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in fingernails, with all concentrations being higher for 
those living closer to the Mn source, with the excep-
tion of Cu in scalp  hair. Furthermore, the analysis 
of the correlation between Mn levels in the studied 
biomarkers and the wind-weighted distance to the 
main source of Mn allows us to conclude that  scalp 
hair and mainly fingernails are appropriate biomark-
ers of long-term airborne Mn exposure. This was 
also confirmed by the significant positive correla-
tions between scalp hair Mn and bioaccessible Mn in 
coarse and fine fractions, and between fingernails Mn 
and all PM fractions. This implies that people living 
closer to a ferromanganese alloy plant are exposed 
to higher levels of airborne metal(loid)s, mainly Mn, 
leading to higher levels of this metal in scalp hair and 
fingernails, which according to the literature, might 
affect some neurological outcomes. According to sex, 
significant differences were observed for Fe, Cu and 
Pb in whole blood, with higher concentrations of Fe 
and Pb in males, and higher levels of Cu in females; 
and for Mn, Cu, Zn, Cd and Pb in scalp  hair, with 
higher concentrations in males for all metal(loid)s 
except Cu.

Keywords Biomarkers · Manganese · Trace 
metal(loid)s · Ferromanganese alloy production · 
Environmental exposure

Abstract The environmental exposure to trace 
metal(loid)s (As, Cd, Cu, Fe, Mn, Pb, and Zn) was 
assessed near a ferromanganese alloy plant using fil-
ters from personal particulate matter (PM) samplers 
(bioaccessible and non-bioaccessible fine and coarse 
fractions) and whole  blood as short-term exposure 
markers, and scalp hair and fingernails as long-term 
biomarkers, collected from volunteers (n = 130) liv-
ing in Santander Bay (northern Spain). Bioaccessi-
ble and non-bioaccessible metal(loid) concentrations 
in coarse and fine PM from personal samplers were 
determined by ICP-MS after extraction/digestion. 
Metal(loid) concentration in biomarkers was meas-
ured after alkaline dilution (whole blood) and acid 
digestion (fingernails and scalp hair) by ICP-MS as 
well. Results were discussed in terms of exposure, 
considering the distance to the main Mn source, and 
sex. In terms of exposure, significant differences were 
found for Mn in all the studied fractions of PM, As in 
whole blood, Mn and Cu in scalp hair and Mn and Pb 
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Introduction

Exposure to elevated levels of metal(loid)s that are 
present in the environment is concerning due to the 
resulting adverse health effects (carcinogenic, neuro-
toxic, etc.), even if some of them can be considered 
as essential, required at trace levels for metabolism, 
such as copper (Cu), iron (Fe), manganese (Mn) or 
zinc (Zn) (Maret, 2016; Zoroddu et al., 2019). Three 
main routes of exposure to metal(loid)s are known: (i) 
ingestion from foods and water; (ii) dermal contact; 
and (iii) inhalation.

The inhalation route of exposure is particu-
larly important for people living close to airborne 
metal(loid)s emission sources in urban and indus-
trial areas (Bauer et  al., 2020), such as metallurgy, 
steelworks, combustion (including transportation) 
and incineration. Airborne metal(loid)s are bound to 
particulate matter (PM), its particle size being a key 
parameter on the fate of such pollutants in the human 
body (Kelly & Fussell, 2012). Thus, the thoracic frac-
tion (equivalent to  PM10) includes the tracheobron-
chial fraction (i.e. inhaled particles that penetrate 
beyond the larynx but do not reach the non-ciliated 
airways) and the respirable fraction (i.e. inhaled par-
ticles that enter the non-ciliated airways). Particles 
of the 2.5–10  µm size fraction are mostly deposited 
in the pharyngeal and tracheal region (i.e. constitute 
the tracheobronchial fraction), but they can be swal-
lowed, reaching the gastrointestinal tract, where they 
come into contact with gastric juice. Smaller particles 
(i.e. the respirable fraction) can travel deeper into the 
alveolar region of the lungs, where they interact with 
the lung fluid; the interstitial lung fluid has a neutral 
pH; however, these small particles can be phagocy-
tosed by alveolar macrophages, resulting in a more 
acidic medium (pH 4.5). Dissolved metal(loid)s can 
then reach the circulatory system (Expósito et  al., 
2021; Mukhtar & Limbeck, 2013).

