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Abstract
Measures of causal effects play a central role in epidemiology. A wide range of measures exist, which are designed to give

relevant answers to substantive epidemiological research questions. However, due to mathematical convenience and

software limitations most studies only report odds ratios for binary outcomes and hazard ratios for time-to-event outcomes.

In this paper we show how logistic regression models and Cox proportional hazards regression models can be used to

estimate a wide range of causal effect measures, with the R-package stdReg. For illustration we focus on the

attributable fraction, the number needed to treat and the relative excess risk due to interaction. We use two publicly

available data sets, so that the reader can easily replicate and elaborate on the analyses. The first dataset includes

information on 487 births among 188 women, and the second dataset includes information on 2982 women diagnosed with

primary breast cancer.

Keywords Attributable fraction � Causal effect � Cox proportional hazards regression � Logistic regression �
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Introduction

A common aim of epidemiologic research is to estimate the

causal effect of an exposure on an outcome. To control for

potential confounders it is common to use logistic regres-

sion models for binary outcomes and Cox proportional

hazards (PH) regression models for time-to-event out-

comes. Methods for fitting these models are implemented

in all major statistical software, which makes them easily

accessible to applied epidemiologists.

Logistic regression models and Cox PH regression

models are parametrized in terms of log odds ratios and log

hazard ratios, respectively. These parameters are mathe-

matically convenient since they are unrestricted, i.e. they

can have values anywhere in the range (�1;1). Thus,

logistic regression models and Cox PH regression models

will never produce parameter estimates that are outside the

supported range. Arguably though, the log odds ratio and

the hazard ratio are usually not the most intuitive or

relevant measures of the exposure effect. Both are often

misinterpreted, in particular among applied epidemiolo-

gists and clinicians without statistical training [1–3], and

neither is directly informative about the public health

impact of the exposure, since they do not take the exposure

prevalence into account. Furthermore, when assessing

interactions between two exposures, it has been argued that

the risk differences are more appropriate than odds ratios or

hazard ratios [4].

There exist many other suggestions for causal effect

measures in the literature, which are supposed give more

relevant answers to substantive epidemiological research

questions [5]. For instance, the risk difference and the

survival difference are relatively easy to interpret and

communicate to non-statisticians. The attributable fraction

(AF) and the number needed to treat (NNT) are directly

informative about the public health impact of the exposure/

treatment. The relative excess risk due to interaction

(RERI), the synergy index (S) and the attributable propor-

tion due to interaction (AP) measure the amount of inter-

action between two exposures on the additive scale.

Methods have been developed to estimate these (and

related) measures from logistic regression models and Cox

PH regression models (see Rothman et al. [5] and the

references therein), and several of these methods have been
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implemented in statistical software. However, these

implementations are typically scattered across various

packages and commands, with diverse syntax and

functionality.

The aim of this paper is to show how one single R-

package, stdReg [6], can be used to estimate a wide range

of causal effect measures, including all those mentioned

above. Briefly, the package uses ‘regression standardiza-

tion’ to estimate standardized probabilities from a fitted

regression model. We described this procedure in a recent

paper [7]. In the current paper we show how the stan-

dardized probabilities can subsequently be contrasted to

form various measures of the exposure effect. A few simple

effect measures are already implemented in the stdReg

package, such as the risk difference and the risk ratio.

However, due to the wide range of existing measures, and

the creativity among epidemiologists to invent new mea-

sures, it would be virtually impossible to implement them

all. Rather, we show in this paper how an analyst may

obtain, with a minimal amount of programming, a desired

effect measure from the standardized probabilities esti-

mated by stdReg. We also show how the delta method

can be used to estimate the variance and construct confi-

dence intervals for the desired effect measure.

To our knowledge, there are currently only two pack-

ages in R that carry out regression standardization;

stdReg and margins. However, margins is restricted

to linear effects (e.g. differences) and cannot be used to

compute other measures of causal effects. Furthermore,

margins is restricted to generalized linear models and

does not support models for time-to-event data.

