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referenced by other authors in same species in the 
Caspian Sea. None of the estimated daily intake val-
ues exceeded the tolerable intake based on the con-
sumption under consideration. Nonetheless, the accu-
mulative hazard values evidenced a potential risk to 
human health, Pb and Hg being those giving a higher 
target hazard quotient. The cancer risk from exposure 
to As from fish consumption in children was above 
the “acceptable” risk to life. Thus, in view of the 
accumulative nature of heavy metals, a moderate and 
non-abusive fish consumption in this area, particu-
larly in children, would be recommendable.

Keywords Environmental monitoring · Food 
safety · Heavy metals pollution · Human health 
hazard

Introduction

Over the past few decades, fish consumption has 
considerably increased as this food is an important 
source of proteins of a high biological value, some 
vitamins and minerals, and omega-3 polyunsaturated 
fatty acids (Bosch et  al., 2016; Copat et  al., 2018). 
Despite the benefits derived from its consumption, 
fish products can accumulate different pollutants, 
consequently triggering harmful effects on human 
health (Mozaffarian & Rimm, 2006). These pollut-
ants sometimes exceed the limits permitted by the 

Abstract Heavy metals are one of the most serious 
pollutants in aquatic ecosystems, and their accumula-
tion in fish products causes harmful effects on human 
health. In this context, we set out to determine the 
concentrations of heavy metals in the muscle of two 
fish species of commercial interest, Chelon auratus 
and Chelon saliens on the south coast of the Caspian 
Sea. We aimed to assess the degree of environment 
contamination in this area and to estimate the poten-
tial risk to human health derived from the consump-
tion of fish. The mean concentrations of the different 
metals analysed were very varied in both species. 
In fact, some concentrations exceeded the permissi-
ble limits for the protection of human health for Cd 
and Pb, and some values of As were above those 
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different legislations, although this does not always 
represent a human health hazard (Copat et al., 2013).

Due to their anthropogenic activity and their natu-
ral emissions, heavy metals are recognized as being 
one of the most serious pollutants in aquatic ecosys-
tems, and they are causing concern worldwide. That 
concern stems from their intrinsic properties, such 
as their toxicity, persistence in the environment, non-
degradability, bioaccumulative capacity and high 
potential for accessing and biomagnifying throughout 
the food chain (Cai et  al., 2019; Häder et  al., 2020; 
Pan et al., 2016; Zhong et al., 2018).

The Caspian Sea, with a surface of approximately 
370,000  km2, is the largest inland sea in the world. 
This sea and its coastal areas are considered to be one 
of the world’s most valuable ecosystems due to their 
unique biodiversity (Lattuada et al., 2019). The alter-
nation of shallow areas with different depressions, 
together with a wide range of salinities, provides it 
with a huge variety of biological niches with different 
depressions, giving rise to a great diversity of species 
(Bastami et al., 2017). Unfortunately, in recent years, 
the health of this ecosystem has been weakened, 
mainly due to anthropogenic pressures like, for exam-
ple, the extraction of petrol and mining activity (Lat-
tuada et al., 2019; Poorbagher et al., 2017).

Very many scientific articles have used fish as 
bioindicators of environmental pollution (Naigaga 
et al., 2011; Authman et al., 2015; Vaseem & Baner-
jee, 2016; Plessl et al., 2017; Łuczyńska et al., 2018). 
In addition, Yancheva et  al. (2015) reported in their 
research that muscle tissue was most appropriate for 
the evaluation of human health risks. In this respect, 
we set out to determine the concentrations of heavy 
metals in the muscle of two fish species of commer-
cial interest, Chelon auratus and Chelon saliens, on 
the south coast of the Caspian Sea, with two main 
objectives: to assess the degree of environment con-
tamination in this area; and to estimate the potential 
risk to human health derived from the consumption 
of this fish.

Material and methods

A total of 49 fish from two different species, 20 Che-
lon auratus and 29 Chelon saliens, were obtained 
randomly in the southern area of the Caspian Sea. 
Before taking samples, the animals were cleaned with 

distilled water to remove any dirt or possible external 
substances that might pollute them. Muscle samples 
were taken from each individual for the determina-
tion of the metals, with each muscle sample weighing 
1 g. The instrument used to cut the muscle tissue was 
previously washed with 1% nitric acid. The sampling 
was carried out in accordance with the European pro-
tection rules for animals used for scientific purposes 
(Directive 2010/63).

