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Abstract
The Human Immunomics Initiative (HII), a joint project between the Harvard T.H. Chan School of Public Health and the 
Human Vaccines Project (HVP), focuses on studying immunity and the predictability of immuneresponsiveness to vaccines 
in aging populations. This paper describes the hypotheses and methodological approaches of this new collaborative initiative. 
Central to our thinking is the idea that predictors of age-related non-communicable diseases are the same as predictors for 
infectious diseases like COVID-19 and influenza. Fundamental to our approach is to differentiate between chronological, 
biological and immune age, and to use existing large-scale population cohorts. The latter provide well-typed phenotypic 
data on individuals’ health status over time, readouts of routine clinical biochemical biomarkers to determine biological 
age, and bio-banked plasma samples to deep phenotype humoral immune responses as biomarkers of immune age. The first 
phase of the program involves 1. the exploration of biological age, humoral biomarkers of immune age, and genetics in a 
large multigenerational cohort, and 2. the subsequent development of models of immunity in relation to health status in a 
second, prospective cohort of an aging population. In the second phase, vaccine responses and efficacy of licensed COVID-19 
vaccines in the presence and absence of influenza-, pneumococcal- and pertussis vaccines routinely offered to elderly, will 
be studied in older aged participants of prospective population-based cohorts in different geographical locations who will 
be selected for representing distinct biological and immune ages. The HII research program is aimed at relating vaccine 
responsiveness to biological and immune age, and identifying aging-related pathways crucial to enhance vaccine effective-
ness in aging populations.
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Introduction

Infectious diseases present a major threat to the health of 
elderly populations. Compared to younger populations, older 
adults are at greater risk of developing severe symptoms, 
requiring hospitalization, and dying from infections. This is 
most evident in the current COVID-19 pandemic, where age 
is a strong predictor of the severity and outcome of SARS-
CoV-2 infections, with adults aged over 65 years represent-
ing 80% of COVID-19 hospitalizations and having a more 
than 20-fold greater risk to die of COVID-19 [1, 2]. But 
also for other respiratory infections, such as influenza [3, 4], 
pneumococcal pneumonia [3, 5], and pertussis [6, 7], and 
other viral and bacterial infections including bacteraemia 
[8, 9] and severe gastroenteritis, risks exponentially increase 
above the age of 65 [10, 11].
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Main factors contributing to the increased vulnerability 
at older age include higher exposure, aging of the immune 
system, and co-morbidities [12–15]. Higher exposure pri-
marily occurs through increased utilization of healthcare and 
long-term care facilities, where the risk of transmission and 
infection are high [16, 17]. Also the risk of re-activation of 
dormant infections such as herpes zoster [18] and tubercu-
losis [19] increases with age. The latter clearly signifies a 
failure of the aging immune system to control infections as a 
consequence of immunosenescence, i.e. the gradual deterio-
ration of the immune system with natural age advancement. 
Another consequence of immune aging is a reduced abil-
ity to elicit effective immune responses to vaccines, as has 
been demonstrated for pneumococcal polysaccharide vac-
cines [20, 21], seasonal influenza vaccine [8], and herpes 
zoster vaccine [22]. Reduced vaccine responsiveness fur-
ther limit the potential to protect older adults against severe 
infectious diseases. Finally, older adults developing severe 
infections often suffer from one or more non-communica-
ble diseases, such as hypertension, ischemic heart disease, 
stroke, diabetes mellitus, chronic kidney disease, autoim-
mune, and neurodegenerative diseases: conditions that all 

increase exponentially at older age, as shown in Fig. 1 for 
UK Biobank participants [23].

The risks of developing non-communicable and commu-
nicable diseases with increasing age are not independent of 
each other: as clearly shown for COVID-19, pre-existing 
illnesses such as diabetes and hypertension are independ-
ent risk factors for developing and dying of a severe infec-
tion [24]. Both age-related non-communicable diseases 
and severe infectious diseases are associated with a chronic 
state of low-grade inflammation [25], which presents an 
important feature of the aging immune system known as 
‘inflammaging’.

