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Abstract
The global pandemic of the 2019-nCov requires the evaluation of policy interventions to mitigate future social and economic 
costs of quarantine measures worldwide. We propose an epidemiological model for forecasting and policy evaluation which 
incorporates new data in real-time through variational data assimilation. We analyze and discuss infection rates in the UK, 
US and Italy. We furthermore develop a custom compartmental SIR model fit to variables related to the available data of the 
pandemic, named SITR model, which allows for more granular inference on infection numbers. We compare and discuss 
model results which conducts updates as new observations become available. A hybrid data assimilation approach is applied 
to make results robust to initial conditions and measurement errors in the data. We use the model to conduct inference on 
infection numbers as well as parameters such as the disease transmissibility rate or the rate of recovery. The parameterisation 
of the model is parsimonious and extendable, allowing for the incorporation of additional data and parameters of interest. 
This allows for scalability and the extension of the model to other locations or the adaption of novel data sources.

Keywords  Data assimilation · 2019-nCov · Inference · Bayesian updating · Compartmental model

Introduction

The global outbreak of n-Cov2019 and the possibility of 
severe social and economic costs worldwide requires imme-
diate action on suppresion measures. In order to evaluate 
the efficacy of past and future policy measures to fight and 
contain the spread of n-Cov2019, a robust and quantifiable 
analysis system is required. We propose a methodology for 
forecasting the spread of n-Cov2019 and show how to esti-
mate latent infection rates, accounting for high uncertainty 
in observation and model specification, which is done by 

combining real-time Bayesian updating with epidemiologi-
cal models.

To show the generalisability of our updating approach 
we first embed a standard SIR model in our framework and 
then develop a custom compartmental SIR model which is 
fit to data related to the spread of the coronavirus worldwide 
which we name SITR. The SITR model adds an additional 
compartment for patients under treatment T and allows for 
more granular inference on the underlying dynamics of 
the epidemic, separating confirmed cases under treatment 
with latent unconfirmed cases of Covid19. The models are 
embedded in a data assimilation framework, a form of recur-
sive Bayesian estimation [1], which conducts model updates 
when new observations become available. The assimilation 
scheme lends itself naturally to the problem because the 
procedure allows the model to dynamically adjust infection 
rates in real time, while taking into account the uncertainty 
in the data via the specification of covariance matrices.

The uncertainty quantification and choice of covarainace 
matrices is being analyzed using a hybrid data assimilation 
approach, which is applied to make results robust to initial 
conditions. We use the model to infer the amount of infected 
people and both, the disease transmissibility rate, as well as 
the rate of recovery. The time-varying parameter structure of 
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the model allows for the incorporation and analysis of policy 
action, such as if the shutdown of transportation or closure 
of schools affect transmissibility.

In line with other researchers, our model estimates indi-
cate that the number of infected people is a number of mag-
nitudes higher than the actual reported number of confirmed 
reported infections. We also find that compared to static 
models, updating the parameters in a dynamic fashion leads 
to an upward correction of the true number of infected peo-
ple as well as reducing forecasting errors.

We estimate both short term and long term dynamics in 
Italy, the United States and the United Kingdom, finding a 
peak of infections in the middle of March and a flattened but 
sustained number of infected cases in the United States and 
the United Kingdom. We furthermore analyze the transmis-
sibility rate and find that they decreased after imposed initial 
lockdown measures, but increased again after a loosening 
of restrictions end of May. The rest of the paper is struc-
tured as follows: Section two discusses related work. Section 
three and four introduce the dynamic model as well as the 
SITR compartmental model. Section five discusses how the 
uncertainty in the data is incorporated in the model. Sec-
tion six states discusses empirical results and section seven 
concludes.

Related work

The spread of the novel type of respiratory virus as well as 
the dramatic economic consequences trying to contain it has 
led to a rapid engagement of the scientific community, with 
many different areas of research being explored.

Using compartmental models in epidemiology, authors 
such as [2, 3] and [4] have done the first studies on the size 
of the outbreak in China. They applied standard SIR mod-
els with static parameters to estimate the basic reproductive 
number and analyze the exponential growth of the virus in 
Wuhan. The work of [4] in particular combines standard 
SEIR models with travel data obtained from Tencent and 
found that epidemic dynamics show exponential patterns in 
multiple major cities with a lag behind the Wuhan outbreak 
of about one to two weeks.

First studies using data assimilation for epidemiological 
modelling have been conducted by other authors such as [5] 
and [6], which studied the techniques on different cases such 
as influenza using standard SIR models, although none has 
considered the issue of the robust covariance estimates as 
discussed in [7] or [8].

