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Abstract
Polygenic scores (PGS) are now commonly available in longitudinal cohort studies, leading to their integration into epide-
miological research. In this work, our aim is to explore how polygenic scores can be used as exposures in causal inference-
based methods, specifically mediation analyses. We propose to estimate the extent to which the association of a polygenic 
score indexing genetic liability to an outcome could be mitigated by a potential intervention on a mediator. To do this this, 
we use the interventional disparity measure approach, which allows us to compare the adjusted total effect of an exposure on 
an outcome, with the association that would remain had we intervened on a potentially modifiable mediator. As an example, 
we analyse data from two UK cohorts, the Millennium Cohort Study (MCS, N = 2575) and the Avon Longitudinal Study 
of Parents and Children (ALSPAC, N = 3347). In both, the exposure is genetic liability for obesity (indicated by a PGS for 
BMI), the outcome is late childhood/early adolescent BMI, and the mediator and potential intervention target is physical 
activity, measured between exposure and outcome. Our results suggest that a potential intervention on child physical activ-
ity can mitigate some of the genetic liability for childhood obesity. We propose that including PGSs in a health disparity 
measure approach, and causal inference-based methods more broadly, is a valuable addition to the study of gene-environment 
interplay in complex health outcomes.
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Introduction

Leveraging observational data to estimate causal links 
between exposures and health outcomes, when randomised 
control trials are not possible, has been one of the main aims 
in epidemiology. To that end, methods have been developed 
to derive causal inferences from observational data, aiming 
to handle bias introduced from confounding and reverse cau-
sation by mimicking features of randomised control trials. 
This is done by using tools such as instrumental variables, 
propensity scores matching or reweighting [1]. These meth-
ods assume that the cause of interest can be intervened on 
and results into a specific and tightly defined causal effect 
on the outcome [1]. However, there are many other instances 
where it is not possible to define a potential intervention, as 
exposures of interest are non-manipulatable and have non-
specific wide-reaching consequences (e.g. ethnicity, sex or 
socio-economic position). In this situation, it has been pro-
posed to shift attention away from the causal effect of the 
exposure and instead focus on how much disparity due to a 
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risk factor would remain if a potential intervention would 
target a downstream mechanism [2, 3]. This health interven-
tional disparity approach—the idea of estimating changes 
in health outcomes due to an intervention on a manipulable 
and specific mediator, has been applied to socially deter-
mined characteristics in epidemiology [4, 5]. In recent years, 
genetic data of research participants has become increasingly 
available in large epidemiological studies. In this paper, our 
aim is to apply the health disparity interventional approach 
to differences in health outcomes attributed to differences in 
genetic risk. We hope that this framework might offer new 
opportunities for researchers in genetic epidemiology and 
causal inference, grounding research questions within public 
health, by asking researchers to hypothesise potential inter-
ventions to mitigate disparity associated with genetic risk.

Genetically informed designs to study causation

Researchers have exploited genetically informed research 
designs to study causation, for example analysing datasets 
with related individuals such as twins [6]. These research 
designs, which include prior knowledge of the participants’ 
genetic relatedness allow researchers to capture some of 
the genetic and environmental unmeasured confounding, 
which can strengthen causal inferences. Using twin and 
sibling designs researchers have studied the causal relation-
ship between exposures and health outcomes such as socio-
economic position and depression [7], bullying victimisation 
and self-harm [8], as well as smoking and lung cancer [9]. 
Building on family-based studies, technological advances 
have allowed the mass collection of DNA from participants, 
and genotypes are now commonly available in large-scale 
population cohorts. This enables researchers to construct 
genetic liability indicators for common health outcomes 
and has led to the integration of genetic data into causal 
inference within epidemiological research [10]. Well-known 
examples are the numerous applications of Mendelian Ran-
domisation, which uses genetic variants as instruments to 
estimate causal effects [11, 12]. Further, genetic data have 
been integrated into longitudinal studies of families and their 
children, allowing a more robust study of intergenerational 
genetic and environmental effects [13, 14].

