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Abstract
Children born small for gestational age have a higher risk of intellectual disability. We investigated associations of birth 
weight for gestational age percentile and gestational age with risk of intellectual disability in appropriate-for-gestational-age 
(AGA) children. We included 828,948 non-malformed term or post-term AGA singleton children (including 429,379 full 
siblings) born between 1998 and 2009 based on data from the Swedish Medical Birth Register. Diagnosis of intellectual 
disability after 3 years of age was identified through the Patient Register. Using Cox regression models, we calculated haz-
ard ratios (HRs) with 95% confidence intervals (CIs) of intellectual disability among children with different birth weight 
percentiles and gestational age in the whole population and in a subpopulation of full siblings. A total of 1688 children were 
diagnosed with intellectual disability during follow-up. HRs (95% CIs) of intellectual disability for the low birth weight 
percentile groups (10th–24th and 25th–39th percentiles, respectively) versus the reference group (40th–59th percentiles) 
were 1.43 (1.22–1.67) and 1.28 (1.10–1.50) in population analysis and 1.52 (1.00–2.31) and 1.44 (1.00–2.09) in sibling 
comparison analysis. The increased risk for low birth weight percentiles in population analysis was stable irrespective of 
gestational age. A weak U-shaped association between gestational age and intellectual disability was observed in popula-
tion analysis, although not in sibling comparison analysis. These findings suggest that among AGA children born at term or 
post-term, lower birth weight percentiles within the normal range are associated with increased risk of intellectual disability, 
regardless of gestational age.
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Introduction

Intellectual disability refers to a group of disorders charac-
terized by significant cognitive limitations and limitation 
of adaptive functions that affects between 1 and 3% of the 
world’s population [1, 2]. Intellectual disability affects dif-
ferent aspects of life, including learning abilities, daily com-
munication, self-care, social activities, etc. [1]. Fetal growth 
restriction may affect brain development and impair brain 
maturation and cognitive function [3]. Small for gestational 
age (SGA), defined as birth weight for gestational age below 
the population’s 10th percentile, has been associated with 
lower IQ and intellectual disability [4, 5]. However, SGA is 
not identical to fetal growth restriction: some SGA infants 
are constitutionally small and have reached their growth 
potential, whereas larger infants, e.g., infants with appropri-
ate birth weight for gestational age (AGA, i.e., birth weight 
for gestational age between 10th and 90th percentiles), may 
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have not fulfilled their biological growth potential—the 
weight a fetus ought to achieve in the absence of pathologi-
cal conditions [6–8]. Low birth weight percentiles within 
the range of AGA have been associated with higher risk 
of neonatal neurological morbidity, such as convulsion and 
hypoxic ischemic encephalopathy, but rarely been investi-
gated for long-term neurological outcomes [5, 9]. The asso-
ciation between birth weight for gestational age percentile 
(hereinafter called birth weight percentile) and risk of intel-
lectual disability in AGA children has, to the best of our 
knowledge, not been specifically investigated in a nationwide 
population-based setting.

Preterm birth (< 37 gestational weeks) is another known 
risk factor for cognitive deficits [10]. The risk of intellec-
tual disability increases exponentially as gestational age 
decreases in preterm children [11, 12]. A similar trend of 
increasing risk by decreasing gestational age was recently 
shown in children born at term (37–41 weeks), whereas a 
trend of increasing risk by increasing gestational age was 
observed in children born post-term (≥ 42 weeks) [12]. The 
same study also suggested a joint impact of term or post-
term birth and SGA versus term birth and AGA. However, 
they did not explore the joint impact of birth weight percen-
tile and gestational age within the AGA group.

Based on data from Swedish national registries, we aimed 
to investigate associations of birth weight percentile and 
gestational age with risk of intellectual disability in non-
malformed, term or post-term, AGA children. We performed 
population analysis and sibling comparison analysis, the lat-
ter of which was to control for unmeasured familial con-
founding factors shared by siblings. We also assessed the 
joint impact of birth weight percentile and gestational age 
with regard to risk of intellectual disability.

