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Abstract Sydney estuary catchment supports the 
largest city in Australia and provides essential eco-
social and environmental services; however, the 
region has been influenced by extensive anthropo-
genic modification. Soil metal concentrations in the 
catchment had been studied previously; however, the 
current investigation was designed to determine the 
risk posed by these contaminants to human health. 
Soil metal concentrations were higher than observed 
in most global capitals and increased substantially in 
the south and south-east of the catchment and close to 
the central business district. Road-side soils and road 
dust contained the highest concentration of metals in 
the catchment. Lead in catchment soils was closely 
related to traffic density and sourced from the historic 
use of Pb in petrol. A human health assessment indi-
cated that soil Cd, Ni and Zn posed no non-carcino-
genic risk (NCR), or carcinogenic risk (CR) for chil-
dren, or adults in Sydney estuary catchment and that 

Cu and Cr may pose minor NCR for children. Vehi-
cle-related Pb raised the greatest human health risk in 
catchment soils and may pose NCR at 32% and 4.3% 
of sites for children and adults, respectively. Incon-
sistent analytical techniques used in CR and NCR 
evaluations produce incomparable assessments and 
a consistent` methodology is suggested to improve 
interpretation. Human health risk may well be higher 
than commonly calculated due to pollutants present in 
urban soil not being included in assessments.

Keywords Non-carcinogenic risk · Carcinogenic 
risk · Pb · Guidelines · Metals · Exposure

Introduction

The Sydney estuary (50  km2) is a drowned, dendritic 
river valley 30 km long and 3 km wide in central New 
South Wales (NSW), Australia (Birch et  al., 2021, 
2022; Roy, 1983). The estuary is bound in the north 
by small sandy beaches and rocky headlands and 
large, shallow embayments lined by mangrove forests 
in the south (Liu, 1989). In the north Sydney estuary 
catchment is a high, eroded plateau and is low and 
undulating to the south (Birch & Lound, 2021, 2022). 
The small catchment (500  km2) is mostly developed 
(76.8%) and supports a high-density population (2000 
people/km2) of 1.42 million (ABS, 2011; Johnson 
et  al., 2017). The catchment is highly productive 
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providing a large range of goods and services to the 
community (Birch et al., 2016a, b; Hoisington, 2015).

The distribution and concentration of metals 
in urban soils of Sydney estuary catchment have 
been established previously (Birch et  al., 2011); 
however, the potential human carcinogenic risk 
(CR) and non-carcinogenic risk (NCR) to the urban 
population posed by soils have not been established. 
The highest soil metal concentrations were found 
in the oldest and most densely populated regions of 
the catchment and declined with distance from the 
central business district (CBD). The similarity in 
soil metal distribution and modelled deposition of 
atmospheric vehicular emissions (Lawrence, 2006) 
strongly suggested vehicular contributions were 
a major source of metals to catchment soils. The 
high concentrations and large range of metals in 
these soils may adversely impact human health, e.g. 
kidney, gastro-intestinal and nervous systems and 
reduce intelligence quotient by ingestion, inhalation 
and through skin contact (Young, 2005; Mazumdar, 
2008; Cobbina et al., 2013; Zhang et al., 2012; NTP, 
2012). The aims of the present study were to: (i) 
assess human CR and NCR posed by catchment soil; 
(ii) establish the major pathways of potential uptake; 
(iii) determine the relative risk to children and adults; 
(iv) and identify possible sources of metals in various 
land use types posing risk.

Previous studies of soil metals in Sydney estuary 
catchment

The first regional study of soil in the Sydney estuary 
catchment established that 50% of Cu, Pb and Zn 
concentrations and 2.5% of Cd concentrations were 
above Australian and New Zealand Environment 
and Conservation Council and National Health 
and Medical Research Council (ANZECC and 
NH&MRC, 1992) guidelines of 300 µg/g, 200 µg/g, 
60  µg/g and 3  µg/g, respectively (Markus and 
McBratney, 2001) (Table  1). The distance from 
roads explained considerable variance in total Pb 
(24% of variance), Zn (15% of variance), Cu (15% 
of variance) and Cd (13% of variance). The greatest 
soil metal concentrations were in highly urbanised 
(> 90%) catchments and in these older urban areas 
near major road intersections, soil health guidelines 