The paper is organized as follows. In ‘‘Regression

standardization’’ section we briefly review the method of

regression standardization; we refer to Sjölander [7] for a

more detailed account. In the subsequent sections we show

how the stdReg package can be used to estimate various

effect measures. For illustration we focus on the AF (‘‘The

AF’’ section), the NNT (‘‘The NNT’’ section) and the RERI

(‘‘The RERI’’ section). We use two publically available

datasets, so that the reader can easily replicate and elabo-

rate on the analyses. The first dataset includes information

on 487 births among 188 women, and the second dataset

includes information on 2982 women diagnosed with pri-

mary breast cancer. These datasets are borrowed from the

AF package [8]; the help files for this package provide a

thorough description of the data. We assume that the reader

has some experience with R programming, and with the

glm function from the stats package and the coxph

function from the survival package.

Regression standardization

Let X and Y be the exposure and outcome of interest,

respectively. For the moment we assume that the outcome

is binary (0/1), but we do not make any particular

assumption about the exposure. Let Yx be the potential

outcome [9, 10] for a given subject, if that subject would be

exposed to the fixed level X ¼ x. Finally, let pðYx ¼ 1Þ be
the counterfactual probability of the outcome if all subjects

in the population would hypothetically be exposed to

X ¼ x. We here use the term ‘population’ in the usual

epidemiological sense, i.e. as referring to a hypothetical,

infinitely large superpopulation, from which the observed

sample was drawn [5].

Counterfactual probabilities are cornerstones in the

modern theory of causal inference, and can be used to

define a wide range of effect measures. For instance, when

the exposure is binary the causal risk difference and risk

ratio are defined as pðY1 ¼ 1Þ � pðY0 ¼ 1Þ and

pðY1 ¼ 1Þ=pðY0 ¼ 1Þ, respectively. We will use counter-

factual probabilities to define the AF (‘‘The AF’’ section),

the NNT (‘‘The NNT’’ section) and the RERI (‘‘The RERI’’

section).

To estimate pðYx ¼ 1Þ without bias from observational

(i.e. non-randomized) data, it is necessary to control for

confounding. Let Z be a set of measured confounders and

let p(Y|X, Z) be the conditional distribution of Y, given X

and Z. If Z is sufficient for confounding control, then

pðYx ¼ 1Þ ¼ EfpðY ¼ 1jX ¼ x; ZÞg; ð1Þ

where the expectation on the right-hand side is taken over

the population distribution of Z [10]. Regression stan-

dardization attempts to estimate pðYx ¼ 1Þ by estimating

the right-hand side of (1), as follows. In a first step, a

regression model for p(Y|X, Z) is fitted to the observed data,

e.g. a logistic regression model. In a second step, the fitted

model is used to estimate pðY ¼ 1jX ¼ x; ZÞ for the fixed

level X ¼ x, and for each observed level of Z in the dataset.

In a third step, these estimates are averaged. In concise

notation we thus have that

p̂ðYx ¼ 1Þ ¼
Pn

i¼1 p̂ðY ¼ 1jX ¼ x; ZiÞ
n

; ð2Þ

where Zi is the observed level of Z for subject i,

i ¼ 1; . . .; n, and p̂ðY ¼ 1jX ¼ x; ZiÞ is the estimate of

pðY ¼ 1jX ¼ x; ZiÞ obtained from the fitted regression

model.

Using the same fitted model from the first step, the

second and third steps above are repeated for different

values of x. Once the counterfactual probabilities pðYx ¼ 1Þ
have been estimated for different values of x, we may

contrast these to obtain desired measures of the exposure

effect. When X is categorical with few levels (e.g. binary),
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it is possible to estimate pðYx ¼ 1Þ for all possible values of
x. When X is multilevel categorical or continuous, one

would typically have to focus on a few selected values of

interest.

In many scenarios, the outcome is a time-to-event, e.g.

time to death or time to relapse for cancer patients. To have

a simple and uniform notation we then let Y(t) be the

indicator of having the event before a fixed time-point t,

e.g. 5 years from birth or from age at cancer diagnosis.

