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Abstract  Characterizing the interplay between 
exposures shaping the human exposome is vital for 
uncovering the etiology of complex diseases. For 
example, cancer risk is modified by a range of multi-
factorial external environmental exposures. Environ-
mental, socioeconomic, and lifestyle factors all shape 
lung cancer risk. However, epidemiological studies of 
radon aimed at identifying populations at high risk for 
lung cancer often fail to consider multiple exposures 
simultaneously. For example, moderating factors, 
such as PM2.5, may affect the transport of radon prog-
eny to lung tissue. This ecological analysis leveraged 
a population-level dataset from the National Cancer 
Institute’s Surveillance, Epidemiology, and End-
Results data (2013–17) to simultaneously investigate 

the effect of multiple sources of low-dose radiation 
(gross � activity and indoor radon) and PM2.5 on lung 
cancer incidence rates in the USA. County-level fac-
tors (environmental, sociodemographic, lifestyle) 
were controlled  for, and Poisson regression and ran-
dom forest models  were used to assess the associa-
tion between radon exposure and lung and bronchus 
cancer incidence  rates. Tree-based machine learning 
(ML) method  perform better than traditional regres-
sion: Poisson regression: 6.29/7.13 (mean absolute 
percentage error, MAPE), 12.70/12.77 (root mean 
square error, RMSE); Poisson random forest regres-
sion: 1.22/1.16 (MAPE), 8.01/8.15 (RMSE). The 
effect of PM2.5 increased with the concentration of 
environmental radon, thereby confirming findings 
from previous studies that investigated the possible 
synergistic effect of radon and PM2.5 on health out-
comes. In summary, the results demonstrated (1) 
a need to consider multiple environmental expo-
sures when assessing radon exposure’s association 
with lung cancer risk, thereby highlighting (1)  the 
importance of an  exposomics framework and (2) 
that employing ML models may capture the com-
plex interplay between environmental exposures and 
health, as in the case of indoor radon  exposure and 
lung cancer incidence.
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Introduction

The concept of the human exposome was first pro-
posed almost two decades ago as a framework to 
guide research that explores the etiological complexi-
ties of health and disease (Wild, 2005). Because the 
relationship between multifactorial exposure patterns 
that influence health outcomes is complex, there is 
a need for studies that incorporate information from 
multiple exposures. Approaches that include a single 
environmental exposure may not fully or accurately 
describe the risk of disease because mixing fac-
tors may alter the effects of a single exposure (Wild, 
2005; Zhang et  al., 2021). Alpha radiation, consist-
ing of two protons and two neutrons, can be easily 
stopped by skin or paper, yet is harmful if ingested. 
Beta radiation, comprising electrons or positrons, can 
also be readily halted but poses risks to the human 
body when ingested. Gamma radiation, a high-energy 
electromagnetic wave, is produced by nuclear reac-
tions and has strong penetrative capabilities; there-
fore, external exposure can cause significant harm. 
For example, recent studies have shown that known 
associations between fine particulate matter (PM2.5) 
and health are modified by gross � activity (a meas-
ure of the counts of � ray per unit time) (Blomberg 
et al., 2019; Dong et al., 2022). In the present study, 

we leverage statistical and ML methods to simulta-
neously consider the effects of background radia-
tion levels (gamma radiation emitted from airborne 
radioactive particles and indoor radon gas), PM2.5 
exposure, and other social and behavioral factors on 
county-level lung cancer rates.

The effects of radiation on health have long been 
investigated. Since the discovery of radiation and 
its subsequent applications in the nuclear fuel cycle, 
industry, security and consequence management, 
and nuclear medicine, the study of radiation-induced 
health effects on humans has been an important field 
of research. The evaluation of the risk from radiation 
exposure at high doses/high dose rates has been rela-
tively well established through the Life Span Study 
of atomic bomb survivors (Seong et al., 2016; Ozasa 
et al., 2019; United Nations Scientific Committee on 
the Effects of Atomic Radiation [UNSCEAR], 2008), 
the Chernobyl workers study (Morton et  al., 2021), 
and nuclear weapon fallout studies (Lyon et al., 2006; 
Takahashi et  al., 2003). However, in determining 
radiation-induced outcomes, less is known about low-
level or background exposures and their interactions 
with other environmental toxins.

