
Vol.:(0123456789)1 3

European Journal of Epidemiology (2023) 38:957–971 
https://doi.org/10.1007/s10654-023-01023-2

MORTALITY

About the associations of vitamin D deficiency and biomarkers 
of systemic inflammatory response with all‑cause and cause‑specific 
mortality in a general population sample of almost 400,000 UK 
Biobank participants

Sha Sha1,2 · Tafirenyika Gwenzi2,3 · Li‑Ju Chen1 · Hermann Brenner1,3,4 · Ben Schöttker1 

Received: 27 December 2022 / Accepted: 3 June 2023 / Published online: 21 June 2023 
© The Author(s) 2023

Abstract
It is unknown whether the well-known association between vitamin D deficiency and mortality could be explained by the 
immune system modulating effects of vitamin D, which may protect from a systemic inflammatory response (SIR) to adverse 
health conditions. This study aims to investigate the interrelationships of vitamin D deficiency, biomarkers of SIR, and 
mortality. We used multivariate logistic regression with adjustment for 51 covariates to assess the associations of vitamin D 
deficiency with disadvantageous levels of nine biomarkers of SIR in the UK Biobank cohort. Furthermore, we tested with Cox 
regression and mediation analysis whether biomarkers of SIR and vitamin D deficiency were independently associated with 
mortality. We included 397,737 participants aged 37–73 years. Vitamin D deficiency was associated with disadvantageous 
levels of all blood cell count-based biomarkers, but not with C-reactive protein (CRP)-based biomarkers after adjustment 
for body weight. Vitamin D deficiency and all biomarkers of SIR were significantly associated with all-cause mortality and 
mortality from cancer, cardiovascular and respiratory disease. The strength of these associations was unaltered if vitamin D 
deficiency and biomarkers of SIR were put in the same model. This finding was further supported by the mediation analyses. 
This study showed that vitamin D deficiency is associated with disadvantageous levels of blood cell count-based but not 
CRP-based biomarkers of SIR. Vitamin D deficiency and systemic inflammation were independently and strongly associated 
with mortality. The potential of clinical interventions against both vitamin D deficiency and underlying causes of systemic 
inflammation should be explored.
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Background

Inadequate vitamin D status has become an increasing concern 
worldwide [1, 2]. It has been well recognized that vitamin 
D actions go far beyond the regulation of bone metabolism 
and calcium homeostasis. Vitamin D and its metabolites are 
carried into the circulation via binding to vitamin D recep-
tor (VDR) after being hydroxylated by the key enzyme 
25-hydroxyl vitamin D3-1α-hydroxylase (CYP27B1) [3–10]. 
Vitamin D exerts effects on numerous extra-skeletal body 
functions, including immune system regulation, cardiovascular 
function, and a series of cellular effects such as anti-prolifera-
tion, pro-differentiation, pro-apoptosis, and anti-inflammation 
[3–10]. To date, there is accumulating evidence from obser-
vational studies and Mendelian randomizations that demon-
strate significant associations of low vitamin D status with 
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increased all-cause mortality, cancer mortality, cardiovascular 
and respiratory disease-related mortality [11–19]. Moreover, 
meta-analyses of randomized controlled trials (RCTs) provided 
further support for the efficacy of vitamin D supplementation 
in reducing all-cause mortality and cancer mortality [20–24].

It has been suggested that a sufficient vitamin D status 
(≥ 50 nmol/L) may protect from atherosclerosis and tumo-
rigenesis through anti-inflammatory activities [24, 25]. This 
has led to an interest in whether vitamin D sufficiency could 
prevent a systemic inflammatory response (SIR) to adverse 
health conditions. In the scientific literature, a SIR is most 
frequently examined for cancer patients [24, 26], but it has also 
been observed in patients with diabetes mellitus, cardiovascu-
lar disease (CVD) [27–30], and patients who undergo any kind 
of surgeries or intensive care [31, 32]. The SIR is generally 
associated with poor prognosis [24, 26, 33–35]. This leads to 
the hypothesis of whether the association of low vitamin D sta-
tus with mortality might be explained by the anti-inflammatory 
effects of vitamin D, which could attenuate a SIR to various 
diseases or treatments of these diseases [36].

The SIR is characterized by changes in blood cell counts 
and acute-phase proteins such as C-reactive protein (CRP) 
[37–39], which allows to broadly categorize the biomarkers 
of SIR in blood cell count and CRP-based markers. There are 
two modified versions of GPS with different cut-off values for 
CRP and serum albumin in the calculation, known as modified 
GPS (mGPS) and high-sensitive mGPS (HS_mGPS) [40, 41]. 
The blood cell count-based markers include the neutrophil-
to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio 
(PLR), the lymphocyte-to-monocyte ratio (LMR), the neutro-
phil-platelet score (NPS), the systemic immune-inflammation 
index (SII), and the prognostic nutritional index (PNI) [26, 
42–47].

To date, observational studies from the general population 
have reported cross-sectional associations of vitamin D status 
with CRP, NLR, and PLR [48, 49]; and a Mendelian randomi-
zation analysis with data from the UK Biobank suggested that 
a low vitamin D status was causally related to increased CRP 
levels [50]. However, there are few studies on the associations 
of vitamin D status with other biomarkers of SIR [26].

The objectives of this study were to investigate the inter-
relationships of low vitamin D status with nine biomarkers 
of SIR (CRP, mGPS, HS_mGPS, NLR, PLR, LMR, SII, 
PNI, and NPS) and all-cause and cause-specific mortality 
in the large UK Biobank cohort study.

Materials and methods

Data source

The UK Biobank is a prospective cohort study, includ-
ing approximately half a million United Kingdom (UK) 

population aged between 40 and 69 years at recruitment 
from 2006 to 2010 [51]. Large-scale biomedical informa-
tion was collected from the 22 assessment centers across 
England, Scotland, and Wales through touchscreen ques-
tionnaires, verbal interviews, and a wide range of physical 
and medical assessments [51]. Biological specimens such 
as blood, urine, feces, and hair were collected at the ini-
tial assessment visit [52]. Data on health outcomes of all 
UK Biobank participants were gathered through linkages 
to health care records, including the UK National Health 
Service (NHS) data, primary care data, cancer screening 
data, and disease-specific registers [53].