The ‘immunome’ is defined as the detailed map of 
immune reactions of a given host interacting with a foreign 
antigen, and ‘immunomics’ as the study of immunomes [26, 
27]. In this paper we describe the objectives, hypotheses and 
methodological approaches of The Human Immunomics Ini-
tiative (HII), a joint project between the Harvard T.H. Chan 
School of Public Health and the Human Vaccines Project 
(HVP). The aim of HII is to decode the mechanisms and 
rules of effective immunity in aging populations through 
the exploration in large-scale population cohorts of bio-
markers of immunosenescence, inflammaging, and risks 
for infectious and non-infectious diseases, and ultimately 
vaccine responses, in relationship to age. The differentia-
tion between chronological and biological age is key in this 
process. Given the role of the immune system in age-related 
non-communicable diseases, HII takes the view that immu-
nomics should not be limited to immune reactions with for-
eign antigens, but include also immune reactions to (modi-
fied) self antigens.

Biological age as a predictor 
of all‑cause mortality and age‑related 
non‑communicable diseases

Aging is characterized by a progressive loss of intrinsic 
capacity and functional ability, and increased risk for mor-
bidities and death. Chronological age is an important pre-
dictor of morbidity and mortality but cannot account for 
heterogeneity in the decline of physiological function and 
health with advancing age. The realization that the rate at 
which people age is not universal, led to the concept that 
people have a biological age that reflects an individual’s 
global physiological status and functioning, his/her suscep-
tibility to death and disease, and as such is a better predictor 
of lifespan and health span than chronological age [28–32].

In recent years, many studies have invested in study-
ing biomarkers defining and predicting biological age, or 
hallmarks of aging [28, 33, 34]. Many of these studies 
have focused on biomarkers presenting a measure of bio-
logical age that is predictive of all-cause mortality. This 

Fig. 1  Incidence rates of the most prevalent chronic diseases, death, 
and healthspan based on clinical histories for over 300,000 people, 
aged 37 to 73  years  old, participating in the UK Biobank cohort. 
Incidence rates for different chronic diseases, healthspan, and death 
increase at comparable, approximately exponentially rates with age. 
Disease incidence rates were calculated independently, with par-
ticipants who develop more than one condition during the follow-up 
period counting for every disease they have. Healthspan was defined 
based in the first illness event occurrings. Shaded areas represent 95% 
confidence intervals. The graph was  reproduced from Zenin et  al., 
Identification of 12 genetic loci associated with human healthspan. 
Commun Biol. 2019 Jan 30;2:41



755Immune age and biological age as determinants of vaccine responsiveness among elderly…

1 3

includes physiological and biochemical biomarkers, such 
as for example the study of Levine et al. that used ten 
biomarkers: i.e. C-reactive protein, serum creatinine, gly-
cated hemoglobin, systolic blood pressure, serum albu-
min, total cholesterol, cytomegalovirus optical density, 
serum alkaline phosphatase, forced expiratory volume, 
and serum urea nitrogen [28]. Other examples of biomark-
ers are systolic blood pressure, pulmonary vital capacity, 
creatinine, fasting glucose, as well as a Modified Mini-
Mental Status Examination score presenting a ‘Healthy 
Aging Score’[33], molecular or epigenetic markers such 
as telomere length [35] and DNA methylation [29], or 
metabolomic predictors [36]. Biological age should, 
however, also account for differences in the physiological 
status and risk for age-related diseases among individuals 
of the same chronological age. More importantly, meas-
ures of biological aging based on clinically observable 
data, as opposed to those using molecular measures such 
as epigenetic clocks and leukocyte telomere length, tend 
to better capture risks for death and diseases and to be 
more robust predictors of aging-related outcomes [29]. 
By studying clinical measures representative of the physi-
ological status of multiple organ systems (e.g. pulmonary, 
periodontal, cardiovascular, renal, hepatic, and immune 
function) repeatedly over a period of 12 years in middle-
aged adults (the Dunedin Study), Belsky et al. [30] showed 

that already at midlife, before the onset of age-related dis-
eases, an individual’s chronological age and biological age 
are divergent measures, with those who age more rapidly 
(i.e. who have an older biological age) being physically 
less able, showing cognitive decline and brain aging, self-
reporting worse health, and looking older (Fig. 2).