The heavy metals analysed were as follows: Al, 
As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn, Tl, V 
and Zn. For their quantification, an inductively cou-
pled plasma mass spectrometer (ICP-MS) was used. 
With respect to the preparation of the samples for 
their analysis, each sample, individually, was homog-
enized and digested in a digestion solution with 15 ml 
of 65% nitric acid  (HNO3) and hydrogen peroxide 
heated on a plate at 200 ºC. When the sample reached 
a volume of 5  mL, before drying it and after cool-
ing, the content was decanted into Falcon tubes and 
diluted in deionized water (Milli-Q Millipore 18.2 
MΩ / cm of resistivity) until reaching 30  mL. The 
analytical blanks were processed in the same way, 
and the concentrations were determined using stand-
ard solutions prepared in the same acid matrix.

Metal pollution index

The Metal Pollution Index (MPI) was calculated to 
indicate the total content of metal elements accumu-
lated in the muscles sampled in both species For this 
purpose, the following equation was applied (Usero 
et al., 2005):

where Cf n is equal to the concentration of the metal n 
in the sample.

Evaluation of human health risk

To estimate the potential risk to human health from 
fish consumption, the following indicators were cal-
culated: the Estimated Daily Intake (EDI), comparing 
it with Tolerable Daily Intake (TDI) recommended by 
the joint Food and Agriculture Organization/World 
Health Organization (FAO/WHO) Expert Committee 
on Food Additives (JECFA); the Target Hazard Quo-
tient (THQ), with the aim of evaluating any possible 

MPI = (Cf1 × Cf2…Cfn)1∕n
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warnings with regard to adverse effects and Cancer 
Risk (CR) for As.

Estimated daily intake

All the risk limits and factors were calculated for 
adults by assuming the mean daily world intake (IR) 
of fish per capita of 40 g/day (FAOSTAT, 2022), and 
a body weight (BW) of 70  kg (USEPA, 2000). For 
children (between 3 and 6  years), the IR was estab-
lished at 20 g/day and a BW of 14.5 kg.

The EDI (µg/g/day) was calculated by using the 
following formula:

where C is the concentration of metal (mg/kg wet 
weight), IR is the mean daily intake and BW is the 
body weight.

Non-carcinogenic risk and carcinogenic risk

The risk factors were reckoned by basing them on the 
directives of the United States Environmental Protec-
tion Agency (USEPA) (USEPA, 2000). In accordance 
with this guide, we took for granted that the dose 
ingested was equal to that of the pollutant absorbed, 
and that cooking did not have any effect on the con-
centration of heavy metals (USEPA, 1989; Cooper 
et  al., 1991). Also, As can be found in the environ-
ment and in living beings in two forms, both organic 
and inorganic As. The latter is the most toxic form 
and its percentage over total As is highly variable 
depending on the type of food (EFSA, 2009; Jomova 
& Valko, 2011). The same as Copat et al. (2013), to 
calculate the equations, we assumed that inorganic As 
represented 3% of the total.

The non-carcinogenic risk was assessed by calcu-
lating the THQ. Indeed, the THQ values were evalu-
ated for each heavy metal separately and were calcu-
lated as per the following equation:

When the THQ is over 1, i.e. higher than the refer-
ence dose, adverse effects may appear.

EDI = C × IR∕BW

THQ = (C × IR × EF × ED)∕(BW × AT × RfD)

The accumulative risk to health was assessed by 
adding the THQ value of each metal, expressed as 
Total Target Hazard Quotient (TTHQ), as follows:

The higher the TTHQ value, the higher the level 
of concern.

