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Abstract  Exposure to coal mining dust poses a 
substantial health hazard to individuals due to the 
complex mixture of components released during the 
extraction process. This study aimed to assess the 
oxidative potential of residual coal mining dust on 
human lymphocyte DNA and telomeres and to per-
form a chemical characterization of coal dust and 
urine samples. The study included 150 individuals 
exposed to coal dust for over ten years, along with 

120 control individuals. The results revealed signifi-
cantly higher levels of DNA damage in the exposed 
group, as indicated by the standard comet assay, and 
oxidative damage, as determined by the FPG-modi-
fied comet assay. Moreover, the exposed individuals 
exhibited significantly shorter telomeres compared to 
the control group, and a significant correlation was 
found between telomere length and oxidative DNA 
damage. Using the PIXE method on urine samples, 
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significantly higher concentrations of sodium (Na), 
phosphorus (P), sulfur (S), chlorine (Cl), potas-
sium (K), iron (Fe), zinc (Zn), and bromine (Br) 
were observed in the exposed group compared to 
the control group. Furthermore, men showed shorter 
telomeres, greater DNA damage, and higher concen-
trations of nickel (Ni), calcium (Ca), and chromium 
(Cr) compared to exposed women. Additionally, the 
study characterized the particles released into the 
environment through GC–MS analysis, identifying 

several compounds, including polycyclic aromatic 
hydrocarbons (PAHs) such as fluoranthene, naphtha-
lene, anthracene, 7H-benzo[c]fluorene, phenanthrene, 
pyrene, benz[a]anthracene, chrysene, and some alkyl 
derivatives. These findings underscore the signifi-
cant health risks associated with exposure to coal 
mining dust, emphasizing the importance of further 
research and the implementation of regulatory meas-
ures to safeguard the health of individuals in affected 
populations.

Graphic abstract 
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Introduction

Since the twentieth century, the exploitation and con-
sumption of fossil fuels, particularly coal, have been a 
key driver of global economic development for indus-
trial and domestic energy generation. However, the 
combustion of fossil fuels is a significant contributor 
to climate change due to the release of polluting emis-
sions (Jakob et  al., 2020). Coal pollution, including 
residual dust, is known to contaminate the air, water, 
and soil (Romana et al., 2022;  Hendryx et al., 2020), 
resulting in an increased risk of heart and respiratory 
diseases such as asthma, pneumoconiosis and bron-
chitis, as well as cancer, leading to thousands of pre-
mature deaths annually (Song et  al., 2022; Kamanzi 
et al., 2023; Kravchenko & Lyerly, 2018).

In this context, the release of particulate mat-
ter into the environment constitutes a highly intri-
cate mixture comprising particles of diverse sizes. 
Some of these particles, particularly those with a size 
of < 10 µm known as fine particulate matter (PM), can 
penetrate the pulmonary alveoli and enter the blood-
stream, thereby exerting an impact on extra-pulmo-
nary organs (Hendryx et al., 2020; Song et al., 2022). 
While numerous studies have examined occupational 
exposure to coal mining residues (Kvitko et al., 2012; 
León-Mejía et  al., 2011, 2014; Rohr et  al., 2013; 
Sinitsky et  al., 2016), only a limited number have 
focused on populations residing in the surrounding 
areas who are also exposed. Therefore, biomonitoring 
studies play a crucial role in establishing the relation-
ship between environmental factors and diseases as 
they enable the detection of initial alterations in non-
malignant phases (Bocato et  al., 2019; Lum et  al., 
2021).

The comet assay is currently one of the most used 
methodologies for assessing DNA breaks and esti-
mating damage in individual cells (Azqueta et  al., 
2020). To detect oxidative damage, enzyme treat-
ments have been incorporated, such as the use of 
formamidopyrimidine DNA glycosylase (FPG) to 
detect oxidized purine bases, including 8-oxo gua-
nine and 4,6-diamino-5-formamidopyrimidine (Fapy-
Ade) lesions (Muruzabal et al., 2021). This approach 

is suitable for analyzing the extent of DNA damage 
induced indirectly by reactive oxygen species (ROS) 
resulting from oxidative stress (Balasubramanyam 
et al., 2010); Kuchařová et al., 2019).

On the other hand, the measurement of telom-
eres can serve as a complementary monitoring tool 
and provide additional insights into the effects of 
xenobiotics on cells and the generation of oxidative 
stress in individuals. Critically shortened telomeres 
can trigger cellular senescence in normal cells or 
genomic instability in premalignant cells, thereby 
contributing to the development of chronic diseases, 
including degenerative diseases and cancer (Barnes 
et  al., 2019; De Rosa et  al., 2021). Therefore, tel-
omere measurements hold promise as biomarkers 
of exposure to agents that can induce DNA damage 
and can assist in the risk assessment of such agents 
(Azqueta et al., 2020).