were exceeded for Cu (34% of samples), Pb (33% 
of samples) and Zn (56% of samples) in areas 
where buildings were oldest and where major roads 
converged. (Snowdon & Birch, 2004). Metals in soil 
of other highly urbanised (48%) and industrialised 
(19%) sub-catchments exceeded Environmental 
Investigation Limits for Cu (for 8% of samples), Ni 
(3% of samples), Pb (5% of samples) and Zn (7% of 
samples). Linear mixed models determined that the 
main drivers of contamination in catchment soils 
were elevation, distance from main roads, road type, 
landscape, population density and land use (Johnson 
et al., 2017). Additional modelling indicated that had 
Pb diminished significantly and that As and Zn had 
substantially increased in some landfill sites (Pozza 
et al., 2019). 

An investigation of the whole Sydney estuary 
catchment (n = 491) showed soils in the south-eastern 
region contained the highest metal concentrations 
(Birch et  al., 2011). Soil metal and road network 
distributions were closely related and results of 
vehicular emissions modelling, strongly suggested 
vehicular traffic was the major source of metals to 
catchment soils (Hodge, 2002; Lawrence, 2006). 
Soil metals in four Sydney estuary catchment urban 
parks were also closely related to traffic emissions 
and adversely affected soil quality and human health 
(Wang et al., 2022). A study of home gardens showed 
that Pb was the primary metal of concern and that 
40% of the 203 gardens sampled contained soil 
that exceeded the soil Pb guideline for residential 
properties (NEPM, 1999) (Rouillon et  al., 2017). 
The highest soil Pb concentrations close to the CBD 
declined to background levels within 30–40 km of the 
city centre (Rouillon et  al., 2017). In a later nation-
wide garden soil survey residential (HIL A; NEPC, 
2013) guideline values were exceeded for Pb in 20% 
of soil samples, but only 4% of samples for Cr and 1% 
of samples for Cd (Taylor et al., 2021).

Investigations of the relationship between Pb in 
human blood and catchment soil (Mencel & Thorp, 
1976; Garnys et al., 1979; Royal Prince Alfred Hos-
pital and Central and Southern Sydney Area Health 
Service, 1988; Cooney et al., 1989; Fett et al., 1992; 
Skinner et  al., 1993; Olszowy et  al., 1995; Cowie 
et  al., 1997; Markus and McBratney, 2001; Cattle 
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et al., 2002; Gulson et al., 2014) have been compre-
hensively reviewed by Laidlaw et al. (2017).

Methods

Field methods

The metals data used in the current study were 
obtained from a previous survey based on samples 
taken where convenient in the dominant land use 
type in each one  km2 gridded area of Sydney estu-
ary catchment (Birch et  al., 2011) (Fig.  1). Land 
uses were residential (45.9%), commercial/industrial 
(8.1%), road/rail (19.2%), educational/medical (3.4%) 
and parkland/reserves (23.2%) (Birch & Taylor, 2004; 
Birch et  al., 2015a, b). Four sub-samples collected 
within 1  m2 were pooled to reduce small-scale spatial 
variability (Birch et  al., 2001). Samples were sieved 
using a 2 mm plastic mesh on site to remove debris 

and organic fragments and were refrigerated at 4 °C 
until preparation for analysis.

Laboratory techniques

Textural variability and heterogeneity of soils was 
reduced by Post-Extraction Normalisation (PEN) 
Birch & Taylor, 2000) to identify sources and produce 
consistent spatial metal distributions (Birch, 2017). 
The veracity of the PEN method to produce high-
quality normalised data was validated by comparison 
to grain-size (≤ 62.5 µm) and elemental (Fe and Al) 
normalisation techniques (Birch, 2003; Birch & 
Snowdon, 2004) and was confirmed by independent 
assessment (Clark et al., 2000).

In the original investigation (Birch et  al., 2011) 
soils were digested using aqua regia (1:1  HNO3:HCl) 
(modified USEPA 200.8 Rev 4.4 method) and 
analysed by inductively coupled plasma atomic 

Fig. 1  Distribution of soil samples in Sydney estuary catchment (n = 491). One sample was taken in each 1  km2 in the dominant 
land use type in that square
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emission spectrometry (ICP-AES) for seven metals 
(Cd, Co, Cr, Cu, Ni, Pb and Zn).

