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Abstract. Despite considerable progress in unravel-
ling the genetic basis of dyslipidemias, most findings
are based on families with extreme phenotypes. We
studied lipid levels in an extended pedigree ascer-
tained irrespective of phenotype from the population
of a recent genetic isolate in the Netherlands. Herit-
abilities of plasma lipid measures were examined; this
analysis also included estimates of the proportion of
variance attributable to ApoE genotype. The associ-
ation between inbreeding and lipids was also con-
sidered, as a substantial fraction of the population
had known inbreeding. A total of 868 individuals
from this pedigree, containing more than 60,000
people over 15 generations, were investigated in this
study. Laboratory analysis of these subjects included
the determination of fasting plasma lipids. ApoE €2/
3/4 status was ascertained using TagMan assays.

Heritabilities for plasma lipids were estimated with
adjustments for multiple covariates using SOLAR.
Heritabilities for total cholesterol (TC), high-density
lipoprotein cholesterol (HDL), low-density lipopro-
tein cholesterol (LDL), triglycerides (TG), TC/HDL
ratio, and TG/HDL ratio were found to be 0.35, 0.56,
0.30, 0.24, 0.49, and 0.39, respectively. The addition
of ApoE genotype in the model significantly de-
creased these estimates (Ah2 = —0.030, -0.004,
—0.054, and —0.006 for TC, HDL, LDL, and TG). In
a further analysis, TC and LDL were positively
associated with  the extent of inbreeding
(Pwend = 0.02 and peng = 0.05, respectively). These
data provide estimates of lipid heritability unbiased
due to selection and suggest that this population
represents a good opportunity to localize novel genes
influencing plasma lipid levels.
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Abbreviations: Ah? = change in heritability; ApoE = apolipoprotein E; BMI = body mass index; CHD = coro-
nary heart disease; DBP = diastolic blood pressure; ERF = Erasmus Rucphen Family Study; h? = narrow-sense
heritability; HDL = high-density lipoprotein cholesterol; HRT = hormone replacement therapy; LDL = low-den
sity lipoprotein cholesterol; LLT = lipid lowering therapy; mmol/l = millimoles per liter; SBP = systolic blood

pressure; SNP = single nucleotide polymorphism; TC = total cholesterol; TG = triglycerides

Introduction

Cardiovascular disease remains the leading cause of
death in the United States, Europe, and portions of
Asia [1]. High levels of total cholesterol (TC), trigly-
cerides (TG) and low-density lipoprotein cholesterol
(LDL) and low levels of high-density lipoprotein cho-
lesterol (HDL) are well-established coronary heart
disease (CHD) risk factors [2]. Plasma lipid levels
themselves have emerged as important therapeutic
targets, which can reduce the incidence of CHD [3, 4].

Detection of genetic variants leading to altered
lipid profiles might prove useful in the diagnosis,

prevention, and treatment of disease. Heritabilities of
various plasma lipids in other family-based studies
have been previously reported to range from 0.39 to
0.62 for TC, 0.39 to 0.83 for HDL, 0.24 to 0.50 for
LDL, 0.20 to 0.55 for TG and 0.34 for TG/HDL
ratio [5—14]; even more extreme values were noted in
recent twin studies [15, 16]. Several factors may
explain the wide variation in these estimates. Until
now, genetic studies have been performed in extended
families selected on the basis of dyslipidemia, or in
affected sib-pairs, usually with comparatively small
sizes, which inflate heritability estimates. Further-
more, there is disagreement concerning whether
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common traits are caused by numerous common
genetic variants (the common disease/common vari-
ant theory) or by rare, population specific mutations.
If the common disease/rare variant theory holds,
specifically ascertained populations might have
higher heritabilities than found in less selected pop-
ulations. By contrast, we studied the heritability of
plasma lipids in an extended family, derived from a
genetically isolated population. This family was not
selected based on the presence of dyslipidemia

The apolipoprotein E (ApoE) €2/3/4 polymor-
phism, which results in three ApoE protein isoforms
determined by missense mutations in the 112th and
158th amino acids, is one of the most well-described
variations affecting plasma lipid values [17]. Differ-
ences in binding affinities between the three isoforms
are dramatic, and lead to these observed differences
in lipid levels [18]. In comparison to the referent
ApoE €3/3 group, the ApoE €4 allele is strongly
associated with increased TC, LDL, and TG, while
the ApoE €2 allele is associated with decreased TC
and LDL and increased TG [19, 20]. The effects on
HDL are less clear, perhaps context dependent, al-
though €2 is generally associated with increases, and
€4 with decreases, in HDL [21, 22]. ApoE was further
associated with a variety of ailments, such as car-
diovascular disease [23] and Alzheimer’s Disease [24].