Further studies such as [9] and [10] study time varying 
parameters in more detail, although only for standard SIR 
models with no relationship to the current corona virus 
outbreak. We are the first to conduct a study of the cur-
rent spread of 2019-nCoV using data assimilation. We 

furthermore contribute by providing a novel framework 
which enables the prior computation of covariance matrices, 
adding robustness to epidemiological assimilation models. 
Although many compartmental models are available, we 
base our initial studies on SIR models, since it allows us to 
verify the dynamics of the assimilation scheme as a robust 
benchmark and compare it to extensions of the model later 
on. We will specify the exact model choice and specification 
in the next section.

The adaptive epidemiological model

We introduce an adaptive epidemiological modelling frame-
work which combines a SIR model whose model param-
eters are time-varying with data assimilation techniques. We 
base our model on the most basic compartmental model, 
which is the SIR. Describing and implementing the assimi-
lation scheme in the basic structure of a SIR model allows 
us to analyze its initial performance and derive additional 
modifications later on. Further complexities will be intro-
duced when more granular data is available. The current 
confirmed cases are mostly symptomatic cases with many 
asymptomatic cases being unconfirmed due to limited test-
ing capacities.

For Covid19, a SEIR model adding an compartment for 
exposure is a possible candidate for further extensions. But 
given the lack of more granular data with all confirmed 
infection cases being symptomatic and no other data on 
exposure levels, adding additional parameters with insuf-
ficient data can lead to a bias of parameter estimates in the 
assimilation procedure, and also increases model complexity 
without adding understanding of the underlying mechanics 
of the Covid19 infections [11, 12]. The lack of meaning-
ful and accurate data which fits the model assumptions for 
more complex models strongly affects the performance of 
data assimilation and thus makes a sparse and parsimonious 
model preferable [1].

The standard SIR model

We start our analysis with a standard SIR model [13], which 
is a system of three interrelated non-linear ordinary differ-
ential equations without an explicit analytical solution. The 
dynamics of the model are given by:

(1)
dS

dt
= −�

IS

N

(2)
dI

dt
= �

IS

N
− �I
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where S denotes the susceptible population size, I the 
infected people who are not isolated from the population 
and R the recovered population. The total population is given 
by N. The parameters � and � denote the transmission and 
recover rate of the virus infection. Note that for the outbreak, 
the susceptible number S is observable, which we label as 
the population of the country under analysis. The recovered 
population R denotes the population not infectious anymore 
and being removed from the population, which for the stud-
ied examples is the number of confirmed cases, since con-
firmed cases are hospitalized and isolated and not infecting 
the general population anymore.

The adaptive DA‑SIR model

Data Assimilation (DA) is a technique to incorporate obser-
vations into a theoretical model where uncertainty is quan-
tified [1]. It allows for problems with uneven spatial and 
temporal data distribution and redundancy to be addressed 
such that models can ingest information. DA is a vital step 
in numerical modeling and has become a main component in 
the development and validation of mathematical models in 
meteorology, climatology, geophysics, geology and hydrol-
ogy [14]. Recently, DA is also applied to numerical simula-
tions of geophysical applications, medicine, biological sci-
ence and finance [15]. Data assimilation can be applied to a 
variety of problems where an uncertainty quantification has 
to be included [16] or where latent parameters need to be 
computed taking into account new observations.

The Adaptive DA-SIR model is a model which incorpo-
rates data assimilation with a compartmental SIR model. We 
use DA as an adaptive modelling approach which integrates 
new observations into our compartmental model to enhance 
the accuracy of forecasts as well as computing model param-
eters of interest, in our case � and � in the SIR model.

The SIR model in equations (1)–(3) can be discretized 
with respect to the time variable, giving the following 
equations:

For a given time step t and assuming to have observations 
of the variable Rt we denote here with Robs

t
 , the DA problem 

consists in computing the minimum of the cost function

(3)
dR

dt
= �I

(4)St+1 = St − �
ItSt

N

(5)It+1 = It + �
ItSt

N
− �It

(6)Rt+1 = Rt + �It

and

where Rpred is a predicted value generated by the SIR model, 
and where � and � denote the the background and the obser-
vation covariance matrices, representing an estimation of the 
errors in the data. To estimate the parameter, we minimize

Data assimilation is very sensitive to initial conditions and 
the choices of the covariance matrices, since they quantify 
uncertainty and determine how much weight is assigned to 
new observations which are assimilated into the model. Thus 
their calibration needs to be properly chosen, which we out-
line in detail in Sect. 5.

The data we use representing St , It and Rt is given by the 
official government numbers and is available at [17, 18]. 
The solution of the DA problem in (7) leads to a modified 
extended Kalman filtering algorithm where an SIR model is 
used to compute the forward steps, e.g. in the time window 
[t, t +M] . Where IDA

t
 are the values of It computed after the 

assimilation of Robs
t

 as in Eq. 8. To illustrate and put results 
into perspective, we compare results of our adaptive DA-SIR 
model with the common SIR model for an example case.