Genes, polygenic scores, and counterfactuals

Fundamental to this research, is the assumption that genomic 
variants cause variations in phenotypes. This central dogma 
of biology describes a one-way stream of information, 
whereby variations in DNA result in differences in RNA, 
which in turn are responsible for the synthesis of proteins 
[15, 16], essential to biological functioning and develop-
ment. Historically, this central dogma, developed at the same 
time as the emergence of computer science. Their synergies 

popularised commonly used terms such as the “genetic 
code” and the DNA as “blueprint” of life, “transcribing” and 
“translating information” [17, 18]. In the light of the current 
scientific consensus, different meanings of genes, or genetic 
effects, need to be considered when aiming to conceptual-
ise genetic information as exposures in causal inference. As 
described in detail by Lynch (2021), genetic research, can 
be crudely categorised into questions regarding monogenic 
or polygenic traits. The former considers that changes in 
a singular gene cause changes in the product of the coded 
protein. In contrast, the latter refers to the fact that most 
common phenotypes are influenced by many genetic mark-
ers (polygenicity) which in turn influence many different 
outcomes (pleiotropy) [19]. These two theoretical settings 
need to be carefully considered when using genetics to study 
causal mechanisms over the life course. Within the stricter 
definitions of causality, an exposure of interest needs to be 
intervenable, and result in a specific causal effect [1]. In the 
context of mono-genic traits, and the advent of gene editing 
technology, such as a CRISPR, interventions on mono-genic 
traits could be deemed as acceptable [20]. However, for 
polygenic traits this might be harder to argue, as these often 
relate to common health outcomes, which are influenced 
by 1000s of genomic variants with pleiotropic effects [21]. 
This pleiotropy obscures the causal chain between polygenic 
score (PGS), which summarises the additive effects of mul-
tiple variants into one singular score, and outcome, lead-
ing to a broad rather than specific effect. Lastly, PGS might 
not be considered as feasible potential intervention targets. 
Embryo selection based on polygenic scores for common 
illnesses is currently not plausible and poses difficult ethi-
cal questions, as outcomes of such interventions will have 
unknown, potentially adverse and wide-ranging effects 
[22, 23]. Regardless, PGS have been described as promis-
ing tools in precision medicine and are commonly used in 
epidemiological research [24], but at the same time have 
been criticised for the their lack of theoretical and empirical 
evaluation [25, 26].

Health disparity measure approach

In summary monogenic traits may be conceptualised as 
causes within the stricter definitions of causal inference, 
however, this might not apply to polygenic traits. Therefore, 
in this paper, our goal is to borrow the idea of health dispar-
ity interventional affects and apply this framework to PGS, 
building on the previous work of our group [27]. Health 
disparity measures can be best understood in the context of 
mediation analysis where the focus is to identify whether 
some of the total effect between exposure (X) and outcome 
(Y), works via an intermediate mediator (M) (see Fig. 1). 
The total causal effect is defined by imagining the poten-
tial outcome of a hypothetical intervention on the exposure 
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(X), comparing the outcome if the participant was exposed 
(e.g. X = 1) versus the potential outcome if the participant 
was not exposed (X = 0). This principle is then extended to 
causal inference mediation models, where the hypothetical 
intervention targets both the exposure and the mediator [28, 
29]. When hypothetical interventions on the exposure are not 
justifiable, interventional disparity measures can be useful to 
express how much of the association between exposure and 
outcome would remain if we intervened on the distribution 
of the mediator. Here, we describe how this approach can 
be applied to PGS and then follow with examples using data 
from the Avon Longitudinal Study of Parents and Children 
and the Millennium Cohort Study, both from the United 
Kingdom.