The availability of a genealogical database detail-
ing this population allowed for the construction of a
single, large (greater than 60,000 individual) pedigree.
This information also enabled us to examine the
effects of inbreeding on plasma lipid levels. Despite
the anticipation of inbreeding effects on plasma lip-
ids, there was no evidence of this in a prior study, [25]
although studies of other cardiovascular disease
phenotypes have shown that inbreeding may play a
role [26, 27].

The aim of this study was to estimate the herita-
bility of plasma lipids in a recent genetic isolate in the
Netherlands and to evaluate the degree to which
ApoE contributes to these estimates. A further aim
was to evaluate the effect of inbreeding on lipid levels.

Methods
Study population

The present study was conducted in a large family-
based cohort study (the Erasmus Rucphen Family
[ERF] Study). The cohort was derived from a recent
genetic isolate in the southwest Netherlands for which a
comprehensive genealogical database exists. This pop-
ulation was founded in the middle of the 18th century
by approximately 150 individuals and was isolated until
the last few decades. Characterized by rapid growth and
minimal immigration, the isolate now includes
approximately 20,000 inhabitants. Twenty couples liv-
ing in the region in the 19th century were chosen. These

couples parented a minimum of 6 children, each of
whom was baptized between 1880 and 1900 in the
community church. All living descendants of these pairs
(as well as their spouses), ascertained on the basis of
municipal and baptismal records, were traced and in-
vited to participate (n = 3,000).

Subjects completed an interview with a physician
and a thorough medical examination during a visit to
the research center. The interview included questions
concerning smoking (number of cigarettes per day)
and alcohol consumption (grams per day) habits, li-
pid lowering and hormone replacement therapy, and
diabetic medications. Participants were requested to
bring the medications they use to the research center.
All details pertaining to their prescriptions were dis-
cussed with a research physician. Height and weight
data were collected and used to calculate body mass
index. Blood pressure was measured twice on the
right arm in a sitting position after at least 5 min rest,
using an automated device (OMRON 711); the
average of the two values was used for analysis.

All participants gave informed consent, and the
Medical Ethical Committee of the Erasmus Medical
Center approved the study protocol. The present
study is based on 868 individuals, from an extended
pedigree of almost 60,000 over 15 generations, for
whom plasma lipid data and ApoE €2/3/4 genotype
was available at the time of analysis.

Laboratory analysis

Fasting blood samples were collected during the
participant’s visit to the research center. A Synchron
LX20 (Beckman Coulter Inc., Fullerton, CA. U.S.A.)
spectrophotometric chemical analyzer was utilized
for the determination of plasma lipid values, as well
as fasting plasma glucose levels. Diabetes mellitus
was defined by one of two common criteria: use of
glucose lowering medication or a plasma glucose level
greater than 7.0 mmol/I [28].

Genomic DNA was extracted from whole blood
samples drawn at the baseline examination, utilizing the
salting out method [29]. Subjects were genotyped for the
ApoE €2/3/4 polymorphism with two TaqMan allelic
discrimination Assays-By-Design (Applied Biosystems,
Foster City, CA), targeting SNPs in the 112th (rs429358)
and 158th (rs7412) amino acids of the ApoE gene [30].
Forward and reverse primer sequences for the position
112 polymorphism were 5’-GGGCGCGGACATGGA-
3’ and 5’-CCTCGCCGCGGTACTG-3’, respectively.
The minor groove binding probes were 5-
CGGCCGCGCACGT-VIC-3’ and 5-CGGCCGCA-
CACGT-FAM-3’. For the SNP at position 158, forward
and reverse primer sequences were 5-TCCGCG-
ATGCCGATGAC-3’ and 5-CCCCGGCCTGGTA-
CAC-3’, respectively. The minor groove binding probes
were 5’-CAGGCGCTTCTGC-VIC-3°* and 5-CAG-
GCACTTCTGC-FAM-3". Both assays were designed
using the reverse strand.