The CR was calculated only for As as it is the 
only metal that is cancerigenous orally. For this, 
the Oral Slope Factor (OSF) has been established 
at 1.5  mg/kg/day for that metal by USEPA (IRIS, 
2022). If the CR is above the acceptable risk to life 
of 1 ×  10–5, the value considered by the USEPA 
(2000), indicates a greater probability of 1 individ-
ual out of 100,000 developing cancer. The equation 
is expressed as follows (USEPA, 1989):

In the previous equations, EF is the exposure fre-
quency (365  days/year); ED is the exposure dura-
tion (adults: 70  years; children: 6  years); IR is the 
mean daily intake (adults: 40 g/day; children: 20 g/
day); C is the mean concentration of metal in fish 
(mg/kg wet weight); RfD is the reference oral dose 
(mg/kg/day); BW is the body weight (adults: 70 kg; 
children: 14.5 kg); AT is the average exposure time 
(it is equal to EF × ED), and OSF is the Oral Slope 
Factor (mg/kg/day). The RfD provided by the online 
database of the EPA’s Integrated Risk Information 
System (IRIS) (IRIS, 2022) for As, Cd, Cr, Hg, Mn, 
Ni, Sn, Tl, V and Zn, are 3 ×  10–4; 1 ×  10–3; 3 ×  10–3; 
1 ×  10–4; 1.4 ×  10–1; 2 ×  10–2; 5 ×  10–3, 8 ×  10–5; 
9 ×  10–3 and 3 ×  10–1, respectively. Regional Screen-
ing Levels (RSLs) from USEPA’s Generic Tables 
indicate an RfD of 3 ×  10–4, 4 ×  10–2 and 7 ×  10–1 for 
Co, Cu and Fe, respectively (USEPA, 2021). The 
RfD of Pb is 5 ×  10–4 (EFSA, 2010) and that of Al is 
1.43 ×  10–1, used by Zioła-Frankowska et al. (2021).

Statistical analysis

The statistical analysis of the data was made using 
SAS/STAT Software (SAS Institute Inc., Cary, NC). 
A variance analysis (ANOVA) was performed on a 
non-parametric path in order to establish the statis-
tical differences in the concentration of the different 

TTHQ = THQ1 + THQ2…THQn

CR = (EF × ED × IR × C × OSF)∕(BW × AT)
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metals between species. A value of P < 0.05 was 
taken as being significant.

Results and discussion

Heavy metals concentrations

The medians, means and standard deviations of all 
the metals analysed are shown in Table  1. The sta-
tistical analysis of the concentrations revealed that 
only Cd presented statistically significant differences 
(P < 0.05) between species. To be specific, a higher 
concentration of this metal was found in the Chelon 
saliens samples. However, it could be seen that the 
concentrations of the different metals were very var-
ied and gave from the highest to lowest concentra-
tions in this order: Fe > Zn > Cu > Al > Mn > As > Ni 
> Pb > V > Cr > Co > Sn > Cd > Hg > Tl. The average 
ranges, without distinguishing between species were: 
Fe (0.001–71.562 mg/kg); Zn (1.025–33.645 mg/kg); 
Cu (0.701–9.921  mg/kg); Al (0.055–86.875  mg/kg); 
Mn (0.001–12.567 mg/kg); As (0.191–6.031 mg/kg); 
Ni (0.009–8.396 mg/kg); Pb (0.029–0.867 mg/kg);V 
(0.004–24.783  mg/kg); Cr (0.002–0.754  mg/kg); 
Co (0.015–3.500  mg/kg); Sn (0–0.923  mg/kg); Cd 
(0.012–0.835  mg/kg); Hg (0.002–0.139  mg/kg) and 
Tl (0–0.171 mg/kg).

It is important to highlight that metals like Cr, Co, 
Cu, Fe, Ni, Mn, Sn and Zn are essential for physiolog-
ical processes so they are normally present in the tis-
sues at certain concentrations, and their total absence 
in the organisms causes irreversible and severe dam-
age to the vital functions (Zoroddu et al., 2019). Nev-
ertheless, these metals could trigger toxic effects if 
their exposure dose exceeds a certain level (Mertz, 
1981). All the concentrations found for these metals 
were placed within the range of concentrations (mg/
kg) previously found by Sheikhzadeh and Hamid-
ian (2021) in the Caspian Sea: Cr (0.00–10.01), Co 
(0.00–1.34), Cu (0.00–160.39), Fe (2.1–1343.5), Mn 
(0.1–15.7), Ni (0.09–8.1), Zn (1.72–219.22).