The study aimed to evaluate the effects of coal 
mining particles, released in the surrounding area of 
the town of "La Loma" in Colombia, on the oxida-
tive damage and telomere shortening of human lym-
phocyte DNA, as well as to determine the organo-
inorganic chemical composition of this particulate 
matter and urine samples from the population under 
study.

Materials and methods

Individuals and sampling

This study was conducted in the mining zone of La 
Loma-El Paso, located in the Department of Cesar, 
Colombia, where four open-pit coal mines are pre-
sent. The sample size comprised 150 individuals (89 
women, 61 men) from the mining region who were 
exposed to coal mining particles, and 120 control 
individuals (70 women, 50 men) from Barranquilla 
(Colombia). The exposed individuals reside 2  km 
away from the nearest coal mine, and additional infor-
mation can be found in León-Mejía et  al., (2023a, 
2023b).

The exposed group was matched with the control 
group based on age (± 2  years), and all individuals 
completed a survey on socio-demographic informa-
tion. The survey included questions about lifestyle, 
occupation, alcohol and meat consumption, vitamin 
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and medication use, family history of cancer, recent 
exposure to X-rays or other carcinogens, and smok-
ing habits, among others. The exposed group was 
selected based on voluntary acceptance and having 
lived in the vicinity of the mining area for at least five 
years. After being selected, all individuals (exposed 
and control) provided informed consent. This study 
was approved by the Ethics Committee of Universi-
dad Simón Bolívar (CIE-USB-CE-0233-00). All the 
information was kept at the “Centro de Investiga-
ciones en Ciencias de la Vida (CICV), Universidad 
Simón Bolívar”, Barranquilla, Colombia.

Collection of blood and urine samples

Blood samples were collected from individuals via 
venipuncture into heparin and EDTA vacutainers, 
while urine samples were collected in 30  mL poly-
propylene containers with lids. The blood and urine 
samples were collected between 8 and 10 am. We 
ensured that individuals had not consumed alcohol 
for at least 24 h before blood collection. All samples 
were labeled with unique codes. The blood and urine 
samples were transported from the collection site 
(Loma-Cesar) to the laboratory at 4  °C. The DNA 
was extracted the following day and stored along with 
the urine at − 20 °C for two months until analysis.

Comet assay

The standard alkaline comet assay, as described 
by Singh et  al., (1988) and Tice et  al. (2000), with 
modifications from León-Mejía et  al., (2011, 2016), 
was conducted. Lymphocytes were isolated using 
ficoll-histopaque® and combined with 300 µL of low 
melting point agarose (LMA) at 37 °C. The mixture 
was then placed on a slide coated with 1.5% normal 
melting point agarose (NMA) at 60  °C. A coverslip 
was applied, and the slide was immersed in a lysing 
solution consisting of 2.5 M NaCl, 100 mM EDTA, 
and 10 mM Tris (pH 10.0–10.5), with freshly added 
1% Triton X-100 and 10% DMSO. The samples were 
stored in the dark at 4  °C. Next, an unwinding pro-
cess was performed in an alkaline buffer (300  mM 
NaOH/1 mM EDTA, pH > 13) for 30 min at 4 °C. The 
gels were then subjected to alkaline electrophoresis at 
25 V and 300 mA for 30 min, followed by neutraliza-
tion (0.4 M Tris, pH 7.5) and washing (three times for 
5 min each). Finally, the slides were stained with 30 

μL Sybr Safe (2 μL/mL) and examined under a fluo-
rescence microscope (Zeiss AXIO SCOPE A1 503 
model) equipped with a green filter of 540 nm at 40X 
magnification.

The FPG-modified comet assay was performed by 
adding an FPG enzyme to identify oxidative damage 
to DNA. The methodology for this assay was like the 
standard comet assay but with a few modifications. 
After immersion in the lysis solution, the slides were 
washed with enzyme buffer three times and then 
incubated at 37 °C with enzyme buffer supplemented 
with 60 μL of FPG (1  μg/mL solution) for 45  min. 
The rest of the steps were the same as in the stand-
ard comet assay. Six slides were analyzed per indi-
vidual, three for the standard comet test and three for 
the FPG-comet slides. The visual score values ranged 
from 0 (100 cells, class 0) to 400 (100 cells, class 4). 
The mean values of all comet assay parameters were 
considered for statistical analysis.