Methods

Data sources

This was a cohort study based on data from several Swed-
ish national registries, including the Medical Birth Register, 
Patient Register, Cause of Death Register, Education Reg-
ister, Total Population Register, and Multi-Generation Reg-
ister. The unique personal identity number assigned to all 
Swedish residents enables individual record linkage between 
different registries [13]. The Medical Birth Register includes 
standardized antenatal, obstetric and neonatal information 
for almost all deliveries in Sweden [14]. Information is col-
lected from the first visit to antenatal care and throughout 
pregnancy, delivery, and the neonatal period. The Patient 
Register includes nationwide information on hospital dis-
charge diagnoses from 1987, and diagnostic information 
on hospital-based outpatient visits from 2001 onward [15]. 

The Cause of Death Register includes information on dates 
and causes of death [16]. The Education Register, updated 
yearly, includes information about highest level of formal 
education [17]. The Total Population Register provides 
information on individuals’ demographic characteristics 
[18]. The Multi-Generation Register contains information on 
personal identity numbers of all first-degree relatives (i.e., 
parents, children, and siblings) of all residents in Sweden, 
which allows one to identify fathers and full siblings [19].

Study participants

We identified all singleton live born infants between January 
1st, 1998 and December 31st, 2009 from the Medical Birth 
Register (n = 1,136,671). We excluded infants who had miss-
ing personal identity numbers (n = 13,980), infants whose 
mothers (n = 426) or fathers (n = 7724) had missing personal 
identity numbers, infants with missing data on gestational 
age (n = 872), and infants with missing (n = 3198) or implau-
sible (n = 702) data on birth weight for gestational age, the 
latter of which were defined as values below or above the 5 
times standard deviation from the mean. We restricted the 
study population to infants born AGA at term or post-term, 
and, as a result, we excluded 54,288 preterm infants, 85,721 
SGA infants and 103,202 large for gestational age (LGA) 
infants (i.e., birth weight for gestational age above the 90th 
percentile). We also excluded infants who were diagnosed 
with major malformations (including congenital malfor-
mations, deformations, and chromosomal abnormalities) 
as recorded in the Medical Birth Register or in the Patient 
Register during the first year of age (n = 30,077) (Supple-
mentary Table 1 for the Swedish version of International 
Classification of Diseases, tenth revision [ICD-10] codes 
for major malformations).

Since reliable and validated assessment tools of intel-
lectual function such as the Wechsler scale measurements, 
utilized in Sweden and globally, are only partially available 
from 2 years and 6 months of age [20], children were fol-
lowed from their third birthday until the date of first diag-
nosis of intellectual disability, date of death, date of emigra-
tion, or December 31st, 2012, whichever came first. As a 
result, children who died (n = 810) or emigrated (n = 6723) 
before 3 years of age were excluded, leaving 828,948 chil-
dren in the final analysis. Among the 828,948 children, 
429,379 (51.8%) were full siblings.

Exposure assessment

Birth weight was recorded for infants immediately after 
birth. Gestational age was assessed by ultrasonography 
offered during the early second trimester for 87.4% of all 
births, by the last menstrual period for 7.5% of all births, 
and by a postnatal assessment for 5.2% of all births in the 
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cohort. From the ultrasound-based, sex-specific Swedish 
reference curve for fetal growth [21], we calculated the 
Z scores of birth weight for gestational age, which were 
further converted to birth weight percentiles.

Birth weight percentiles were categorized into five 
groups: 10th–24th, 25th–39th, 40th–59th (reference), 
60th–74th, and 75th–90th percentiles [9]. Gestational age 
was categorized into five groups: 37–38 weeks, 39 weeks, 
40 weeks (reference), 41 weeks, and ≥ 42 weeks. Birth 
weight percentiles and gestational age were also analyzed 
as continuous variables.

Outcome ascertainment

Intellectual disability was defined as a hospital contact 
(either hospitalization or outpatient visit) with a clini-
cal diagnosis of ICD-10 codes F70-F79 from the Patient 
Register. The severity of intellectual disability was further 
classified using corresponding ICD-10 codes (Supplemen-
tary Table 1). In a sensitivity analysis, we redefined the 
outcome as at least two hospital contacts for intellectual 
disability on separate dates. Information about clinical 
diagnosis and dates of admission and discharge were 
extracted from the Patient Register.