QA/QC

Precision of the analytical method expressed as 
relative standard deviation (RSD) of replicates 
(n = 26) was < 6%. Accuracy, measured by recovery 
using a reference material (AGAL-10) (n = 28), was 
between 94 and 104% for all metals. Blanks (n = 30) 
used to measure potential laboratory contamination 
exhibited negligible metal concentrations.

Health risk assessment models

The average daily intake (ADI) of a chemical 
substance through each of three pathways 
(ingestion  ADIing, inhalation  ADIinh and dermal 
contact  ADIdermal) was determined for children 
(aged < 2  years) using equations provided by the 
USEPA (2002) and Bourliva et  al. (2018). The 
values of parameters are presented in Supplementary 
Table S1.

where  Ring = Dust intake rate;  Rinh = Inhalation rate; 
EF = Exposure frequency; ED = Exposure duration; 
BW = Body weight; AT = Average time (year); 
PEF = Particle emission factor; SA = Exposure 
skin area; SAF = Skin adherence factor; and 
ABS = Dermal absorption factor.

The non-carcinogenic Hazard Quotient (HQ) of 
each exposure pathway and Hazard Index (HI) were 
calculated using:

ADIing = C ×

Ring × EF × ED

BW × AT
× 10−6

ADIinh = C ×

Rinh × EF × ED

PEF × BW × AT

ADIdermal = C ×
SA × SAF × ABS × EF × ED

BW × AT
× 10−6

HQi =
ADIi

RfD

HI =
∑

HQi

HQi is the non-carcinogenic hazard quotient for 
each exposure pathway, RfD is the reference dose 
equaling the maximum dose to avoid an adverse 
reaction when adsorbed, i corresponds to the three 
pathways (Supplementary Material Table S1) and HI 
is the sum of HQs for the three exposure pathways. 
Non-carcinogenic risk occurs when HI > 1 and risk 
increases with the magnitude of HI (Doabi et  al., 
2018).

In the present study, carcinogenic risk (CR) was 
evaluated by the following equations:

SF (dimensionless) is the carcinogenic slope factor 
(Supplementary Material Table S2). The acceptable, 
or tolerable risk for regulatory purposes is  10−6 to 
 10−4 to cover for the incremental risk of developing 
caner during a lifetime of exposure (Ferreira-Baptista 
et al., 2005).

Results and discussion

Total and fine fraction soil metal concentrations

Total soil metal concentrations exhibited considerable 
variation across the Sydney estuary catchment as was 
reflected in a wide range in minimum and maximum 
values for Cu, Pb and Zn. Median concentrations 
(minimum–maximum) for total Cu, Pb and Zn were 
23 (1–1869) µg/g, 60 (3–9653) µg/g and 108 (4–1807) 
µg/g, respectively, and for normalised concentrations 
values were 60 (2–5232) µg/g, 150 (18–26,588) µg/g 
and 259 (13–6156) µg/g, respectively (Birch, et  al., 
2011) (Table  1). ANZECC/NH&MRC guidelines 
(ANZECC and NH&MRC, 1992) were exceeded 
in 17% of samples for Cu, 11% for Pb, and 5% 
for Zn. The Ecological Investigation Limits (EIL) 
National Environment Protection Council (2013) 
recommended values were exceeded in 9%, 6% and 
25% of samples, respectively, while Cd, Co, Cr and 
Ni concentrations were below guidelines (Table 2).

CRi = ADIi × SF

CR =

∑

CRi
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Sydney catchment soil metal concentration in a 
global perspective

Metal concentrations in the Sydney estuary catch-
ment soils were higher than reported in most global 
investigations, e.g. the Danang-Hoian region of 

Vietnam (Thuy et  al., 2000), the city of Xuzhou, 
China, (Wang & Qin, 2007), Madrid, Spain (De 
Miguel et  al., 1998) and many other global cit-
ies, including Seoul, Berlin, Oslo and Glasgow 
(Table 3). Sydney catchment soils also had substan-
tially higher mean Cu, Pb, and Zn concentrations 

Table 2  Total and 
fine fraction soil metal 
concentrations and 
guideline values (µg/g)