Quantitative polymerase chain reaction (qPCR) for 
the measurement of telomere length (TL)

The DNA samples were assessed for concentration 
using the NanoDrop 1000 spectrophotometer and 
then diluted to meet the experimental requirement 
(5  ng/μL). To determine TL, the procedure outlined 
by O’Callaghan and Fenech 2011 with minor modi-
fications by Kahl et al. (2016) was followed. A stand-
ard curve was generated by creating serial dilutions 
of a known quantity of a pooled DNA sample. The 
amplification control involved the single copy gene 
36B4, responsible for encoding the acidic ribosomal 
phosphoprotein PO. Each sample was analyzed in 
triplicate using the Step One Plus™ Real-Time PCR 
System (Applied Biosystems, Foster City, CA, USA), 
with negative and positive controls and a stand-
ard curve. A master mix was prepared using SYBR 
Green PCR Master Mix Power UP (Applied Biosys-
tems, Foster City, CA, USA), 20 ng DNA, injection 
water, and 0.2  μmol of telomere primers (forward: 
5′- CGG​TTT​GTT​TGG​GTT​TGG​GTT​TGG​GTT​TGG​
GTT​TGG​GTT -3´; reverse: 5′- GGC​TTG​CCT​TAC​
CCT​TAC​CCT​TAC​CCT​TAC​CCT​TAC​CCT -3′), and 
0.2  μmol of 36B4 primers (forward: 5′-CAG​CAA​
GTG​GGA​AGG​TGT​AATCC-3’; reverse: 5′-CCC​ATT​
CTA​TCA​TCA​ACG​GGT​ACA​A -3′). The qPCR was 
performed using the following parameters for both 
telomere and 36B4 amplicons: initial activation of 
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Taq polymerase at 95 °C for 10 min, followed by 40 
cycles of denaturation at 95 °C for 15 s and annealing 
plus extension at 60 °C for 1 min. The cycle thresh-
old (Ct) value obtained for each sample was utilized 
to calculate the total telomere length in kilobases (kb) 
per human diploid genome.

Analysis by particle‑induced X‑ray emission (PIXE)

For the determination of inorganic elements in urine, 
filter paper (0.45  µm- millipore) and a vacuum fil-
tration system with a 500 mL bottle (Corning) were 
used. Individual samples from each participant 
included in the study were filtered and dried at 40 °C 
for 48  h. Then, each sample was placed inside the 
reaction chamber at reduced pressure (ca. 10–6 mbar), 
where proton beams (2.0 MeV, average current: 1 nA) 
delivered by the Tandetron accelerator (3 MV) pro-
duced the inner shell ionization of the atoms present 
in the sample (beam spot size: 4 mm2). An electron 
flood gun was used during the experiment to avoid 
charge effects on the sample (Shubeita et al., 2005).

The GUPIXWIN® software, developed at the 
University of Guelph (Canada) by Campbell et  al. 
(2000), was employed to analyze each X-ray spec-
trum obtained. This software converts the measured 
peak areas into elemental concentrations. In the urine 
samples, the elements detected included sodium (Na), 
phosphorus (P), sulfur (S), chlorine (Cl), potassium 
(K), calcium (Ca), chromium (Cr), iron (Fe), nickel 
(Ni), zinc (Zn), and bromine (Br). The Limit of Detec-
tion (LOD) for elemental analysis using PIXE varies 
depending on the specific element and the matrix 
being analyzed. Elements with lower atomic numbers 
(Z) tend to have relatively higher LODs compared to 
those with higher atomic numbers (Z > 20). The PIXE 
setup at the Ion Implantation Laboratory is standard-
ized with NIST (National Institute of Standards and 
Technology) and Micromatter certified materials. 
Recovery values can vary from 2% for magnesium up 
to 7% for iron (Debastiani et al., 2021).

GC–MS analysis

The sample of coal particles (5  g) was subjected to 
Soxhlet extraction with petroleum ether/methyl-
ene chloride (1:1) for 24 h, as described by the EPA 
method 3540C (EPA 1996). The extract underwent 
concentration, fractionation using a SiO2 column, 

and analysis through gas chromatography (using an 
RTX-1MS column from Restek) and mass spectrom-
etry (with 70 eV and m/z 50–450 range in full scan/
SIM modes). Capillary column dimensions were 
30  m × 0.25  mm (ID) × 0.5  µm (df). The grain size 
of SiO2 was 0.2–0.5 mm, activation temperature and 
time: 100  °C and 24  h. Chromatographic and spec-
troscopic data were processed using Thermo Xcali-
burTM software (Version 2.2 SP1.48, Thermo Fisher 
Scientific, Inc.) and AMDIS (Automated Mass Spec-
tral Deconvolution and Identification System, Build 
130.53, Version 2.70). The saturate and aromatic 
fractions were separated using hexane and methyl-
ene chloride, respectively. GC oven temperature pro-
gramming was 85 °C (1 min) to 310 °C (5 min) at @ 
4 °C/min; split ratio: 5:1; inlet temperature: 250 °C. 
Helium (99.999%) was used as carried gas:, flow rate: 
1.0 mL/min (constant flow).The organic constituents 
were identified and confirmed by comparing their 
mass spectra with those available in spectral librar-
ies and databases such as NIST11, NIST Retention 
Index, and Wiley9. Additionally, certified standard 
mixtures including C10-C40 alkanes (ref. # 68,281, 
Sigma-Aldrich) and a calibration mix of PHA (SV 
Calibration Mix # 6/610 PAHs Mix, cat. # 31,011, 
Restek) were used for comparison and verification. In 
addition, the linear temperature-programmed reten-
tion indices (RI) were calculated for each compo-
nent and used for comparison purposes with the RI 
reported in the existing literature (Linstrom & Mal-
lard, 2022).