On the other hand, metals like As, Cd, Hg and Pb 
are considered as being non-essential since they do 
not possess any known biological function (Zoroddu 
et al., 2019). Arsenic intake disables the function of 
enzymes, some significant anions and cations, tran-
scriptional events in cells, and causes health effects 
(Raju, 2022). Cadmium exposure has been associ-
ated with nephrotoxicity, hepatotoxicity and effects 
on the immune system, bones and male reproductive 
physiology (Cannas et al., 2020). With regard to Hg, 
dietary consumption of marine fish and other seafood 
is the most common source of exposure to this metal 
(Cannas et  al., 2020; Driscoll et  al., 2013). All Hg 
forms exhibit toxicological characteristics including 

Table 1  Median, mean 
concentrations (mg/kg w.w.) 
and standard deviations 
(SD) of analysed metals in 
Chelon auratus and Chelon 
saliens. Metal Pollution 
Index (MPI) for Chelon 
auratus and Chelon saliens 

*P < 0.05 between species

Metal (mg/kg 
w.w.)

Chelon auratus Chelon saliens

Median Mean SD Median Mean SD

Al 2.514 3.157 2.482 2.905 6.144 16.029
As 0.529 0.606 0.442 0.651 1.031 1.273
Cd* 0.035 0.077 0.110 0.093 0.153 0.181
Co 0.109 0.136 0.103 0.154 0.344 0.741
Cr 0.145 0.207 0.222 0.143 0.204 0.195
Cu 3.250 3.880 2.683 4.179 4.321 2.501
Fe 23.139 25.984 17.483 18.449 25.187 23.289
Hg 0.036 0.043 0.028 0.048 0.051 0.040
Mn 1.795 2.221 1.888 1.421 2.461 3.060
Ni 0.184 0.221 0.175 0.191 0.539 1.560
Pb 0.159 0.218 0.204 0.192 0.265 0.228
Sn 0.049 0.067 0.077 0 0.120 0.228
Tl 0.005 0.016 0.036 0.008 0.019 0.038
V 0.188 0.170 0.148 0.163 1.339 5.374
Zn 4.710 5.729 6.704 3.470 5.702 6.913
MPI 0.665 0.416



3381Environ Geochem Health (2023) 45:3377–3385 

1 3
Vol.: (0123456789)

neurotoxicity, nephrotoxicity, and gastrointestinal 
toxicity (Valko et  al., 2005). Pb has been shown to 
adversely affect the functions of hepatic, endocrine, 
reproductive and digestive systems (Charkiewicz & 
Backstrand, 2020).

The European Union, by means of Regulation (EC) 
78/2005, only established a maximum content in fish 
for Cd, Hg and Pb, so the maximum contents for these 
metals have been fixed at 0.05, 0.5 and 0.2 mg/kg wet 
weight for Cd, Hg and Pb, respectively. Considering 
the concentration ranges obtained in our study for Cd 
(0.012–0.835 mg/kg) and Pb (0.029–0.867 mg/kg), it 
can be seen that several samples exceed the maximum 
content permitted by the European Union for these 
metals. In the case of Hg (0.002–0.139 mg/kg), in no 
way did it exceed the maximum content. Besides that, 
in the review made by Sheikhzadeh and Hamidian 
(2021), the range of concentrations observed in the 
Caspian Sea for Hg oscillated between 0.044 mg/kg 
(mean) in the whole body of Cyprinus carpio and up 
to 3.5 mg/kg in the muscle tissue of Huso huso. Thus, 
the range of concentrations determined for that metal 
is lower than that reported in other studies.

In our work, the mean As concentration found in 
Chelon saliens (1.03  mg/kg) was higher than that 
reported by Fathabad et  al. (2021) (0.35  mg/kg) in 
Chelon saliens and (0.80 mg/kg) in Cyprinus carpio, 
in the Caspian Sea. These results are of great impor-
tance since chronic intoxication by As can cause 

serious diseases, including different types of cancer 
(Das et al., 2004).