Both models use the same initial conditions given by the 
observed data. In Fig. 1 we compare model performance of 
the standard SIR model and show how assimilation of new 
observations generates updated model dynamics in the DA-
SIR model that do differ from standard SIR model predictions 

(7)J(I) =

t+�∑

i=t+1

||Robs
i

− R
pred

i
(I, �, �)||�−1

t
+ ||I − I

pred

t ||�−1
t

(8)IDA
t

= argmin
I

J(I)

(9)�t, �t = argmin
�,�

t+��

i=t+1

‖Robs
i

− R
pred

i
(IDA
t

, �, �)‖�−1
t

Fig. 1   Comparing estimates during early stages of the outbreak of 
confirmed cases R and unobservable amount of infected people I in 
Italy, using static and updating parameters
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by a wide margin, as is illustrated in the figure. Selected values 
of the graph are available in Table 1 where we compare esti-
mated confirmed cases and latent infection rates for both the 
static SIR, and dynamic DA-SIR model.

The dynamic model given by the solid lines fit the observed 
values of confirmed cases Rt and interpolates the number of 
infected people It . The dashed lines represent the standard SIR 
model and show how not updating the model from the initial 
conditions leads to overestimation of infectious cases if inter-
polating according to simple exponential SIR dynamics, with 
a inferior model fit when comparing the observed confirmed 
cases denoted in red. This illustrates how without updating the 
parameters the number of infected people is overestimated and 
the assimilation of new observations helps to adjust the trajec-
tory of likely infections in the future. Having shown the large 
difference between static and dynamic SIR models we next 
introduce a further refined extension of the dynamic assimila-
tion model.

The extended epidemiological assimilation 
scheme

The SITR model

Having illustrated the benefits of embedding the SIR model in 
a DA framework, we aim to further exploit the available data 
to do more fine tuned inference. In the previous case of the 
simple SIR model, both recovered and isolated patients were 
categorized as R. We revise the SIR model by introducing an 
intermediate compartment T. Here, T represents the number 
of people being treated, given by the difference between accu-
mulated confirmed cases and recovered or deceased patients 
R. Instead of just observing one variable, the number of con-
firmed cases, we are now observing two variables: the cur-
rently confirmed cases being treated T and removed infectious 
population due to recovery or being deceased R. The model 
is given by

(10)
dS

dt
= −�eI

(11)
dI

dt
= �eI − �I

The parameter �e
t
= �

St

Nt

 is the real transmission rate over 
time, taking into account the total population size N as in the 
SIR model. Assuming all the parameters � = [�e, �, �] time 
dependent, the SITR model in equations (10)-(13) can be 
discretized with respect to the time variable, giving the fol-
lowing equations:

which is a linearized approximation of the original SIR 
model with the additional compartment T. This provides the 
model prediction of the compartment states � = [S, I, T ,R]T 
given all parameters including �e . The other variables are the 
same as in the SIR model, where S denotes the susceptible 
population, I the infected people who are not isolated from 
the population. The parameters � and � denote the recovery 
and transition rate given by total of incubation and admis-
sion days. To extend the model and incorporate information 
not just of the last timestep, we introduce a model exten-
sion which bases model predictions on a sliding window of 
length � , similar to a 4D-VAR approach [1]. For a given time 
window [t + 1, t + �] and assuming to have observations of 
the variable Tt which we denote here with Tobs

t
 , the resulting 

assimilation scheme is given by

and

(12)
dT

dt
= �I − �T

(13)
dR

dt
= �T

(14)St+1 = St − �e
t
It

(15)It+1 = It + �e
t
It − �tIt

(16)Tt+1 = Tt + �tIt − �tTt

(17)Rt+1 = Rt + �tTt

(18)J(I) =

t+�∑

i=t+1

||Tobs
i

− T
pred

i
||�−1

t
+ ||I − I

pred

t ||�−1
t

(19)�
pred

t+1
= F(�

t
,�t)

Table 1   Selected data points for 
predicted number of infected 
and treated patients for a 
dynamic model and a static 
ODE model

Date 3/7/20 3/9/20 3/11/20 3/13/20 3/15/20 3/17/20 3/19/20

I
DA

t
67,050 108,540 178,152 289,418 422,682 525,755 534,073

I
t

85,190 137,428 221,401 355,915 570,180 908,422 1,434,817
R
DA

t
17,311 47,899 97,212 176,569 303,921 507,379 830,126

R
t

6705 10,582 14,595 21,030 30,945 37,853 49,265
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which in a first step infers the number of infected people I. 
To estimate the infection rate, in a second step we minimize

 which updates � conditioned on assimilated values of I. 
The resulting algorithm implements a 4D-VAR assimilation 
scheme in cost function (18), where forecasts and parameter 
estimates are based on a sliding window over time. Without 
preconditioning, the algorithm updates the model param-
eter values with the noise and observation matrices � and 
� being fixed hyperparameters. In order to present results 
which may have major policy implications, correct and 
robust estimation of initial conditions and hyperparameters 
is of high importance, we therefore introduce a formaliza-
tion and preconditioning of the covariance matrices � and 
� before applying the assimilation scheme, which is named 
hybrid data assimilation.