Levine et al. [29] showed that biological age can dif-
ferentiate between morbidity and mortality risks among 
chronological same-aged individuals. They further showed 
that using nine multi-system clinical chemistry biomark-
ers (albumin, creatinine, glucose, C-reactive protein, lym-
phocyte percent, mean cell volume, red blood cell distri-
bution width, alkaline phosphatase, and white blood cell 
count), the difference between an individual’s biological 
versus chronological age is highly predictive of mortality, 
although the size of this effect decreases with age [37]. Wu 
et al. recently showed that physiological composite score-
based biological age and its deviation from chronological 
age capture risks of death and all major aging-related mor-
bidity, including dementia (manuscript submitted). Basic 
to the definition of biological age in the HII program is the 
risk-capturing summary of routine multi-system clinical 
chemistry biomarkers as initially introduced by Levine that 
are generally available for large scale population cohorts. 
Because of its robustness in predicting aging-related 
outcomes, we consider Wu’s physiological composite 

Fig. 2  Biological versus chronological age in the Dunedin Study 
including 1037 young adults followed from birth to age 38 years. Bio-
logical age is normally distributed in a cohort of adults aged 38 years 
(left). Healthy adults who were aging faster exhibited deficits in 
physical functioning, showed evidence of cognitive decline, felt less 
healthy and were rated as looking older by independent observers 
(right). The figure shows binned scatter plots of the associations of 

biological age with grip strength, cognitive functioning, self-rated 
health and with facial aging. Each plotted dot point shows the mean 
for bins of data from N = 20 Dunedin Study members. Effect size and 
regression line were calculated from the raw data. Adapted with per-
mission from Belsky WD et al., Quantification of biological aging in 
young adults. Proc Natl Acad Sci USA. 2015 Jul 28;112(30):E4104-
10
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score-based biological age and its deviation from chrono-
logical age a better calibration tool for studying mechanis-
tic aging than chronological age.

Biological age as predictor of infectious 
diseases

As mentioned before, biological aging has been shown to 
be a stronger predictor for all-cause mortality and mortal-
ity from non-communicable diseases than chronological 
aging. However, it was not until the current COVID-19 
pandemic that associations between biological aging and 
the risk of mortality from infectious diseases were studied. 
Since COVID-19 emerged, it has become clear that people 
of older age, and in particular those with co-morbidities, 
are at higher risk to develop and die of severe COVID-
19 [1, 2, 24]. Applying the previously validated measure 
of biological age that was based on nine routine clinical 
biochemical markers, Levine and colleagues demonstrated 
that faster biological aging is associated with COVID-19 
severity [38]. Importantly, Levine et al. did not determine 
biological age in people at the time they were diagnosed 
with COVID-19, but assessed their biological age 10-to-
14 years prior to the onset of COVID-19. This was possi-
ble because the COVID-19 patients were previous partici-
pants of a large community cohort including over 500,000 
subjects recruited between the ages of 40 and 70 during 
2006 to 2010 in the United Kingdom (UK Biobank), and 
had routine clinical biomarkers determined at the time of 
recruitment. The observation that the deviation of biologi-
cal age from chronological age is a strong predictor for 
developing a severe infectious illness a decade or more 
later, is novel and supports the notion that accelerated 
biological aging is a strong predictor of severe disease at 
older age, including infectious diseases.

Immune age

Ahadi et al. [39] described four ‘ageotypes’, or biological 
pathways of aging, including: immunity, metabolic path-
ways, liver dysregulation, and kidney dysregulation. For 
each of these pathways, people may age at different rates. 
Like for other systems, changes in immune functioning 
over lifetime are likely less dictated by chronological age 
than by individual trajectories that may be influenced by 
genetics, epigenetics, and environmental factors [40–42]. 
‘Immune age’ may therefore be a predictor of infectious 
and non-communicable diseases and vaccine responsive-
ness at older age.