NA  Not available; 
bd  Below detection
1 Environmental soil quality 
guidelines (ANZECC and 
NH&MRC, 1992)
2 Environmental 
investigation limits 
(National Environment 
Protection Council (2013)

n = 491 Cd Co Cr Cu Ni Pb Zn

Total sediment
Minimum bd bd 1 1 bd 3 4
Maximum 3.4 44 265 1869 190 9653 1807
Mean 0.4 6 19 46 13 194 187
25 percentile 0.2 2 10 14 5 28 62
50 percentile 0.3 5 14 23 8 60 108
95 percentile 1.1 19 44 131 38 723 632
ANZECC1 3 NA 50 60 60 300 200
% Samples > ANZECC 0.2 NA 3 17 2 11 25
EIL2 3 NA 400 100 60 600 200
% Samples > EIL 0.2 NA 0 9 2 6 25
Fine fraction (< 62.5 µm)
Minimum bd bd 7 2 bd 18 13
Maximum 8.6 108 606 5232 440 26,988 6156
Mean 1.1 16 50 121 33 559 500
25 percentile 0.6 8 28 36 14 79 159
50 percentile 0.9 13 37 60 21 150 259
95 percentile 2.7 38 120 408 90 1830 1790

Table 3  Mean metal 
concentrations for Sydney 
estuary catchment soils and 
other global studies (µg/g)

References: 1. Birch et al., 
2011; 2. Beavington, 1973; 
3. Caritat & Cooper, 2011a, 
b, 2016; 4. Chon et al., 
1995; 5. Thuy et al., 2000; 
6. Birke and Rauch, 1997; 
7. Culbard et al., 1988; 8. 
Tijhuis et al., 2002; 9. Wang 
& Qin, 2007; 10. De Miguel 
et al., 1998; 11. Gibson 
and Farmer, 1985; 12. Tóth 
et al., 2016; 13. Chen et al., 
2015

Refs Cu Pb Zn

Sydney estuary catchment 1 121 559 500 Fine fraction (< 62.5 µm; normalised)
46 194 187 Total (< 2 mm)
60 150 259 50th percentile, normalised

Wollongong City area 2 343 21 82 Total (< 2 mm)
Australian soil average 3 17 11 38 Total (< 2 mm)
Australian continental crust 3 12 7.4 26 Total (< 2 mm)
Global studies
Seoul, South Korea 4 84 240 271 Total (< 2 mm)
Danang-Hoian Area, Vietnam 5 90 84 153 Total (< 2 mm)
Berlin Metropolitan Area 6 43 78 159 Total (< 2 mm)
Great Britain 7 54 240 260 Total (< 2 mm)
Oslo, Norway 8 32 56 160  < 100 µm; sieve
Xuzhou, China 9 38 43 144 Total (< 500 μm)
Madrid, Spain 10 72 161 210 Total (< 2 mm)
Glasgow, Scotland 11 97 216 207 Total (< 2 mm)
Average European Union soils 12 13 15 na Total (< 2 mm)
Average Chinese soils 13 27 31 79 Total (< 2 mm)
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than average soils for Australia, the European 
Union and China (Caritat & Cooper, 2011a, b; 
2016; Chen et al., 2015; Hu et al., 2020; Tóth et al., 
2016) (Table 3).

Sydney catchment soil metal concentrations and land 
use

The range of median soil metal concentrations for 
land use types in Sydney catchment from highest to 
lowest was: road verge–industrial–commercial–resi-
dential–special use–parkland (Table  4). Soil from 
road verges has frequently been identified with high 

metal concentrations (Bourliva et  al., 2018; Sid-
diqui et  al., 2020; Snowdon & Birch, 2004) with 
levels declining exponentially with distance from 
vehicular corridors (Birch & Scollen, 2003; Wang 
et al., 2022).