Covariates

We identified maternal and neonatal variables that have 
been associated with both birth weight for gestational 
age/gestational age and risk of intellectual disability and 
might therefore confound the associations under study. 
As a result, we extracted information on maternal age at 
delivery [22, 23], parity [22, 24], smoking during preg-
nancy [7, 25], maternal height and weight collected at the 
first antenatal care visit, onset of labor [25, 26], mode of 
delivery [25, 27, 28], and child’s sex [22, 29] from the 
Medical Birth Register. Body mass index (BMI) in early 
pregnancy [22, 30] was calculated by dividing measured 
weight (kg) by self-reported height squared (m2). We also 
included information on calendar period of delivery from 
the Medical Birth Register to control for temporal change 
in obstetric practice. We further obtained information 
about maternal educational level [31, 32] from the Educa-
tion Register and country of birth [33, 34] from the Total 
Population Register. Maternal diabetic and hypertensive 
diseases [7, 25] were defined by a diagnosis of the cor-
responding ICD-10 codes registered in the Medical Birth 
Register (Supplementary Table 1 for ICD-10 codes). All 
covariates were analyzed as categorical variables (Table 1 
for categorization of covariates). 

Statistical analysis

We first calculated crude incidence rates of intellectual 
disability across categories of maternal and neonatal 
characteristics.

To assess the association between birth weight per-
centile and risk of intellectual disability, we calculated 
standardized incidence rates (SIRs) of intellectual dis-
ability across birth weight percentiles (every 10 percen-
tiles), using the distribution of sex and year of delivery of 
the entire study population as the standard. As our study 
involved time-to-event data, we performed Cox propor-
tional hazards regression and estimated hazard ratios 
(HRs) and 95% confidence intervals (CIs) of intellectual 
disability across the five birth weight percentile groups 
with 40th–59th as the reference. Ordinary Cox regres-
sion was used for population analysis, and stratified Cox 
regression for sibling comparison analysis. In the sibling 
comparison analysis, only full siblings discordant for both 
exposure (i.e., siblings in different percentile groups) and 
outcome (i.e., siblings with different time-to-event) were 
informative and thus were included. Attained age was used 
as the underlying time scale in the Cox models. To assess 
the potential dose–response pattern across the entire spec-
trum of birth weight percentiles, we performed an addi-
tional analysis by including children born SGA and LGA. 
To assess the potential non-linear relationship of intellec-
tual disability with birth weight percentile on a continuous 
scale, we additionally used restricted cubic splines with 
three knots positioned at the 10th, 50th and 90th percen-
tiles of the distribution of the exposure variable. HRs were 
estimated using the 50th birth weight percentile as the 
reference. A similar analytic approach as described above 
was performed to assess the association between gesta-
tional age and risk of intellectual disability.

In population analysis, HRs were estimated after adjust-
ment for maternal age, parity, educational level, country 
of birth, smoking, height, BMI, diabetic and hypertensive 
diseases, as well as child’s sex, calendar period of delivery, 
onset of labor, and mode of delivery. In sibling compari-
son analysis, adjustment was made for maternal age, par-
ity, smoking, BMI, diabetic and hypertensive diseases, and 
child’s sex, calendar period of delivery, onset of labor, and 
mode of delivery. To account for the correlation among full 
siblings, we used a robust sandwich estimator to correct 
standard errors in all models.

We estimated the joint impact of birth weight percentile 
and gestational age with risk of intellectual disability, using 
children born at 40 weeks and with a birth weight for ges-
tational age from 40th to 59th percentile as the reference 
category. Only population analysis was performed due to 
the small numbers of outcomes in the subpopulation of full 
siblings.
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Table 1   Maternal and neonatal 
characteristics and rate of any 
intellectual disability in term 
or post-term, non-malformed, 
appropriate-for-gestational-age 
children (N = 828,948)

Characteristics No. of children (N[%]) Intellectual disability

No. of cases Rate (95%CI)a

Total 828,948 1688 3.59 (3.42–3.77)
Mothers
 Age at child’s birth (years)
  < 20 13,964 (1.7) 35 4.28 (3.08–5.97)
  20–24 107,263 (12.9) 267 4.28 (3.79–4.82)
  25–29 261,025 (31.5) 514 3.32 (3.05–3.62)
  30–34 291,290 (35.1) 522 3.21 (2.94–3.50)
  ≥ 35 155,406 (18.8) 350 4.27 (3.85–4.74)

 Parity
  1 363,542 (43.9) 668 3.28 (3.04–3.54)
  2 309,995 (37.4) 618 3.51 (3.25–3.80)
  3 110,624 (13.3) 256 3.99 (3.53–4.51)
  ≥ 4 44,787 (5.4) 146 5.58 (4.75–6.57)