Study population

Of the 502,411 baseline participants of the UK biobank, 
we excluded 54,145 individuals whose serum 25-hydroxy-
vitamin D [25(OH)D] measurement was not available, and 
50,529 individuals who did not have information on any 
biomarkers of SIR at baseline, leaving 397,737 participants 
included in this study.

Vitamin D status

Vitamin D status was defined with the cut-offs of the 
US-American Institute of Medicine [54]: 25(OH)D lev-
els < 30 nmol/L reflect vitamin D deficiency, 25(OH)D lev-
els of 30 to < 50 nmol/L indicate vitamin D insufficiency 
and 25(OH)D levels ≥ 50 nmol/L indicate sufficient vitamin 
D status. 25(OH)D concentrations were determined using 
the Chemiluminescent Immunoassay, a direct competi-
tive method on the DiaSorin Liaison XL (manufactured by 
Diasorin S.p.A), and externally validated by RIQAS Immu-
noassay Speciality I scheme with 100% good quality assur-
ance [55, 56].

Biomarkers of systemic inflammatory response

The serum CRP level (mg/L) was determined using immu-
noturbidimetric high-sensitivity analysis on a Beckman 
Coulter AU5800. The serum albumin level was measured 
by bromocresol green (BCG) analysis on the same apparatus 
[57, 58]. The Beckman Coulter LH750 Hematology Ana-
lyzer was used to measure peripheral blood samples taken 
within 24 h of the blood draw and 31 parameters including 
neutrophil, lymphocyte, monocyte, and platelet counts were 
obtained [59–63]. The equations to obtain the nine biomark-
ers of SIR used in this research project are shown in Table 1 
[26, 42–47].
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Mortality

Information regarding the dates and causes of death was 
obtained from the NHS for the duration between the enrol-
ment and 12 November, 2021. We used the 10th revision 
of the International Statistical Classification of Diseases 
(ICD-10) to identify causes of death, i.e., mortality due to 
CVD (I00-I99), cancer (C00-C97), and respiratory disease 
(J00-J99).

Covariates

This study developed models based on the 49 baseline char-
acteristics identified as statistically significant and indepen-
dently associated with vitamin D deficiency in a previous 
analysis of the UK Biobank data (see Supplemental (Suppl.) 
Table 1) [18]. The methods of the assessment of these covar-
iates were described previously [18]. We included 47 out of 
these 49 covariates because we excluded vitamin D/mul-
tivitamin use and CRP (which were highly related to our 
main variables of interest). In the end, we used 51 covariates 
because we added a history of cancer (except non-melanoma 
skin cancer), inflammatory bowel disease, periodontitis, 
and pulmonary embolism due to their importance in SIR 
research and mortality outcomes.

Statistical analyses

General remarks

All statistical analyses were performed using SAS statistical 
software (version 9.4, SAS Institute, Inc., Cary, NC, USA). 

Schoenfeld residuals were used to test the proportional haz-
ards assumption and no violations of this assumption were 
observed. We used multiple imputation with five imputed 
datasets to fill in missing values except for exposures and 
outcomes [64]. With few exceptions, most of covariates 
had missing values of less than 5% and none had more than 
19.1% missing values. The proportion of missing values for 
each variable used in the analyses can be calculated from the 
numbers shown in Suppl. Table 1. We used the Markov chain 
Monte Carlo (MCMC) technique, using a single chain and 
assuming multivariate normality for a dataset with arbitrary 
missing patterns [65]. Results from imputed datasets were 
analyzed using the SAS procedure PROC MIANALYZE.

Disadvantageous levels of biomarkers of systemic 
inflammatory response and their association with mortality

No established cut-off values for the dichotomization of 
the continuous biomarkers NLR, PLR, SII, LMR, and PNI 
are available in the literature. To obtain such cut-offs, we 
firstly drew restricted cubic spline curves (RCS) with age 
and sex-adjusted Cox proportional hazard regression models 
with 5 knots located at the 10th, 25th, 50th, 75th, and 90th 
percentiles with the SAS macro of Desquilbet and Mariotti 
[67]. To choose a cut-off to dichotomize each biomarker, 
we selected one of the 5 knots of the RCS curve at which 
the association with all-cause mortality had a turning point 
towards higher/lower hazard ratios (HR). Our definition of a 
turning point was that the new direction needed to manifest 
at this point and not start at it. Thus, the chosen cut-off was 
usually one knot after the knot at which the new direction 
started. The rationale for this definition of a turning point 

Table 1  Equations for 
biomarkers of systemic 
inflammatory markers

CRP, C-reactive protein; HS_mGPS, High-sensitive mGPS; LMR, lymphocyte-to-monocyte ratio; mGPS, 
modified Glasgow prognostic score; NLR, neutrophil-to-lymphocyte ratio; NPS, neutrophil-platelet score; 
PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; SII, systemic immune-inflammation 
index

Biomarkers Equation

CRP based CRP Measured value, mg/L
mGPS 0: CRP ≤ 10 mg/L and albumin ≥ 35 g/L

1: CRP > 10 mg/L and albumin ≥ 35 g/L
2: CRP > 10 mg/L and albumin < 35 g/L

HS_mGPS 0: CRP ≤ 3 mg/L and albumin ≥ 35 g/L
1: CRP > 3 mg/L and albumin ≥ 35 g/L
2: CRP > 3 mg/L and albumin < 35 g/L

Blood cell count based NLR Neutrophil count/lymphocyte count
PLR Platelet count/neutrophil count
LMR Lymphocyte count/monocyte count
SII Platelet count × neutrophil count/lymphocyte count
PNI Serum albumin (g/L) + 0.005 × 1000 × lymphocyte count  (109/L)
NPS 0: Neutrophils ≤ 7.5 ×  109/L and platelets ≤ 400 ×  109/L

1: Neutrophils > 7.5 ×  109/L or platelets > 400 ×  109/L
2: Neutrophils > 7.5 ×  109/L and platelets > 400 ×  109/L
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was to obtain strong effect estimates in the exposed group 
of the dichotomized biomarker variable. If a dose–response 
association was U-shaped, only a knot at the end of the bio-
marker distribution (low or high levels), which is known to 
be associated with mortality from the literature, was chosen. 
Although a cut-off of 3 mg/L in general population samples 
is available from the literature for high-sensitive CRP, out 
of reasons of consistency, we also applied the method above 
to find the best suitable cut-off for our dataset. An exception 
was only made for the PLR, which did not show the expected 
dose–response relationship with mortality (see results chap-
ter). Due to low numbers of patients with 2 points in the 
mGPS, HS_mGPS, and NPS, patients with 1 or 2 points 
were merged into the category of disadvantageous levels to 
obtain dichotomized variables for these scores.