Radon Exposure and Lung Cancer

Radon is produced from the decay of uranium and is 
emitted from terrestrial sources and building mate-
rials. It is known that exposure to radon is affected 
by various factors such as housing characteristics, 



Environ Geochem Health (2024) 46:82	

1 3

Page 3 of 18  82

Vol.: (0123456789)

surficial uranium concentration, soil permeability, 
and even groundwater (Mose & Mushrush, 1999; 
Ponciano-Rodríguez et  al., 2021; Przylibski et  al., 
2022; Smith & Field, 2007). This alpha emitter and 
its progenies are absorbed into the lungs, which in 
the process exposes the airways to radiation. Radio-
nuclides inhaled into the lungs and bronchi cause 
the ionization of biological molecules, which in turn 
causes DNA damage and potentially cancer (Abergel 
et al., 2022; National Research Council [NRC], 1999; 
McDonald et al., 1995). In this process, most of the 
inhaled radon is exhaled from the lung because radon 
is an inert gas. However, its progenies have short half-
lives that usually decay before they are removed from 
the lung through exhalation (Tirmarche et al., 2010). 
Additional complexities arise when considering the 
other particles and gases that the radon progeny bind 
to, such as PM2.5. The pollution particles may serve 
as a vector for the deposition of radon progeny into 
the lungs.

Epidemiological studies that link radon exposure 
to lung cancer risk show conflicting results  (Cohen 
& Colditz, 1994; Kreuzer et al., 2010, 2015; Mifune 
et  al., 1992; Yoon et  al., 2016). Although there 
is strong evidence from studies of uranium min-
ers (Richardson et  al., 2021), studies of the broader 
population are less conclusive. A recent ecological 
study conducted in Mexico examined the relation-
ship between indoor radon exposure and lung cancer 
mortality. The findings of the study suggested that 
higher levels of radon concentration may be linked to 
an increased risk of lung cancer (Ponciano-Rodríguez 
et al., 2021). However, this study has a limitation in 
that it did not control variables such as lifestyle or 
socioeconomic status in the model. In another study 
based in the USA, Cohen et  al. (1994, 1995) used 
county-level data to investigate the association of 
radon exposure and lung cancer. This study showed 
a negative association between lung cancer risk and 
radon concentration, even though Cohen controlled 
for several confounding factors, such as smoking, 
socioeconomic factors, and geography (Cohen, 1995; 
Cohen & Colditz, 1994). There are several limiting 
factors within the aforementioned studies, for exam-
ple, small sample sizes and challenges associated 
with decoupling the risk associated with radon expo-
sure and other confounding factors (e.g., lifestyle, 
socioeconomic factors).

New computational methods for population‑level 
exposomic research

The emerging fields of data science and ML provide 
new opportunities for characterizing the relationship 
between the exposome and lung cancer by offering 
alternative analytical methods for modeling complex 
relationships between social and environmental deter-
minants of health. Using ML methods for modeling 
complex relationships in epidemiology research has 
become increasingly prevalent (Wiemken & Kel-
ley, 2020). This study tested the effects of low-dose 
radiation in single- and multi-exposure models and 
compared results from traditional methods and ML 
methods for a comprehensive look at the relationship 
between low-dose radiation and lung cancer rates in 
the USA.

Methodology

This ecological analysis utilized county-level data to 
describe the relationship between two measures of 
low-dose radiation exposure and lung cancer rates. 
The following county-level factors were assembled 
and are summarized in Table  1: (1) environmental 
radiation exposures (gross gamma activity and indoor 
radon), (2) non-radiation environmental variables (air 
quality), (3) lifestyle (smoking), and (4) sociological 
data (demographic/socioeconomic). These variables 
were used to predict county-level lung/bronchus can-
cer risk and incidence. We tested for multicollinear-
ity and all of the variables showed variance inflation 
factor (VIF) less than 5. Poisson regression and Pois-
son random forest (RF) regression were used to model 
lung cancer incidence rates in 662 counties in the 
USA. The MAPE (Mean Absolute Percentage Error) 
and RMSE (Root Mean Square Error ) from a fivefold 
cross-validation were compared across regression 
models to analyze model performance. The codes 
used in this analysis can be found in https://​github.​
com/​Heech​an-​Lee/​county_​radon_​lung.​cancer.

Environmental radiation data

Gamma count rate

The US Environmental Protection Agency’s (EPA’s) 
RadNet system monitors the gamma counts across 

https://github.com/Heechan-Lee/county_radon_lung.cancer
https://github.com/Heechan-Lee/county_radon_lung.cancer
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Table 1   Radiation, environmental, sociological, and cancer incidence datasets of 662 counties in the USA used in this study

Model grouping Data Source Year(s) Data description

RadNet RadNet EPA (EPA, n.d.) 2-year lagged averaged Gamma count rate (interpo-
lated & averaged), cpm

Radon Radon zone EPA (EPA, 1993) 1993 Zone 1: > 4 pci/L
Zone 2: 2–4 pci/L
Zone 3: < 2 pci/L

Radon Radon concentration CDC (CDC, n.d.) 2008–2017 Indoor radon tests from labs 
(median), pCi/L

PM2.5 Air quality, PM2.5 CDC (CDC, n.d.) 3-year lagged averaged PM2.5 (averaged), µg/m3

Others Air quality CDC (CDC, n.d.) 2011 Chemicals (formaldehyde, 
benzene), µg/m3