A closer examination of NCR posed by Pb in 
soils from different land uses indicated that 87% 
of samples recovered from road verges exceeded 
the guideline for safe exposure (HI > 1) (Table  5). 
Similarly, 48% of industrial, 33% of residential, 
and 30% commercial samples exceeded safe Pb 
levels of exposure for children, but not for adults. 
In an alternative to using land use type to assess 

Table 4  Normalised metal 
concentrations for land use 
types

Concentrations in µg/g; 
n = number of samples

Residential Parkland/
open space

Road verge Industrial Commercial Special use

n 216 98 61 40 40 35
Copper
Minimum 9 2 32 8 19 7
Maximum 332 178 561 5232 4338 131
Mean 72 39 273 291 249 52
25th percentile 38 22 134 64 54 30
50th percentile 58 32 270 90 103 44
95th percentile 170 88 534 551 616 102
Lead
Minimum 29 18 70 43 38 25
Maximum 5569 768 26,988 1795 1577 547
Mean 298 124 2803 304 256 126
25th percentile 86 57 409 99 93 61
50th percentile 157 83 1027 217 161 82
95th percentile 925 286 7900 893 567 362
Zinc
Minimum 60 13 71 76 89 39
Maximum 5679 1162 6156 3556 2747 927
Mean 364 185 1373 780 640 228
25th percentile 172 85 785 271 285 126
50th percentile 238 144 1183 553 495 182
95th percentile 922 404 2630 2347 1974 475

Table 5  Number and percentage of samples greater than unity (H > 1) for non-carcinogenic risk for Pb per land use type

Residential Parkland/
open space

Road verge Industrial Commercial Special use

Number of samples 200 116 61 40 40 35
Number of samples greater than unity 65 5 52 19 12 3
Percentage of samples greater than unity 33 4 87 48 30 9
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exposure, Garcia-Rico et  al. (2016) identified 
specific areas in Mexico City with the most 
sensitive populations to exposure (density of 
children) to produce a ‘sector-based’ assessment 
called ‘marginality index maps’. In Sydney, Taylor 
et  al., (2021) aggregated risk into ‘significant 
urban areas’ demarked by Statistical Area Level 
Boundaries so that risk data could be related to 
socio-economic indices.

Human health CR and NCR assessment

No soil samples exceeded an HI of unity for Cd, 
Ni, or Zn and these elements posed no NCR, or 
CR for children, or adults in Sydney estuary catch-
ment (Table  6). By far the greatest human health 
risk raised by catchment soils was for Pb, which 
may pose NCR for children (HI > 1) at 156 sites 
(32% of samples) and at 21 locations (4.3% of sam-
ples) for adults (Fig.  2). Copper at only two sites 
(0.4% of samples) and Cr at nine locations (1.6% 
of samples) exceeded unity and may pose minor 
NCR for children (HI > 1) (Fig. 3). The HQ (indi-
vidual pathways) and HI (combined pathways) of 
the remaining studied metals (Cd, Cu, Ni and Zn) 
were considerably lower than unity, i.e. mean HQ 
values were < 0.002 and for HI values were < 0.01 
(Table 6). Slope factors were only available to cal-
culate CR for Cd, Cr, Pb and Zn (Table 3). No sam-
ples exceeded a value of  10–4 for Cd indicating no 
CR and only two samples (0.5%) and one sample 
exceeded this value for Pb in children and adults, 
respectively, while only 9 (2%) and 4 (1%) samples 
exceeded this value for children and adults for Cr, 
respectively.

NCR was more prevalent than CR in most global 
studies. In China, although CR and NCR was low 
for soils in most areas (Wang et al., 2019), Hu et al. 
(2020) identified a potential CR and NCR threat 
for children in some provinces, but not for adults. 
Human activities considerably contributed toxic 
elements to agricultural soils in the Frydek Mistek 
district of Czech Republic and some CR hotspots 
were recommended for immediate remediation 
(Agyeman et  al., 2021). CR was only evident for 
Cr in urban dust in commercial land use areas in 
Tehran (Mihankhan et al., 2020), while in Mexico 
City Pb in road dust posed a NCR and As and Cr 

presented a CR (Garcia-Rico et  al., 2016). NCR 
was highest for Cr and Pb in road dust from Thes-
saloniki city, Greece, while CR was not a threat for 
Cd, Cr, or Ni (Bourliva et al., 2018).