The obtained cut-offs were subsequently used in Cox pro-
portional hazard regression models to assess HR and 95% 
confidence intervals (95% CI) for the associations of all nine 
biomarkers of SIR with all-cause, CVD, cancer, and res-
piratory disease mortality. The models were progressively 
adjusted for age, sex, BMI, waist circumference, and vitamin 
D status. This analysis was carried out for the total popula-
tion and stratified by age (< 65/ ≥ 65 years) and sex.

Association of vitamin D status and biomarkers of systemic 
inflammatory response

The dichotomized biomarkers of SIR were used as depend-
ent variables in logistic regression models to assess their 
association with vitamin D status (independent variable with 
three categories: deficiency, insufficiency, and sufficient 
vitamin D). To account for the high number of statistical 
tests in this analysis, the false discovery rate (FDR) was 
applied to determine statistical significance (FDR < 0.05). 
This analysis was also carried out for the total population 
and stratified by age (< 65/ ≥ 65 years) and sex.

Overall, 5 models were developed with increasing adjust-
ments. Model 1 includes age, sex, skin color, the latitude of 
the study center, and the calendar month of the blood draw. 
Model 2 adds socio-economic factors, model 3 lifestyle fac-
tors, model 4 body weight measures, and model 5 diseases, 
symptoms, and aspects of the general health status (for 
details about all 51 covariates summed up under these labels, 
see Suppl. Table 1). Model 4 is the main model because the 
covariates in model 5 could be potential intermediates from 
a clinical perspective. Variation inflation factors (VIF) were 
used to test if there was multicollinearity across the 51 vari-
ables of model 5 [66]. The median VIF of all the covariates 
and their categories was 1.5 and it ranged from 1.0 to 7.2. 
Thus, no factor had a VIF > 10, which would raise concerns 
regarding multicollinearity [66].

Association of vitamin D status and mortality

With the main model 4, Cox proportional hazards regression 
was used to assess the associations of vitamin D status with 
all-cause, CVD, cancer, and respiratory disease mortality. 
To address whether these associations of vitamin D status 
with mortality are independent of biomarkers of SIR, we 
added them one by one as covariates to the model. In addi-
tion, the same analysis was conducted with the continuous 
serum 25(OH)D concentration variable among subjects 
with vitamin D deficiency because this is a highly clini-
cally relevant subpopulation with an approximately linear 
inverse relationship between 25(OH)D levels and mortality 
outcomes [13, 50]. No subgroup analyses by age and sex 
were performed because it is known from previous analyses 
of the UK Biobank that the associations of vitamin D status 
and mortality do not differ much by age and sex [18].

Mediation analysis

With the assumption of causality, we quantified the propor-
tion of the total effect of vitamin D deficiency and vitamin D 
insufficiency on the mortality outcomes, which is mediated 
through biomarkers of SIR. We used the SAS macro of L. 
Valeri and T. J. VanderWeele for causal mediation analy-
sis with adaptions for time-to-event analyses [68–70]. The 
covariates of model 4 were used to adjust the Cox propor-
tional hazards regression models of the mediation analyses.

Results

Description of the study population

Overall, 397,737 participants aged between 37 and 73 years 
(median, 58 years) were included in the study (Table 2). 
A little more than half of the participants were females 
(53.1%). The median serum 25(OH)D level was 46.8 nmol/L 
and the majority of participants had either vitamin D defi-
ciency (21.1%) or vitamin D insufficiency (34.4%). Most 
study participants scored 0 points for the mGPS (95.8%), 
HS_mGPS (77.4%), and NPS (96.1%), and only very few 
scored 2 points (less than 0.2%). Suppl. Table 1 describes 
all baseline characteristics used in the most comprehensively 
adjusted model.

Disadvantageous levels of biomarkers of systemic 
inflammatory response and their association 
with mortality

During a maximum of 15 years of follow-up (median, 
12.7 years), n = 29,548 study participants died. Figure 1 
presents the age and sex-adjusted dose–response curves of 
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the biomarkers of SIR with all-cause mortality. As cut-off 
values for the disadvantageous level, we chose the knot 
of the restricted cubic spline curve for each biomarker at 
which the association had a turning point towards higher/
lower mortality. These were the knots at 2.75 mg/L (75th 
percentile) for CRP, 2.78 (75th percentile) for NLR, 237 
(95th percentile) for PLR, 2.56 (10th percentile) for LMR, 
717 (75th percentile) for SII, and 50 (10th percentile) for 
PNI. We considered levels above the cut-offs for CRP, 
NLR, PLR, and SII as disadvantageous, while levels below 
the cut-offs for LMR and PNI were also considered dis-
advantageous. This is because the latter two biomarkers 
were found to be inversely associated with mortality, as 
expected. An exception was made for the PLR, which in 
contrast to the previous studies showed higher mortality 
at low PLR levels than at high PLR levels [71]. Further-
more, there was no clear turning point at higher levels 
between 150 and 300, which were used as cut-off values in 
the previous literature [71]. Thus, to be comparable with 
previous studies, we chose the knot at the 95th percentile 
(PLR = 237).

We observed that disadvantageous levels of all bio-
markers of SIR were strongly associated with increased 
all-cause mortality, CVD mortality, cancer mortality, and 
respiratory disease mortality in age and sex-adjusted mod-
els (Table 3). With further adjustment for body mass index 
(BMI) and waist circumference, the strength of the asso-
ciations of CRP-based biomarkers of SIR with mortality 
was a little attenuated while this was not observed for the 
blood cell count-based biomarkers. After further adjust-
ment for vitamin D status, the strength of the association 
between all biomarkers of SIR and mortality outcomes did 
not change to any relevant extent.