The assays utilized 5 ng of genomic DNA and 5 ul
reaction volumes. The amplification and extension
protocol was as follows: an initial activation step of
10 min at 95 °C preceded 40 cycles of denaturation at
95 °C for 15sec and annealing and extension at
50 °C for 60 sec. Allele-specific fluorescence was then
analyzed on an ABI Prism 7900HT Sequence
Detection System with SDS v 2.1 (Applied Biosys-
tems, Foster City, CA).

Statistical analysis

Multiple linear regression models were fitted in SPSS
11.0 to examine the association of covariates with
plasma lipids and to assess the distributional
assumption of normality. For heritability estimation,
covariates were chosen on the basis of statistical
significance (p < 0.10). For these analyses, HDL, TG,
TG/HDL, and TC/HDL were natural log trans-
formed to yield normally distributed residuals. The
normality of residuals was tested using a one-sample
Kolmogorov-Smirnov test.

Estimates of heritability, utilizing a variance com-
ponent approach based on maximum likelihood
procedures, were calculated in SOLAR version 2.1.4
[31]. Heritability (h?) is defined as the ratio of additive
genetic variance to total phenotypic variance unex-
plained by covariates, and does not take into account
epistasis or dominance. To determine the proportion
of variance attributable to ApoE genotype, herit-
abilities were computed with and without genotypic
data. ApoE €2/3/4 status was coded using the 3/3
genotype as a baseline, with a separate variable
coding for each of the other possible genotypes (2/2,
2/3, 2/4, 3/4, and 4/4). Comparison of the log likeli-
hoods of these models allowed us to assess the sig-
nificance of the differences. To evaluate the effect of
including individuals receiving lipid-lowering ther-
apy, heritabilities were also estimated excluding those
individuals.

Inbreeding coefficients were calculated according
to Meuwissen’s method, as implemented in PEDIG
[32]. Spearman’s correlation coefficients were calcu-
lated for inbreeding versus the lipid outcomes. To
predict the impact of these associations on lipid lev-
els, a linear regression model assessing inbreeding
coefficient quartile versus plasma lipid levels was
realized. The quartiles were used due to the large
skew in the distribution resulting from the many
individuals who did not possess measurable
inbreeding (n = 200). These analyses were executed
utilizing SPSS 11.0.

Results
Approximately 3,000 individuals were invited to

participate in the ERF study. At the time of geno-
typing and analysis, about 1,000 of these samples
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were ready for use; after exclusion of those with
missing information and/or genotype, 868 were in-
cluded in the described study. Table I shows
descriptive statistics for classical cardiovascular risk
factors stratified by gender. Men had higher mean
BMI and blood pressure (both systolic and diastolic).
In this population, women smoked more often than
men, while significantly more men consumed alcohol.
HDL and TG levels were substantially different (as,
consequently, were the TG/HDL and TC/HDL ra-
tios). There were no significant differences, however,
between the sexes with respect to TC or LDL. Men
also received lipid-lowering therapy more frequently
than women.

The mean levels of TC in this population were
relatively high given the age distribution. Considering
a clinical cut-off of 6.5 mmol/l to determine hyper-
lipidemia, the mean TC level was less than one
standard deviation lower than this value. Approxi-
mately 20% of the population had TC levels greater
than, or equal to, 6.5 mmol/l. This pattern was ob-
served in both men and women.

The relationship between lipid levels and classical
risk factors revealed that regression coefficients were
of anticipated magnitudes and directions (Table 2).
Heritability estimates were computed for all plasma
lipid outcomes using two adjusted models (Table 3).