Methods

The health disparity measure approach focuses on two esti-
mands: the Interventional Disparity Measure—Direct Effect 
(IDM-DE) and the Adjusted Total Association (Adj-TA). As 
outlined by Micali et al. (2018), the Interventional Dispar-
ity Measure—Direct Effect (IDM-DE) is the disparity in 
the outcome (Y) associated with the exposure that remains 
if we were to intervene on the intermediate mediator (M), 
by shifting the distribution of M to the distribution that M 
would have had under no exposure (X = 0) [29].

In the situation of a binary exposure, and continuous 
mediator and outcome, we can specify M0

C
 as a random draw 

from the distribution of M conditional on the confounder C 
when X is set to take the reference value 0. Let Y(m) be the 
potential outcome when the mediator M is set to take the 
value m, in this case taking the randomly drawn value M0

C
 . 

The IDM-DE is defined as:

IDM-DE =
∑

c

[E{Y(M0
C
)|X = 1,C = c}−

E{Y(M0
C
)|X = 0,C = c}]Pr(C = c)

where C is here assumed to be categorical. For general defi-
nitions see Daniel and De Stavola (2019) [30]. In addition 
to the IDM-DE, we also aim to estimate the association 
between exposure and outcome, without intervening on the 
mediator M. This Adj-TA is defined as:

The difference between Adj-TA and IDM-DE gives some 
indication of the potential change in disparity due to the 
hypothetical intervention.

These general definitions apply to situations with a binary 
exposure. However, genetic liability is commonly expressed 
as a continuous PGS. In this scenario, one option would be 
splitting the distribution of the exposure into multiple equal 
sized groups, representing the participants ranging from low 
to high genetic liability, for example, sample size permitting, 
quintiles (1 = lowest risk, 2 = lower risk, 3 = average risk, 
4 = high risk, 5 = highest risk; indexed by j). In this case, the 
definitions of the IDM-DE and Adj-TA need to be adapted, 
depending on the choice of reference category. Let M1

C
 be a 

random draw from the distribution of M conditional on the 
confounder C when X is set to take the reference value 1. 
The disparity measures of interest are then defined as, for 
j = 2,3,4,5,

The same applies for the Adj-TA, at each level of the 
exposure in reference to the lowest liability reference (j = 1). 
This is defined as, for j = 2,3,4,5

Estimation of the interventional disparity measures call 
upon the three assumptions of no interference, consistency, 
and no unmeasured confounding of mediator-outcome asso-
ciations [25].

Motivating example

We aim to study the extent to which a potential interven-
tion on physical activity could mitigate genetic liability for 
obesity in childhood. Childhood obesity remains one of the 
main health concerns globally [31]. Children with over-
weight or obesity have been found to show higher risk of 
overweight and obesity in adulthood, which is associated 
with other health outcomes, such as cancer, depression, and 
asthma [32–34]. Further, individuals with overweight and 
obesity face bullying and stigmatisation from their peers and 

Adj-TA =
∑

c

[E{Y|X = 1,C = c}−

E{Y|X = 0,C = c}]Pr(C = c),

IDM-DEj =
∑

c

[E{Y(M1
C
)|X = j,C = c}−

E{Y(M1
C
)|X = 1,C = c}]Pr(C = c),

Adj-TAj =
∑

c

[E{Y|X = j,C = c}−

E{Y|X = 1,C = c}]Pr(C = c),

Fig. 1  Mediation diagram with a direct effect from exposure (X) to 
outcome (Y), and indirect effects via an intermediate mediator (M), 
adjusted for confounder (C)
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health professionals, contributing to the health burden [35, 
36]. Individual differences in body size have been studied 
extensively, and twin [37] and genome-wide association 
studies have provided evidence for a substantial genomic 
contribution, indicating that hundreds if not thousands of 
genetic variants are associated with BMI [38]. In addition, 
rapid changes in the food environment (larger portion sizes, 
availability of high fat foods) as well as life-style changes 
(sedentary work and leisure) have been identified as risk fac-
tors [39]. Here we imagine an intervention on a downstream 
behavioural factor, physical activity, which might mitigate 
some of the genetic liability. Physical activity has been tar-
geted in randomised intervention trials for childhood obesity 
[40, 41], and genomic studies have suggested that a higher 
genetic liability for obesity is associated with lower physical 
activity [42].