Subgroup analyses by age and sex are presented in 
Suppl. Table 2 and 3, respectively. The associations of 
CRP-based biomarkers of SIR with all mortality out-
comes were slightly stronger in younger age group (< 65 
years) than in older age group (≥ 65 years). For blood 
count-based biomarkers, no consistent age difference 
was observed. Regarding sex differences, the CRP-based 
biomarkers of SIR showed stronger associations with all-
cause, CVD and cancer mortality in males than in females, 
whereas the associations with respiratory disease mortality 

Table 2  Baseline characteristics of the study population 
(N = 397,737)

25(OH)D, 25-hydroxyvitamin D; BMI, body mass index; CHD, coro-
nary heart disease; CRP, C-reactive protein; HS_mGPS, High-sensi-
tive mGPS; IQR, interquartile range; LMR, lymphocyte-to-monocyte 
ratio; mGPS, modified Glasgow prognostic score; NA, not applicable; 
NLR, neutrophil-to-lymphocyte ratio; NPS, neutrophil-platelet score; 
PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; 
SD, standard deviation; SII, systemic immune-inflammation index; 
SIR, systemic inflammatory response

Variables Ntotal (%) a Median (IQR)

Sex
 Male 186,755 (46.9) NA
 Female 210,982 (53.1) NA

Age (years) 397,737 (100.0) 58 (50; 63)
BMI (kg/m2) 396,196 (100.0) 26.7 (24.1; 29.9)
Smoking
 Never 217,643 (54.8) NA
 Former 137,932 (34.8) NA
 Current 41,560 (10.4) NA

Alcohol  consumptionb

 Abstainer 123,409 (31.0) NA
 Low 159,230 (40.0) NA
 Medium 67,419 (17.0) NA
 High 47,679 (12.0) NA

Hypertension 107,411 (27.0) NA
Diabetes 19,953 (5.1) NA
CHD 18,739 (4.7) NA
History of any  cancerc 29,710 (7.5) NA
25(OH)D levels (nmol/L) 397,737 (100.0) 46.8 (32.3; 62.4)
Vitamin D  statusd

 Vitamin D deficiency 83,929 (21.1) NA
 Vitamin D insufficiency 136,692 (34.4) NA
 Vitamin D sufficiency 177,116 (44.5) NA

CRP based biomarkers of SIR
 CRP 397,737 (100.0) 1.3 (0.7; 2.8)
 mGPS
  0 381,157 (95.8) NA
  1 16,496 (4.2) NA
  2 84 (< 0.1) NA

 HS_mGPS
  0 307,861 (77.4) NA
  1 89,728 (22.6) NA
  2 148 (< 0.1) NA

Blood cell based biomarkers of SIR
 NLR 397,737 (100.0) 2.1 (1.7; 2.8)
 PLR 397,737 (100.0) 132.3 (105.4; 166.5)
 LMR 397,737 (100.0) 4.2 (3.2; 5.3)
 SII 397,737 (100.0) 529.0 (392.2; 716.8)
 PNI 397,737 (100.0) 54.7 (52.2; 57.4)
 NPS
  0 382,192 (96.1) NA
  1 14,811 (3.7) NA
  2 734 (0.2) NA

a Data from one imputed dataset. Does not include missing data
b Alcohol consumption: Low: women 0–19.99  g of ethanol per day 
(g/d) or men 0–39.99  g/d; Medium: women 20–39.99  g/d or men 
40–59.99 g/d; High: women ≥ 40 g/d or men ≥ 60 g/d
c Any cancer except non-melanoma skin cancer
d Vitamin D deficiency: 25(OH)D < 30  nmol/L; Vitamin D insuf-
ficiency: 25(OH)D 30–50  nmol/L; Vitamin D sufficiency: 25(OH)
D > 50 nmol/L

Table 2  (continued)
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were comparable. The associations of blood cell count-
based biomarkers of SIR with mortality outcomes were 
mostly comparable between the sexes for all mortality 
outcomes.

Association of vitamin D status and biomarkers 
of systemic inflammatory response

Table 4 shows the cross-sectional associations of vitamin 
D deficiency and insufficiency (compared to sufficient vita-
min D status) with disadvantageous levels of biomarkers of 
SIR in logistic regression models. In Model 1–3, which did 
not adjust for body weight, we observed that both vitamin 
D deficiency and insufficiency were consistently associated 
with the disadvantageous level of all CRP-based biomarkers 
of SIR. With adjustment for waist circumference and BMI 
in main Model 4, the odds ratios (ORs) were attenuated and 
close to the null effect value of 1. Adding waist circumfer-
ence only led to almost the same results (data not shown). 
When additionally adjusted for diseases in Model 5, all OR 
were < 1.0, which could be a sign of overadjustment.

This pattern was not observed for blood cell-based bio-
markers of SIR. With the exception of NPS, increasing 

adjustment did not lead to strong attenuations in the asso-
ciations with vitamin D deficiency, which remained statisti-
cally significantly associated with all blood cell count-based 
biomarkers of SIR in main Model 4 and the most compre-
hensively adjusted Model 5. With one exception of a weak, 
but statistically significant association of SII with vitamin 
D insufficiency, the latter was not associated with the blood 
cell-based biomarkers of SIR in main Model 4.

Subgroup analyses for age and sex were conducted only 
for the comparison of vitamin D deficiency and sufficiency 
with main Model 4. Regarding age, no large differences 
were observed between older (≥ 65 years) and younger 
(< 65 years) study participants but PLR, LMR, and PNI 
were only statistically significantly associated with vitamin 
D deficiency in the younger age group (Suppl. Table 4). 
Regarding sex, results for women were comparable to those 
in the total population (Suppl. Table 5). The same applied 
to most biomarkers of SIR among men. However, PLR and 
LMR were not statistically significantly associated with 
vitamin D deficiency among men. In contrast, a weak, but 
statistically significant association of vitamin D deficiency 
with HS_mGPS was detected among males (OR, 95% CI 
1.05, 1.01; 1.09).