Thus, pfYxðtÞ ¼ 1g is the counterfactual probability of

having the event before time t if all subjects in the popu-

lation would hypothetically be exposed to X ¼ x. With

these definitions, regressions standardization proceeds as

outlined above, for any fixed time-point t. However, when

the underlying outcome is a time-to-event, it is more

appropriate to use a Cox PH regression model than a

logistic regression model. First, because the Cox PH

regression model deals more naturally with censoring than

the logistic regression model. Second, because in the

analysis one may want to consider a range of different

time-points. If a logistic regression model is used, then a

new model has to be fitted for each time-point. In contrast,

one single Cox PH regression model may be used to esti-

mate pfYðtÞ ¼ 1jX ¼ x; Zg for arbitrary values of t. For

details on this estimation procedure we refer to Sjölander

[7].

Typically, we want to have the variance of the estimated

effect, so that we can, for instance, construct confidence

intervals and hypothesis tests. The asymptotic variance can

be obtained with the delta method [11], as follows. Let p be

the vector of counterfactual probabilities and let gðpÞ be

the desired effect measure. For instance, when X is binary

and we wish to estimate the causal risk difference we have

that p ¼ fpðY1 ¼ 1Þ; pðY0 ¼ 1Þg and gðpÞ ¼ pðY1 ¼ 1Þ
�pðY0 ¼ 1Þ. Let p̂ be the estimate of p and let varðp̂Þ be
the variance-covariance matrix for p̂. Let cvarðp̂Þ be an

estimate of varðp̂Þ. Using the delta method it can be shown

that the estimated effect gðp̂Þ has an asymptotic normal

distribution, with variance equal to

varfgðp̂Þg ¼ ogðpÞ
op

varðp̂Þ ogðpÞ
opT

: ð3Þ

An estimate of the variance, cvarfgðp̂Þg, is obtained by

replacing p and varðp̂Þ in (3) with p̂ and cvarðp̂Þ, respec-
tively. The estimated variance can, for instance, be used to

construct a standard Wald-type 95% confidence interval for

gðpÞ on the form gðp̂Þ � 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarfgðp̂Þg

p
. For parameters

that are restricted to positive values, such as the NNT

(‘‘The NNT’’ section), it is desirable to ensure that the

confidence interval is restricted to positive values as well.

This may be accomplished by first computing the standard

Wald confidence interval for the logarithm of the

parameter, then back-transforming to the original scale,

which gives the confidence interval exp½logfgðp̂Þg�
1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cvarfgðp̂Þg

p
=gðp̂Þ�. This transformed confidence

interval typically has a coverage probability closer to the

nominal level than the untransformed confidence interval.

We end this section by emphasizing that, in real

observational studies, it would rarely be possible to mea-

sure all confounders for the exposure-outcome association.

This means that it is rarely possible to estimate the coun-

terfactual probabilities such as pðYx ¼ 1Þ without bias.

However, if the study is well designed, and potential

confounders have been carefully selected, then the bias

may be relatively small.

The AF

Definition

The AF measures the proportion of outcome events that

would be prevented if the exposure was hypothetically

eliminated from the population. For binary outcomes the

AF is defined as

AF ¼ 1� pðY0 ¼ 1Þ
pðY ¼ 1Þ ; ð4Þ

see, for instance, Sjölander [12]. Here, pðY ¼ 1Þ is the

factual probability (prevalence) of the outcome in the

population of interest, and pðY0 ¼ 1Þ is the counterfactual

probability of the outcome if the exposure was eliminated

(set to 0). For instance, if pðY ¼ 1Þ ¼ 0:05 and

pðY0 ¼ 1Þ ¼ 0:01, then an elimination of the exposure

would prevent 1� 0:01=0:05 ¼ 80% of all outcomes. We

note that the definition in (4) does not assume that the

exposure is binary per se, but it does assume that there is a

natural ‘zero-level’, at which the exposure is completely

absent.

For time-to-event outcomes, the AF is defined as in (4),

but with Y and Y0 replaced by Y(t) and Y0ðtÞ, respectively,
for a given t [13, 14]. Thus, the AF measures the proportion

of outcome events that would be prevented before time t if

the exposure was eliminated at baseline (t ¼ 0). For many

time-to-event outcomes, the AF is a decreasing function of

t. For instance, if the outcome is death and t is 200 years

from birth, then the AF is 0, since no realistic exposure

intervention can prevent a subject from dying within 200

years from birth.