Uncertainty in infection rates

The data that is being observed is highly aggregated and 
suffers from uncertainty firstly due to human measurement 
error and secondly due to number of confirmed cases being 
a noisy subset of the true number of infections. Furthermore 
different definitions for confirmed cases or the cause of mor-
talities due to Covid19 in various countries adds noise and 
uncertainty to the data. The figures in Fig. 2 show example 
data of confirmed cases and mortalities.

This uncertainty in the data mandates a methodology that 
incorporates the uncertainty into the model. The DA-SIR 

(20)IDA
t

= argmin
I

J(I)

(21)�e
t
= argmin

�e

t+�∑

i=t+1

||Tobs
i

− T
pred

i
||�−1

t

model takes this uncertainty into account via the values of 
the covariance matrices � and �.

The state and observation covariance matrices � and � 
determine the weight of new observations when updating 
the parameters of the model. As is stipulated in the cost 
function in Eq. 7, the inverse of the covariance matrices 
are used to weight the terms of the observation and model 
operator. Thus very noisy data yielding large error covari-
ance matrices will result in less weight of the term contain-
ing the model operator, i.e. less certainty is put on the data.

Therefore the next section studies different covariance 
matrix setups to take data uncertainty into account. We 
include detailed steps for the computation of the covariance 
matrix in the appendix, where we outline the ensemble 
variational approach applied to generate robust covariance 
matrix estimates.

Sensitivity analysis

As we mentioned in Sect. 4.1, the choice of the covariance 
matrices strongly affect the efficiency and the accuracy 
of the assimilation approach. As the available data is not 
accurate enough, in order to justify our estimations, we run 
a sensitivity analysis to study the impact of our estimated 
parameters and covariance matrices into the model predic-
tions, using a subset of the data as illustration. To illustrate 
the hyperparameter sensitivity we compare the number of 
estimated infected people and we apply a mean root squared 
forecasting error (MRSFE) metric:

where ŷt,n represents the model prediction, yr
t,n

 the real obser-
vation with forecast horizons defined by h = 1 , and �0 = 1 

(22)MRSFE =

N�

n=0

�∑T−h

𝜏=𝜏0

�
(yrt,n − ŷt,n)

2

T − h − 𝜏0 + 1

�

Fig. 2   Number of mortalities and confirmed cases for the United States, Italy and the United Kingdom
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the starting period of the forecast for n variables. The results 
are given in Table 2.

The results in the table show that a naive setup using unit 
covariance matrices leads to detrimental fit of the model 
with relatively high forecasting errors compared to other 
covariance combinations, with generally better performance 
for high values for observation covariance matrix � , mean-
ing that prediction accuracy increases when less weight is 
put on the model dynamics and more weight on the observa-
tions. The lowest forecasting error for T is given with a unit 
observation matrix � and an error covariance matrix � of 10, 
showing that the optimal combination of covariance matrix 
values is non-linear and requires a carefully considered esti-
mation algorithm, as our proposed ensemble approach.

The computation of the covariance matrices is performed 
via a hybrid-assimilation approach where the covariance 
matrices are estimated using an ensemble approach. In this 
approach, the values of the covariance matrices are gener-
ated through sampling multiple synthetic trajectories using 
the SITR which is initialized with different parameters for 
each draw as well as calculating the empirical residual 
covariance matrix for the data. The details of the procedure 
are outlined in the appendix.

Figure 3 depicts different infection curves given the 
naive unit covariance setup on an example time period of 
the data in Table 2 and show that the dynamics are affected 
by the choice of the covariance matrices. The updated model 
assimilates new observations of infected patients and people 
recovered from the virus. The long run dynamics predict a 
recent spike in the number of infected people in the United 
Kingdom. The total number of people being treated in hos-
pitals follows with a small lag and is still growing towards 
the end of the example set.

The trajectories for patients under treatment are similar 
but the dynamics for latent infections contain some discrep-
ancies. The left hand side depicts the trajectory of estimated 
latent infections and patients over time using the ensemble 
approach with robust covariance matrices, whereas the right 
hand figure depicts results using a simple unit covariance 
setting. The left hand side depicts a much smoother and 
more well-behaved series of treated cases as well as infec-
tions, approximating a more reasonable stable growth path, 
whereas the unit covariance case would yield much more 
erratic, unrealistic fluctuations in infection numbers over 
time, with many sudden drops in infection numbers.