Fig. 1  Age and sex adjusted dose–response relationships of biomark-
ers of systemic inflammatory response with all-cause mortality. CRP, 
C-reactive protein; LMR, lymphocyte to monocyte ratio; NLR, neu-
trophil to lymphocyte ratio; PLR, platelet to lymphocyte ratio; PNI, 
prognostic nutritional index; SII, systemic immune inflammation 
index. Restricted cubic splines with 5 knots, located at the 10th, 25th, 
50th, 75th, and 90th percentiles of the biomarkers, were used to cre-

ate the figure. These knots are represented by dots. The Y-axis rep-
resents the adjusted hazard ratio for all-cause mortality. The X-axis 
represents the measurement values of the respective biomarker. Hori-
zontal green lines represent the hazard ratio of 1. Solid lines are esti-
mates of hazard ratios and the dashed lines represent their 95% confi-
dence intervals
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Table 3  Associations of dichotomized biomarkers of systemic inflammatory response with all-cause and cause-specific mortality

BMI, body mass index; CI, confidence interval; CRP, C-reactive protein; CVD, cardiovascular disease; HR, hazard ratio; HS_mGPS, High-
sensitive mGPS; LMR, lymphocyte-to-monocyte ratio; mGPS, modified Glasgow prognostic score; NLR, neutrophil-to-lymphocyte ratio; NPS, 
neutrophil-platelet score; PLR, platelet-to-lymphocyte ratio; PNI, prognostic nutritional index; SII, systemic immune-inflammation index

Mortality Biomarkers of systemic inflammatory response, HR (95% CI), N = 397,737

CRP > 2.75 mg/L mGPS ≥ 1 HS_
mGPS ≥ 1

NLR > 2.78 PLR > 237 LMR < 2.56 SII > 717 PNI < 50 NPS ≥ 1

All-cause mortality  (Ndeaths = 29,548)
 Adjusted 

for age 
and sex

1.76 (1.72, 1.80) 2.18 (2.10, 
2.27)

1.77 (1.73, 
1.82)

1.48 (1.45, 
1.52)

1.54 (1.48, 
1.61)

1.54 (1.49, 
1.58)

1.48 (1.45, 
1.52)

1.52 (1.47, 
1.56)

2.24 (2.14, 
2.34)

 Plus BMI 
and 
waist 
circum-
ference

1.57 (1.54, 1.61) 1.91 (1.83, 
1.99)

1.59 (1.55, 
1.64)

1.47 (1.43, 
1.51)

1.62 (1.55, 
1.69)

1.52 (1.48, 
1.57)

1.47 (1.43, 
1.50)

1.51 (1.46, 
1.55)

2.10 (2.01, 
2.19)

 Plus vita-
min D 
status

1.56 (1.52, 1.60) 1.89 (1.81, 
1.97)

1.58 (1.54, 
1.62)

1.46 (1.42, 
1.49)

1.61 (1.54, 
1.68)

1.53 (1.48, 
1.57)

1.45 (1.41, 
1.48)

1.50 (1.46, 
1.55)

2.04 (1.95, 
2.13)

CVD mortality  (Ndeaths = 6,091)
 Adjusted 

for age 
and sex

2.00 (1.90, 2.11) 2.28 (2.09, 
2.5)

2.04 (1.93, 
2.15)

1.68 (1.60, 
1.77)

1.37 (1.24, 
1.52)

1.68 (1.58, 
1.78)

1.64 (1.55, 
1.72)

1.51 (1.41, 
1.62)

2.56 (2.34, 
2.80)

 Plus BMI 
and 
waist 
circum-
ference

1.61 (1.53, 1.70) 1.79 (1.64, 
1.96)

1.64 (1.55, 
1.73)

1.67 (1.58, 
1.75)

1.51 (1.36, 
1.67)

1.66 (1.56, 
1.77)

1.61 (1.53, 
1.70)

1.50 (1.40, 
1.60)

2.32 (2.12, 
2.54)

 Plus vita-
min D 
status

1.60 (1.51, 1.69) 1.77 (1.62, 
1.94)

1.62 (1.54, 
1.71)

1.65 (1.57, 
1.74)

1.50 (1.35, 
1.66)

1.66 (1.56, 
1.77)

1.59 (1.51, 
1.68)

1.50 (1.40, 
1.60)

2.24 (2.05, 
2.46)

Cancer mortality  (Ndeaths = 14,895)
 Adjusted 

for age 
and sex

1.62 (1.57, 1.67) 1.89 (1.78, 
2.01)

1.62 (1.57, 
1.68)

1.30 (1.26, 
1.35)

1.51 (1.42, 
1.61)

1.38 (1.32, 
1.45)

1.34 (1.29, 
1.39)

1.38 (1.32, 
1.45)

1.77 (1.66, 
1.9)

 Plus BMI 
and 
waist 
circum-
ference

1.52 (1.47, 1.58) 1.75 (1.65, 
1.86)

1.53 (1.47, 
1.58)

1.30 (1.26, 
1.35)

1.56 (1.47, 
1.66)

1.38 (1.32, 
1.44)

1.33 (1.29, 
1.38)

1.39 (1.32, 
1.45)

1.70 (1.59, 
1.82)

 Plus vita-
min D 
status

1.52 (1.46, 1.57) 1.74 (1.64, 
1.85)

1.52 (1.46, 
1.57)

1.29 (1.25, 
1.34)

1.56 (1.46, 
1.66)

1.38 (1.32, 
1.44)

1.32 (1.28, 
1.37)

1.38 (1.32, 
1.45)

1.67 (1.57, 
1.79)

Respiratory mortality  (Ndeaths = 2,086)
 Adjusted 

for age 
and sex

2.73 (2.51, 2.98) 3.73 (3.30, 
4.22)

2.75 (2.52, 
2.99)

2.02 (1.85, 
2.20)

2.15 (1.87, 
2.48)

2.03 (1.83, 
2.25)

2.25 (2.06, 
2.45)

1.82 (1.63, 
2.03)

4.75 (4.21, 
5.37)

 Plus BMI 
and 
waist 
circum-
ference

2.63 (2.40, 2.88) 3.25 (2.87, 
3.67)

2.61 (2.39, 
2.86)

1.96 (1.79, 
2.14)

2.16 (1.87, 
2.49)

1.97 (1.78, 
2.19)

2.19 (2.01, 
2.39)

1.76 (1.57, 
1.96)

4.35 (3.85, 
4.92)

 Plus vita-
min D 
status

2.59 (2.37, 2.84) 3.19 (2.82, 
3.62)