A simple marker of the exposure to metal(loid)
s by inhalation route is the distance between the 
known source(s) and the receptors; for example, pre-
vious studies have used the distance between the par-
ticipants’ home in cross-sectional epidemiological 
studies and the source of emission of certain air pol-
lutants as a preliminary indicator of exposure (Vimer-
cati et  al., 2016; Zubero et  al., 2010). The impor-
tance of being downwind or upwind of the emission 
source has been considered by Haynes et al. (2012), 

calculating the wind direction-weighted distance for 
short-term exposure, addressing Mn exposure in the 
vicinity of a Mn alloy plant by children living in the 
town of Marietta (Ohio) in the USA.

The assessment of the exposure to metal(loid)s by 
the inhalation route can be done directly by measur-
ing or modelling their levels in ambient air, or indi-
rectly by measuring their concentration in selected 
biomarkers. Stationary samplers have been widely 
used in extensive PM sampling campaigns for the 
analysis of metal(loid)s concentration in filters, pro-
viding information about the long-term exposure to 
such pollutants, but with the limitation of obtaining 
information only from specific sites where these sam-
plers were located (Fulk et al., 2016). This limitation 
is addressed using personal PM samplers, which are 
easy to wear by exposed individuals, with the added 
advantage of accounting for changes in exposure dur-
ing short sampling periods. Filters collected from 
these samplers can be analysed for total metal(loid)s 
content or for the bioaccessible concentration, which 
reflects the amount of each pollutant to be solubilised 
by a human synthetic fluid.

The degree of inhalation exposure can also be 
determined by the analysis of specific exposure bio-
markers (Fernández-Olmo et  al., 2021). However, 
the levels of metal(loid)s in such biomarkers can also 
account for the other routes of exposure, mainly the 
ingestion route; this is especially true for essential 
trace elements, which are included in the usual diet, 
but can sometimes also apply to non-essential ones, 
such as arsenic (As), cadmium (Cd) or lead (Pb). The 
usefulness of an exposure biomarker is assessed for 
its ability to characterise and differentiate exposed 
and non-exposed groups, as well as for their ability 
to predict health disorders, anticipating any deteriora-
tion of health (Viana et al., 2014; Zheng et al., 2011). 
Although there is no current consensus on which bio-
marker best defines the dose–effect relationship, and 
furthermore, the use of these biomarkers does not dif-
ferentiate how much of these metal(loid)s enter the 
body by inhalation, biomarkers of exposure have been 
used in epidemiological studies designed to assess 
the exposure to some metal(loid)s near airborne 
metal(loid)s sources (Haynes et al., 2015; Rodrigues 
et al., 2018; Viana et al., 2014).

Blood has been considered as a short-term expo-
sure biomarker to some metal(loid)s (Freire et  al., 
2015; Stojsavljević et  al., 2019); it was frequently 
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used to assess exposure to non-essential metals such 
as Pb and Cd (Henríquez-Hernández et  al., 2017; 
Wong & Lye, 2008), highlighting the possibility of 
assessing acute intoxications due to the efficiency 
and sensitivity of the use of this biomarker. However, 
there are doubts about its use to assess exposure to 
essential trace elements such as Mn, Fe, Cu or Zn, 
due to their homeostatic regulation. For example, the 
mean-life time of Mn in blood is much shorter than 
in other tissues and cellular compartments, so some 
authors consider that it is not a good biomarker of 
short-term exposure to Mn (Jiang et  al., 2007; Kim 
et  al., 2015), being this more noticeable in the case 
of inhalation exposure, since despite finding higher 
levels in the blood of occupationally exposed indi-
viduals, it is difficult to quantify how the pulmonary 
uptake of airborne Mn contributes to its increase in 
blood (Roth, 2006).