Exposure for adults and children

In the current study, NCR and CR were consistently 
more likely for children than for adults, which was 
typical for other countries, e.g. in China (Chen 
et  al., 2015; Hou et  al., 2019; Hu et  al., 2020) and 
Delhi (Roy et  al., 2019; Siddiqui et  al., 2020). 
Approximately 6.1% of the Frydek Mistek district of 
Czech Republic posed a potential NCR to children 
rather than to adults and 13.05% of the sampled 
locations were carcinogenic to children (Agyeman 
et  al., 2921). Children were also more at risk of 
carcinogenic disease in Thessaloniki city, Greece 
(Bourliva et al., 2018) and in Angola Ferreita-Baptista 
and De Miguel (2005). The combined Hazard Index 
(HI) for children through different routes of exposure 
was 8.9 times greater than for adults in Karachi 
city and CR from Pb due to oral ingestion of soil 
exceeded a value of 1 ×  10−6 in some areas of the city 
for children (Karim & Qureshi, 2014). Children are 
more suseptable to CR and NCR due to oral hand and 
finger activities with exposure through ingestion.

Metals associated with human health risk

In the current investigation, six metals (Cd, Cr, Cu, 
Ni, Pb and Zn) were assessed for CR and NCR; 
however, only Cr and Pb posed minor CR, and NCR 
was only prevalent for Pb with Cr and Cu raising 
minor NCR risk. Soil metals assessed for human 
health risk in global studies were highly variable 
and included As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, 
Pb and Zn. However, only a small number of these 
elements have been proved to pose a health risk 
and these varied greatly between investigations. In 
China, Cd and Hg were most likely to pose NCR 
(Hu et  al., 2020) with As, Pb, Cr and Ni exerting a 
lower risk (Chen et al., 2015). Metals in urban soils 
in Shenyang City (NE China) posed low health risk, 
while As showed the highest CR and Cr and Pb raised 
a significant NCR (Wang et al., 2019). Chrome also 
had a strong CR risk for adults through inhalation 
in soil from potato-producing areas in Guizhou 
Province, China.
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Studies of road dust, a common secondary source 
of metals to road-side soils, also revealed variable 
metals associated with a health risk. A nation-wide 
study (n = 3877) of road dust in China, found Pb 
posed the highest health risk (Hou et al., 2019), while 
road dust from areas not affected by exhaust traffic 
emissions (trunk roads) were within safe limits for 
all assessed metals (Liu et al., 2014). Chromium and 
Pb in road dust from Thessaloniki city, Greece were 
rated with the highest NCR (Bourliva et  al., 2018), 
whereas Co, Cu, Fe, Mn, and Zn were safe in road 
dust and soils in Delhi (Roy et al., 2019), but not for 
Ni, which may pose a CR in urban areas (Siddiqui 
et al., 2020).

Exposure pathways for NCR and CR

In the present study, the main exposure pathway 
driving NCR for all metals was ingestion, which 
accounted for most of the risk (> 95%), while 
dermal (< 5%) and inhalation (< 1%) were of minor 

risk. Uptake for CR was almost equally distributed 
between the three exposure pathways and exposure 
was considerably greater (approximately 10 times 
for all metals) for children than adults for all metals 
analysed.

Ingestion was the most important pathway in 
most global studies with either dermal, or inhalation 
pathways being next important, e.g. in NE China 
(Hou et  al., 2019; Wang et  al., 2019). Ingestion 
was also the main risk for NCR for children in 
Mexico City (Garcia-Rico et  al., 2016) and CR was 
high for all possible pathways in Delhi, especially 
for Ni in roadside soils and road dust (Siddiqui 
et  al., 2020). The importance of pathways ranked 
ingestion > dermal > inhalation in road dust from 
10 districts in Thessaloniki city, Greece (Bourliva 
et al., 2018). Although ingestion was most prevelent 
pathway noted in the literature, soil Cr and As from 
potato-producing areas in Guizhou Province, China, 
were predicted to produce CR through dermal 
contact.

Fig. 2  The Pb concentration in catchment soils and the corresponding non-carcinogenic human health risk (HI) for adults and chil-
dren
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Source of soil metals posing a human health risk

A detailed study of soil in four recreational parks in 
Sydney showed Cu, Pb and Zn were related to traf-
fic emissions and traffic volumes (Wang et al., 2022). 
Metal concentrations in park soils were highly ele-
vated and concentrations decreased exponentially 
with distance from arterial roads. Traffic emission 
accounted for 72–84% of metal contamination in soils 
of parks surrounded by high traffic volumes, whereas 
emission values were 25–70% for park soil with no 
surrounding arterial road network. Copper and Zn in 
soils of the four parks contributed no NCR for chil-
dren, or adults and Pb had negligible health risk for 
adults, however Pb in soil in parks near arterial roads, 
may raise NCR for children due to traffic emissions 
(Wang et al., 2022).