 Educational level (years)
  ≤ 9 72,647 (8.8) 297 7.44 (6.64–8.34)
  10–11 129,519 (15.6) 385 4.35 (3.94–4.81)
  12 217,397 (26.2) 398 3.36 (3.04–3.70)
  13–14 118,133 (14.3) 208 2.92 (2.55–3.35)
  ≥ 15 286,624 (34.6) 375 2.50 (2.26–2.76)
  Missing 4628 (0.6) 25 13.60 (9.19–20.13)

 Country of birth
  Non-Nordic 139,110 (16.8) 460 6.38 (5.82–6.99)
  Nordic 689,762 (83.2) 1227 3.08 (2.92–3.26)
  Missing 76 (0.0) 1 12.90 (1.82–91.57)

 Smoking during pregnancy
  No 713,192 (86.0) 1384 3.48 (3.31–3.67)
  Yes 75,094 (9.1) 218 4.55 (3.99–5.20)
  Missing 40,662 (4.9) 86 3.45 (2.79–4.26)

 Height (cm)
  < 160 105,464 (12.7) 291 4.90 (4.37–5.50)
  160–164 211,505 (25.5) 488 4.05 (3.71–4.43)
  165–169 242,573 (29.3) 438 3.17 (2.89–3.48)
  ≥ 170 257,073 (31.0) 437 3.02 (2.75–3.32)
  Missing 12,333 (1.5) 34 4.64 (3.31–6.49)

 Early pregnancy BMI
  < 18.5 17,261 (2.1) 35 3.57 (2.56–4.97)
  18.5–24.9 470,721 (56.8) 830 3.12 (2.92–3.34)
  25.0–29.9 179,222 (21.6) 390 3.90 (3.53–4.31)
  ≥ 30.0 72,825 (8.8) 219 5.63 (4.93–6.43)
  Missing 88,919 (10.7) 214 3.84 (3.36–4.39)

 Diabetic diseases
  No 820,494 (99.0) 1652 3.55 (3.38–3.72)
  Pregestational diabetes 2027 (0.2) 10 9.10 (4.90–16.92)
  Gestational diabetes 6427 (0.8) 26 7.66 (5.22–11.25)

 Hypertensive diseases
  No 808,555 (97.5) 1632 3.56 (3.39–3.74)
  Pregestational hypertension 4197 (0.5) 10 4.80 (2.58–8.92)
  Preeclampsia 16,196 (2.0) 46 4.84 (3.62–6.46)
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To assess the robustness of the overall associations 
assessed above, we conducted two sensitivity analyses. 
First, since we used complete case analysis in the pri-
mary analysis, results might have been biased due to 
missing values of covariates (missing proportions were 
0.01%, 0.6%, 0.8%, 1.5%, 4.9%, and 10.7% for maternal 
country of birth, educational level, onset of labor, height, 
smoking during pregnancy, and BMI in early pregnancy, 
respectively). We repeated the Cox regression analysis 
with missing values imputed through multiple imputa-
tion using chained equations. Ten imputations with 50 
iterations each were implemented. Second, to improve the 
validity of diagnosis of intellectual disability, we rede-
fined the outcome as having had an intellectual disability 
diagnosis in at least two hospital contacts, and repeated 
both population and sibling comparison analyses.

To evaluate whether the associations of birth weight 
percentile and gestational age with risk of intellectual 
disability differed by severity of intellectual disability, we 
performed secondary analyses where we calculated SIRs 
and estimated HRs for each type of intellectual disability 
in both population and sibling comparison analyses.

Data preparation was performed using SAS version 
9.4, SAS institute Inc, Cary, NC, USA. Statistical analy-
ses were performed using Stata version 15.1, StataCorp 
LP, College Station, TX, USA.

Results

A total of 1688 children were diagnosed with intellec-
tual disability during a median follow-up of 5.5 years 
(i.e., median age at the end of follow-up: 8.5  years). 
The median age at diagnosis was 6.1 years (interquartile 
range: 4.4–8.7 years). The following maternal charac-
teristics were related to higher incidence rates of intel-
lectual disability among children: low (< 25 years) and 
high (≥ 35 years) age at delivery, increasing parity, lower 
educational level, non-Nordic origin, smoking during 
pregnancy, shorter stature, overweight and obesity (BMI 
25.0–29.9 and ≥ 30, respectively), and diabetic or hyper-
tensive diseases. Incidence rates were also increased for 
children delivered in more recent years, for children deliv-
ered by induced labor and by cesarean section, and for 
boys (Table 1). Similar patterns were also shown in the 
subpopulations of exposure- and outcome-discordant full 
siblings (Supplementary Tables 2 and 3).