2.56 (2.34, 
2.80)

1.93 (1.77, 
2.10)

2.13 (1.85, 
2.46)

1.98 (1.78, 
2.19)

2.14 (1.96, 
2.33)

1.76 (1.58, 
1.96)

4.13 (3.65, 
4.67)
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Table 4  Associations of vitamin D deficiency and insufficiency with disadvantageous levels of biomarkers of systemic inflammatory response in 
logistic regression models, N = 397,737

Biomarkers of systemic inflammatory response Vitamin D Deficiency Vitamin D Insufficiency Vitamin D Suf-
ficiency

OR (95% CI), FDR OR (95% CI), FDR OR (95% CI), 
FDR

Ntotal = 83,929 Ntotal = 136,692 Ntotal 
= 177,116

CRP based CRP,  Ncase >2.75 mg/L (%) 25,271 (30.1) 35,106 (25.7) 38,982 (22.0)
  Model  1a 1.65 (1.62, 1.69), < .001 1.27 (1.25, 1.29), < .001 Ref
  Model  2b 1.60 (1.56, 1.63), < .001 1.27 (1.24, 1.29), < .001 Ref
  Model  3c 1.37 (1.34, 1.40), < .001 1.18 (1.16, 1.20), < .001 Ref
  Model  4d 1.01 (0.99, 1.04), 0.271 0.97 (0.96, 0.99), 0.007 Ref
  Model  5e 0.96 (0.94, 0.99), 0.005 0.96 (0.94, 0.98), < .001 Ref

mGPS,  Ncase ≥1 (%) 4659 (5.6) 5598 (4.1) 6323 (3.6)
  Model  1a 1.65 (1.59, 1.73), < .001 1.17 (1.13, 1.22), < .001 Ref
  Model  2b 1.55 (1.48, 1.62), < .001 1.15 (1.11, 1.20), < .001 Ref
  Model  3c 1.28 (1.22, 1.34), < .001 1.06 (1.02, 1.10), 0.008 Ref
  Model  4d 0.97 (0.93, 1.02), 0.233 0.90 (0.87, 0.94), < .001 Ref
  Model  5e 0.92 (0.88, 0.97), 0.002 0.89 (0.86, 0.93), < .001 Ref

HS_mGPS,  Ncase ≥1 (%) 23,179 (27.6) 31,694 (23.2) 35,003 (19.8)
  Model  1a 1.68 (1.64, 1.71), < .001 1.27 (1.25, 1.29), < .001 Ref
  Model  2b 1.62 (1.58, 1.65), < .001 1.26 (1.24, 1.29), < .001 Ref
  Model  3c 1.38 (1.35, 1.42), < .001 1.18 (1.16, 1.20), < .001 Ref
  Model  4d 1.03 (1.00, 1.05), 0.059 0.97 (0.95, 0.99), 0.006 Ref
  Model  5e 0.97 (0.95, 1.00), 0.050 0.96 (0.94, 0.98), < .001 Ref

Blood cell
based

NPS,  Ncase ≥1 (%) 4506 (5.4) 5187 (3.8) 5852 (3.3)

  Model  1a 1.67 (1.60, 1.75), < .001 1.16 (1.11, 1.20), < .001 Ref

  Model  2b 1.54 (1.47, 1.61), < .001 1.13 (1.09, 1.17), < .001 Ref

  Model  3c 1.23 (1.17, 1.29), < .001 1.04 (1.00, 1.08), 0.097 Ref

  Model  4d 1.14 (1.09, 1.20), < .001 0.99 (0.96, 1.04), 0.817 Ref

  Model  5e 1.13 (1.07, 1.18), < .001 1.01 (0.97, 1.06), 0.534 Ref

NLR,  Ncase >2.78 (%) 22,111 (26.3) 33,797 (24.7) 43,264 (24.4)

  Model  1a 1.17 (1.15, 1.20), < .001 1.03 (1.01, 1.05), 0.001 Ref

  Model  2b 1.13 (1.11, 1.16), < .001 1.02 (1.00, 1.04), 0.030 Ref

  Model  3c 1.08 (1.06, 1.10), < .001 1.00 (0.98, 1.01), 0.770 Ref

  Model  4d 1.09 (1.07, 1.12), < .001 1.01 (0.99, 1.03), 0.291 Ref

  Model  5e 1.11 (1.08, 1.13), < .001 1.03 (1.01, 1.05), 0.003 Ref

PLR,  Ncase >237 (%) 4418 (5.3) 6598 (4.8) 9009 (5.1)

  Model  1a 1.07 (1.02, 1.11), 0.003 0.96 (0.93, 0.99), 0.013 Ref

  Model  2b 1.04 (1.00, 1.08), 0.074 0.95 (0.92, 0.98), 0.002 Ref

  Model  3c 1.02 (0.98, 1.07), 0.406 0.93 (0.90, 0.96), < .001 Ref

  Model  4d 1.13 (1.08, 1.18), < .001 1.00 (0.96, 1.03), 0.880 Ref

  Model  5e 1.17 (1.12, 1.22), < .001 1.04 (1.00, 1.07), 0.060 Ref
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Association of vitamin D status and mortality

We observed that people with vitamin D deficiency had 
35%, 40%, 20%, and 66% statistically significantly increased 

all-cause mortality, CVD mortality, cancer mortality, and 
respiratory disease-related mortality, respectively, com-
pared to people with sufficient vitamin D (Table 5). Fur-
thermore, study participants with vitamin D insufficiency 