Statistical analysis

The normality of the variables was assessed using 
the Kolmogorov–Smirnov test. To analyze the dif-
ferences in DNA damage levels between the exposed 
and control groups, Student’s t test was utilized. For 
the comparison of biomarkers, the nonparametric 
Mann–Whitney U test was employed. In addition, 
the concentration of inorganic elements was analyzed 
by applying the unpaired t test (with Welch’s correc-
tion) to determine statistical differences between the 
exposed and control groups. These statistical analy-
ses were conducted using the PRISMA 5.0 software 
package. To evaluate the relationships between vari-
ables and the impact of these parameters on the over-
all outcomes, principal component analysis based 
on descriptive data analysis was performed on the 



7086	 Environ Geochem Health (2023) 45:7081–7097

1 3
Vol:. (1234567890)

damaged marker parameters and inorganic elements. 
This analysis was carried out using the XLSTAT® 
2020.3.1 program (ADDINSOFT SARL, Paris, 
France) (Addinsoft, 2022).

Results

The findings from the analysis of visual scores 
obtained using both the standard comet assay and 
the FPG-modified comet assay on peripheral blood 
lymphocytes of the individuals under investigation 
are presented in Table  1. The table demonstrates a 
significant elevation in DNA damage levels for both 
males and females compared to their respective con-
trol groups in the standard comet assay (P < 0.001). 
A similar pattern was observed in the modified assay 
(using FPG enzyme), with noteworthy differences 
between the exposed and control groups for males 
and females, respectively (P < 0.001). However, the 
FPG-modified comet assay yielded higher levels of 
DNA damage (attributable to increased purine oxida-
tion products) compared to the standard assay. Fur-
thermore, statistical significance was also observed 
when comparing the entire groups (exposed vs. con-
trols) (P < 0.001).

The results about TL indicated that the 
exposed group exhibited significantly shorter TL 
(3751.0 ± 1315.1) compared to the control group 
(6891.1 ± 2224.0) (P < 0.001, Mann–Whitney U 
test) (Fig. 1). Moreover, a significant correlation was 
observed between TL and the visual score obtained 
from the standard comet assay (P < 0.001) (Fig. 2a), 
as well as the oxidative DNA damage detected 
through the FPG-modified comet assay (P < 0.001) 
(Fig. 2b). It is noteworthy that individuals with higher 
levels of oxidative DNA damage had shorter telom-
eres. Additionally, no significant differences in TL 

values were observed between males and females 
(data not shown).

Regarding the quantitative analysis (in µg/mL) of 
elements in urine samples from both the control and 
exposed groups using PIXE, the results are presented 
in Table  2. The analysis successfully identified all 
eleven expected elements in the samples. Statistical 
analysis indicated significant differences (P < 0.05) 
in the concentrations of Na, P, S, Cl, K, Fe, Zn, and 
Br between the exposed and control groups. Further-
more, the control group exhibited significantly higher 
concentrations of Ca compared to the exposed group 
(P < 0.05). In the exposed group, significant correla-
tions were observed between age and the concentra-
tions of Fe, Na, and P, showing an inverse relation-
ship (Pearson correlation, P < 0.05). Additionally, a 
positive correlation was found between age and Ni 
levels (Pearson correlation, P < 0.05).

Table 1   Visual score (0–400; mean ± standard deviation) of peripheral blood lymphocytes from individuals exposed to residual coal 
dust and controls using the standard and FPG-modified comet assay

a  P < 0.01 and b  P < 0.001, significant difference in relation to the control groups within the same group (standard or FPG-modified 
comet assay or entire group); c  P < 0.001, significant difference in relation to standard comet assay (entire group)

Comet assay Males Females Entire group

Control (N = 50) Exposed (N = 61) Control (N = 70) Exposed (N = 89) Control (N = 120) Exposed (N = 150)

Standard 40.8 ± 15.0 104.4 ± 22.3a 48.7 ± 17.4 57.6 ± 18.4a 45.4 ± 16.8 76.6 ± 32.8b

FPG 43.5 ± 15.3 120.6 ± 22.3b 49.9 ± 17.3 68.2 ± 16.0b 47.2 ± 16.7 89.5 ± 31.9b,c

Fig. 1   Telomere length (TL) (mean ± standard deviation) in 
base pairs (bp) for the control and exposed groups. ***Sig-
nificant difference compared to the control group (P < 0.001, 
Mann–Whitney U test)
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The results of the principal component analy-
sis (PCA) provided an overview of the distribution 
of DNA damage and inorganic elements, as well as 
the relative significance of these data in each sam-
ple (Fig. 3). The scores and positions of each sample 
in the ordering plane (F1 and F2) revealed two sig-
nificant principal components, which accounted for 
42.58% and 18.10% of the total variation, respec-
tively. Consequently, the factor analysis identified two 
factors responsible for the data structure, explaining 
60.68% of the total variance. F1 was positively influ-
enced by damage parameters such as visual score 