Roadside soil and street dust are frequently iden-
tified as media associated with high metal concen-
trations (Birch & Scollen, 2003; Ferreita-Baptista 
and De Miguel, 2005; Birch et  al., 2011; Bourliva 
et al., 2018; Mihankhan et al., 2020). An early study 

reported 40% of the total 17,000  t of particulates 
emitted to the Sydney atmosphere annually were 
from motor vehicles (Forrest, 1991) and an atmos-
pheric deposition model of vehicular emissions 
showed a close relationship between road density 
and atmospheric metal concentration for the catch-
ment (Lawrence, 2006). Atmospheric deposition 
of pollutants in metropolitan Sydney accounted for 
approximately 50% of the total Cu, Pb and Zn depo-
sition in the vicinity of minor roads (Davis & Birch, 
2011). Leaded petrol emitted approximately 68,000 
t of Pb into the atmosphere in New South Wales 
(NSW) between 1958 and 2002 (Kristensen, 2015) 
and leaded gasoline contributed approximately 90% 
of Pb to Sydney air between 1980 and 2001 (Chiara-
dia et al., 1997).

A detailed study of road surfaces in Sydney 
showed the mass of material accumulating on roads 
was substantial and closely related to vehicle density 
(Birch & Scollen, 2003). Road-derived material is 
highly resuspendable with 34%, 43% and 33% of 
the Cu, Pb and Zn being in the < 63 µm fraction and 

Fig. 3  The concentration of Cr and Cu in catchment soils and the corresponding non-carcinogenic human health risk (HI) for chil-
dren
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90%, 91% and 89% being < 200  µm, respectively. 
This observation is similar to results obtained from 
a London street where 62% of total Pb and similar 
proportions of Cu and Zn were associated with the 
100–500  µm fraction (Ellis & Revitt, 1982; Revitt 
et al., 1990). The fine-grained nature of this material 
renders it susceptible to resuspension and uptake by 
inhalation and ingestion increasing CR and NCR, 
High-density sampling showed consistently elevated 
Cu, Pb and Zn concentrations for roadside soils and 
road dust across Sydney catchment (Hodge, 2002; 
Snowden and Birch, 2004; Birch & McCready, 2009; 
Birch, 2011) and of the 138 road-related samples 
available, 38% posed a NCR by Pb for children.

Global investigations of road-derived materials 
also revealed variable metals associated with a health 
risk. A nation-wide study (n = 3877) of road dust in 
China, showed Pb posed the highest health risk and 
was the only metal with an HQ > 1 (Hou et al., 2019). 
The source of the Pb was mainly traffic and industrial 
activities (Hou et  al., 2019). In Thessaloniki city, 
Greece, Cr and Pb rated the highest NCR in road 
dust (Bourliva et al., 2018), whereas in Mexico City, 
street dust posed the highest health risk for all metals 
(Garcia-Rico et al., 2016).

These studies emphasise the considerable influence 
traffic emissions have on metal concentrations of 
urban soil, which can confidently be predicted to have 
implications for human health (Wang et al., 2022).

Limitations of CR and NCR assessments and 
recommendations

Biometric exposure parameters for different 
populations vary greatly by race, region and habitat 
and existing parameters, e.g. weight, height and 
breathing volumes/adsorption rate may not represent 
exposure for the community being assessed (Ferreita-
Baptista and De Miguel, 2005; Hou et al., 2019). Soil 
screening guides (US EPA, 1996a, b) and exposure 
models (US EPA, 2002) are two decades old and 
may require revision to service a wider population. 
Metals and organic pollutants in urban soil for which 
data are unavailable may affect human health, but are 
not considered in assessments and therefore risk may 
well be higher than typically calculated (Drage et al., 
2015).