Primary analysis

For birth weight for gestational age, the SIRs of intellec-
tual disability peaked at the 10th birth weight percentile, 

a Rate is calculated as number of cases per 10,000 person-years

Table 1   (continued) Characteristics No. of children (N[%]) Intellectual disability

No. of cases Rate (95%CI)a

Children
 Sex
  Male 423,549 (51.1) 1083 4.51 (4.25–4.79)
  Female 405,399 (48.9) 605 2.63 (2.43–2.85)

 Calendar period of delivery
  1998–2001 248,531 (30.0) 845 3.44 (3.22–3.69)
  2002–2005 277,384 (33.5) 603 3.67 (3.38–3.97)
  2006–2009 303,033 (36.6) 240 3.98 (3.51–4.52)

 Onset of labor
  Spontaneous 688,715 (83.1) 1326 3.36 (3.19–3.55)
  Induced 133,292 (16.1) 342 4.86 (4.37–5.41)
  Missing 6941 (0.8) 20 3.68 (2.38–5.71)

 Mode of delivery
  Vaginal non-instrumental 654,010 (78.9) 1267 3.38 (3.20–3.57)
  Vaginal instrumental 64,686 (7.8) 143 3.98 (3.37–4.68)
  Elective cesarean section 52,469 (6.3) 119 4.35 (3.63–5.20)
  Emergency cesarean section 54,583 (6.6) 150 5.12 (4.36–6.00)
  Unspecified cesarean section 3200 (0.4) 9 3.81 (1.98–7.33)
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then decreased with increasing percentile, but leveled off 
from 50th percentile and beyond (Fig. 1a). For gestational 
age, the curve was less pronounced, and the lowest SIR 
was obtained at 40 weeks (Fig. 1b).

Compared with children born at the 40th–59th birth 
weight percentiles, children born at the 10th–24th per-
centiles were, in population analysis, at the highest risk 
of intellectual disability, but risks were also increased for 
children at the 25th–39th percentiles (Table 2). Similar 

estimates were observed in sibling comparison analysis. 
No differences in risks were observed for children born at 
larger birth weight percentiles (60th–74th and 75th–90th) 
versus the reference group. When we also included chil-
dren born SGA and LGA (< 10th and > 90 percentiles, 
respectively), a clear dose–response pattern was seen 
across the entire spectrum of birth weight percentiles for 
both population analysis and sibling comparison analysis 
(Supplementary Table 4). In population analysis, children 

Fig. 1   a Birth weight for 
gestational age percentiles and 
b gestational age and standard-
ized incidence rates of any 
intellectual disability (popula-
tion analysis). On the X axis of 
b, gestational age of 42 weeks 
represents 42 weeks and above

Table 2   Birth weight for gestational age percentiles and gestational age and risk of intellectual disability in non-malformed, term or post-term, 
appropriate-for-gestational-age children (complete case analysis) (N = 721,094)

In population analysis, model was adjusted for maternal age at delivery, parity, educational level, country of birth, smoking during pregnancy, 
height, BMI in early pregnancy, maternal diabetic and hypertensive diseases, as well as child’s sex, calendar period of delivery, onset of labor, 
and mode of delivery. In sibling comparison analysis, model was adjusted for maternal age at delivery, parity, smoking during pregnancy, BMI 
in early pregnancy, maternal diabetic and hypertensive diseases, and child’s sex, calendar period of delivery, onset of labor, and mode of delivery
a P = 0.050
b P = 0.053
c P = 0.054
d P = 0.041
e P = 0.049

Characteristics Any intellectual disability

Population analysis Sibling comparison analysis

No. of children No. of cases HR (95%CI) No. of children No. of cases HR (95%CI)

Birth weight for gestational age percentiles
 Total 721,094 1415 260,928 482
 10th–24th 136,786 338 1.43 (1.22–1.67) 43,641 113 1.52 (1.00–2.31)a