(FPG and basal), as well as the elements Zn, Cl, K, 
Br, Na, P, S, and Fe. On the other hand, the compo-
nent F2 was influenced by Ni, Ca, and Cr while being 
negatively influenced by Telomere. Interestingly, it 
was observed that men exhibited higher DNA damage 
(as analyzed by the standard comet assay and FPG 
enzyme), shorter TL, and higher concentrations of Ni, 
Ca, and Cr compared to exposed women.

From the GC–MS analysis (full scan mode) of the 
organic extract (yield: 0.34%), some relevant constit-
uents (PAC—polycyclic aromatic compounds) were 
identified together with C12-C31 linear/branched 

Fig. 2   Spearman cor-
relation analysis between 
telomere length and visual 
score: a standard comet 
assay and b FPG-modified 
comet assay
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and cyclic hydrocarbons (TIC in Fig. 4). The analy-
sis revealed that the total extract was primarily com-
posed of linear/branched hydrocarbons (51.2%) 
along with mono-/bicyclic (6.1%) and unsaturated 
(5.1%) hydrocarbons. Additionally, a diverse group 

of components with a different chemical nature con-
tributed up to 24.0%, including 4.2% tetracyclic tri-
chromatic hydrocarbons, 3.4% alkyl-naphthalenes, 
2.8% alkyl-monoaromatic hydrocarbons, and each 
1.8% pentacyclic triaromatic hydrocarbons/PAHs and 

Table 2   The concentration of inorganic elements in urine (µg/mL; mean ± standard deviation) of the control and exposed individuals 
to residual coal dust analyzed by the PIXE method

a Significant difference in relation to the control group (entire group) at P < 0.05 (unpaired t test—Welch`s correction); bSignificant 
difference in relation to the female exposed group at P < 0.05 (unpaired t test—Welch`s correction); significant difference in bold

Inorganic 
elements

Males Females Entire group

Control (N = 50) Exposed (N = 61) Control (N = 70) Exposed (N = 89) Control (N = 120) Exposed (N= 150)

Na 807.9 ± 153.0 752.2 ± 206.9 798.1 ± 120.4 6331.5 ± 3178.5 802.2 ± 134.5 3542.0 ± 3680.4a

P 665.5 ± 195.3 691.4 ± 186.8 656.2 ± 189.8 1896.1 ± 750.1 660.1 ± 191.4 1293.5 ± 836.0a

S 676.4 ± 417.1 767.5 ± 184.1 736.5 ± 599.1 6955.6 ± 3900.4 711.2 ± 529.1 3861.5 ± 4277.9a

Cl 11,112.6 ± 2042.6 11,807.2 ± 2418.3 10,982.7 ± 1937.8 13,600.0 ± 1645.7 11,037.2 ± 1975.0 12,703.5 ± 2176.1a

K 4846.4 ± 2304.2 5534.3 ± 1762.6 6066.0 ± 3130.2 7174.3 ± 1244.0 5553.5 ± 2866.5 6354.0 ± 1678.8a

Ca 766.3 ± 193.5 720.7 ± 326.3b 748.9 ± 193.3 264.4 ± 260.0 756.2 ± 192.8 492.0 ± 365.2a

Cr 57.8 ± 30.9 57.7 ± 31.4b 62.9 ± 34.0 30.8 ± 24.9 41.7 ± 30.6 43.9 ± 32.7
Fe 189.4 ± 61.5 191.1 ± 218.4 191.9 ± 65.8 1352.0 ± 680.4 190.8 ± 63.8 771.5 ± 787.4a

Ni 15.2 ± 3.7 18.0 ± 7.0b 16.4 ± 3.4 13.6 ± 6.8 15.8 ± 3.5 15.4 ± 7.2
Zn 15.1 ± 6.8 31.5 ± 5.5 14.5 ± 5.9 29.7 ± 4.7 14.7 ± 6.3 30.5 ± 5.1a

Br 18.9 ± 10.1 19.5 ± 4.6 19.8 ± 10.3 572.8 ± 440.8 19.4 ± 10.2 295.5 ± 434.9a

Fig. 3   Principle component 
analysis (PCA) integrating 
inorganic elements detected 
in urine samples, DNA 
damage (VS, visual score 
using comet assay, with 
and without FPG; telomere 
length) from individuals 
exposed to coal dust and 
controls. The gray circle 
highlights the group of 
exposed women
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alkyl-phenanthrenes/anthracenes. Other components 
included phenolic aldehydes (1.2%), aliphatic ketones 
(1.1%), aliphatic esters (1.0%), monoaromatic ketones 
(0.9%), aliphatic ethers (0.6%), and aliphatic di-/tri-
sulfide compounds/phenolic ketones (each 0.5%). 
Furthermore, the extract contained biphenyls/mono-
aromatic esters (each 0.4%), benzo[b]naphthofurans/
monoaromatic aldehydes/tetracyclic monoaromatic 
hydrocarbons (each 0.3%), and aliphatic aldehydes/
monoaromatic ethers/oxygenated PAHs/quinones 
(0.2%). Finally, the extract contained oxygenated 
naphthalenes (0.1%), alkyl pyrenes (0.05%), and 
alkyl-phenols (0.04%).