Table 2   Sensitivity analysis for different values of observation and 
model error covariance matrices. The first two rows show number of 
latent infected patients and patients under treatment predicted for the 
28.05.2020, the last day in the sample. The last two rows show the 

mean forecasting errors for treated patients and confirmed cases over 
the full sample for each covariance matrix configuration. The table 
exemplifies a bad fit with a high amount of forecasting errors when 
using a naive unit covariance setup

� Value 0.1 1 1 1 100 100
� Value 0.5 100 1 10 1 10

Treatment 230,760 231,336 230,792 231,517 230,782 230,934
Infections 210,311 2,102,126 2,102,549 2,102,431 2,102,576 2,102,603
MRSFE T 888 863 901 807 829 836
MRSFE R 39,476 39,291 39,431 39,381 39,459 39,469

Fig. 3   Number of infected and treated cases for the United Kingdom, depicting the difference between infection numbers for robust (left) and 
naive unit covariance matrices (right)
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Since the number of treated patients is observable, we use 
generated forecasts of treated persons as a forecasting metric 
to evaluate the model fit. The Tables 3 and  4 give excerpts 
from the forecasts values of infected and treated patients 
as well as the corresponding MRSFE for treated patients 
in hospitals. For the unit covariance Table 3 it is observ-
able how the unrealistic dip in forecasted infections which 
is visible in the right side plot in Fig. 3 causes a large spike 
in forecasting errors for treated people beginning of April 
onwards. Comparing it with a hybrid assimilation approach 
in table  4 reveals an overall lower number of forecasting 
error and better fit. The sensitivity of results confirm the 
need for a more rigorous algorithm of covariance estimates 
given the few and noisy datapoints.

Comparing the left and right bottom figures of Fig. 4, the 
transmissibility rate � shows less variation over time, which 
differs from the model without ensembles where strong vari-
ation is visible. Both estimates depict the downward trend of 
transmissibility. The high variability of the unit covariance 
matrix estimate implies that the transmissibility is affected 
more easily by external factors which change the dynamics 
of new infections. Thus the robust model estimates imply 
that, within the sample period, the transmission rate is more 
stable and unaffected by changes in observations because a 
uncertainty weight is given by the covariance matrix esti-
mates. We next proceed to apply out methodology to the full 
dataset analysing the US, the UK and Italy.

Fig. 4   Estimates for transmissibility rates beta for the United Kingdom, depicting the difference between infection numbers for robust (left) and 
unit covariance matrices (right)

Table 3   Selected data points for 
predicted number of infected 
and treated patients, as well 
as the MRSFE. Results are 
obtained using a naive unit 
covariance matrix

Date 03–09 03–16 04–12 04–19 05–21 05–28

Infected Patients 21 85 12,629 18,492 36,042 37,837
Treated Patients 300 1458 71,650 101,575 214,866 231,290
RSFE Treated 261 110 2049 1592 1308 498
RSFE Infections 43 114 4439 13,950 133,162 172,417

Table 4   Selected data points for 
predicted number of infected 
and treated patients, as well 
as the MRSFE. Results are 
obtained using the hybrid 
assimilation covariance matrix

Date 03–09 03–16 04–12 04–19 05–21 05–28

Infected Patients 31 154 16,755 32,023 168,831 209,999
Treated Patients 290 1405 72,363 101,051 214,629 232,074
RSFE Treated 10 53 713 524 237 784
RSFE Infections 10 69 4126 1353 132,789 172,162
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Empirical results

Trend analysis of international data

To illustrate the flexibility of our approach we apply our 
analysis to an international comparison with additional 
results for the United States, the United Kingdom as well 
as Italy.

For the models we focus on the number of infected peo-
ple extrapolated from the number of confirmed cases and 
recoveries. The data was obtained from the John Hopkins 
University Coronavirus Resource Center1. We compare 
data and show test results for different forecast horizons 
and parameter estimates. Given the confirmed coronavi-
rus cases we infer the amount of infected people and do 
forecasts to estimate the approximate development of the 
epidemic. We estimate the model on a sample of daily data 
until the 28/05/20 and evaluate models based on their fit 
and infection curves.

Although long-term forecasts are of limited use in fast 
changing scenarios such as the current pandemic, they nev-
ertheless can provide rough guidance on a potential peak 
of infection rates. Comparing cases for all three countries 
Fig. 5 depicts the long-run dynamics of the epidemic in Italy, 
where according to the model the peak of infections has 
already occurred in march, with a gradual decrease in infec-
tion numbers afterwards. The absolute number of patients 
under treatment decrease throughout April and May.