Fine-grain sizes are commonly used in soil 
health assessments on the assumption that smaller 

particles have greater adsorption, resuspension and 
aeolian transport potential. However, the size of the 
material being analysed for metals is also critical 
in determining element concentrations (Forstner, 
1982; Forstner & Wittmann, 1979). For example, 
the concentrations of metals in > 200  µm road-side 
material from Sydney catchment were 87  µg  Cu/g, 
202 µg Pb/g and 259 µg Zn/g, respectively, compared 
to 187  µg  Cu/g, 723  µg  Pb/g and 1240  µg  Zn/g for 
the < 62.5  µm fraction (Birch & Scollen, 2003). 
The size of material being used for human health 
assessment globally varies substantially, e. g. the 
size of material analysed from playgrounds, roofs 
and roads in Mexico City was < 44  µm (Garcia-
Rico et  al., 2016) and < 63  µm-sized particles were 
analysed in Delhi for soils and road dust (Siddiqui 
et al., 2020). Bourliva et al. (2018) analysed 500 µm 
material in Thessaloniki city, Greece and street 
dust between 63 and 500  µm was analysed in an 
assessment of human health risk in dust from 53 
cities (n = 3877) across China (Hou et  al., 2019). 
Soil was simply ‘sieved’ in China (Chen et al. 2016), 
while Wang et  al., (2019) sieved urban topsoil at 
2  mm in Shenyangn City, China. Ferreita-Baptista 
and De Miguel (2005) quoted analysed material sizes 
between 2000 and 63  µm for 15 studies, including 
one investigation using < 595 µm-sized particles. Not 
only will analyses of these materials produce highly 
varied metal concentrations due to particle size alone, 
different sized particles will have varied transport and 
adsorption potential and will produce incomparable 
results.

Sedimentary metals are present in the mineral 
matrix and as the absorbed phase of fine-grained 
particles (Ackermann et  al., 1983; Forstner, 1982). 
Only chemicals available through the three exposure 
pathways should be included in analysis of soils and 
road-derived material used for human health studies. 
Metals incorporated tightly within the mineral matrix, 
some of which are present in high concentrations, 
should be excluded from the assessment. Analytical 
methods that assess both the matrix and absorbed 
phases will confound interpretation of human health 
risk and thus the digestion method used to analyse 
metals in soils is of fundamental importance in 
assessment of NCR and CR (Birch et  al., 2020). 
Strong acid digestions, e.g. HF break down minerals 
and release both matrix and adsorbed components 
resulting in a 4- to ninefold elevation of metal 
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concentrations compared to weaker acids (e.g. 
frequently used aqua regia), whereas more diluted 
acid solutions recover < 60% of metals relative to aqua 
regia (Katz & Kaplan, 1981). Digestion procedures 
used in assessment of human health reported in the 
literature were highly varied and included a large 
number of acids from weak to strong, e.g.  HNO3; 
HCl +  HNO3;  HNO3 +  HClO4;  HNO3 +  HClO4 + HF; 
HF +  HClO4. This large range of acids used in 
digestion will result in a mixed proportion of matrix 
and adsorbed metals being analysed, resulting in 
highly varied risk profiles and reduced comparability 
between studies.

The use of inconsistent soil size, metal species 
and digestion techniques will result in incomparable 
CR and NCR assessment. The < 63  µm fraction is 
easily fractionated from the total soil, is readily 
resuspendable, has high adsorption potential, is 
the most frequently used size in environmental 
procedures and should be considered as the routine 
size fraction for human health risk assessment. Acids 
and acid mixtures, which remove only the adsorbed 
phase, should be used for digesting soils for CR and 
NCR assessment, e.g., HCl and HCl:HNO3.

Conclusions

Soil metal concentrations in Sydney estuary catch-
ment were generally higher than observed in most 
global capital cities and soil guidelines were exceeded 
for Cu, Pb and Zn. The greatest concentration of met-
als in the catchment was for gully pots and road dust 
and roadside soil metals decreased exponentially 
with distance from vehicular corridors. This evidence 
strongly suggested that the source of metals was 
related to traffic density and historical use of Pb addi-
tives in petrol.

Soil Cd, Ni and Zn posed no NCR, or CR for chil-
dren, or adults in Sydney estuary catchment, while 
Cu and Cr may pose minor NCR for children. The 
greatest human health risk raised by catchment soils 
was from Pb, which may pose NCR for children and 
adults. For CR and NCR determinations to be com-
parable, chemical and physical techniques used in 
assessment need to be consistent and standardised.
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