From the generalized composition outlined 
above, more detailed information is given on those 
constituents that were highlighted: (i) the main 

component other than linear hydrocarbons was 
4,7-dimethyl-1,2,3,4-tetrahydrochrysene (3.5%); 
(ii) two types of alkyl-naphthalenes were identified: 
(a) C1-C2 naphthalenes (1.0%), (b) C3-C8 naphtha-
lenes (2.4%); (iii) the identified alkyl-monoaro-
matic hydrocarbons were of two kinds: (a) C1-C5 
benzenes (0.8%), (b) C6-C13 benzenes (2.0%); (iv) 
the pentacyclic triaromatic hydrocarbons were 
derived from 1,2,3,4,4a,5,6,14b-octahydropicene; 
(v) eight (seven are priority) PAHs were identi-
fied (they could be of natural/biogenic/diagenetic 
or petrogenic origins): naphthalene/fluoranthene 
(each 0.4%), anthracene/7H-benzo[c]fluorene (each 
0.3%), phenanthrene/pyrene (each 0.2%), benz[a]
anthracene (0.04%) and chrysene (0.006%); (vi) 
the alkyl-phenanthrenes/anthracenes were C1-C4 

Fig. 4   Typical profile (total ion current) obtained by GC–MS 
(70 eV, full scan) of the total extract from the sample of par-
ticulate coal. The names of some relevant constituents (listed 

according to their order of elution) were included in the Figure, 
together with C12-C31 linear, branched, and cyclic hydrocar-
bons, which were the main components
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alkyl-substituted; (vii) the phenolic aldehydes were 
C0-C2 alkyl-substituted; (viii) C12-C18 aliphatic 
ketones were “2-one” derivatives; (ix) most mono-
aromatic ketones were alkyl-phenoles substituted; 
(x) phenolic ketones were C1-C2 alkyl-substituted; 
(xi) biphenyls were C0-C4 alkyl-substituted; (xii) 
three benzo[b]naphthofuran isomers were identi-
fied; (xiii) monoaromatic aldehydes were alkyl-
substituted; (xiv) aliphatic aldehydes were all 
linear; (xv) oxygenated PAHs were derived from 
2H-phenanthro[9,10-b]pyran; (xvi) one C1 alkyl-
pyrene was identified. Figure  5 displays the mass 
spectra and structures of four of the most important 
PAHs identified in the coal extract: naphthalene, 
phenanthrene, chrysene, and fluoranthene.

Discussion

The role of coal mining in the global economy can-
not be ignored, as it has made substantial contribu-
tions. However, it is crucial to acknowledge that the 
pollution generated by coal mining poses a signifi-
cant threat to public health, as highlighted by studies 
conducted by Hendryx et  al. (2020), Romana et  al. 
(2022), and Kamanzi et al. (2023). In our study, uti-
lizing the standard and FPG-modified comet assay, 
which is a test employed to detect DNA damage, we 
observed significant levels of DNA damage in the 
peripheral blood lymphocytes of individuals who 
were chronically exposed to coal mining residues. 
Furthermore, we observed a reduction in TL within 
the exposed group.

Fig. 5   Mass spectra obtained by GC–MS (full scan) of some polycyclic aromatic compounds found in the organic extract from coal 
sample
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These findings regarding the impacts of coal min-
ing align with the results obtained in studies con-
ducted in various countries, including Sinitsky et al. 
(2016), Souza et  al. (2021), and Ullah et  al. (2021). 
Moreover, similar observations of DNA damage in 
populations exposed to open-pit coal mining residues 
have been reported in other regions of Colombia, as 
demonstrated by studies conducted by Espitia-Pérez 
et  al., 2018a, 2018b. These studies have shed light 
on the generation of oxidative damage caused by the 
complex mixture of components released during coal 
extraction activities. The cumulative effect of oxida-
tive DNA damage is of significant concern, as it has 
been identified as an underlying factor in numerous 
diseases. These include neurodegenerative disor-
ders such as Alzheimer’s and Parkinson’s diseases 
(Coppedè & Migliore, 2015), autoimmune conditions 
like rheumatoid arthritis and systemic lupus erythe-
matosus (Souliotis et  al., 2019), as well as diabetes 
(Grindel et  al., 2016), cardiovascular diseases (Hu 
et al., 2021), and cancer (Klaunig et al., 2010; Srini-
vas et al., 2019).