For details on model-based estimation of the AF we

refer to Sturmans et al. [15], Deubner et al. [16], Greenland

and Drescher [17], Chen et al. [13, 14], Sjölander and

Vansteelandt [18, 19].
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Estimation with logistic regression models

We illustrate the methods with the dataset clslowbwt

from the AF package. This dataset includes information on

487 births among 188 women. We will use the variables

lbw (a binary indicator of whether the newborn child has

low birthweight, defined as a birthweight smaller or equal

to 2500 g), smoker (a binary indicator of whether the

mother smoked during pregnancy), race (race of the

mother, coded as 1. White, 2. Black or 3. Other),

age (age of the mother), and id (a unique identification

number for each mother). Our aim is to estimate the pro-

portion of low birthweights that would be prevented if

nobody would smoke during pregnancy. We will control

for mother’s race and age in the analysis.

The first step is to fit a logistic regression model that

relates the outcome (low birthweight) to the exposure

(smoking) and measured confounders (race and age). This

is done by

which stores the fitted model into an object called fit.

The results are summarized, without ‘significance stars’, by

We observe that both smoking and race are significantly

(at 5% significance level) associated with low birthweight,

whereas age is not.

The next step is to estimate standardized probabilities.

This is done with the stdGlm function in the stdReg

package, by

which stores the standardization results into an object called

fit.std. The fit argument specifies a fitted generalized linear

(e.g. logistic) model and the data argument specifies the data

frameused tofit themodel. TheX argument specifies the nameof

the exposurevariable and thex argument specifiesfixedexposure

levels for which we wish to estimate the counterfactual

probability pðYx ¼ 1Þ. We here use a trick; by setting x to NA

each subject retains her own factual exposure level, so that the

factualoutcomeprobabilitypðY ¼ 1Þ is estimated.This is useful,
since the definition of AF in (4) involves pðY ¼ 1Þ. By setting x
to 0, the counterfactual probability pðY0 ¼ 1Þ is estimated. The
argument clusterid specifies a variable that defines clusters

in the data, e.g.motherswithmultiple births. This has no effect on

the estimates, butmakes thestdGlm function use the ‘sandwich

formula’ [20] to correct the variance of the estimates for within-

cluster dependencies. Summarizing the results gives

Thus, the factual probability of low birthweight is esti-

mated to be 31.0%, and the counterfactual probability, had

nobody smoked during pregnancy, is estimated to be 25.7%.

The fit.std object has (among other things) an element

called est, which is a vector containing the estimated

standardized probabilities in the order specified by the x

argument, and an element called vcov, which is the (esti-

mated) variance-covariancematrix of the estimates.We now

define a function that uses est to estimate the AF:

Using this function gives

Hence, the analysis suggests that around 17% of all low

birthweights would be prevented if nobody would smoke

during pregnancy. We emphasize that this causal inter-

pretation crucially hinges on race and age being sufficient

for confounding control.
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The stdReg package has a function confint, which

uses the delta method to compute a Wald-type confidence

interval for a parameter specified as a function of stan-

dardized probabilities. Using this function gives

The optional argument level controls the coverage

probability of the interval, and defaults to 0.95. The 95%

confidence interval is quite wide, and suggests that the true

AF may be as high as 34.8%. Furthermore, it includes the

value 0, so at 5% significance level we cannot reject the

null hypothesis that low birthweight is not prevented by

eliminating smoking.

Estimation with Cox PH regression models

We illustrate the methods with the dataset rott2 from the

AF package. This dataset includes information on 2982

women diagnosed with primary breast cancer from the

Rotterdam tumor bank in the Netherlands. Follow-up is

measured in months since diagnosis, and ranges from 1 to

231 months. We will use the variables rf (follow-up time,

measured in months, since diagnosis), rfi (an indicator of

whether the patient died or had a relapse before censoring),

chemo (an indicator of whether the patient received

chemotherapy, coded as ‘‘yes’’ or ‘‘no’’), age (patient’s

age at surgery), meno (menopausal status, coded as 0 for

pre and 1 for post), size (tumor size in three categories:

‘‘\ ¼ 20mm’’, ‘‘[ 20� 50mmm’’ and ‘‘[ 50mm’’), grade

(tumor grade; 2 or 3), nodes (the number of positive

lymph nodes, ranging from 0 to 34), pr (progesterone

receptors, fmol/l), and er (oestrogen receptors, fmol/l).