In the following, we will estimate the IDM-DE and the 
Adj-TA to understand the extent to which an intervention on 
physical activity in childhood can mitigate the association 
between genetic liability measured by a PGS and later BMI. 
Data are from the Avon Longitudinal Study of Parents and 
Children (ALSPAC) [43] and the Millennium Cohort Study 
(MCS) [44]. Full details of the samples and measurements 
can be found in Supplement Text and Supplement Table 1. 
In short, in both cohorts PGS for BMI were calculated using 
the conditional shrinkage method, developed by Ge et al. 
[45] from summary statistics of the Genetic Investigation of 
Anthropometric Traits (GIANT) consortium [38], using the 
automated analyses pipeline GenoPredPipe [46]. The PGS 
was then categorised using cohort-specific quintiles. Physi-
cal activity was measured using accelerometers when the 
children were 8 (MCS) or 11 years (ALSPAC), indicating the 
average minutes of moderate to vigorous physical activity 
(MVPA) over the course of one week. BMI measures were 
obtained during research clinic visits at age 11 years (MCS) 
and 14 years (ALSPAC). Included confounders were mater-
nal education, maternal BMI prior to pregnancy, and child 
sex using parental report. The hypothesised associations 

are outlined in Fig. 2a (MCS) and Fig. 2b (ALSPAC). The 
analyses sample sizes were 2575 and 3347 for MCS and 
ALSPAC respectively and included complete cases only, fol-
lowed by sensitivity analyses using imputation.

Estimation

Analyses, consisting of a series of regressions for the 
mediators and outcomes, were conducted in Stata version 
16, with estimation of the IDM-DE and the Adj-TA carried 
out by plug-in parametric estimation and Monte Carlo sim-
ulation on a 1000-fold expanded dataset, with 1000 boot-
strap samples to derive confidence intervals. Regression 
models included non-linear terms and interactions between 
confounders and mediators to allow for general paramet-
ric specifications and thus avoid unnecessary restrictive 
assumptions (e.g. with respect to linearity of associations).

Sensitivity analyses

In both studies, data on exposure, confounders, and 
mediators were affected by missingness. For this reason, 
the Monte Carlo estimation procedure described above 
was repeated after implementation of a single stochastic 
imputation of the missing values, using chained equations 
(with 10 burn-in iterations) assuming missingness was at 
random (given the observed data). The imputation mod-
els included all variables that contributed to the analyti-
cal models allowing for non-linearities and interactions. 
Standard errors were again estimated via bootstrap (with 
the imputation step redone on each bootstrap sample), 
avoiding the need for multiple imputations.

To examine the impact of unmeasured mediator-out-
come confounders, we used an approach first suggested 
by Imai et al. [47] and then expanded in De Stavola et al. 

Fig. 2  (A and B) Diagram of mediation model using data, baseline 
covariates include child sex, maternal education at birth and maternal 
pre-pregnancy BMI. Additionally, potential intermediate confounders 
are also depicted and could be childhood (respectively pre-age 8 and 

pre-age 11) behavioural and metabolic factors, e.g. diet, or living in 
an urban environment. PGS-BMI polygenic score BMI, Cs confound-
ers, PA physical activity, BMI body mass index, yrs years
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[48] which consisted in estimating the minimal size of 
the correlation induced by a confounder that, if controlled 
for, would remove the impact of the mediator. This cor-
relation is reported for each study, with bootstrapped 95% 
confidence intervals.

Analyses were pre-registered and the code for all the 
analyses is available, see https:// osf. io/ 9hbmu/.