Significantly, the results of the study unveiled 
a noteworthy association between DNA damage 
assessed through the standard comet assay or the 
FPG-comet assay and the shortening of telomeres. 
This correlation has been highlighted in various occu-
pational studies, such as those conducted by Guan 
et al., (2020), Ko et al., (2017); and Li et al., (2015), 
which have demonstrated the impact of oxidative 
stress on telomere shortening among exposed popu-
lations. Telomere shortening has even been observed 
in coal mining workers (de Souza et  al., 2018) and 
individuals exposed to indoor air pollution (Lin 
et al., 2017). Given its significance, TL has been sug-
gested as a potential marker for cancer susceptibility 
in humans (Heaphy et al., 2022; Ma et al., 2011; Sun 
et al., 2015).

In this study, we also investigated the factors that 
could potentially influence the induction of genomic 
instability in the studied population. Coal has a highly 
complex chemical composition, containing various 
amounts of trace elements and metals due to its for-
mation from compressed organic matter that contains 
almost all the elements of the periodic table (Gopi-
nathan et  al., 2022a, 2022b), including heavy met-
als (Islam et al., 2023; Israr et al., 2022; Song et al., 
2022). Coal also contains fly ashes (Panda & Dash, 
2020), oxides (Chen et  al., 2013; Panda & Dash, 

2020), and polycyclic aromatic hydrocarbons (PAHs)
(Liu et al., 2008; Ren et al., 2022), among other com-
pounds. The town of La Loma is located approxi-
mately 2 km from the nearest coal mine, which may 
have an impact on certain biomarkers of human 
health due to exposure to various factors associated 
with mining activity. These factors can include the 
emission of coal dust particles, toxic gases, chemi-
cals, and heavy metals, all of which can have harmful 
effects on the health of individuals exposed to them 
(Hendryx et al., 2020).

In another study, particulate matter in the air 
was characterized (León-Mejía et  al., 2023b) as an 
amorphous/irregular solid, with prevailing sizes 
smaller than 10  µm (PM < 2.5), forming agglomer-
ates that can deposit in different regions of the lung 
(Darquenne, 2020). For instance, particles smaller 
than 10  µm are deposited in the alveolar region, 
where they can remain longer in the lung and cause 
more inflammatory effects than coarse particles 
(Schraufnagel, 2020; Shekarian et al., 2021). Various 
factors play a crucial role in determining the impact 
of coal and its particulate matter on human health. 
These factors include chemical composition, charge, 
surface reactivity, solubility, hydrophobicity, polarity, 
state of agglomeration, and the ability of the particles 
to interact with biological tissue and generate ROS 
(Schraufnagel, 2020).

The samples examined in this study exhibited the 
presence of inorganic agents associated with oxidative 
damage. Exposure to coal mining residues can disrupt 
the balance of inorganic elements, potentially contrib-
uting to the observed increase in oxidative damage 
(León-Mejía et  al., 2023b; Souza et  al., 2021). The 
quantitative analysis of inorganic elements in urine, 
conducted using the PIXE method, revealed elevated 
concentrations of Na, P, S, Cl, K, Fe, Zn, and Br in 
the exposed group compared to the control group. 
Previous studies by León-Mejía et al., (2023a, 2023b) 
reported significant concentrations of S and Fe in the 
blood of the exposed population. These elements, 
present in the inhaled particles, might be absorbed by 
various tissues and subsequently eliminated through 
urine (Quintana-Sosa et al., 2021), suggesting a sys-
temic effect on these individuals. Metallic elements 
can directly interact with organic molecules or indi-
rectly generate ROS, resulting in DNA damage and 
structural changes in cellular components, thus 
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contributing to the development of various diseases 
(Chen et al., 2018; Jomova & Valko, 2011).

Our findings revealed an interesting association 
between age and the urinary concentrations of Fe, Na, 
and P in individuals exposed to coal mining. As age 
increased, we observed a decrease in the concentra-
tions of these elements. This observation suggests 
that chronic exposure to contaminants present in the 
mining environment may disrupt the homeostasis of 
Fe, Na, and P in the body. The inverse correlation 
observed could be attributed to the toxic effects of 
heavy metals commonly found in coal mining (Islam 
et al., 2023). Some heavy metals from coal have the 
potential to interfere with the proper absorption, 
metabolism, and excretion of Fe, Na, and P, thereby 
leading to a decline in their urinary concentrations 
(Jaishankar et al., 2014; Witkowska et al., 2021). Fur-
thermore, a positive correlation between age and Ni 
concentrations was observed in the group exposed 
to coal mining. This may indicate that as individuals 
age, Ni has a progressive buildup in their bodies. This 
could be due to long-term, chronic exposure to nickel 
present in the mining environment, either through 
contaminated air, water, or food intake (Darsow et al., 
2012). The correlation could also be influenced by 
age-related factors, such as a longer lifetime of expo-
sure and a decreased ability of the body to elimi-
nate Ni as it ages (Darsow et al., 2012; Genchi et al., 
2020).