Chemotherapy is supposed to give the patients a better

prognosis, e.g. to prevent deaths and relapses. Our aim is to

estimate the proportion of deaths and relapses that would

be prevented if all patients received chemotherapy. We will

control for age, menopausal status, tumor size, tumor

grade, lymph nodes, progesterone and oestrogen receptors

in the analysis.

To be consistent with the notation in ‘‘Definition’’ sec-

tion, where we used values 0 and 1 for ‘unexposed’ and

‘exposed’, respectively, we first define the binary exposure

variable

We fit a Cox PH regression model that relates the out-

come (time to death/relapse) to the exposure (absence of

chemotherapy) and measured confounders (age, meno-

pausal status, tumor size, tumor grade, lymph nodes, pro-

gesterone and oestrogen receptors). This is done by

We here used the transformation expð� 0:12 � nodesÞ,
since previous authors have shown that this gives a better

model fit [21]. We obtain the results

We observe that the absence of chemotherapy is indeed

associated with a higher rate of death/relapse. We next use

the fitted model to estimate standardized probabilities. This

is done with the stdCoxph function in the stdReg

package, by
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The syntax for stdCoxph is similar to the syntax for

stdGlm. However, stdCoxph has an additional argu-

ment t, which specifies the time points at which to carry

out the standardization; we here consider a sequence of 10

through 60 months after diagnosis. summary(fit.std)

produces a long output displaying the results for each of

these time points separately (not shown here).

Similar to stdGlm, the stdCoxph function creates an

object with elements est and vcov. However, when cre-

ated by thestdCoxph function, the elementest is amatrix

containing estimated standardized survival probabilities,

1� p̂fYxðtÞ ¼ 1g, for the specified values of t (in rows) and

x (in columns). The element vcov is a list containing the

variance–covariance matrices at each value of t. We now

define a function that uses est to estimate the AF:

We use this function, and obtain point-wise 95% confi-

dence intervals, by

We plot the estimated AF and the confidence intervals by

The resulting plot is displayed in Fig. 1. We observe that

the AF declines with time, from 18.4% to 14.2%, at 10 and

60 months after diagnosis, respectively. Thus, the analysis

suggests that 18.4% of all deaths/relapses that occurred

before 10 months after diagnosis would have been pre-

vented if all patients had been given chemotherapy. When

considering a time window up to 60 months after diagnosis,

only 14.2% would have been prevented. The point-wise

95% confidence intervals exclude the value 0 everywhere

in the time range, which means that we have statistically

significant (at 5% significance level) evidence for a

preventative effect of chemotherapy everywhere in the

time range.

The NNT

Definition

The NNT is supposed to measure the average number of

subjects that would have to be treated, among those that are

factually untreated, to prevent one unfavorable outcome

event. In the literature, the NNT is usually defined for

binary outcomes and binary treatments as

1

pðY ¼ 1jX ¼ 0Þ � pðY ¼ 1jX ¼ 1Þ ; ð5Þ

where pðY ¼ 1jX ¼ 0Þ and pðY ¼ 1jX ¼ 1Þ are the prob-

abilities of the outcome among the untreated and treated,

respectively [22]. However, this definition implicitly

assumes that there is no confounding, and is thus in prac-

tice restricted to randomized control trials. In the presence

of confounding, pðY ¼ 1jX ¼ 0Þ may very well be much

larger than pðY ¼ 1jX ¼ 1Þ even in the absence of a causal

treatment effect, thus falsely implying a small NNT.