 25th–39th 141,509 307 1.28 (1.10–1.50) 53,677 120 1.44 (1.00–2.09)b

 40th–59th 189,271 318 Ref 69,628 103 Ref
 60th–74th 132,855 235 1.04 (0.88–1.23) 52,251 86 1.25 (0.79–1.97)
 75th–90th 120,673 217 1.03 (0.87–1.23) 41,731 60 1.25 (0.77–2.02)

Gestational age (weeks)
 Total 721,094 1415 245,625 456
 37–38 132,997 282 1.18 (1.00–1.39)c 40,987 80 1.33 (0.82–2.16)
 39 172,855 340 1.16 (1.00–1.34)d 60,831 113 0.96 (0.65–1.41)
 40 217,163 367 Ref 72,671 126 Ref
 41 140,970 284 1.17 (1.00–1.36)c 50,216 92 0.79 (0.51–1.24)
 ≥ 42 57,109 142 1.23 (1.00–1.50)e 20,920 45 1.07 (0.57–2.01)
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born at 37–39 weeks were at higher risk of intellectual dis-
ability than children born at 40 weeks, and children born at 
41 weeks or later were also at higher risk (Table 2). Such 
pattern was not observed in sibling comparison analysis. 
The smooth curves fitted for the relationships of birth 
weight percentile (continuous) and gestational age (con-
tinuous) with risk of intellectual disability displayed simi-
lar patterns (Supplementary Figures 1 and 2 respectively).

Table 3 shows the risks of intellectual disability by com-
binations of birth weight percentiles and gestational age. 
Compared with the reference group (40th–59th percentiles 
and 40 weeks’ gestation), children born at 10th–24th and 
25th–39th percentiles were at higher risk regardless of 
length of gestation. Birth weight percentiles between 60th 
and 74th rendered a pronounced risk increase for children 
born at 37–38 weeks. Children born at 75th–90th percen-
tiles had a significant risk increase when they were born 
at 42 weeks or later.

Sensitivity analysis

Relative to the complete case analysis, similar overall 
associations of birth weight percentile and gestational 
age with risk of intellectual disability were observed after 
multiple imputation (Supplementary Table 5). Analyses 
where outcome was redefined as at least two diagnoses of 
intellectual disability also provided similar results regard-
ing birth weight percentiles but showed weaker associa-
tions regarding gestational age (Supplementary Table 6).

Secondary analysis

Among all children with intellectual disability, 47% 
(n = 787) had mild impairment. The SIRs of intellectual 
disability by severity across birth weight percentiles and 
gestational age are shown in Supplementary Figures 3 and 
4 respectively. Similar to the overall association for any 
intellectual disability, the risk of mild intellectual dis-
ability was higher among children born at the 10th–24th 
and 25th–39th percentiles in population analysis and even 
higher in sibling comparison analysis. Risks of moderate 
and severe, other or unspecified types of intellectual dis-
ability were only significantly increased in children born 
at the 10th–24th percentiles in population analysis (Sup-
plementary Table 7). Risks of mild and other or unspeci-
fied types of intellectual disability were higher in chil-
dren born at 37–38 weeks, whereas risks of moderate and 
severe intellectual disability were higher in children born 
at 42 weeks or later in population analysis (Supplementary 
Table 8).
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Discussion

In this nationwide population-based study of non-mal-
formed, term or post-term, AGA children, we found that 
children born with lower birth weight percentiles had a 
higher risk of intellectual disability, both when compared 
with the general population, and with their siblings. A 
weak U-shaped association between gestational age and 
intellectual disability was observed in population analy-
sis, indicating that children born early term or post-term 
had a higher risk of intellectual disability, although such 
pattern was not observed among siblings. The increased 
risk for low birth weight percentiles was stable irrespec-
tive of gestational age. Children with higher birth weight 
percentiles were at higher risk of intellectual disability if 
they were born post-term.

In agreement with previous studies [35], we found that 
children born SGA were at increased risk of intellectual 
disability. However, few studies, including no sibling 
design studies, have investigated the association between 
fetal growth and intellectual disability among AGA chil-
dren. A previous Swedish study reported that birth weight 
for gestational age z-score was positively associated with 
intellectual performance among young men born at term, 
but did not examine differences between AGA and SGA 
or LGA [36]. A similar study on young Norwegian men 
showed that low birth weight for gestational age z-score 
was associated with higher risk of poor intellectual perfor-
mance, but high z-score (except > 3.0) was not associated 
with intellectual performance [37]. One study focusing 
on children noted that fetal growth, as assessed by per-
centage of optimal birth weight, was not associated with 
intellectual disability in AGA children [5]. This null find-
ing may be due to differences in study population char-
acteristics, statistical methods, and sample size. Our null 
results regarding higher birth weight percentiles seem 
to align with one previous study on intellectual capacity 
among LGA children compared with AGA children [38], 
but further studies are required to validate that higher birth 
weight percentiles in AGA children are not associated with 
risk of intellectual disability.

