the shaded 
patterns. The length of y-axis represents approximately ± 2 SD from 
the mean of the corresponding protein

◂
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GWAS Catalog, we did not find additional adiposity-related 
traits associated with these eight proteins.

In tissue-specific expression analyses, three proteins 
(OGN, EFEMP1, PRDX6) were highly expressed in adipose 
tissues, one (ITIH3) was predominantly expressed in the 
liver, while the remaining four proteins (LRP11, SCAMP3, 
NUDT5, TXNDC15) were moderately expressed in multiple 
tissues (eFigure 11). Further searches of DrugBank, Open-
Targets and other databases identified no evidence of drug 
targets or drug development for all eight proteins.

Discussion

This study systematically examined the associations of adi-
posity with a large number of proteins in Chinese adults. 
Despite the population being relatively lean, adiposity was 
significantly associated with > 1000 out of ~ 1500 pro-
teins studied. Moreover, genetic analyses provided support 
for causal and apparently linear effects of BMI on > 300 
proteins, especially leptin, FABP4, GOLM2, PON3, and 
NCAN, with somewhat fewer significant associations but 
greater effect sizes for the overlapping proteins in men than 
women. These observational and genetic findings were 
largely replicated in Europeans with different mean levels of 

BMI. Enrichment analyses of selected proteins demonstrated 
that adiposity influenced multiple proteins involved in path-
ways related to atherosclerosis, lipid metabolism, tumour 
progression, inflammation and immune function. MR analy-
ses using cis-pQTLs identified in CKB GWAS found eight 
proteins significantly affect levels of BMI, with one protein 
also showing a bi-directional causal relationship.

In recent decades, several studies have explored the asso-
ciations of adiposity with plasma levels of proteins, with 
varying number of proteins measured by different platforms 
[12–17]. In a combined analysis of 921 SomaScan pro-
teins in 4600 participants from three different populations 
(Germany, UK, and Qatar), 152 and 24 proteins were sig-
nificantly associated with BMI in observational and genetic 
analyses respectively, with leptin, IGFBP1 and IGFBP2 
being the strongest hits [17]. A recent UK study measured 
3622 proteins using SomaScan platform in 2737 participants 
and demonstrated that self-reported BMI (mean 25.9 kg/m2) 
was significantly associated with 1576 (44%) proteins [15]. 
In genetic analyses, however, only eight proteins (0.5%, 
8/1576) were significantly associated with BMI, including 
leptin, FABP4, PILRA and INHBB, compared with 6.9% 
(55/798) in the present study when applying the same Bon-
ferroni-corrected threshold. The reasons for the discrepant 
results may reflect differences in the assay platforms used, 

Fig. 4  Chord diagrams of enriched a GO biological process terms 
and b KEGG pathways for proteins causally affected by BMI. Enrich-
ment analyses were conducted for 55 proteins that passed Bonfer-
roni-corrected threshold in the genetic analyses (adiposity-to-protein 
direction), using a GO-BP and b KEGG enrichment analyses. The 
right semicircle represents the names of a top 10 GO terms and b 8 

significant KEGG pathways, and the left semicircle are proteins that 
are significantly associated with any of the GO terms or KEGG path-
ways. Proteins were ordered by OLINK panel, and the numbers in 
brackets represent the number of proteins involved in the GO terms or 
KEGG pathways
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type of proteins included, the reliability of BMI measured 
(self-reported vs measured in CKB), or differences in the 
statistical power of the genetic instruments used (BMI vari-
ance explained: 2.8% vs 3.7% in CKB). Nevertheless, the 
present genetic analyses among relatively lean Chinese 
adults confirmed associations for three of the four protein 
hits in that study (leptin, FABPA and PILRA) that were also 
included in the present OLINK assay platforms.

Recently, the same OLINK platform was used to quan-
tify 1463 proteins in ~ 50,000 UKB participants [16]. In 
separate analyses of UKB data using the similar adjustment 
for covariates, we found 1379 and 935 proteins were sig-
nificantly associated with BMI in observational and genetic 
analyses, respectively, which replicated > 90% of the BMI-
associated proteins identified in CKB. Moreover, there was 
a high correlation between the effect sizes of the overlapping 
proteins in both conventional and genetic analyse despite 
the two populations having different ranges of BMI distri-
bution (mean BMI: 27.4 kg/m2 in UKB vs. 23.9 kg/m2 in 
CKB). As for proteins with inconsistent findings, the likely 
reasons could only be speculated, which may include study 
power, difference in genetic architecture of specific proteins, 
and possibility of ancestry-specific mechanisms. Hence, the 
present study involving Chinese and UK populations pro-
vide robust new evidence of causal associations of BMI with 
plasma levels of a large number of proteins throughout a 
broad ranges of BMI distribution, which further highlight 
the generalizability and global relevance of the main study 
findings.