The human immune system involves more than 1500 
genes/proteins in many interconnected pathways and pro-
cesses [43]. The last decade has seen an explosion in high-
throughput technologies that allow us to study the human 
immune system in small volumes of blood based on the 
detection of multi-level changes in molecular immune 
pathways and networks. This includes but is not limited to 
platforms for RNA-sequencing, flowcytometry, and high-
performance liquid chromatography or mass spectometry 
for plasma proteomics and antibody glycosylation [44, 45]. 
Consequently, a holistic study of the immune system in 
relation to individual and population health and disease 
is now technically possible, and with that the opportu-
nity to phenotype Immune Age. Pulendran and colleagues 
[22] used this approach to explore immune pathways in 
response to Herpes Zoster vaccination in both younger 
and older adults, and identified immune and metabolic cor-
relates predictive of differences in vaccine immunity in 
older vs younger adults [22]. Another example is a study 
by Alpert et al. [46] who used an ‘omics’ approach applied 
to a longitudinal cohort of adults sampled multiple times 
over the course of nine years, to identify an immune age 
algorithm that was predictive of all-cause mortality. Pulen-
dran and Alpert both used isolated immune cell popula-
tions to phenotype cell gene expression profiles (transcrip-
tomics). Access to isolated blood immune cells, however, 
requires specifically designed, smaller-scale studies. Usu-
ally immune cells are not available from large community-
based population cohorts. In contrast, plasma samples are 
typically bio-banked at larger quantities. High-throughput 
platforms to analyse functional properties of antibody 
responses are now available and have been used to study 
immunity in vaccinated or infected humans [47, 48].

Antibodies play an important role in both immunose-
nescence and inflammaging: two processes that both define 
immune aging [49]. As mentioned, immunosenescence is 
an age-related weakening of the immune system´s ability to 
respond to danger signals and clear pathogens. One aspect 
of immunosenescence is a narrowing of the B-cell reper-
toire against non-self-antigens, and a failure of self-tolerance 
mechanisms to deplete B-cells recognizing self-antigens. As 
a result, the spectrum of antibodies recognizing pathogens 
and danger signals becomes smaller, while the spectrum of 
auto-antibodies is thought to increase with aging [50, 51]. 
Inflammaging is an age-related development of a chronic 
state of low-grade inflammation that is caused by a sustained 
activation of innate immune cells. Inflammasomes may play 
an important role in inflammaging and age-related diseases 
[52, 53].

Inflammasomes are protein complexes that are formed 
when specific receptors of innate immune cells recognize 
microbial or danger signals. Inflammasomes were first 
discovered by the team of Tschopp et al. [54] and a more 
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detailed description on inflammasomes and their function 
can be found in a review by Schroder and Tschopp. In brief, 
inflammasomes stimulate the production of the pro-inflam-
matory cytokines IL-1ß and IL-18, and lead to a pro-inflam-
matory type of cell death known as pyroptosis. The assumed 
primary role of inflammasomes is to mediate protection 
against invading pathogens, with pyroptosis leading to the 
death of infected cells and activation of adaptive immune 
responses to clear infection. A number of host mechanisms 
also suppress inflammasome activation, presumably in order 
to limit the extent of potentially dangerous immune acti-
vation. Aberrations in inflammasome-mediated signaling 
and control mechanisms may result in increased suscepti-
bility for infections and/or more severe disease symptoms, 
and could predispose to developing autoreactive immune 
responses. This may involve antibodies that can potentiate 
or suppress the inflammasome [47, 55, 56].

Antibody functionality is in part regulated through glycan 
structures present on the antibody’s constant region. Hun-
dreds of differentially glycosylated antibody variants can be 
present in an individual at any given time, some of which 
are associated with pro-inflammatory responses and others 
with anti-inflammatory properties. This large individual 
variability contributes to individual differences in function 
of the immune system. Aging, auto-immunity, non-commu-
nicable, and severe infectious diseases are all associated with 
immunoglobulin G (IgG) glycan species promoting inflam-
matory responses [47, 49, 57–59]. Glycans therefore may 
regulate the potentiating or suppressing effect of antibodies 
on innate immune responses. At the same time, antibody 
glycans may contribute to immune senescence as glycan spe-
cies expressed at older age may be associated with lower 
receptor binding and affinity, and hence possibly reduced 
pathogen clearance [58, 60].