A number of studies have examined the association 
between gestational age and cognitive level in children 
born at term or post-term [12, 36, 39]. Our findings align 
with most of previous studies, which showed that early 
term or post-term birth was associated with a higher risk 
of intellectual disability, special education needs, and 
lower IQ scores [12, 36, 39–41]. The increased risk for 
children born post-term might indicate that a failure to be 
born full term (39–40 weeks) might relate to other congen-
ital developmental conditions or that perinatal asphyxia 
related to post-term birth might have an adverse impact 

on brain development compared to full term birth [42]. 
A recent Swedish study, including the full range of birth 
weight percentiles, found an evident U-shaped association 
between gestational age and intellectual disability among 
siblings [12]. Our findings of non-significant associations 
in sibling design, which were based on a larger population 
(national data) and included only AGA children, might not 
be directly comparable but provide complementary evi-
dence on variation in risk of intellectual disability among 
children born with appropriate weight and term gestation.

In this study, sibling comparison design was applied to 
control for unmeasured confounding factors shared by sib-
lings. While associations regarding birth weight percentile 
persisted in sibling comparison analysis, associations for 
gestational age attenuated. This supports that variation in 
gestational age might be explained more by maternal genetic 
effect and shared (sibling) environment than other pheno-
types such as birth weight [43]. Nevertheless, null findings 
may also imply an effect mediated only through familiar 
environment, which is completely “controlled away” in sib-
ling comparison analysis [44].

The risk increase for lower birth weight percentile did 
not differ within the range of gestation age (≥ 37 weeks). 
This suggests that even for full term infants, failure to reach 
their optimal growth potential may increase the tendency 
for intellectual and adaptive difficulties, potentially resulted 
from, e.g., reduced total brain volume [45, 46]. On the con-
trary, higher birth weight percentiles were associated with 
higher risk of intellectual disability for post-term children, 
although not significant for 60th–74th percentiles, lending 
further support for interventions to deliver infants if preg-
nancy prolongation is considered hazardous [42].

Mild intellectual disability accounted for almost half of 
the cases and shows similar associations as any intellectual 
disability. The higher risk of mild intellectual disability for 
lower birth weight percentiles in sibling comparison analy-
sis versus population analysis could, however, be a chance 
finding. The largely non-significant results for more severe 
and other types of intellectual disability may be attributed 
to lack of statistical power.

A strength of the present study is the use of prospectively 
and independently collected information on exposures, out-
come, and covariates based on Swedish national registries, 
which yielded sufficient statistical power to evaluate the risk 
of intellectual disability. Ultrasonography was performed 
to the majority of women (87% of births) which ensured 
optimal pregnancy dating. In addition to population analysis, 
we applied sibling comparison analysis to adjust associa-
tions for unmeasured genetic and environment factors shared 
by siblings. Although restriction to siblings might induce 
selection bias, this might be less of a concern in the present 
study which showed similar distributions of characteristics 
between the entire study population and the subpopulations 
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of exposure- and outcome-discordant siblings. Some poten-
tial limitations deserve mentioning. Complete case analysis 
may have induced bias due to missing covariate information, 
but the multiple imputation analysis, despite the assump-
tion of missing data at random [47], provided similar and 
reassuring results. Residual confounding due to unmeasured 
confounders, such as maternal nutrition and parental intel-
ligence, is possible [7, 48]. Multiple testing can lead to false 
positives but might be less of a problem in this study, as our 
main analysis only involved five statistical tests (Tables 2 
and 3). We did not have sufficient statistical power to explore 
the joint impact of birth weight percentile and gestational 
age in the sibling design.

In conclusion, lower birth weight percentiles are asso-
ciated with higher risks of intellectual disability in AGA 
children born term or post-term, irrespective of gestational 
age. This study enriches the knowledge of short- and long-
term neurological outcomes of non-optimal fetal growth in 
AGA infants [9].
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