To derive a causal definition of the NNT, let N be a fixed

number of untreated subjects. Among these, NpðY ¼ 1jX ¼
0Þ subjects will on average have the outcome. Suppose now

that we would treat all N subjects. Under this counterfac-

tual scenario, the probability of the outcome is

pðY1 ¼ 1jX ¼ 0Þ; that is, the probability of the outcome if

everybody would be treated among those that are factually

untreated. Thus, among those N subjects that are factually

untreated, NpðY1 ¼ 1jX ¼ 0Þ subjects would on average

have the outcome if all were treated. Setting NpðY ¼
1jX ¼ 0Þ � NpðY1 ¼ 1jX ¼ 0Þ ¼ 1 and solving for N gives

NNT ¼ 1

pðY ¼ 1jX ¼ 0Þ � pðY1 ¼ 1jX ¼ 0Þ : ð6Þ

In the absence of confounding, the potential outcome Y1 is

equally distributed among treated and untreated, so that

pðY1 ¼ 1jX ¼ 0Þ ¼ pðY1 ¼ 1jX ¼ 1Þ ¼ pðY ¼ 1jX ¼ 1Þ,
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and the causal definition in (6) simplifies to the usual

definition (6) in the literature.

Estimation of the NNT requires a minor deviation from

the recipe outlined in ‘‘Regression standardization’’ sec-

tion. Because the counterfactual probability pðY1 ¼ 1jX ¼
0Þ only applies to the subset of the population with X ¼ 0,

we have to replace the averages on the right-hand sides of

(1) and (2) with the averages among this subset. We thus

have that

pðY1 ¼ 1jX ¼ 0Þ ¼ EfpðY ¼ 1jX ¼ 1; ZÞjX ¼ 0g; ð7Þ

and

p̂ðY1 ¼ 1jX ¼ 0Þ ¼
Pn

i¼1ð1� XiÞp̂ðY ¼ 1jX ¼ 1; ZiÞPn
i¼1ð1� XiÞ

:

ð8Þ

For time-to-event outcomes, we define the NNT as in (6),

but with Y and Y1 replaced with Y(t) and Y1ðtÞ,

respectively. Thus, the NNT measures the average number

of subjects that would have had to be treated at baseline

(t ¼ 0), among those that were factually untreated, in order

to prevent one unfavorable outcome event before time t.

For details on model-based estimation of the NNT we

refer to Bender et al. [23] and Laubender and Bender [24].

Estimation with logistic regression models

We illustrate the methods with the clslowbwt dataset.

We define the ‘treatment’ as absence of the smoking during

pregnancy. With this definition, the NNT is interpreted as

the average number of smokers that would have to refrain

from smoking during pregnancy, in order to prevent one

low birthweight.

To be consistent with the notation in ‘‘Definition’’ sec-

tion, where we used values 0 and 1 for untreated and

treated, respectively, we first define the treatment variable

We fit the logistic regression model

We use the fitted model to estimate standardized prob-

abilities:

The subsetnew argument specifies a subset of

observations to be used when estimating the standardized

probabilities. We note that, although we have not used it

here, the glm function has a subset argument that allows

for subsetting when fitting the regression model. This is

different from subsetting when standardizing; thus we have

used the term ‘subsetnew’ for the latter. As argued in

‘‘Definition’’ section we only wish to standardize over the

untreated (i.e. the smokers) when estimating the NNT; this

is achieved by setting subsetnew=nosmoke==0. We

note that, by setting x to NA within this subset, we estimate

the factual outcome probability among the untreated;

pðY ¼ 1jX ¼ 0Þ. Summarizing the results gives

10 20 30 40 50 60

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

time since diagnosis (months)

A
F

Fig. 1 The estimated AF (solid line) as a function of time since

diagnosis, together with point-wise 95% confidence intervals (dashed

lines)

Estimation of causal effect measures with the R-package stdReg 853

123



Thus, the factual probability of low birthweight is esti-

mated to be 41.5%, and the counterfactual probability, had

nobody smoked, is estimated to be 28.4%. We emphasize

that these figures only apply to those who factually did

smoke. In contrast, the figures obtained in ‘‘Estimation

with logistic regression models’’ section by summary(-

fit.std) apply to the whole population (i.e. both smokers

and non-smokers).

We define a function that estimates the NNT

Using the function gives

Hence, the analysis suggests that smoking during preg-

nancy must be prevented for around 7.6 women, in order to

prevent one low birthweight. A 95% confidence interval is

obtained by

Setting type=‘‘log’’ forces confint to first com-

pute a confidence interval for the logarithm of the NNT,

then backtransforming to the original scale. This trans-

formed confidence interval only includes positive values,

as it should, but it is quite wide and suggests that the true

NNT may be as high as 21.2.