Others Air quality, ozone CDC (CDC, n.d.) 3-year lagged averaged Ozone (averaged), days 8-h 
average ozone concentra-
tion exceeded 0.07 ppm

Smoking Smoking CHR (University of Wis-
consin Population Health 
Institute, 2022)

2015 Adult smoking rate, %

Sociodemographic Education SEER (NCI-DCCPS-SRP, 
2022)

2008–2012 % of the population with 
high school education

Sociodemographic Income SEER (NCI-DCCPS-SRP, 
2022)

2008–2012 Median family income, USD

Sociodemographic Unemployment SEER (NCI-DCCPS-SRP, 
2022)

2008–2012 Rate, %

Sociodemographic Urban % SEER (NCI-DCCPS-SRP, 
2022)

2010 % of the total population in 
urban areas

Population Population SEER (NCI-DCCPS-SRP, 
2022)

2013–2017 Total population

Health outcomes Lung (bronchi) cancer 
incidence

SEER (NCI-DCCPS-SRP, 
2022)

2013–2017 Incidence count per age 
group and sex

Fig. 1   Locations of 140 
counties (or equivalent) 
that have RadNet monitor-
ing centers in the USA and 
Puerto Rico
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the United States  (Fraass, 2015). The first monitor-
ing center came online in 2006, and since then the 
number of monitoring centers has increased to 140. 
(Fig. 1) Since July 2016, 80 monitoring centers also 
record the gamma exposure rate; however, this data 
is not available for the entire timeframe of the cancer 
incidence data, so the gamma gross count rate is used 
instead. Gamma gross count rates are measurements 
of radiation emitted from a particulate collected on an 
air filter—they are not a direct measure of exposure 
rate.

The three most prominent limitations of this data-
set were as follows: (1) a high percentage of the mon-
itoring centers were missing data from one or more 
months, (2) the data were limited to 140 county data 
points, and (3) some of the monitoring centers did not 
have records prior to 2013. To overcome these limita-
tions, data were imputed by using existing alternate 
datasets. First, the monthly average hourly-reported 
gamma gross count was calculated to capture the 
seasonality of the data and to minimize the effect of 
outliers caused by local volatility. Second, the follow-
ing two imputations were implemented: (1) imputing 

data of missing months through linear interpolation 
and seadec (Seasonally Decomposed Missing Value 
Imputation) function of R (R Core Team, 2021) from 
the imputeTS package(Moritz & Bartz-Beielstein, 
2017) and (2) 2D linear interpolation by using the 
‘griddata’ function of SciPy from Python (Virtanen 
et  al., 2020). Linear interpolation and the seadec 
function outperformed interpolation with mean value 
as well as other methods, such as ARIMA (Autore-
gressive Integrated Moving Average) with Kalman 
filters and seasplit (Seasonally Splitted Missing Value 
Imputation) function of imputeTS package (Moritz 
& Bartz-Beielstein, 2017), for imputing the missing 
months. For 2D interpolation of counties without 
nearby or inherent geographical obstacles such as 
mountains or large forests, the interpolation showed 
less than 15% percentage error between the averaged 
real and predicted counts. The map of interpolated 
gamma count rate data is shown in Fig. 2.

We then created a summary measure of gross 
gamma activity for each observation year by averag-
ing the gross gamma activity for the two years prior 
to the year of diagnosis (two-year lag).

Fig. 2   Interpolated gamma count rate (RadNet) data for the USA from data of 140 monitoring centers created with seadec function 
and linear interpolation
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Radon

Two sources of radon data were utilized in this study: 
radon zones from the US Environmental Protection 
Agency (1993) and the median concentration from 
indoor radon test kits downloaded from the US Cent-
ers for Disease Control and Prevention (CDC) data-
base (Centers for Disease Control and Prevention, 
n.d.). The radon zone data classification was devel-
oped by the EPA in 1993 and classifies counties into 
three groups based on the potential for exposure to 
indoor radon: Zone 1, representing the highest radon 
concentration group of 4 pCi/L or higher; Zone 2, 
with a radon concentration of 2–4 pCi/L; and Zone 
3, with less than 2 pCi/L (US Environmental Protec-
tion Agency, 1993). Although the classification sys-
tem is almost three decades old, the classifications 
can reasonably be assumed as representative of the 
composition of soil and bedrock, which do not change 
significantly over this elapsed time. The CDC radon 
data are the results of indoor radon tests from kits 
deployed in residential, industrial, and educational 
locations across the USA from 2008 to 2017. The 
locations of 662 counties used in the analysis and the 

average of yearly median indoor radon concentrations 
of those counties are shown in Fig. 3.