Comparing Italian results with the United States and 
the United Kingdom in Fig. 6 shows that the trajectories of 
Italy differs from both countries, with the UK and the US 
showing similar patterns. When infection numbers in Italy 

already peaked, the number of latent infections depicted in 
red has not decreased, but has merely stabilized at a high 
level, whereas the hospitalized cases under treatment are still 
growing, with a forecasted peak by end of April, which con-
trasts to the Italian peak in March. The number of infections 
are increasing within sample, as is the forecasted number of 
infections. The peak of latent infections stabilses at slightly 
below half a million cases in the US and 100,000 cases in 
the UK. For both countries the total number of infections 
tappers off by the end of September, whereas this already 
happens by July for the case of Italy.

The different levels of infections are likely due to differ-
ent inception dates of the pandemic, having started earlier 
in Italy than the United States, with an eventual peak of the 
United States not visible yet given the current data sample. 
The results indicate that the pandemic has reached a peak 
in Italy recently, the dynamics for the United Kingdom and 
especially the United States indicate that no plateau has been 
reached yet and that the number of infections is likely to 
increase.

Short term dynamics

The results given by the dynamic SITR model highlight 
the different phases of development in Italy and the United 
Kingdom and the United States, as is depicted in Figs. 7, 8 
and 9 respectively. The figures depict the predicted latent 
infection numbers, observed and predicted hospital treat-
ment numbers as well as the number of recoveries. We also 
provide accompanying tables where we report the MRSFE 
fit of observed confirmed and treated cases. We first discuss 
the trajectories of infections and follow up with a discussion 
on the parameter estimates in the next section.

Results align with the previous analysis where in Fig. 7 it 
is observable that in Italy the number of latent asymptomatic 
cases has decreased with the majority of patients being hos-
pitalized with a decreasing trend for both latent infections 
and hospitalized patients. The pattern of latent infections fol-
lows a shaped curve, with the majority of infections already 
peaked in march and now being on a trajectory exhibiting 
signs that the pandemic is under control. Table  5 provides 
additional details for the model performance, showing the 
number of latent infections and treated patients in the model. 
We show the forecasting errors when fitting the model in 
order to be able to compare model fit between all three coun-
tries. The forecasting errors depict how the model fits the 
data, with the estimates of treated patients performing par-
ticularly well compared to the UK and US (Tables  6 and 7). 
At the end of the sample on the 28th of May the number of 
latent infected patients is slightly above 180,000 and the 
number of patients under treatment is below 48,000, with the 
values exemplifying the decrease from the previous month.

Fig. 5   SITR results for Italy, showing estimates of latent infections 
(red), recoveries (black) and hospitalizations (green)

1  https​://coron​aviru​s.jhu.edu/map.html

https://coronavirus.jhu.edu/map.html
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Overall number of infected but not hospitalized patients 
increases initially and are starting to trend downward after a 
peak at the end of March.

The hospitalization numbers are displaying a curve like 
behaviour, following the infections with a lag. The maxi-
mum number of patients under treatment are reached in the 
middle of April, with a further flattening curve towards the 
end of the sample.

This is in contrasts to the United States and the United 
Kingdom as is visible in Figs. 9 and 8 where the number of 
latent infections has been relatively constant and exhibits 
less of an downward trending behaviour. With the number 
of hospitalized infections increasing, this is likely due to the 
early relaxation and less stringent quarantine restriction in 
the United States compared to Italy. When inspecting both 
infected and hospitalized compartments, results of the SITR 
model aligns with policy choices, with a flattening tendency 

Fig. 6   SITR results for the US (left) and UK (right), showing estimates of latent infections (red), recoveries (black) and hospitalizations (green)

Fig. 7   SITR short run dynamics Italy, showing recoveries (black), 
latent infections (blue) as well as observed and predicted numbers of 
treated patients (green)

Fig. 8   SITR short run dynamics in the United Kingom, showing 
recoveries (black), latent infections (blue) as well as observed and 
predicted numbers of treated patients (green)

Fig. 9   SITR short run dynamics in the United States, showing recov-
eries (black), latent infections (blue) as well as observed and pre-
dicted numbers of treated patients (green)
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for Italy, contrasting with results for the United States and 
the United Kingdom which followed later or with less rigor-
ous quarantine restrictions. Table  6 depicts selected entries 
and forecasting errors for the United Kingdom, where at the 
end of the sample in May the amount of latent infections is 
estimated to be around 209,000.

Table 7 shows selected values for the United States. Even 
taking account the higher amount of infection numbers in 
the United States, the high amount of prediction errors is 
noticeable, indicating that the data is noisy ad the model fit 
is not performing as well as in the other two cases.