Metal pollution index

The MPI permitted us to present all the metal concen-
trations as a single value. According to Brady et  al. 
(2015); when the MPI is between 2 and 3, this indi-
cates a moderate pollution; when it is established at 
between 1 and 2 the pollution is mild; whereas, below 
1 means that the pollution impact is insignificant. In 
our study, the MPI values were of 0.665 for Chelon 
auratus and of 0.416 for Chelon saliens, so we are 
able to affirm that the metals in this species were no 
significance (Table  1). In this context, the calcula-
tion of MPI in sediments or in filtering organisms, as 
reported by Usero et al. (2005), could be a source of 
interest for evaluating environmental pollution.

Estimated daily intake

The EDI values for children and adults are presented 
in Table  2. Here, none of the values exceeded the 
tolerable intake suggested by the joint FAO/WHO 
Expert Committee on Food Additives (JEFCA) 
(WHO, 2022) for the metals for which this indicator 
is available. Thus, it can be said that there would be 
no risk to people’s health associated with the con-
sumption of fish with those metal concentrations and 

Table 2  Estimated Daily 
Intake (EDI) (µg/kg/d) in 
adult and child in Chelon 
auratus and Chelon saliens 
compared with tolerable 
intake (µg/kg/d) suggested 
by Joint FAO/WHO 
Expert Committee on Food 
Additive (JECFA)

a As calculations were made 
by assuming the inorganic 
As as being 3% of the total 
concentration

Tolerable intake 
(µg/kg/d)

Metal Chelon auratus Chelon saliens

EDI Child EDI Adult EDI Child EDI Adult

1000 Al 8.474 3.511 4.355 1.804
15 Asa 0.042 0.018 0.025 0.010
7 Cd 0.210 0.087 0.107 0.044
– Co 0.474 0.197 0.188 0.078
– Cr 0.280 0.116 0.286 0.118
500 Cu 5.959 2.469 5.352 2.217
800 Fe 34.740 14.392 35.840 14.848
4 Hg 0.070 0.029 0.059 0.024
– Mn 3.349 1.406 3.064 1.269
– Ni 0.743 0.307 0.305 0.126
25 Pb 0.365 0.151 0.300 0.124
– Sn 0.165 0.069 0.092 0.038
– Tl 0.026 0.011 0.022 0.009
– V 1.847 0.765 0.234 0.097
300 Zn 7.864 3.258 7.903 3.274
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at a portion of 40 and 20 g/day in adults and children, 
respectively. However, the EDI is dependent on metal 
concentrations, the size of the portion, and on the 
body weight. With that in mind, our calculations were 
based on the mean world consumption of fish, which 
is highly variable according to the region. For exam-
ple, in the southeast  Asia, the mean consumption 
of fish is very much higher (90  g/day) (FAOSTAT, 
2022) than in some countries in Africa, such as Alge-
ria, where fish is scarcely included in the diet (0.09 g/
day) (FAOSTAT, 2022). That is why it is important to 
take into account these factors since they may directly 
affect the EDI.

The THQ for children and for adults is given in 
Table 3. The values for Al, As, Cd, Cr, Cu, Fe, Hg, 
Mn, Ni, Pb, Sn, Tl, V and Zn are all under 1, which 
indicates that there would be no risk of developing 
adverse effects from the consumption of fish with 
those metal concentrations. Only the THQ of Co for 
children in Chelon auratus was higher than 1, being 
established at 1.582. In this sense, we have taken into 
account the RfD supplied by the USEPA, which has 

fixed 3 ×  10–4 for this metal. It is essential to point out 
that a dose of 3 ×  10–4 mg/day/kg BW of Co is equal 
to approximately 21 µg Co/day for an adult of 70 kg, 
which corresponds to the typical dietary intake of Co 
in the U.S.A. (5–40 µg Co/día). Therefore, the adop-
tion of this value would suggest that a large part of 
the population exceeds a safe dose of Co simply due 
to traces of this metal being of a natural origin in 
its diet (Finley et al., 2012). For example, the direc-
tives of the European Food Safety Authority (EFSA) 
with regard to supplementation with Co have estab-
lished a dose of 600  µg/day for a person of 60  kg, 
i.e., 1 ×  10–2 mg/day/kg BW (EFSA, 2009). So, if we 
apply an assumed RfD of 1 ×  10–2 mg/day/kg BW, the 
THQ calculated for the Co would be situated below 1 
in all the cases.