Table 1. Summary statistics in the ERF population

Women Men
(n = 517) (n = 351)
Age (years) 51.00 + 14.51 53.80 + 13.52*

BMI (kg/m?) 26.68 + 4.82 27.59 + 4.29*
Smoking% (n) 47.2 (244) 32.5 (114)*
Alcohol Use% (n) 33.7 (174) 69.8 (245)*
SBP (mm Hg) 138.82 +£ 22.76  144.30 £ 19.44*%
DBP (mm Hg) 78.98 £ 9.62 82.09 £+ 10.21*
TC (mmol/l) 5.63 £ 1.17 5.52 £ 1.11
HDL (mmol/1) 1.37 £ 0.36 1.13 £ 0.31*
LDL (mmol/l) 3.72 £ 1.04 3.73 £0.98
TG (mmol/l) 1.28 + 0.63 1.58 &+ 1.00*
TC/HDL Ratio 432+ 1.19 5.16 + 1.41*
TG/HDL Ratio 1.03 £ 0.67 1.58 £ 1.27*
Diabetes mellitus% (n) 6.2 (32) 7.1 (25)
LLT% (n) 16.8 (87) 22.2 (78)*
HRT% (n) 3.3(17) NA

ApoE €2 Frequency 0.05 0.05

ApoE €3 Frequency 0.75 0.74

ApoE &4 Frequency 0.20 0.20

BMI = Body Mass Index, SBP = Systolic Blood Pressure,
DBP = Diastolic Blood Pressure, TC = Total Choles-
terol, HDL = High-Density Lipoprotein Cholesterol,
LDL = Low-Density Lipoprotein Cholesterol,

TG = Triglycerides, LLT = Lipid Lowering Therapy,
HRT = Hormone Replacement Therapy.

*Significantly different from women.

Values presented are mean + standard deviation for con-
tinuous traits and percent (number) for non-continuous
traits.
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Table 2. Coecflicients and p-values for covariates by outcome measure

Covariate TC HDL LDL TG TG/HDL Ratio TC/HDL Ratio

B p-value B p-value B p-value B p-value B p-value B p-value
Age 0.127 <0.001 0.032 0.026 0.106 <0.001 0.049 0.101  0.016 0.665  0.061 <0.001
Sex -1.140 <0.001 0.338 0.178 —1.108 <0.001 -0.566 0.267 —0.890 0.147 —1.151 <0.001
Smoking 0.007 0.049 -0.015 <0.001 0.010 0.002  0.016 0.021  0.030 <0.001 0.020 <0.001
Alcohol —-0.006 0.165 0.010 0.006 -0.015 <0.001 0.025 0.001  0.015 0.104 -0.014 <0.001
Age*sex —-0.023 <0.001 -0.008 0.079 -0.019 <0.001 -0.005 0.558  0.003 0.798 —0.008 0.081
Age® -0.001 <0.001 -0.000 0.206 -0.001 <0.001 -0.000 0.274  —0.000 0.713 =0.000 0.006
DM —-0.248 0.083 -0.270 0.045 -0.338 0.008 0.615 0.022  0.889 0.006  0.109 0.442
Inbreeding 19.113 0.003 11.082 0.079 13.945 0.011 13.978 0.215  4.549 0.751  2.706 0.676
BMI —-0.003 0.741 —-0.063 <0.001 0.004 0.594 0.105 <0.001 0.170 <0.001 0.060 <0.001
HRT -0.276 0.297  0.134 0.593 -0.328 0.162 —0.439 0.381 -0.576 0.341 -0.378 0.152
LLT -0.908 <0.001 -0.267 0.002 -0914 <0.001 0.737 <0.001 0.973 <0.001 -0.425 <0.001

DM = Diabetes Mellitus, BMI = Body Mass Index, HRT = Hormone Replacement Therapy, LLT = Lipid Lowering

Therapy.
Italicised covariates were excluded from the full model.