Given these results the number of infections in the United 
States and the United Kingdom are likely to keep on grow-
ing, especially if the government is not considering the 
implementation of tighter regulations and quarantine meas-
ures. The results furthermore demonstrate how the assimila-
tion framework can be extended to multiple countries and 
provide robust results given the large uncertainty in infection 
estimates.

Lockdown effects on transmissibility

To compare the predicted dynamics of our model estimates 
and to evaluate policies, we extend the analysis and discuss 
the dynamics of the model parameters. Following the same 
framework, we analyze the estimated transmissibility rate 

Table 5   Selected data points for predicted number of infected and treated patients, as well as the MRSFE. Results are obtained using the hybrid 
assimilation covariance matrix for Italy

Date 03–09 03–16 04–12 04–19 05–21 05–28

Infected Patients 1187 4907 54,110 70,715 167,046 183,746
Treated Patients 7985 23,073 102,253 108,257 60,960 47,986
RSFE Treated 226 1156 1405 224 195 1958
RSFE Confirmed 292 1562 2619 199 18,980 25,316

Table 6   Selected data points for predicted number of infected and treated patients, as well as the MRSFE. Results are obtained using the hybrid 
assimilation covariance matrix for the UK

Date 03–09 03–16 04–12 04–19 05–21 05–28

Infected Patients 31 154 16,755 32,023 168,831 209,999
Treated Patients 290 1405 72,363 101,051 214,629 232,074
RSFE Treated 10 53 713 524 237 784
RSFE Confirmed 10 69 4126 1353 132,789 172,162

Table 7   Selected data points for predicted number of infected and treated patients, as well as the MRSFE. Results are obtained using the hybrid 
assimilation covariance matrix for the US

Date 03–09 03–16 04–12 04–19 05–21 05–28

Infected Patients 29 117 59,074 111,282 393,120 501,607
Treated Patients 559 4544 496,239 647,527 1,184,027 1,220,146
RSFE Treated 32 152 7806 3911 13667 15347
RSFE Confirmed 31 281 630,550 113,096 616,649 726,317

Fig. 10   SITR short run transmissibility dynamics for Italy
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over time in all three countries for which we depict weekly 
averaged results. Italy has seen the earliest surge of Covid19 
cases but kept its quarantine measures intact. The US and 
UK were followed by rising surges with a delay, but have 
had a looser approach to quarantine measures.

As given in Fig. 10, the infection rate � reached a high 
level of 0.3 from March 10th to to around March 20th, fol-
lowed by a gradual decreasing period with an infection rate 
bottoming out at a value of 0.2, showing initial successes in 
lockdown measures, which were enforced from the 9th of 
March onwards. This shows how the lockdown order has first 
stabilized the transmissibility rate and later led to a decrease. 
Towards the end of the sample with increasing relaxation 
of the lockdown measures an increase in � is observable. 
Variation of the parameters is very high towards the end of 
the sample, especially compared to examples of the UK and 
US, being evidence that the model parameter estimates are 
less clear on a strong increase in infection rates as in the US 
or the UK.

Overall,the Italian dynamics in Figs. 7 and 10 clearly 
indicate that the number of undetected latent infections 
is decreasing, with also the number of known and hospi-
talized cases having crossed their peak value as well and 
approaching a very low value in the sample. The infection 
rates indicate a decrease after the enforcement of quarantine 
measures, with a increase in transmissibility towards the end 
of the sample, although the model parameters exhibit strong 
variation in parameter estimates.

The United States have not reached a similar level as Italy. 
The trajectories in Fig. 11 illustrate that after a rapid growth 
and high peak value of transmissibility on the 26th of March, 
a strong decrease followed, showing the effectiveness of the 
lockdown measures that were enforced in many states from 
the 23th of March onwards. After an initial strong decrease 
of the transmissibility rate after imposing a lockdown, the 

infection rate has strongly increased again at the end of the 
sample, with the transmissibility values increasing from 
a trough of 0.18 on the 19th of April to 0.7 at the end of 
May. This, together with the trajectories in Fig. 9 show that 
restriction measures have only lead to initial successes with 
a stabilization of latent infection cases with the total num-
ber of cases still increasing. Especially towards the end of 
the sample at the end of May the amount of infections is 
increasing again.

The development of the United Kingdom is very similar 
to the United States, where initial lockdown measures man-
aged to decrease the number of latent infections, with the 
initial growth in infection numbers in the middle of March 
is not as strong as in the Italy or the US. This is explain-
able when taking into account the parameter estimates given 
in Fig. 12. The parameter plot visualises this development 
clearly, where transmissibility has initially decreased from 
the 4th of April onward and stabilized at a level of 0.2 and 
steadily increased from the end of April onwards at the end 
of the sample. The parameter estimates unequivocally indi-
cate a strong increase in infection rates, with the last esti-
mated peaking at around 0.6, although the relative increase 
from it’s lowest value throughout April is not as pronounced 
as in the US indicating that the increase in transmissibility 
has not been affected as much by changing policies or behav-
iour in the population as in the US.