The enrichment analysis of the top 55 proteins in CKB 
demonstrated the relevance of these differentially expressed 
proteins with multiple biological processes, including mac-
rophage-related foam cell differentiation, IL6 production and 
immune cell function. Indeed, macrophages play a key role 
in the development of atherosclerotic plaques [32]. Moreo-
ver, metabolic processes associated with lipid metabolism 
were also enriched, which were also relevant to the develop-
ment and progression of cardiometabolic diseases. In addi-
tion, IL-6 production was also enriched highlighting the role 
of a pro-inflammatory state. Inflammation has been impli-
cated in multiple diseases [33], and adiposity may affect 
immune system through an enhanced inflammatory state 
[34]. Obesity can also impair immune function and leuco-
cyte counts. Moreover, obesity also enhances the positive 
feedback loop between local inflammation in adipose tis-
sue and altered immune response, both contributing to the 
development and sequelae of cardiometabolic diseases [34]. 
In analyses using KEGG methods, several adiposity-affected 
proteins (e.g. CSF1, PGF) were associated with pathways 
of ECM-receptor interaction and Rap1 signalling. Notably, 
Rap1 is a crucial player in tumour progression and targeting 
Rap1 signalling and its regulators could potentially control 
carcinogenesis, metastasis, chemo-resistance and immune 

evasion [35]. ECM-receptor interaction signal pathway was 
also identified as possibly involved in the development of 
breast cancer [36]. All together, these enrichment findings 
among relatively lean Chinese adults identified multiple 
complex pathways by which adiposity may increase disease 
risks.

The present two-sample bi-directional MR analyses pro-
vided causal support for eight proteins that significantly 
affect the levels of BMI (i.e., with associations in the pro-
tein-to-BMI direction). Separate colocalisation analyses 
showed no strong evidence of their shared causal genetic 
variants with BMI, which may be attributed partly to the 
limited study power. Of these eight proteins, three (ITIH3, 
OGN, TXNDC15) were further replicated using the different 
cis-pQTL identified in the UKB. Two of these three pro-
teins are highly expressed in adipose tissues (OGN) or liver 
(ITIH3), which could be prioritised as potential drug targets 
for treating obesity and obesity-related diseases. OGN, also 
known as mimecan, is secreted extracellularly [37, 38] and 
is a downstream mediator of NPY signalling (one of the 
most potent appetite stimulant peptides found in brain) via 
osteoblastic Y1 receptors, and studies in obese participants 
have linked OGN with BMI, weight and plasma glucose 
levels [38]. Thus, the OGN pathway is an attractive target 
for potential novel treatment of obesity and type 2 diabetes. 
ITIH3 may act as a carrier of hyaluronic acid in plasma and 
has been linked with obesity and MI [39]. Moreover, the 
inverse association of ITIH3 with obesity was also reported 
in experimental mouse models [40], and in participants with 
sustained weight loss following caloric restriction diets or 
bariatric surgery [41]. Combined with relevant experimen-
tal evidence, the findings of this study provide support for 
ITIH3 as a novel potential target for treatment of obesity.

The chief strengths of the present study include assess-
ment of large numbers of proteins, independent replication 
of the main results in different ancestry populations, use of 
robust trans-ancestry adiposity genetic instruments, applica-
tion of bi-directional MR methods, in addition to enrichment 
analyses to clarify multiple biological processes. Further-
more, the present study included mean levels and ranges of 
adiposity that differed importantly from those in Western 
populations. However, the present study also has limitations. 
First, the study did not consider several other adiposity traits 
(e.g. WC, WHR, body fat percentage), nor properly inves-
tigate proteins showing quadratic associations with adipos-
ity. Second, we could not clarify if any apparent differences 
between men and women in the genetic analyses were driven 
by sex-related biological mechanisms or merely an artefact 
resulting from limited statistical power. Third, our two-sam-
ple bi-directional MR only involved a very small number of 
proteins due to lack of overlapping cis-pQTLs in publically-
available GWAS summary statistics [42, 43]. Consequently, 
we were unable to confirm (or refute) previous findings of 
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certain proteins (e.g. LEP, AGER, DPT, and CTSA) that 
may affect BMI [17]. Fourth, for the main bi-directional 
MR analyses using the publically available summary genetic 
data, it would not be possible to fully account for potential 
collider bias resulting from sample overlapping, although we 
undertook sensitivity analyses in smaller dataset with much 
reduced study power to minimise such biases. Future studies 
involving a larger sample size and better genetic instruments, 
involving perhaps both cis- and trans-pQTLs, are needed to 
further replicate and clarify the effects of different proteins 
on BMI and other adiposity traits (or vice versa), including 
protein–protein interactions and evidence of shared causal 
genetic variants, in different populations.

Overall, this study of relatively lean Chinese adults dem-
onstrated that adiposity was significantly associated with a 
large number of proteins, with support for the causal rel-
evance of > 300 proteins in the BMI-to-protein direction. 
Bi-directional MR analyses also found eight proteins may 
affect levels of adiposity, which may inform future drug 
development. Combined with enrichment analyses and avail-
able experimental data, the present study identified multiple 
pathways by which adiposity may increase disease risks and 
provide support for novel protein targets for potential treat-
ment of obesity and obesity-related diseases.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10654- 023- 01038-9.
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