Non‑radiation environmental data

Air quality

Air pollution, notably particulate matter, is a known 
lung cancer-inducing factor (Couraud et  al., 2012; 
Dela Cruz et al., 2011; Raaschou-Nielsen et al., 2013; 
Turner et al., 2011a, 2011b). Air quality-based meas-
urements were obtained from the National Environ-
mental Public Health Tracking Network (CDC, n.d.). 
This database includes various features, including 
toxic chemicals, ozone, and PM2.5. For toxic chemi-
cals, the measurements were of an annual average 
concentration of 2005 and 2011. Ozone data was 
based on the days that the daily 8-h average ozone 
concentration exceeded 0.07 ppm between 2001 and 
2016. The PM2.5 data was the average concentration 
of PM2.5 for each year between 2001 and 2016. For 
data on chemical concentrations, data from 2011 was 
extracted to best align with cancer incidence data, and 
the concentrations were assumed not to have changed 
by 2017. Among the various chemicals, formaldehyde 

Fig. 3   Average of yearly median indoor radon concentration for US Counties with SEER data downloaded from the US Centers for 
Disease Control and Prevention in pCi/L
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Fig. 4   Average of PM2.5 concentration for US Counties with SEER cancer incidence data in µg/m3

Fig. 5   The percentage of adults in US Counties with SEER cancer incidence data who self-identified as smokers in a 2015 state-
based random digit dial telephone survey of the Behavioral Risk Factor Surveillance System
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and benzene were employed. For ozone and PM2.5, 
the average of the concentrations for the 3 years pre-
ceding the cancer incidence record was included in 
this analysis. The locations of 662 counties and their 
average PM2.5 concentrations are shown in Fig. 4.

Lifestyle data

Tobacco smoking

Smoking has been well established as the leading 
lung cancer-inducing factor  (de Groot et  al., 2018; 
Dela Cruz et  al., 2011). The smoking data included 
in this study was adapted from the Robert Wood 
Johnson Foundation County Health Rankings (CHR) 
(University of Wisconsin Population Health Institute 
[UWPHI], 2022; Remington et al., 2015). This data-
set provides the percentage of adults who self-iden-
tified as smokers in a 2015 state-based random digit 
dial telephone survey of the Behavioral Risk Factor 
Surveillance System. The 2015 smoking rates were 
chosen because smoking rates are relatively constant 
during the period of observation, and the midpoint of 
interest was used as the representative year. The map 
of the smoking rates in 2015 are depicted in Fig. 5.

Demographic and socioeconomic data

Demographic and socioeconomic factors from 
the Surveillance, Epidemiology, and End Results 
(SEER) database (National Cancer Institute, 
DCCPS, Surveillance Research Program [NCI-
DCCPS-SRP], 2022) were included in the dataset 
because cancer incidence is affected by various 
demographic and socioeconomic factors  (Siegel 
et  al., 2019). The SEER data includes education 
level, poverty rate, unemployment rate, rate of resi-
dence in urban areas, and divided into age cohorts 
separated by 5 years to reflect the age effect. Age 
groups range from 30–34 years old to 80–84 years 
old for both sexes. Age groups range from 30–34 
years old to 80–84 years old for both sexes. The 
averages from 2008 to 2012 reported for each 
county were used for high school education, median 
family income, and unemployment data and were 
assumed to remain constant. The urban rate was 
taken from 2010 data. Total population  from the 
2010 US Census for the 662 countres used in the 
analysis are shown in Fig. 6.

Fig. 6   Total population in 2010 for counties with SEER cancer incidence data
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Health outcomes

Lung and bronchus cancer incidence rate

According to cancer statistics, lung and bronchus 
cancer cause the most cancer deaths and have the 
second-largest incidence across cancer types in the 
USA (Siegel et al., 2019). In this study, cancer inci-
dence data employed age group and sex  classifica-
tions from SEER  (NCI-DCCPS-SRP, 2022). Lung 
and bronchus cancer incidences between 2013 and 
2017 of five-year age groups, spanning from 30 to 
84 years old were used in this study. This age range 
was carefully selected to ensure a comprehensive 
analysis of lung cancer incidence across adult-
hood, capturing variations in risk that may emerge 
as individuals age. Further details on age classifica-
tion can be found in the SEER*Stat documentation 
(NCI-DCCPS-SRP, 2022). These age groups were 
used in this study. Figure 7 shows cancer incidence 
rate for the 662 counties.

Regression models

Regression analysis was used to study the impact 
of various factors on health outcomes. Poisson 

regression, which is a count-based regression method, 
was utilized in this study.

The Poisson regression model used for the analysis 
is represented by the equation

where λi is the expected count of the outcome varia-
bles for the ith observation, α is the intercept term, βn 
denotes the coefficient for the nth predictor variables 
en is the values of the nth predictor variables and the 
log (Popi) is the offset term representing natural loga-
rithm of the population for ith observation. For the 
age group variable, dummy variables were employed. 
βagn is the coefficient corresponding to the nth age 
group, and eagn is its associated variable. This dummy 
variable takes a value of 1 if the observation belongs 
to the nth age group, and 0 otherwise.