Nevertheless, although all the THQs individual-
ized per metals were established as being under the 
reference dose, it was observed that the accumulative 
risk to health values (TTHQ) obtained was higher 
than 1, and would therefore be a potential hazard to 
health through consuming this fish (Table 3). In this 
respect, the metals of most concern, without counting 
Co, were Pb and Hg as their THQ was higher.

The CR from As was established at 5.4 ×  10–6 y 
3.2 ×  10–6 in adults for Chelon auratus and Chelon 
saliens, respectively. In children, the CR calculated 
was 2.65 ×  10–5 and 1.56 ×  10–5 for Chelon auratus 
and Chelon saliens, respectively. There is a need to 
specify a level of “Acceptable” Risk to Life (ARL) 
in order to calculate consumption limits and evaluate 
cancerigenous effects. Following the USEPA rules 
(USEPA, 2000), we considered it to be appropri-
ate to use an ARL of 1 at 100,000  (10–5). Thus, in 
adults, the CR was under the ARL and considered 
to be insignificant. However, the values in children 
were over the ARL, indicating a greater probability 
of 1 individual out of 100,000 developing cancer due 
to exposure to As through fish consumption, which 
should be a cause for concern.

Conclusions

The results obtained in this study showed ample 
mean concentrations of heavy metals both in Che-
lon auratus, and in Chelon saliens, with the high-
est levels recorded being of Fe, Zn, Cu, Al and Mn. 
In relation to the concentrations of non-essential 

Table 3  Target Hazard Quotient (THQ) and Total Target Haz-
ard Quotient (TTHQ) for metals analysed in Chelon auratus 
and Chelon saliens 

* Above 1
a As calculations were made by assuming the inorganic As as 
being 3% of the total concentration

Metal Chelon auratus Chelon saliens

THQ Child THQ Adult THQ Child THQ Adult

Al 0.059 0.025 0.030 0.013
Asa 0.142 0.059 0.084 0.035
Cd 0.211 0.087 0.107 0.044
Co 1.582* 0.656 0.625 0.259
Cr 0.094 0.039 0.095 0.039
Cu 0.149 0.062 0.134 0.055
Fe 0.050 0.021 0.051 0.021
Hg 0.700 0.290 0.587 0.243
Mn 0.024 0.010 0.022 0.009
Ni 0.037 0.015 0.015 0.006
Pb 0.731 0.303 0.601 0.249
Sn 0.033 0.014 0.018 0.008
Tl 0.320 0.132 0.274 0.113
V 0.205 0.085 0.026 0.011
Zn 0.026 0.011 0.026 0.012
TTHQ 4.363 1.808 2.695 1.117
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metals, in the case of Cd and Pb some concentrations 
exceeded the maximum permissible limits for the 
protection of human health established by the Euro-
pean Commission for those elements. With respect to 
the mean concentration of As in Chelon saliens, the 
values found were above those referenced by other 
authors for the same species in the Caspian Sea. Also, 
although the MPI has indicated that pollution does 
not have any significant impact, given the dangers and 
toxicity at low concentrations that they represent, it is 
still important to highlight these findings since those 
levels of pollution are disturbing.

Although none of the EDI values exceeded the 
tolerable intake based on the consumption under con-
sideration, body weight being a dependent factor in 
the calculation of the EDI, its values in children were 
higher and, consequently, they were nearer to the tol-
erable intake values established. However, the TTHQ 
values evidenced a potential risk to human health in 
consuming this fish, Pb and Hg being those giving a 
higher THQ.

The CR in children is placed above the ARL 
established by the USEPA, which infers a greater 
probability of developing cancer due to exposure 
to As from fish consumption, which ought to be a 
reason for concern. Thus, in view of the accumula-
tive nature of heavy metals, it would be important to 
review the tolerable intake and limit of the eating of 
fish, and a moderate and non-abusive fish consump-
tion in this area, particularly in children, would be 
recommendable.

In that respect, the results obtained have demon-
strated the high bioaccumulation potential of heavy 
metals signifying adverse implications for human 
health, so it would be paramount to carry out exten-
sive samplings both in fish (and other species) and 
in the environment (water and sediments), as well as 
recommending preventive measures directed towards 
limiting and/or reducing the excessive exposure of 
people to heavy metal contents.
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