Other candidates have been considered for long-
term exposure to metal(loid)s, such as hair and 
nails (Butler et  al., 2019; Fernández-Olmo et  al., 
2021; Nakaona et  al., 2020; Parhizkar et  al., 2021), 
because of their slow growth: between 1 and 1.2 cm/
month of hair (Van Neste & Rushton, 2016) and 
about 3.47 mm/month of fingernails (Yaemsiri et al., 
2010). They are easy to sample, transport, handle 
and store (Haynes et al., 2015; Menezes-Filho et al., 
2009; Sukumar & Subramanian, 2007), although it 
is not possible to discriminate between the specific 
exposure route to them, providing us with a final 
concentration resulting from inhalation, oral and der-
mal routes. When considering these biomarkers, it 
is necessary to be cautious about the use of cosmet-
ics such as dyes or nail polishes. Although Directive 
1223/2009 on cosmetic products forbids the use of 
heavy metals as additives in EU member states (Euro-
pean Parliament & Council of the European Union, 
2009), a recent study has pointed out that coloured 
nail polish still contains some metal(loid)s (Ceballos 
et al., 2021).

Recent studies published by our research group 
highlighted the elevated levels of airborne Mn in 
Santander Bay (Cantabria region, Northern Spain), 
exceeding the WHO annual guideline (i.e. 150  ng/
m3 of Mn) (Hernández-Pellón & Fernández-Olmo, 
2019; Hernandez-Pellón et al., 2017). These elevated 
levels were mainly due to the emissions from a ferro-
manganese alloy production plant located in this area; 
approximately, 91% of air Mn emitted in this area 

comes from this factory (Otero-Pregigueiro et  al., 
2018). In addition, a source apportionment study 
carried out in this area also identified Cd, Fe, Pb 
and Zn as tracers from this plant (Hernández-Pellón 
& Fernández-Olmo, 2019). However, other local 
sources of metal(loid)s apart from the ferromanga-
nese alloy exist, such as road traffic, combustion and 
other industrial sources, leading to moderate levels of 
Cu and As (Hernández-Pellón & Fernández-Olmo, 
2019).

Therefore, this area was selected to assess the 
exposure to airborne Mn and other trace metal(loid)
s in the healthy adult population living in the vicinity 
of this ferromanganese alloy plant. For this purpose, 
the following short-term exposure markers to such 
metal(loid)s were taken from 130 volunteers recruited 
in a cross-sectional study: 24-h personal PM sam-
ples of different particle sizes  (PM10-2.5 and  PM2.5), 
which accounted for the inhalation route of expo-
sure, as well as whole blood samples. For long-term 
exposure, scalp hair and fingernails samples were col-
lected, with the aim of finding associations between 
the amounts of metal(loid)s inhaled and those pro-
cessed by the body, to determine the best biomarker 
of exposure to airborne Mn and other metal(loid)s.

Methodology

Study area and population

The study was carried out in Santander Bay, Can-
tabria, Northern Spain (about 250,000 inhabitants 
in 2019). Among the local industrial sources of 
metal(loid)s in this area, a ferromanganese alloy plant 
is the main emitter of metal(loid)s, mainly of Mn 
as reported by Otero-Pregigueiro et  al. (2018), out-
standing relatively high levels of Mn in ambient air 
that frequently exceeded the WHO guideline value 
(150  ng/m3, annual mean) in the town of Maliaño 
(about 10,000 inhabitants), where the ferromanga-
nese alloys smelter is located (Hernández-Pellón & 
Fernández-Olmo, 2019).

Volunteers were recruited as specified in Ruiz-
Azcona et  al. (2021). All volunteers considered in 
this study were over 18  years old, and without pre-
vious or current work in relation with the ferroman-
ganese plant or any other occupational exposure to 
Mn. All of them resided for a minimum of one year in 
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Santander Bay at different distances from the ferroal-
loy factory, which was intentionally placed in Fig. 1 
in the centre of the exposure area, to account for 
the degree of exposure to Mn and the other studied 
metal(loid)s. The study population was then divided 
into highly exposed (distance less than 1.5  km 
between each volunteer’s residence and the Mn alloy 
plant, i.e. those living in Maliaño, where the main Mn 
source is located) and moderately exposed (distance 
greater than 1.5 km, i.e. those living outside Maliaño, 
mainly in the city of Santander).