An RF approach was also employed by using 
rfPoisson from the R package fpechon/rfCountData 
(Liaw & Wiener, 2002; Pechon, 2019). The RF algo-
rithm, which synthesizes the results from several sim-
ple trees of sequential specified questions or criteria 
to regress the data, can reduce the risk of overfitting 
on Poisson data (Pechon, 2019). The ML results were 

log
(

�i
)

=� + �1×e1 + �2 × e2 +⋯ + �ag1
× eag1 + �ag2 × eag2 +⋯ + log(Popi)

Fig. 7   Cancer incidence rate of age-groups of interests (incidence per 100,000)
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compared to Poisson regression through iterative five-
fold cross-validation to evaluate the regression mod-
els. Comparisons were made with Mean Absolute 
Percentage Error (MAPE) (Hamner et al., 2018) and 
Root Mean Square Error (RMSE). In the first 5 times 
of fivefold cross-validation iteration, the RMSEs 
were computed. This was followed by a distinct 5 
times of fivefold cross-validation process, in which 
the MAPEs and RMSEs were determined. Addition-
ally, the variable importance measures (VIM, feature 
importance), which showed the importance of each 
factor that contributed to the regression results, was 
derived by using RF. VIMs were calculated using the 
‘%IncLossFunction’ metric from the random forest 
model, which measures the percentage increase in the 
model’s loss function when the values of that feature 
are randomly permuted, indicating the significance 
of that feature in the model’s predictive performance. 
Incidence rate ratios (IRRs) are reported only from 
the Poisson regression to increase the interpretability 
of the results.

MAPE

The regression results are evaluated using MAPE. 
This metric is scale-independent, which makes it pos-
sible to compare models across different datasets. 
A smaller MAPE indicates a better fitting model, 
where a value closer to 0 is preferred. However, it is 

sensitive to extreme values and positive errors. Addi-
tionally, if the actual value is close to 0, there is also a 
possibility that the error might be exaggerated even if 
the absolute error has a small value.

where g is the regression model, and yt is the target 
variable (de Myttenaere et al., 2016).

RMSE

RMSE was also used for evaluating the regression 
results. This metric is not a scale-independent, but 
one of the popular statistical metrics to be used to 
measure the magnitude of error between predicted 
and observed values.

where g is the regression model, and yt is the target 
variable.

MAPE and RMSE were calculated from a different 
validation process.

MAPE = mean

(
|
|
|
|
|

g
(
xt
)
− yt

yt

|
|
|
|
|

)

∗ 100

RMSE =

√

mean
((

g
(
xt
)
− yt

)2)

Table 2   Mean absolute percentage errors (MAPEs), root mean square errors (RMSEs), and their standard deviation from the test set 
with Poisson regression and Poisson random forest

ML or statistical models Male Female

MAPE (SD) RMSE (SD) MAPE (SD) RMSE (SD)

Poisson regression 6.29 (2.67) 12.70 (3.94) 7.13 (4.04) 12.77 (3.38)
Poisson random forest 1.22 (0.0373) 8.01 (2.54) 1.16 (0.0391) 8.15 (2.52)

Table 3   Mean absolute percentage errors (MAPEs), root mean square errors (RMSEs), and their standard deviation of each data set 
with Poisson regression

Data Male Female

MAPE (SD) RMSE (SD) MAPE (SD) RMSE (SD)

RadNet+radon 8.50 (2.67) 12.22 (3.94) 7.41 (3.83) 12.52 (3.86)
RadNet+radon+smoking+PM2.5 7.76 (4.92) 12.75 (4.03) 20.13 (65.28) 12.66 (3.77)
RadNet+radon+smoking+PM2.5+others 8.79 (10.10) 12.61 (4.25) 5.95 (1.92) 12.64 (3.57)
All (Full model) 6.29 (2.67) 12.70 (3.94) 7.13 (4.04) 12.77 (3.38)
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Results

By developing a dataset of radiation, environmental, 
and sociodemographic variables that span the period 
of 2013–2017 (Table 1), Poisson regression and Pois-
son RF models were employed to model the relation-
ship between the cancer-related factors and the lung/
bronchus cancer incidence.

MAPE showed statistically significant differences 
when T-test was done between Poisson regression 
and Poisson RF. As the number of samples for each 
case is 25, degree of freedom is 48. For both males 
(t(48) = 12.86, p < 0.01) and females (t(48) = 6.40, 
p < 0.01). RMSE also showed significant differences 
for both males (t(48) = 8.85, p < 0.01) and females 
(t(48) = 6.57, p < 0.01) (Table 2).