By analysing IgG glycosylation in relation to chronologi-
cal age in a training set and in a subsequent validation set 
including more than 5000 individuals from four different 
European populations, Krištić et al. [61] developed a pre-
dictive model consisting of only three glycans, called ‘Gly-
can Age’: this model can predict chronological age with an 
error of 9.7 years, and explain nearly 60% of variation in 
chronological age and sex. In comparison, conservative age 
biomarkers such as telomere length accounted for as little 
as 15% to 25% of variance of age in this study. The “Glycan 
Age” index was also found to correlate with physiological 
markers that change with aging and possible predictors of 
biological age. This suggest that antibody glycosylation may 
be a predictor of biological age, and potent biomarker of 
immune age: two hypotheses that are fundamental and will 
be studied in the HII program.

Antibody glycosylation profiles that are progressively 
seen with aging are also associated with metabolic health 
[62]. Metabolic processes play both direct and indirect roles 

in inflammaging and age-related infectious and non-infec-
tious diseases [36, 63, 64]. Immune aging, risk for severe 
infectious diseases, and metabolomic health therefore are 
likely interrelated, and may be mediated through similar 
changes in antibody glycosylation. This interconnectivity 
of immune aging and metabolic pathways has become evi-
dent in recent studies of severe COVID-19 outcomes in older 
patients [25, 65–70], where inflammasome activation [71] 
and altered antibody glycosylation [72, 73] have been asso-
ciated with a reduced capacity of older individuals to clear 
the SARS-CoV-2 virus [74] and subsequent enhancement of 
hyper-inflammation responses [75]. Emerging observations 
that COVID-19 has the potential to enhance and accelerate 
processes of immunosenescence and inflammaging [76] is 
novel evidence that infectious diseases can negatively impact 
immune age. Hence, immune age may depend to a certain 
extent on infections that individuals have experienced in the 
past. Immunity and the ability to respond effectively to vac-
cination is thus shaped by a complex of interacting factors, 
including aging, immunosenescence, inflammaging, metabo-
lomics and antibody glycosylation.

The HII program

In order to decode mechanisms and rules of effective immu-
nity in aging populations, the Human Immunomics Initiative 
(HII) will leverage the strength of large prospective popu-
lation cohorts that provide a wealth of information on the 
health status and clinical endpoints of a large number of 
participants who are representative for the general popula-
tion. Given that bio-banks of population cohorts typically 
store plasma but not immune cells, HII will focus on high-
throughput analyses that can be conducted using plasma to 
identify biomarkers of immune age and phenotype humoral 
immuneresponses. This variant of “systems serology” [77, 
78] may include: phage-immunoprecipitation-sequencing 
(PhIP-Seq)-based methods for the comprehensive analysis 
of serum antibodies to human pathogens (“VirScan”) and 
self antigens (“peptidome”) developed by Stephen Elledge 
[79–83]; antibody glycosylation analysis as described above 
for Glycan age and in a further expanded approach, and addi-
tional analyses such as transcriptomics and metabolomics. 
Next to system serology, biological age as determined from 
routine clinical biochemical parameters will be used to char-
acterize the background of the aging person. When available, 
genetics will also be considered, as genetic loci have been 
shown to be associated with healthspan [23] as well as with 
glycosylation of IgG [84], and thus immune age (Fig. 3).

The program will consist of two phases, with phase 1 
aimed at exploring and validating the concept of immune 
age as based on systems serology parameters in relation to 
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biological age and age-related illnesses. In the second phase, 
biological age and immune age will be studied as predictors 
of vaccine responsiveness in vaccine studies nested within 
large prospective population-based cohorts in different geo-
graphical locations worldwide.

The first step of phase 1 will explore the association of 
chronological age, genetics, biological age and immune 
age based on glycan age and antibody responsiveness 
in a large-scale prospective cohort study. The model of 
biological age as developed by Levine, and later further 
built upon by Wu using routine clinical biomarkers, will 
be applied to select from each age group (e.g. participants 
aged 15 ± 2 years; 25 ± 2 years; etc. up to 85 ± 2 years at 
the time of sampling) subjects who are at the extremes of 
biological age, i.e. who have the youngest or oldest biolog-
ical age for their chronological age. Plasma samples from 

these subjects will then be analysed to define immune age 
based on antibody glycosylation analysis and deep sero-
logical profiling for non-self and self-antibodies (Fig. 4). 
This first phase is planned to be conducted in 2021.