CI, confidence interval; CRP, C-reactive protein; HS_mGPS, High-sensitive mGPS; LMR, lymphocyte-to-monocyte ratio; mGPS, modified 
Glasgow prognostic score; NA, not applicable; NLR, neutrophil-to-lymphocyte ratio; NPS, neutrophil-platelet score; OR, odds ratio; PLR, plate-
let-to-lymphocyte ratio; PNI, prognostic nutritional index; SII, systemic immune-inflammation index
Numbers in bold indicate statistical significance of 0.05 level based on the nominal p-value
a Model 1 is adjusted for age, sex, skin colour, latitude of study center and calendar month of attending the assessment center
b Model 2 is adjusted for model 1 covariates plus socio-economic factors (education, Townsend deprivation index, no. of individuals in house-
hold, and household income)
c Model 3 is adjusted for model 2 covariates plus life-style factors (smoking, alcohol consumption, physical activity, frequency of visiting friends/
family and consumption of oily fish, cereal, processed meat, milk, bread and spread), time spend outdoors in summer and winter, ease of skin 
tanning, use of sun screen/UV protection, and solarium/sunlamp use
d Model 4 is adjusted for model 3 covariates plus weight variables (body mass index and waist circumference)
e Model 5 is adjusted for model 4 covariates plus diseases & symptoms (diabetes, stroke, cancer, coronary heart disease, chronic obstructive pul-
monary disease, history of pulmonary embolism, inflammatory bowel disease, periodontitis, arthritis, osteoporosis, gout, Parkinson, depressed 
mood, and tiredness/lethargy), biomarkers (estimated glomerular filtration rate,  HbA1c, HDL cholesterol, systolic blood pressure, diastolic blood 
pressure, forced expiratory volume in 1-s, and hand grip strength), and general health status (no. of drugs, no of chronic diseases, disability, and 
general self-rated health)

Table 4  (continued)

Biomarkers of systemic inflammatory response Vitamin D Deficiency Vitamin D Insufficiency Vitamin D Suf-
ficiency

OR (95% CI), FDR OR (95% CI), FDR OR (95% CI), 
FDR

Ntotal = 83,929 Ntotal = 136,692 Ntotal 
= 177,116

LMR,  Ncase <2.56 (%) 8409 (10.0) 13,680 (10.0) 18,326 (10.4)

  Model  1a 1.08 (1.04, 1.11), < .001 1.00 (0.97, 1.02), 0.880 Ref

  Model  2b 1.05 (1.02, 1.08), 0.003 0.99 (0.97, 1.02), 0.500 Ref

  Model  3c 1.04 (1.01, 1.07), 0.027 0.98 (0.96, 1.01), 0.195 Ref

  Model  4d 1.05 (1.02, 1.09), 0.003 0.99 (0.97, 1.02), 0.664 Ref

  Model  5e 1.06 (1.03, 1.10), 0.001 1.01 (0.99, 1.04), 0.443 Ref

SII,  Ncase >717 mg/L (%) 23,213 (27.7) 33,921 (24.8) 42,207 (23.8)

  Model  1a 1.28 (1.26, 1.31), < .001 1.07 (1.05, 1.09), < .001 Ref

  Model  2b 1.25 (1.22, 1.27), < .001 1.06 (1.04, 1.08), < .001 Ref

  Model  3c 1.17 (1.15, 1.20), < .001 1.04 (1.02, 1.06), < .001 Ref

  Model  4d 1.17 (1.14, 1.20), < .001 1.04 (1.02, 1.06), < .001 Ref

  Model  5e 1.18 (1.15, 1.20), < .001 1.05 (1.04, 1.07), < .001 Ref

PNI,  Ncase <50 (%) 8320 (9.9) 13,047 (9.5) 17,550 (9.9)

  Model  1a 1.14 (1.10, 1.17), < .001 1.01 (0.99, 1.04), 0.391 Ref

  Model  2b 1.09 (1.06, 1.12), < .001 0.99 (0.97, 1.02), 0.716 Ref

  Model  3c 1.07 (1.04, 1.10), < .001 0.98 (0.96, 1.01), 0.186 Ref

  Model  4d 1.07 (1.04, 1.11), < .001 0.99 (0.97, 1.02), 0.534 Ref

  Model  5e 1.10 (1.06, 1.14), < .001 1.02 (0.99, 1.04), 0.218 Ref
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had statistically significant 9%, 12%, 5%, and 27% increased 
all-cause mortality, CVD, cancer, and respiratory mortal-
ity, respectively, compared to people with sufficient vitamin 
D. These effect estimates remained essentially unchanged 
when any biomarker of SIR was added to the model (the 
maximum HR difference was 0.03). The same pattern was 
observed when the continuous 25(OH)D level variable was 
used and the analysis was restricted to subjects with vitamin 
D deficiency (Table 6).

Mediation analysis

Suppl. Tables 6 and 7 present the results of the mediation 
analyses for vitamin D deficiency and vitamin D insuffi-
ciency, respectively. The total effects estimated for the 
association of vitamin D deficiency and insufficiency with 
the mortality outcomes were consistent with the findings 
shown in Table 5. The proportion mediated of the total 
effect of vitamin D deficiency on all-cause mortality ranged 
between - 0.3 and 3.7% for the nine biomarkers of SIR, with 
a median of 1.1%. The median and range of the proportion 
mediated were similar for CVD mortality (median, 1.0%; 
range, - 0.2–4.3%), cancer mortality (median, 1.3%; range: 
- 0.3–3.9%), and respiratory disease mortality (median, 
1.2%; range: - 0.3–6.1%). The proportion mediated of the 
total effect of vitamin D insufficiency on the mortality out-
comes was generally lower than for vitamin D deficiency. 
Across all biomarkers of SIR and mortality outcomes, 
it ranged from - 3.3 to 3.6%, with a median of almost 0 
(- 0.25%).

Discussion

Summary of the findings

With data from almost 400,000 individuals from the UK 
Biobank, this study showed strong cross-sectional associa-
tions of vitamin D deficiency with disadvantageous levels 
of all blood cell count-based biomarkers of SIR but not 
with the CRP-based biomarkers. With the exception of the 
SII, no biomarker of SIR was associated with vitamin D 
insufficiency.

Vitamin D deficiency, vitamin D insufficiency, and dis-
advantageous levels of all biomarkers of SIR were strongly 
associated with increased all-cause mortality, CVD, cancer, 
and respiratory disease mortality. After adjusting for each 
other, neither the association of vitamin D status with mor-
tality nor the association of biomarkers of SIR with mortal-
ity were attenuated. In support of this finding, mediation 
analysis showed that the proportions of the total effects of 
vitamin D deficiency and insufficiency on all mortality out-
comes mediated through biomarkers of SIR were close to 

0% for most of the associations tested. The largest mediation 
proportion observed for all-cause mortality was 3.7% by the 
SII. This speaks against the hypothesis that biomarkers of 
SIR are on the pathway between vitamin D status and mor-
tality outcomes.