Table 3. Plasma Lipid Heritability Estimates in ERF

Outcome Heritability Proportion of variance ApoE Genotype

(SEM) due to covariates

Age & Sex Full Model Age & Sex Full Model Ah? Prop. of p-Value

adjusted adjusted adjusted adjusted variance
TC 0.19 (0.07) 0.35 (0.09) 0.02 0.16 —-0.030 0.031 0.006
HDL 0.51 (0.08) 0.56 (0.08) 0.11 0.21 —-0.004 0.011 0.014
LDL 0.17 (0.07) 0.30 (0.09) 0.02 0.19 —-0.054 0.053 <0.001
TG 0.28 (0.07) 0.24 (0.07) 0.04 0.14 —-0.006 0.008 0.021
TC/HDL Ratio 0.38 (0.07) 0.49 (0.08) 0.10 0.20 - - -
TG/HDL Ratio 0.37 (0.07) 0.39 (0.08) 0.08 0.17 - - -

TC = Total Cholesterol, HDL = High-Density Lipoprotein Cholesterol, LDL = Low-Density Lipoprotein Cholesterol,
TG = Triglycerides, Ah> = Change in Heritability, Prop. of variance = Proportion of Variance Attributable to ApoE

Genotype.

Full model controlled for age, sex, smoking, alcohol use, age*sex, age2, diabetes mellitus, inbreeding, BMI, hormone

replacement therapy and lipid lowering therapy.

The full models included covariates (age, sex,
age*sex, age”, smoking status, alcohol consumption,
lipid-lowering therapy, diabetes status, inbreeding
coefficient, body mass index, and hormone replace-
ment therapy) significant at a level of p < 0.10. The
highest heritability estimates were found for HDL
and TC, and, consequently, TC/HDL ratio. The
lowest estimates were found for LDL and TG
(Table 3). All of these estimates were highly signifi-
cant; the p-values for the full model estimates for each
outcome were found to be <0.0002.

Excluding individuals on lipid-lowering therapy
did not dramatically affect these findings. Heritabili-
ties increased somewhat for each outcome when these
individuals were not included; these differences ran-
ged from 0.0005 (for TC/HDL ratio) to 0.039 (for TC
and HDL). These increases were of the anticipated
magnitude and direction, given the random variance
introduced by differing levels of efficacy, compliance,
and dosage among treated individuals.

Inbreeding was a significant covariate in the herit-
abilities estimated for both TC and LDL (Table 2). In
light of this result, the relationship between inbreeding
and lipids was assessed. Spearman’s correlation coef-
ficients for TC, HDL, LDL, and TG (p-value) were
0.18 (p < 0.001), 0.04 (p = 0.185), 0.15 (p < 0.001),
and 0.09 (p = 0.006), respectively. These associations,
adjusted for numerous covariates, persisted for both
TC and LDL when inbreeding quartiles were consid-
ered (Figure 1). TC (pgend = 0.02) and LDL
(Puwena = 0.05) increased significantly with level of
inbreeding. HDL, while not significant, did indicate a
tendency for more inbred individuals to have higher
levels. In addition, inbred individuals received more
frequent prescription of lipid-lowering therapy; 19.9%
of the inbred group received such therapy, compared to
13.1% in the non-inbred group (p = 0.03).

ApoE genotype was successfully assessed in over 95%
of subjects. Mendelian inconsistencies forced the
removal of a few individuals/trios (n = 7). ApoE
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Figure 1. Plasma Lipid Means (95% CI) By Inbreeding Quartiles: All outcomes adjusted for age, sex, smoking, alcohol use,
age*sex, age’, diabetes mellitus status, hormone replacement therapy, and lipid lowering therapy. * Significantly different
from zero inbreeding. { Significantly different from first quartile. I Significantly different from second quartile. * p for
trend = 0.02, ® p for trend = 0.05, ¢ p for trend = 0.41, ¢ p for trend = 0.69.

genotype accounted for significant proportions of the
heritabilities of all analysed outcomes (the ratios were
not further analysed, as they did not produce informa-
tive results) (Table 3). Reductions of 0.030, 0.004, 0.054,
and 0.006 were observed for TC, HDL, LDL, and TG,
respectively. These values correspond to differences of
3.1%, 1.1%, 5.3%, and 0.8% of the total trait variance.