Tables  3 and 4 summarize the regression results 
of various datasets through Poisson RF and Poisson 
regression. Smoking, radiation exposure, and PM2.5, 

which are thought to be related to radon exposure 
(Matthaios et  al., 2021; Trassierra et  al., 2016), and 
sociodemographic and behavioral factors were com-
bined in various models. The analysis of the relation-
ship between variables and model accuracy revealed 
an interesting trend in the error from the Poisson RF, 
as shown in Table 4. The VIM was acquired by aver-
aging the model weights across folds with the entire 
dataset by using the default function of the fpechon/
rfCountData package (Liaw & Wiener, 2002; Pechon, 
2019). Table  5 and 6 show the VIMs of the vari-
ables analyzed with full model Poisson random forest 
regression including all variables, including socioec-
onomic variables, in the model.

Table 7 summarizes the IRRs analyzed with full 
model Poisson regression. The increased unit of 
the IRR is proportional to the range of each vari-
able to make a more intuitive comparison. In both 

Table 4   Mean absolute percentage errors (MAPEs), Root mean square errors (RMSEs), and their standard deviation of each data set 
with Random Forest

Data Male Female

MAPE (SD) RMSE (SD) MAPE (SD) RMSE (SD)

RadNet+radon 1.42 (0.0603) 7.71 (2.36) 1.27 (0.0400) 7.84 (2.60)
RadNet+radon+smoking+PM2.5 1.47 (0.0508) 9.21 (3.22) 1.51 (0.0323) 9.09 (3.21)
RadNet+radon+smoking+PM2.5+others 1.36 (0.0390) 8.61 (3.24) 1.24 (0.0305) 8.57 (2.88)
All (Full model) 1.22 (0.0373) 8.01 (2.54) 1.16 (0.0391) 8.15 (2.52)

Table 5   Variable importance measures (VIM) of variables 
from male dataset with Random Forest

Variables VIM
Male

Age 8.10
Smoking 0.124
Median family income 6.07*10−2

High school education 4.86*10−3

Benzene 4.84*10−3

Formaldehyde 3.59*10−3

Unemployed 7.52*10−4

RadNet 5.26*10−4

Radon  − 3.05*10−3

PM2.5  − 4.91*10−3

Urban  − 1.71*10−2

Ozone  − 2.23*10−2

Table 6   Variable importance measures (VIM) of variables 
from female dataset with Random Forest

Variables VIM
Female

Age 6.82
Formaldehyde 2.29*10−2

Smoking 1.61*10−2

Radon 9.63*10−3

High school education 7.11*10−3

Median family income 4.50*10−3

RadNet 4.08*10−3

Unemployed 1.15*10−3

Benzene  − 1.91*10−3

PM2.5  − 8.92*10−3

Ozone  − 2.89*10−2

Urban  − 0.158
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cases, smoking had the greatest effect on lung can-
cer incidence rates. In the case of indoor radon, 
the association was negative. [Male: 0.99 (0.98, 
0.99), Female: 0.99 (0.98, 0.99)]. Also, Background 
gamma count (RadNet) [Male: 0.97 (0.97, 0.98), 
Female: 0.98 (0.98, 0.99)] and three-year average 
PM2.5 for female [0.99 (0.98, 1.00) P-value: 0.09] 
showed negative associations at higher concentra-
tions, which somewhat contradicts results from 
previous studies (Ghazipura et al., 2019; Raaschou-
Nielsen et al., 2013; Turner et al., 2011a, 2011b).

To understand the differences broken down 
by EPA Radon Zone, separate regression models 
were run for each zone using the full model Pois-
son regression (Table 8). In the case of Radon Zone 
1, an area with high radon concentration, the effect 
of PM2.5 exposure was the greatest. Conversely, in 
the case of Radon Zone 3, which is an area with a 
low radon concentration, higher rates of PM2.5 were 
associated with lower incidence rates. The effect of 
smoking was consistent across all radon zones.

Discussion

The effects of environmental exposure on health out-
comes are complex. In this study, the results (Table 8) 
suggest that the assocation between  PM2.5 may vary 
with levels of indoor radon exposure. Despite poten-
tial synergistic effects of exposure, many radiation 

epidemiological studies include a limited number of 
environmental exposure measures (Haylock et  al., 
2018; Richardson et  al., 2015; Stanley et  al., 2019; 
Tomasek, 2013). Belloni et al. (2020) have noted that 
few studies (Klebe et al., 2019; Leuraud et al., 2011) 
have attempted to address multifactorial exposures 
from environmental stressors. In the study of radia-
tion-related disease, estimating the risk associated 
with radiation-related lung cancer has been a focal 
point in resolving the dose-risk response relationship 
(United Nations Scientific Committee on the Effects 
of Atomic Radiation [UNSCEAR], 2018). Fur-
thermore, due to the high baseline cancer risk com-
pared to the risk increased from low-dose radiation 
exposure, the population size required for detecting 
low-dose radiation risk with statistical significance 
exponentially increases as the target dose decreases 
(Ozasa, 2016; Ozasa et al., 2019; UNSCEAR, 2008; 
Valentin, 2006). To address some of the challenges, 
studies that use a wider range of data, such as the 
Million Person Study (Boice et  al., 2022), are being 
conducted (Calabrese, 2015; Ricci & Tharmalingam, 
2019; Tubiana et  al., 2009; Valentin, 2008; Weber 
& Zanzonico, 2017). The utilization of population-
level exposure variables and health outcomes data 
adopted in this study can serve as a valuable resource 
for future research. Population-level data offers an 
advantage in the adoption of multiple variables and 
the analysis of diverse health outcomes. Furthermore, 
ML techniques are particularly well suited to model 