Estimation with Cox PH regression models

We illustrate the methods with the rott2 dataset. We aim

to estimate the average number of patients that would have

had to be treated with chemotherapy, among those that

were factually untreated, in order to prevent one death/

relapse before a specific time-point t.

We first fit the Cox PH regression model

We use the fitted model to estimate standardized prob-

abilities among those that are untreated:

We define a function that estimates the NNT:

We plot the estimated NNT together with point-wise

95% confidence intervals

854 A. Sjölander

123



The resulting plot is displayed in Fig. 2. We observe that

the NNT declines with time, from 68.6 patients to 13.8

patients at 10 and 60 months after diagnosis, respectively.

Thus, the analysis suggests that 68.6 patients would have

had to be treated, among those that were factually

untreated, in order to prevent one death/relapse before 10

months. When considering a time window up to 60 months

after diagnosis, it would have been enough to treat 13.8

patients.

The RERI

Definition

The RERI is usually defined for two binary exposures. To

follow the notation in ‘‘Regression standardization’’ section

it is convenient to recode the two exposures into one cat-

egorical exposure with levels 00 (both exposures equal to

0), 01 (first exposure equal to 0, second equal to 1), 10 (first

exposure equal to 1, second equal to 0) and 11 (both

exposures equal to 1). The (causal) RERI is defined as

RERI ¼ pðY11 ¼ 1Þ � pðY10 ¼ 1Þ � pðY01 ¼ 1Þ þ pðY00 ¼ 1Þ
pðY00 ¼ 1Þ ;

ð9Þ

where, as before, pðYx ¼ 1Þ is the counterfactual proba-

bility of the outcome if everybody would be exposed to

level X ¼ x.

The numerator in (9) is the additive interaction between

the two exposures. It has been argued that additive inter-

action is more useful for assessing the public health

importance of interventions than interactions on other (e.g.

multiplicative) scales. Furthermore, additive interactions

can sometimes be used to infer the presence of certain

‘mechanistic/biologic’ interactions (see [4] and the refer-

ences therein). Because the RERI is defined as the additive

interaction divided with the positive constant pðY00 ¼ 1Þ,
the RERI will always have the same sign (positive, nega-

tive or zero) as the additive interaction. We note that there

is a wide variety of interaction measures in the epidemio-

logic literature, and we refer to VanderWeele and Knol [4]

for a discussion of their interpretations and relative merits.

For time-to-event outcomes, the RERI is defined as in

(9), but with Yx replaced with YxðtÞ for all x. Thus, the

RERI becomes a function of time t.

Estimation with logistic regression models

We again illustrate the methods with the clslowbwt

dataset, and we let the two exposures of interest be

smoker and race. Estimating the causal effect of race

poses two important problems. First, it can be argued that

the underlying counterfactual query (e.g. ‘what would the

probability of the outcome be if everyone was black/

white?’) is vague, and that the causal effect of race is thus

ill-defined [25]. Second, for any given outcome there is

arguably a huge number of risk factors that also correlate

with race, and thus the potential for unmeasured con-

founding is enormous. We ignore these problems here,

since our analysis merely serves as an illustration.

To make race binary we restrict the analysis to women

who are either black or white, and we define a new four-

level exposure as
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Fig. 2 The estimated NNT (solid line) as a function of time since

diagnosis, together with point-wise 95% confidence intervals (dashed

lines)
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We fit the logistic regression model

The subsetting on race!=‘‘3. Other’’ restricts the

analysis to women who are either black or white. We use

the fitted model to estimate standardized probabilities:

When the exposure is a factor variable, the stdGlm

function by default standardize at all exposure levels,

which makes it unnecessary to specify the x argument.

Summarizing gives

There appears to be a strong heterogeneity in the risk of

low birthweight between the four exposure groups. Among

black non-smokers (x ¼ 01) the risk of low birthweight is

9.6%, whereas among white smokers (x ¼ 10) the risk is

43.7%.