In the second step of phase 1, the HII program aims to 
study the immune status at advanced age as characterized 
by biological age, glycan age and antibody responsiveness, 
as predictor of healthspan and life span in community-based 
cohorts of aged adults. Plasma samples will be analysed for 
immune age using the same technologies as in the first step 
in the program. Modelling of these B-cell immune biomark-
ers, together with biomarkers of biological age and genetic 
markers, against mortality and morbidity risk is expected to 
provide an optimised measure of immune age that is predic-
tive of healthspan and lifespan (Fig. 5).

In phase 2 of the HII program we will focus on translating 
the learnings of phase 1 on effective immunity at older age 
to a current real-life situation of protecting vulnerable aging 
population against infectious diseases, including COVID-
19. Like phase 1, phase 2 of the program will be conducted 
nested within existing population cohorts. The same instru-
ments and analytical assays as used and validated in phase 
1 will be applied to determine biological age and immune 
age. The aim is not to conduct clinical vaccine trials. Instead, 
responses to for example COVID-19 vaccines will be stud-
ied when study subjects receive such a vaccine as part of 
national vaccination programs. This can also involve influ-
enza-, pneumococcal- and pertussis vaccines that in many 
high-income countries are part of routine vaccination pro-
grams for elderly. The objective is to conduct this part of 
the program in different parts of the world, partnering with 
population cohorts in different geographical locations world-
wide, including Europe, the US, and Asia. This means that 
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we will not only study different populations but also differ-
ent vaccines, as different vaccines are available in different 
parts of the world. From each cohort, 100–200 elderly of 
distinct biological and immune age will be selected. Tools 
that will be used to define biological and immune age will 
be as they are informed and optimized during Phase 1 of the 
program (Fig. 6).

In our proposed approach, we aim to first construct 
immune age composite scores based on all-cause mortal-
ity, and then evaluate their associations with risks of both 
non-communicable and communicable diseases including 
immune responsiveness to various vaccines. The resulting 
data will provide information regarding how consistent 
these associations will be. To study immunity and pre-
dictability of immune responsiveness to vaccines, immune 
parameters need to be considered as described in Sect. 4. 
As mentioned, our “Immune Age” algorithm will be based 
on a selection of biomarkers from the entirety of param-
eters measured in the described Systems Serology that can 
be assessed in samples available in large-scale popula-
tion cohorts (to be able to derive and validate predictive 

algorithms). Standard regression models are limited in 
their prediction capacity, given the challenge to account 
for complex interactions and correlation involved with 
high-dimensional datasets (i.e., data collections with a 
multitude of variables). We therefore propose to apply 
artificial intelligence techniques, in particular cohort-
based machine learning methods [85, 86], such as elastic 
net regression [87], random forest models [88], and recur-
rent neural networks [89], for their ability to account for 
the complex correlation structures between multi- system 
serological measures. The predictive accuracy of algo-
rithms assumes rather complete input. Another important 
assumption is the sufficient sample size relative to the 
number of parameters assessed, to avoid data overfitting. 
K-fold cross-validation will be essential [85], to enhance 
the validation of robustness by using successive and mutu-
ally exclusive validation datasets.

The ultimate goal is to relate vaccine responsive-
ness as assessed by the clinical assays relevant for each 
of the different vaccines to biological and immune age, 
and identify crucial aging-related pathways that lead to 

Fig. 5  Design of phase 1 study 
to derive and validate an opti-
mized measure of immune age 
that is predictive of healthspan 
and lifespan
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underperformance and can potentially be adjusted, through 
interventions or vaccine optimization, to enhance vaccine 
effectiveness.

Summary

In summary, by standardization of methods and techniques 
to profile humoral immune responses in well-characterized 
human cohorts, the Human Immunomics Initiative strives 
to identify pathways that are crucial to improve vaccine-
induced protection in aging populations. The inclusion of 
geographically diverse populations, which will capture 
variation in a population’s immune status due to genetic 
and environmental differences, will strengthen the ability 
of the program to interrogate the aging human immune 
system and identify universal pathways of effective immu-
nity. It is anticipated that knowledge acquired through this 
program can be translated directly to study outcomes for 
other vaccines against other serious infectious diseases 
that negative impact the health- and lifespan of elderly.
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