Table 7   Incidence rate 
ratios (IRRs) and 95% 
confidence intervals of 
each factor of interest with 
poisson regression

IRR Unit of measurement

Male (95% CI) Female (95% CI)

Smoking 1.47 (1.45,1.48) 1.45 (1.44, 1.47) Per 5% increase in the population
Radon 0.99 (0.98, 0.99) 0.99 (0.98, 0.99) Per 3 pCi/L increase
RadNet 0.97 (0.97, 0.98) 0.98 (0.98, 0.99) Per 500 cpm increase
PM2.5 1.02 (1.01, 1.03) 0.99 (0.98, 1.00) Per 3 µg/m3 increase
Formaldehyde 1.02 (1.02, 1.02) 0.98 (0.98, 0.99) Per 0.3 µg/m3 increase
Benzene 1.01 (1.00, 1.02) 1.02 (1.01, 1.02) Per 0.3 µg/m3 increase

Table 8   Incidence rate ratios (IRRs) and 95% confidence intervals of PM2.5 and smoking by radon zone

Radon zone 1 Radon zone 2 Radon zone 3

Male (95% CI) Female (95% CI) Male (95% CI) Female (95% CI) Male (95% CI) Female (95% CI)

IRR of PM2.5 1.17 (1.13, 1.20) 1.13 (1.10, 1.17) 1.04 (1.03, 1.06) 1.03 (1.01, 1.05) 0.92 (0.89, 0.94) 0.94 (0.91, 0.96)
IRR of smoking 1.36 (1.31, 1.40) 1.45 (1.41, 1.50) 1.52 (1.49, 1.54) 1.55 (1.52, 1.58) 1.50 (1.47, 1.53) 1.35 (1.32, 1.37)
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the complex relationships that exist between environ-
mental exposure and health outcomes. By leveraging 
ML, it is possible to capture the complex interplay 
between environmental exposures and health, thereby 
offering a promising avenue for future research in this 
field.

The results suggest that PM2.5 should be included 
in future analysis of radon-induced lung cancer inci-
dence, as there may be an interaction with radon 
exposure. The observed patterns, where changes in 
radon concentration result in significant differences 
(p < 0.001 for all cases) in the effects of PM2.5, cor-
roborate findings from other research that explores 
the combined impacts of PM2.5 and radon exposure 
(Dlugosz-Lisiecka, 2016). PM2.5 or other particulate 
matter could be one of the possible transport mecha-
nisms that allow radon gas to permeate lung tissue. 
This is further supported by two experimental stud-
ies that assess the speciation of PM2.5 particles in 
the presence of radon progeny. The first study shows 
that the alpha activity of PM2.5 tends to increase as 
the concentration of radon increases (Matthaios et al., 
2021). The second study shows that in a radon cham-
ber, the presence of particulate matter will increase 
the attached fraction of radon progeny, thereby imply-
ing that the radiation exposure from particulate mat-
ter will increase (Trassierra et  al., 2016). PM2.5 and 
radon seem to have synergistic effects and are thought 
to affect various health outcomes, including inci-
dences of lung cancer. Given the possible synergistic 
effect between PM2.5 and radon, future epidemiologi-
cal studies should investigate this further.

This study harnessed ML to consider the non-
linear effects of radon exposure within the context of 
other environmental factors. The results of decreased 
errors from ML models show that ML is effective at 
analyzing complex relationships in environmental 
exposure studies and should be considered in future 
studies that investigate the relationship between radon 
exposure and cancer outcomes. One limitation of 
current ML is the lack of variety in ML algorithm 
packages that can be applied to count data. However, 
it is believed that these problems will naturally be 
resolved as ML develops and becomes more widely 
used in regression analysis.

Large-scale data can be challenging when conduct-
ing analysis attributable to individual characteristics, 
for example they are limited in their ability to reflect 
the interaction of environmental and genomic factors, 

which is important in the exposome approach (Zhang 
et al., 2021). Furthermore, individual history of expo-
sure information which is similarly essential to expo-
some analysis is difficult to reflect in the analysis 
(Zhang et  al., 2021). Thus, population-level studies 
of incidence rates, such as this one, are susceptible to 
the ecological fallacy. This limits the ability to estab-
lish causal relationships between variables and health 
outcomes. Despite these limitations, population-level 
studies can still provide valuable reference points for 
guiding individual-level studies.