We define a function that estimates the RERI

and we use this function to estimate the RERI together

with a 95% confidence interval

The estimated RERI is equal to 0.61 and the 95% con-

fidence interval includes 0. Thus, we cannot rule out the

null hypothesis of no additive interaction between smoking

and race.

Estimation with Cox PH regression models

We again illustrate the methods with the rott2 dataset,

and we let the two exposures of interest be nochemo and

grade.

We first define a new four-level exposure:

We fit a Cox PH model and use the fitted model to

estimate standardized probabilities

856 A. Sjölander

123



We define a function that estimates the RERI:

and we use this function to plot the estimated RERI

together with point-wise 95% confidence intervals

The resulting plot is displayed in Fig. 3. We observe that

the RERI decreases slightly with time, from 0.28 at 10

months after diagnosis, to 0.16 at 60 months after

diagnosis.

Discussion

Measures of causal effects play a central role in epidemi-

ology. Using appropriate measures when summarizing the

results is crucial to make the analysis relevant from a

public health perspective. In this paper we have shown how

a wide range of effect measures can be estimated with the

R-package stdReg, with a minimal effort of programming

from the analyst. We have specifically focused on the AF,

the NNT and the RERI, but in principle any effect measure

can be estimated along the same lines as these, provided

that the measure can be written as come contrast between

standardized probabilities.

If the confounders included in the regression model are

sufficient for confounding control, then standardization

estimates the counterfactual probability of the outcome,

had everybody in the population attained a fixed level of

the exposure. In this sense, standardization estimates pop-

ulation (or marginal) causal effects. An alternative is to use

the fitted regression model to estimate causal effects at

specific levels of the confounders, i.e. subpopulation (or

conditional) causal effects. In the standard use of logistic

regression and Cox PH regression it is assumed that the

odds ratio and hazard ratio, respectively, are constant

across levels of the confounders. However, these models

generally imply that other measures, such as the AF and the

NNT, vary across confounder levels. To present condi-

tional causal effects, other than the odds ratio of hazard

ratio, the analyst would then typically have to restrict

attention to a few selected confounder levels, which makes

the results less general than when presenting marginal

causal effects.

We emphasize that, although slightly beyond the scope

of our paper, careful model selection is crucial for esti-

mation of causal effects, and rather different than model

selection for prediction. When the aim is to make predic-

tions, one usually attempts to include variables that are

strongly associated with the outcome, regardless of the

underlying mechanism. Such variables can be selected by

fairly automatized procedures, such as step-wise regres-

sion. When the aim is to estimate causal effects, one should

attempt to include variables that are confounders for the

exposure–outcome relationship. Such variables are often

strongly associated with the outcome. However, the reverse

does not hold; a variable may be strongly associated with

the outcome, yet it is not a confounder, and may lead to

substantial bias if included in the regression model [10].

The stdReg package uses a fitted regression model to

carry out standardization. In this paper we have focused on

logistic regression models and Cox PH regression models,

since these are the most common models in epidemiology.
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Fig. 3 The estimated RERI (solid line) as a function of time since

diagnosis, together with point-wise 95% confidence intervals (dashed

lines)
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More generally though, the function stdGlm can be used

to carry out standardization with any type of generalized

linear model fitted by the glm function, e.g. linear

regression or probit regression, as described by Sjölander

[7]. The stdReg package also contains a function for

standardization with shared frailty gamma-Weibull models,

stdParfrailty, which is described by Dahlqwist et al.

[26]. In the future we plan to extend the package even

further, to allow for standardization with semiparametric

frailty models and generalized linear mixed models.

All code in this paper is available at the HTML version

of R’s online documentation, which is accessed by

help.start().
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8. Dahlqwist E, Sjölander A. AF: model-based estimation of con-

founder-adjusted attributable fractions. R package version 0.1.4;

2017.

9. Rubin D. Estimating causal effects of treatments in randomized

and nonrandomized studies. J Educ Psychol.

1974;66(5):688–701.

10. Pearl J. Causality: models, reasoning, and inference. 2nd ed. New

York: Cambridge University Press; 2009.

11. Casella G, Berger R. Statistical inference. 2nd ed. Pacific Grove,

CA: Duxbury; 2002.
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