Discussion

In this large, family-based study in a non-phenotyp-
ically selected pedigree, all heritability estimates of
fasting plasma lipids (TC, HDL, LDL, TG, TG/HDL
ratio, and TC/HDL ratio) were highly significant.
These estimates ranged from 0.24 for TG to 0.56 for
HDL. The inclusion of ApoE genotype caused sig-
nificant decreases in these estimates, ranging from
0.70% (HDL) to 17.72% (LDL). A further analysis of
the association of inbreeding with plasma lipids re-
vealed significant, if modest, correlations between
inbreeding and TC, LDL, and TG. Significant trends
of TC and LDL increasing with inbreeding quartile
were observed. HDL levels also tended to increase
with the extent of inbreeding, although this trend fell
well short of the conventional significance level. To
our knowledge, this is the first study to document an
association between inbreeding and plasma lipids.

These estimates of heritability are in the range of
previous estimates, although some publications re-
ported heritabilities higher than those obtained in
this study. Several factors may explain this. The
simplest revolves around the use of different popu-
lations, which may have differing genetic contribu-
tions to lipid levels. Another is that prior estimates
tended to be obtained from selected pedigrees (i.e.,
selected on the basis of disease status) [8], whereas
this analysis features a “randomly” (i.e., non-phe-
notypically) selected pedigree. Furthermore, many
previous reports have utilized multiple small pedi-
grees in their analysis [10]. The use of small pedi-
grees, with closely related individuals, tends to
inflate heritability estimates compared to larger
pedigrees containing distant relations [33]. This
study, which used only one large pedigree, mini-
mizes this problem by virtue of its design.

Although a shared household environment may
influence plasma lipids through shared dietary and
exercise habits, the homogeneity of the isolated
population suggests that this is unlikely to apprecia-
bly alter these results. Furthermore, inclusion of BMI
as a covariate served as a proxy for these two traits.
BMI was significantly associated with all outcomes
except TC and LDL;; its presence in the model did not
alter the significance levels of our estimates of heri-
tability.
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Dominance variance, which, in conjunction with
additive and environmental variance, comprises
broad sense heritability, was also not estimated in this
study due to the computational problems involved.
Dominance variance has been previously demon-
strated to have very little influence on heritability
estimates for HDL and TG levels, although it exerted
a greater effect on LDL [34]. This would suggest that
estimates for HDL and TG are likely accurate, and
LDL might be somewhat underestimated in this
study.

The ApoE analysis provides a reliable estimate of
the proportion of trait variance due to ApoE €2/3/4
status and demonstrates the power of the ERF study
design to detect variations that cause comparatively
small changes in a given lipid outcome. The amount
of LDL variation attributable to this very well-de-
scribed variant corresponds well with a previous
estimate [19], while the results for the other studied
outcomes are also in line with expectations. The large
amounts of residual heritability for all traits indicate
that other genetic variations also play important roles
in the determination of lipid levels in this population.
These may include numerous polymorphisms with
small effects, or gene-gene interactions, as well as
genes with major effects (although these are likely to
have been previously detected).

The increase of TC and LDL, and, to a lesser ex-
tent HDL, associated with inbreeding suggests that
genetic factors, possibly recessive, have a substantial
effect on plasma lipids in this population. The lack of
clear statistical association between inbreeding and
HDL levels may be a result of insufficient statistical
power, since the variation in HDL was considerably
smaller than for either TC or LDL. Inbreeding has
been previously associated with cardiovascular dis-
ease, particularly hypertension [26], but not to lipid
levels. Estimates that as many as 23% of amino acid
mutations are somewhat deleterious, and present
mostly in heterozygous individuals [35], suggests that
consanguinity should increase homozygosity at these
sites and lead to more pronounced effects in inbred
populations.

Taken together, the heritability estimates (with and
without ApoE) and the association of inbreeding with
plasma lipids, offer strong evidence for the presence
of genetic variants influencing lipid levels. It is likely
that some deleterious recessive alleles occur with in-
creased rates of homozygosity in this population,
which ought to feature a smaller number of variants
to begin with (due to the founder effect). ApoE does
not account for most of the estimated additive genetic
variance of these traits. Especially for HDL, with a
high heritability estimate, and TC and LDL, with
reasonably high heritabilities and an association with
inbreeding, this population offers a good opportunity
to discover genetic variants associated with these
traits.
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