The World Health Organization (2009) reported 
that radon is the second major contributor to lung 
cancer incidence. Also, a study by Turner et  al. 
(2011a, 2011b), which analyzed county-level radon 
concentrations and residents’ lung cancer risk similar 
to this study, showed a positive association between 
residential radon and lung cancer risk. However, 
our results showed that there was negative associa-
tion between radon and lung cancer incidence  rates 
[IRR of male: 0.99 (0.98, 0.99), IRR of female: 0.99 
(0.98, 0.99)]. There are several reasons our findings 
may differ from occupational cohort studies that show 
there is a strong association in occupational studies 
where individuals are exposed to high levels radon 
(Kreuzer et al., 2015; Leuraud et al., 2011; Richard-
son et  al., 2021, 2022). First, as mentioned above, 
this study may suffer from ecological fallacy. Second, 
indoor radon exposure risk is measured at the county 
level and radon exposure varies widely across coun-
ties (Li et  al., 2021). Third, the effect sizes at low 
levels of exposure are likely small—making the sig-
nal difficult to detect in an ecological analysis. Our 
results of study which investigated the association 
between residential radon exposure to lung cancer is 
difficult distinguished are more aligned with results 
from recently published residential exposure and 
lung cancer-based study (Li et  al., 2020). The study 
on residential radon exposure and lung cancer risk in 
Connecticut and Utah (Sandler et al., 2006) could not 
provide evidence of an increased risk of lung cancer 
at the exposure levels observed. Unlike minor studies, 
the residential radon exposure is so low that statisti-
cally significant results are difficult to obtain.

Furthermore, the difference in findings across 
studies may arise from discrepancies between indi-
vidual-level and population-level approaches in their 
methodologies and analysis. Also, regarding the 
interaction between smoking and radon, the results 
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were different from the previous studies. According 
to BEIR VI, a comprehensive analysis of the relation-
ship between smoking habits, radon exposure, and 
lung cancer risk of uranium miners from several stud-
ies showed a submultiplicative effect, which means 
that the risk in the population exposed to both smok-
ing and radon is greater than the sum of the indi-
vidual risks expected from either smoking or radon 
exposure and less than the product (NRC, 1999). The 
results of a case-control study in Spain after BEIR 
VI indicated that there is a strong synergistic effect 
between smoking and radon exposure, and the case-
control miner study showed evidence of submultipli-
cative interaction between radon and smoking (Bar-
ros-Dios et al., 2012; Leuraud et al., 2011). However, 
the association between smoking and radon concen-
tration did not appear to be significant in the results 
presented herein. These inconsistent results again 
may be attributed to certain limitations in this study, 
including terse measurement of radon concentrations. 
Using the median data could prevent the effects of 
outliers, but it will have errors from the insufficient 
number of tests. This problem could skew the results 
toward non-significant associations or even contradict 
established knowledge.

Possible confounding factors that were not prop-
erly reflected are that the level of stress that people 
experience, and the quality of medical care will vary 
considerably by county or state despite some socioec-
onomic factors being included. This may also explain 
the opposite trend in this analysis vs. the previously 
known results of PM2.5 and lung cancer incidence. 
These problems could be mitigated if the research is 
conducted on specific regions with very high-reso-
lution data, or by improving our measures of radon 
concentrations. Another limitation of this study is the 
lack of residential history data, which made it impos-
sible to create a model that adequately considers dif-
ferent exposures across a life span and the associated 
latency periods. Other lung cancer models have con-
sidered the incubation period of 5 years (National 
Research Council [NRC], 2006; UNSCEAR, 2008; 
Valentin, 2008). Future studies should use residential 
history to assess the effects of indoor radon exposure 
across a life span.

If future studies address these limitations, then the 
combination of highly accurate ML techniques and 
the advantages and applicability in radiation epidemi-
ology of population-level data could be harnessed for 

more diverse health outcome analysis. This may also 
provide valuable insights into the interplay between 
variables.

Conclusion

Traditional statistical methods and ML models can 
be used in parallel to fully understand the complex 
relationship between environmental exposures and 
health. To investigate the applicability of multivari-
able and ML methods in environmental exposure 
studies, county-level lung/bronchus cancer risk was 
assessed with various exposures (airborne gamma 
counts, radon concentration, air quality), lifestyle 
(smoking), and socioeconomic factors through Pois-
son regression and Poisson RF regression. The study 
found that the risk of lung cancer from PM2.5 varied 
by radon concentration with larger effect sizes in 
areas with high indoor radon exposure. In summary, 
the results of this study demonstrate how (1) includ-
ing multiple environmental exposures has advantages 
over single exposure studies when the relationship 
between the environment and lung cancer risk is con-
sidered, thereby making an exposomics framework 
an important consideration, and (2) employing ML 
models enhances the utility of analysis in identify-
ing complex relationships, as in the case of environ-
mental radiation exposure and lung cancer incidence. 
Consequently, this study proposes a new paradigm 
for studying environmental radiation combined with 
other environmental exposures.
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