Figure 3 shows the scatter plot of childhood BMI (the out-
come) and physical activity (the mediator) against PGS-BMI 
(the exposure), with points colour-coded to reflect PGS quin-
tiles. The lines show the predicted regression lines. These 
figures give a visualisation of the unadjusted associations 
between exposure, mediator, and outcome. The PGS-BMI 
is positively associated with BMI, and negatively associ-
ated with physical activity. BMI and physical activity are 

negatively associated. For more detailed information, means 
of MVPA and BMI, in each PGS-BMI quintile and their cor-
relations are listed in Supplement Tables 2 and 3.

The hypothetical physical activity intervention envisaged 
here, shifts the distribution of physical activity to that experi-
enced by those in the lowest genetic quintile (conditional on 
confounders; coloured in light green in Fig. 3). The result-
ing IDM-DEs and Adj-TAs are shown in Fig. 4. Estimates 
and 95% confidence intervals are listed in Supplementary 
Table 4a and b. Overall, the hypothetical interventions to 
shift the four top strata defined by categorical PGS-BMI to 
mirror the distribution in the lowest PGS-BMI category have 
a small impact on the total association between PGS and 
later BMI. This is indicated by the small or no differences 
between the IDM-DE and the Adj-TAs (see Fig. 4). The 

Fig. 3  Correlation plots for the exposure, mediator and outcome vari-
ables in the Millennium Cohort Study and Avon Longitudinal Study 
of Parents and Children. Colours indicate the BMI-PGS quintiles. 

MVPA moderate to vigorous physical activity. Black lines show the 
fitted regression lines

https://osf.io/9hbmu/
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biggest differences are found for the highest PGS quintile 
(dark blue colour in Fig. 3), whereby the change in physi-
cal activity to what it would have been under lowest PGS 
quintile, was estimated to remove 0.33 kg/m2 (95%CI 0.21, 
0.44) in BMI at 11 years in MCS (Adj-Ta = 2.69, 95%CI 
2.40, 2.98; IDM-DE = 2.36, 95%CI 2.08, 2.64). In ALSPAC, 
the results followed a similar pattern, whereby the potential 
intervention was associated with a difference of 0.44 kg/
m2 (95%CI 0.32, 0.56) in BMI at 14 years (Adj-Ta = 3.34, 
95%CI 3.09, 3.59; IDM-DE = 2.9, 95%CI 2.66, 3.14). For 
the other quintiles of PGS, the impact of their respective 
interventions was smaller in both MCS and ALSPAC. Note 
that the interventions applied to each PGS-BMI quintile is 
of different magnitude because the shift in physical activity 
decreases from the highest to the first category (see Sup-
plementary Table 3).

Sensitivity analyses

Estimates of the differences between the Adj-TA and the 
IDM-DE obtained from the imputed data (respectively 
based on N = 6172 in MCS and N = 6035 in ALSPAC) 

became slightly larger than those obtained from the 
complete records only (MCS, N = 2757 and ALSPAC, 
N = 3347). For comparison, the estimated differences in 
MCS were 0.06, 0.10, 0.21 and 0.33 when using the com-
plete records and 0.08, 0.10, 0.21 and 0.34 when using the 
imputed data. In ALSPAC the estimated differences from 
complete records were 0.02, 0.18, 0.30 and 0.44 from the 
complete records and 0.11, 0.28, 0.35 and 0.65 from the 
imputed data.

The separate estimates of the Adj-TA and the IDM-DE 
were also slightly larger when using the imputed data. 
This might reflect the selection in participation by socio-
economic position which is known to affect ALSPAC 
in particular [49]. A full list of the estimates from the 
imputed data can be found in Supplementary Table 4c 
and d.