Vitamin D status and CRP‑based biomarkers of SIR

Our results from the main model with adjustment of BMI 
and waist circumference showed that vitamin D deficiency 
was not associated with CRP-based biomarkers of SIR. In 
contrast, a cross-sectional association has been frequently 
observed in other observational studies. The England Lon-
gitudinal of Ageing (ELSA) study reported an association of 
vitamin D deficiency with elevated levels of CRP (≥ 3 mg/L) 
[49]. Cohort studies with hospital patients also observed an 
inverse association between 25(OH)D and CRP levels [72, 
73]. Moreover, a Mendelian randomization study with the 
UK Biobank population showed that genetically predicted 
serum 25(OH)D levels ≤ 25 nmol/L were inversely associ-
ated with serum CRP levels [50]. However, findings from 
meta-analyses of RCTs speak against a causal association 
between vitamin D supplementation and CRP in the general 
population. A meta-analysis of 24 RCTs did not find such 
an association [74]. However, if meta-analyses of RCTs are 
restricted to populations with specific diseases, such as dia-
betes, abnormal glucose homeostasis, and psychiatric dis-
orders, statistically significant inverse associations between 
vitamin D supplementation and CRP were observed [75–77].

Taken together, this speaks for a causal association of 
vitamin D and CRP in specific, diseased populations, in 
which CRP levels are increased due to the diseases. How-
ever, this does not apply to general population cohorts like 
the UK Biobank, in which the association of vitamin D defi-
ciency and CRP is confounded by body weight. One reason 
why the Mendelian randomization study in the UK Biobank 
observed an association [50], and we did not, may be as fol-
lows: the authors only observed an association of genetically 
predicted serum 25(OH)D levels and CRP in subjects with 
25(OH)D levels ≤ 25 nmol/L but not at higher 25(OH)D lev-
els. Subjects with 25(OH)D levels ≤ 25 nmol/L likely have 
a high disease burden because such low 25(OH)D levels are 
usually observed among patients with diseases.

Vitamin D status and blood cell count‑based 
biomarkers of SIR

To our knowledge, our study is the first population-based 
cohort reporting that vitamin D deficiency is cross-section-
ally associated with blood cell count-based biomarkers of 
SIR. We can only compare our results to previous observa-
tional studies with diseased populations, which investigated 
NLR and PLR. Akbas et al. showed that PLR and NLR are 
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increased in subjects with vitamin D insufficiency in 4120 
hospitalized patients [48]. Furthermore, a low vitamin D 
status was associated with higher NLR in patients with pre-
diabetes/diabetes, and patients admitted to intensive care 
units with SARS-CoV-2 Infection [78, 79]. Furthermore, 
there has been a first placebo-controlled trial including 106 
patients hospitalized with COVID-19 that showed vitamin D 
supplements decreased NLR within 2 months [80].

Can the association of vitamin D deficiency 
and mortality be explained by a systemic 
inflammatory response to adverse health 
conditions?

We observed a cross-sectional association of vitamin D defi-
ciency with disadvantageous levels of blood cell count-based 
biomarkers of SIR. In theory, such an association could be 
due to different reasons, such as (1) a disease could have 
caused both, inflammation and vitamin D deficiency, (2) 
vitamin D deficiency could have caused the inflammation, 
and (3) the inflammation could have caused the vitamin D 
deficiency. Unfortunately, no causal interferences are pos-
sible with our observational study and the question, which, 
if any, of these explanations might apply cannot be answered 
with certainty based on our results.

Nevertheless, we can approach the research question, of 
whether the associations of vitamin D and biomarkers of SIR 
with mortality are independent, with our study design. By 
putting them in the same Cox regression model, no attenu-
ations of the HRs with mortality of neither biomarkers of 
SIR nor vitamin D status were observed. This finding was 
further supported by the mediation analysis, which observed 
very low proportions of the total effects of vitamin D defi-
ciency and insufficiency on all mortality outcomes medi-
ated through biomarkers of SIR. Taken together, our study 
does not support the hypothesis that biomarkers of SIR are 
on the pathway from vitamin D deficiency to mortality in 
the general population. However, this might be different in 
patient populations with high inflammation, such as individ-
uals with cancer, diabetes mellitus, or acute cardiovascular 
disease [24, 26–30]. Such disease-specific cohort studies are 
still needed to confirm our findings.

Strengths and limitations

This study has strengths and limitations. This is the largest 
cohort study with the most comprehensive list of biomarkers 
of SIR to date to examine the association between vitamin 
D status and biomarkers of SIR. The consistent findings for 
CRP-based and blood cell count-based biomarkers of SIR, 
as well as the correction for multiple testing limit the risk of 
chance findings for a single biomarker. Additional strengthes 
of the study are the availability of the long-term mortality Ta
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follow-up (> 10 years) and the adjustment for 51 potential 
confounders in vitamin D analyses, including rarely assessed 
factors such as time spent outdoors in summer.

This study also has limitations. A well-known one is a 
healthy volunteer selection bias in the UK Biobank’s base-
line study population. Although this may strongly affect 
absolute effect estimates (such as the prevalence of vitamin 
D deficiency, which is likely underestimated) the potential 
impact on relative effect estimates like ORs and HRs would 
be expected to be much smaller.

Conclusions

This large cohort study observed cross-sectional associa-
tions of vitamin D deficiency with disadvantageous levels 
of blood cell count-based biomarkers of SIR. Furthermore, 
the strong associations of low vitamin D status with all-
cause and cause-specific mortality were not attenuated when 
biomarkers of SIR were added to the model, and vice versa. 
In causal mediation analysis, the proportions of total effects 
of vitamin D deficiency and insufficiency on the mortality 
outcomes mediated by biomarkers of SIR were mostly close 
to 0%. Taken together, our study suggests that low vitamin D 
status and disadvantageous levels of biomarkers of SIR are 
independently associated with all-cause and cause-specific 
mortality. Future studies should thoroughly evaluate these 
associations in a cohort of patients with specific diseases 
that can cause a SIR (e.g., cancer).

For clinical practice, the potential of clinical interventions 
against both vitamin D deficiency and the underlying causes 
of systemic inflammation in people with both conditions 
should be explored.
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