Overall the results indicate that Italy is progressing well 
in containing the virus, the UK and especially the US are 
struggling to contain the virus in the medium-term. Espe-
cially the parameters indicate worsening developments, 
where in all three countries transmissibility has decrease 
initially due to quarantine measures but increased towards 
the end of the sample, although evidence is less clear and 
more uncertain for the Italian transmissibility rates.

Fig. 11   SITR short run transmissibility dynamics for the United 
States

Fig. 12   SITR short run transmissibility dynamics for the United 
Kingdom
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Conclusion and future work

We introduced a novel epidemiological assimilation scheme 
to forecast and evaluate the current corona pandemic world-
wide with a specific focus on the United States, the United 
Kingdom and Italy. We combined compartmental models 
in epidemiology with data assimilation schemes showing 
the advantage of real-time forecasting and parameter esti-
mation in the current crisis. We discussed the benefits and 
differences in infection numbers when models are updated 
on a daily basis compared to static modelling. We then intro-
duced a model extension allowing us to observe patients 
being treated, and patients being removed from the infec-
tious population, which we labelled SITR. Since models are 
sensitive to estimates of the covariance matrices, we add a 
hybrid ensemble approach which allows for robust covari-
ance matrix estimates. We find that in Italy the peak of infec-
tions has been reached already, with the number of patients 
being treated peaking middle of April. The trajectories of 
the US and UK are less clear, with a likely increase in the 
medium term, with both countries showing a strong increase 
in transmissibility rates after an initial decrease due to lock-
down measures.

The generalisability of our model allows the addition 
of different compartments to the model, and also allows 
for the implementation in a variety of cases and countries, 
where in our experiments the model gives forecasts and 
parameter estimates for three different countries. Since this 
work focused mainly on the methodology of providing a 
robust recursive Bayesian estimation for the current nCov-
2019 outbreak, we propose a further in depth-study of the 
parameter estimates and an extended comparative study 
across countries. Future work can add further complexities 
to the model, such as taking into account different mortality 
rates due to population age, cultural norms or quality of the 
healthcare system, providing applicability and robustness of 
the model for different datasets and scenarios.

We encourage both researchers and policymakers to run 
similar test results with data from other countries or on a 
more local level to estimate potential infection rates of out-
breaks and the rate of transmission to implement the correct 
policy measures to contain and mitigate adverse effects of 
the pandemic.
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Appendix

Hybrid data assimilation

In this section we describe the computation of the covari-
ance matrices as explained in Sect. 5. We estimate values 
for both the state and observation covariance matrices � and 
� by using an ensemble approach [7, 19]. The values for � 
are based on an estimate of the residual covariance matrix 
of the stationary observed time series. Following the cost 
function give by Eq. 7, with �b representing an individual 
background state vector, �b = [S, I, T ,R] . The full ensemble 
of state vectors is given by

If the ensemble mean is defined as �b , then �ens , the back-
ground state perturbations are computed via

In this case, �ens and �b are a n x N matrix called the ensem-
ble background perturbation matrix. The rank-deficient ver-
sion of the background error covariance matrix is defined 
as �∗ with

The ensemble is static, meaning that it does not evolve 
dynamically with time, but it still incorporates flow-depend-
ent information at the start time which is still beneficial for 
an extended Kalman filter or 4D analysis.

The way the ensembles are chosen and computed deter-
mines the accuracy of ensemble DA.

The ensemble needs to be computed in such a way that 
the time dependent variability of the background error 
covariance matrix, as well as the correlation of variables 
is captured by the sampling procedure.

The method we devise is to divide the collection of 
background states, �b based on the size of the ensemble 
into N equally sized groups with each group being denoted 
by �b

(i)
 meaning that ensemble members belong to the ith 

group. The mean and standard deviation of each group is 

(23)�b
(1)
, �b

(2)
,… , �b

(N)

(24)

�ens = �b =
1

√
N − 1

(�b
(1)

− �
b
, �b

(2)
− �

b
,… , �b

(N)
− �

b
)

(25)�∗ = �bT�b
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then estimated and used to sample the ensemble members 
from.

Algorithm 1 describes in detail how �ens is computed and 
ensembles are formed. The full background state matrix, �b 
is split into N groups each of size n × n

N
 . Both, the means as 

well as the standard deviations of the n rows are estimated 
and used to generate draws from a multivariate Gaussian 
distribution to form the ensemble. In order to form �ens , 
for each ensemble member the corresponding mean is esti-
mated and then subtracted, computing the standard devia-
tion. To put results into perspective we discuss the differ-
ence between standard assimilation and hybrid approaches 
by conducting a sensitivity analysis next.
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