It is worth noting that in the obtained results, men 
exhibited shorter telomeres and higher levels of DNA 
damage compared to women exposed to coal mining. 
Men may have a higher susceptibility to the dam-
aging effects of coal mining due to several factors. 
First, men often occupy physically demanding roles 
in the mining industry, which may result in increased 
exposure to hazardous substances and greater inhala-
tion of coal dust. This prolonged exposure can lead 
to higher levels of toxic substances accumulating in 
the body, leading to more severe DNA damage (Liu 
& Liu, 2020; Sinitsky et al., 2016). Secondly, genetic 
and hormonal differences between men and women 
may play a role. Some studies suggest that men may 
have less efficient DNA repair mechanisms or lower 
antioxidant defenses compared to women, making 
them more vulnerable to the damaging effects of oxi-
dative stress (Cardano et  al., 2022; Fischer & Rid-
dle, 2018). Individual susceptibility to DNA damage 
and telomere shortening can vary based on genetic 

factors, overall health status, and additional environ-
mental exposures. Further research is needed to fully 
understand the specific mechanisms underlying these 
differences in DNA damage and TL between men and 
women exposed to coal mining.

Based on the GC–MS chemical analysis of the 
organic extract from coal, the prominent polycy-
clic aromatic hydrocarbons (PAHs) identified were 
naphthalene, phenanthrene, anthracene, fluoran-
thene, pyrene, benz[a]anthracene, chrysene, and 
α/β-methyl naphthalenes. It is important to note that 
long-term exposure of humans to PAHs through vari-
ous routes (such as inhalation, ingestion, or dermal 
absorption) increases the risk of developing differ-
ent types of cancer (Mallah et al., 2022; Qian et al., 
2023). Compounds like benz[a]anthracene (Group 
2A) and chrysene are classified by the International 
Agency for Research on Cancer (IARC) as possibly 
carcinogenic to humans. Others, including anthra-
cene, fluoranthene, pyrene, and phenanthrene, are 
categorized under Group 3 due to limited or insuffi-
cient experimental evidence on their carcinogenicity 
in humans (IARC, 2010). PAHs are lipophilic com-
pounds that can easily penetrate cell membranes via 
passive diffusion after inhalation (Abdel-Shafy & 
Mansour, 2016). The most plausible mechanism of 
toxicity (carcinogenicity/genotoxicity) for PAHs in 
mammals involves their binding with a specific affin-
ity to the aryl hydrocarbon receptor (AHR) (Goedtke 
et  al., 2020), subsequently activating Cytochrome 
P450 monooxygenases-phase I and other metabolic 
enzymes (Goedtke et  al., 2020; Vogel et  al., 2020). 
This process leads to the formation of oxygenated 
derivatives (such as diol-epoxides, radical-cations, 
or redox-active o-quinones), which can form adducts 
upon reacting with DNA (Moorthy et  al., 2015). 
Numerous studies have demonstrated that PAHs, such 
as benzo[a]pyrene, fluoranthene, benzo[b]fluoran-
thene, and phenanthrene, can induce the generation of 
ROS in different biological systems (Luo et al., 2020; 
Torres-Ávila et al., 2020).

Furthermore, the aryl hydrocarbon receptor (AHR) 
plays a crucial role in PAHs metabolism by regulat-
ing the expression of genes involved in the initiation, 
promotion, and progression of various types of cancer 
(Jenkins et al., 2013; Moorthy et al., 2015; Ren et al., 
2022; Tsay et al., 2013).
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Conclusion

Our study revealed an interesting association between 
age and the urinary concentrations of Fe, Na, and P 
in individuals exposed to coal mining, suggesting 
disrupted homeostasis. We also observed a signifi-
cant correlation between increased DNA damage and 
oxidative damage with telomere shortening. Further-
more, our findings indicate a progressive accumula-
tion of Ni with age in the exposed group, potentially 
contributing to the observed DNA damage. Nota-
bly, Ni and Cr were found to influence DNA dam-
age in men, while in women, Cl, K, Br, S, P, Fe, and 
Na were influential factors. These findings provide 
insights into the complex interplay between expo-
sure to mining contaminants, DNA damage, TL, and 
the specific elements contributing to the observed 
effects in both genders. The intricate combination of 
substances released during coal mining operations 
has been observed to induce oxidative damage to 
the DNA of individuals exposed to it. These findings 
emphasize the risks faced by this susceptible popula-
tion and emphasize the urgency of implementing new 
strategies to prevent human carcinogenesis caused 
by PAHs, inorganic elements, and particulate matter 
emitted into nearby areas.
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