Examining the potential consequences of unmeasured 
confounding between mediator and outcome in both stud-
ies, we found that the impact of intervening on the media-
tor would be null if there were an additional confounder to 
those included in the analyses that induced a correlation 
between physical activity and BMI (above that induced 
by the measured confounders) of − 0.11 (95%CI − 0.13, 

Fig. 4  Adjusted total association (Adj-TA) and Interventional Dispar-
ity Measure—Direct Effect (IDM-DE), given a hypothetical inter-
vention shifting the distribution of moderate physical activity to the 
distribution under lowest genetic risk (reference category lowest 

risk, not depicted), in the Millennium Cohort Study (N = 2575) and 
the Avon Longitudinal Study of Parents and Children (ALSPAC, 
N = 3347)
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− 0.07) in ALSPAC and − 0.03 (95%CI − 0.07, 0.01) in 
MCS. These estimates reflect the weak and nearly null 
results found in the two studies.

Discussion

In this paper, we aim to demonstrate how polygenic  
scores within the interventional disparity approach could 
be used in the context of causal inference analysis. This 
approach is proposed as a novel additional tool for genetic 
epidemiological researchers with an interest in public 
health. Building on some previous work [27], these results 
suggest that a hypothetical intervention increasing physi-
cal activity has the potential to buffer a small propor-
tion of disparity in BMI associated with the BMI PGS. 
This small impact needs to be considered in the context 
of randomised control trials (RCT) of interventions for 
childhood obesity. A meta-analysis of 14 RCTs indicated 
that physical activity interventions result on average in 
a BMI reduction of 0.10 kg/m2, and that the most effec-
tive interventions combined physical activity and dietary 
components [41]. Further, it is important to emphasise 
that our hypothetical intervention does not estimate the 
effect of changing physical activity on later BMI, but the 
extent to which intervening on physical activity can miti-
gate the association between genetic liability and BMI. 
Our analyses do not aim to find the intervention that is 
associated with biggest decrease in BMI or of increasing 
physical activity to its most beneficial level. Instead, we 
aim to investigate the extent to which potential interven-
tions that improve the distribution of physical activity 
of individuals with high genetic liability, would remove 
part of their liability. We hope to have demonstrated how 
the health disparity measure interventional approach can 
be applied to estimate the potential impact of hypotheti-
cal interventions to reduce the disparity associated with 
genetic risk. Results from analyses of our two datasets 
produced only small differences between the adjusted 
total effect versus the interventional direct effect, but it 
should be noted that the shift of distribution considered 
in our calculations is driven by the strength of association 
between the PGS and the mediator. Other settings involv-
ing different PGS, mediators, and outcomes, might lead to 
greater shifts and hence greater disparity reductions. One 
additional benefit of the health disparity approach is that 
it asks researchers to specify a clear potential interven-
tion target, grounding research in real life and pushing us 
to think through the implications and feasibility of the 
hypothetical intervention.

Health inequalities and genetics

Health inequalities are commonly understood as differ-
ences in health outcomes due to determinants that are out-
side of the individual’s control, which could be remedied 
by policy intervention. For example, there have been estab-
lished observations that socio-economic position at birth 
can result in longstanding negative health outcomes [50]. 
Childhood obesity rates are highest in families with lowest 
income and education levels [51], and policy interventions 
have aimed to close this gap, targeting individual behav-
iours (e.g. healthy foods in schools programme) as well 
as structural (e.g. taxation on high energy dense foods) 
components with limited success [52]. More recently there 
has been a call to broaden health inequality exposures and 
to consider the question of whether genetic propensity for 
a health outcome can be considered as a cause for health 
inequalities. This might be seen as intuitive, as genetic fac-
tors are associated with later health outcomes and are also 
outside of an individual’s control [53]. However, a debate 
is still ongoing if these genetic differences in the popula-
tion should be included in the study of social determinants 
of health [54]. Targeting individuals based on their genetic 
liabilities has been argued to be a direct continuation of 
the horrific eugenic practices of the last century [55], and 
there is a need for an ethical and theoretical framework 
on how to regulate the already existing embryo screening 
technology which uses PGS [23].

Assumptions and considerations

Most causal inference methods lean on the three major 
assumptions of no interference, consistency, and no unmeas-
ured confounding. Interference would be present if the inter-
vention target for one participant would impact the outcome 
in another participant. For example, behaviours of one par-
ticipant might influence another, if the two participants are 
in the same class in school, or maybe members of the same 
extended family. In our analysis, this situation might be con-
sidered as highly unlikely, as the participants of cohort stud-
ies are commonly recruited from a large region. Further, it 
might be recommended to only include one participant per 
family, excluding siblings and cousins, which is what we 
have done here. It should be noted that checks for genetic 
relatedness based on observed genomic data are common 
practice in the quality control when analysing genetic data. 
The consistency assumption implies that the distributional 
intervention is “non-invasive” meaning that the outcomes 
for the participants would not have differed had they been 
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observed or intervened to have that mediator distribution 
[56, 57].

One additional limitation is the weak association 
between the exposure and the mediator, found in both stud-
ies. The size of these associations clearly binds the scale 
of change due to the hypothetical interventions and dem-
onstrates the challenges of studying intervenable pathways 
from genomic liability to a later outcome. Further appli-
cations of this framework should select mediators with 
stronger associations with the polygenic score of interest.

Lastly, the no unmeasured confounding assumption of 
the mediator-outcome association cannot be formally tested. 
However, we included baseline covariates, and they might 
capture at least some of the confounding. As illustrated in 
Fig. 2a and b, there is potential for unmeasured intermedi-
ate confounding of the mediator to outcome associations 
affecting our analyses, for example via dietary factors or 
environmental factors such as urban environment, for which 
we do not have reliable information. This may have led to 
negative confounding and hence overestimation of the inter-
ventional effects, in the presence for example of a negative 
association of urban environment with physical activity 
and positive association with BMI. Our sensitivity analyses 
showed that in ALSPAC such correlation would need to be 
at least − 0.1. Including participants with complete data on 
exposure, mediator, outcome, and all covariates resulted in 
reduced sample sizes, as well as the potential introduction 
of selection bias, as participants with complete records are 
those who contributed data to all relevant collection waves 
and these individuals may differ from the rest of the original 
cohort members. However, imputation, under the missing 
at random (MAR) assumption, did not lead to substantially 
different results.

Additionally, researchers aiming to apply this framework, 
need to be aware of the pitfalls that underlie the construc-
tion and interpretation of PGS. PGS aggregate effect sizes 
associated with single nucleotide polymorphism, but do not 
(yet) include other type of genomic variations, such as rare 
variants, deletions, and copy number variations. Hence, PGS 
only capture a proportion of the variance in the outcome. 
This incomplete measure of genetic liability has been shown 
to have consequences for mediation analyses, specifically 
leading to an exaggeration of the indirect effect, from genetic 
liability to outcome, via a mediator [58]. Further limitations 
in this area that remain are that, even though sample sizes 
have grown rapidly, the majority of available summary sta-
tistics are based on participants of white European descent 
which cannot be readily transported to global and diverse 
population cohorts [59].

As highlighted above, effective public health interven-
tions for multifactorial diseases such as obeisty are most 
likely to target a complex combination of social and behav-
ioural changes, e.g. diet, physical activity and parenting 

behaviours. However, our aim is to demonstrate how to 
quantify how much of the genetic effect of the BMI PGS 
would remain if its effect on PA were "equalised". Here 
we consider a single possible area of intervention, physical 
activity, to examine interventional effects, but methods for 
multiple mediators are available [28] and future work should 
aim to explore these in the context of genetically informed 
studies.

Conclusions

We have provided an example of how the health disparity 
framework might be implemented in longitudinal cohorts 
with genetic, behavioural, and anthropometric data. This 
approach lends itself to many non-communicable health 
outcomes that have some genetic aetiology but whose inter-
ventions often require changing behavioural or environ-
mental targets. We see this approach in addition to methods 
applied to gene-environment interplay but grounded by the 
formal restrictions of specifying a plausible intervention tar-
get, linking research directly to questions of public health 
relevance.
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