The study was approved by the ethical committee 
of clinical research in Cantabria (CEIC) and by the 
ethical committee of research of the University of 
Cantabria (CEUC).

Written informed consent was obtained from 
each subject and whole blood, scalp hair and finger-
nails collection was performed only after permission 
was obtained. In addition to biological samples, PM 
samples were obtained from personal samplers that 
were worn for 24 h by each volunteer. Subjects were 
asked to complete a structured questionnaire contain-
ing socio-demographic characteristics, health and 
medication status, occupational data, smoking habits, 
dietary habits including daily intake of Mn-rich foods 
and Mn food supplements, alcohol consumption and 

other lifestyles. The sampling campaign started in 
November 2019 and ended in November 2020 (inter-
rupted from March 2020 to June 2020 due to the 
COVID-19 outbreak), concluding the sampling cam-
paign with a total of 130 volunteers.

Sample preparation

All the used reagents for treatment and sample prepa-
ration were of analytical grade provided by Merck and 
PanReac AppliChem (Darmstadt, Germany). Whole 
blood samples of approximately 7.5  mL were col-
lected by venipuncture after disinfection of the skin 
with 70% alcohol, collected in lithium heparin mon-
ovettes developed for metal determination (Sarstedt, 
Nümbrecht, Germany). These samples were refriger-
ated for up to 14 days until dilution with an alkaline 
solution (2% (w/v) 1-butanol, 0.05% (w/v) EDTA, 
0.05% (w/v) triton X-100 and 1% (w/v)  NH4OH) 
as described in González-Antuña et  al. (2017) at a 
minimum whole blood/alkaline solution ratio of 1/10 
(w/w), and subsequent analysis by ICP/MS. Scalp 
hair and fingernail samples were collected in poly-
propylene flasks using clean ceramic scissors and nail 
clippers, respectively. A tuft of hair was cut from the 
occipital part of the head, using the 2  cm closest to 

Fig. 1  Location of participants’ residence and the Mn alloy plant
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the scalp for analysis. By using only 2  cm from the 
root of the hair, alterations in hair morphology due to 
dyes are eliminated. This is because the hair tips may 
contain higher levels of metals since the hair further 
from the root has longer contact with the environment 
and additional dye applications. Each additional dye 
application process leads to a higher level of oxida-
tion of the hair, thus creating more potential binding 
sites, and together with the additional mechanical 
wear that occurs when moving from root to tip, can 
facilitate the diffusion of dyes into the hair (Godfrey 
et al., 2013).

Fingernails of both hands were cut after asking the 
volunteers to wash them with the liquid soap provided 
and to rinse them thoroughly with tap water. Females 
were asked whether they dyed their hair and/or pol-
ished their fingernails. When they polished them, the 
polish residues were removed using acetone before 
cutting, and the fingernails were sonicated for 10 min 
before proceeding to the washing protocol. Scalp hair 
and fingernails were washed according to the wash-
ing protocol described in Eastman et al. (2013), thus 
removing all exogenous metals and ensuring that only 
endogenous metals were quantified. Once cleaned, 
samples were microwave digested (Milestone, Ethos 
One) at 200  °C in a 4/1 (v/v)  HNO3/H2O2 solution, 
and finally analysed by ICP/MS.

A personal two-stage modular impactor (SKC PMI 
coarse) was used to collect  PM2.5 and  PM10-2.5 sam-
ples for 24  h, connected to a personal pump (SKC 
Aircheck XR5000) operating at a flow rate of 3 lpm. 
PTFE filters of 37  mm (1  µm pore size) were used 
for the  PM2.5 fraction, and PTFE filters of 25  mm 
(1 µm pore size) were used for the  PM10-2.5 fraction 
(SKC Inc., Houston, USA). An in vitro bioaccessibil-
ity test was performed by extracting each filter with 
10  mL of ALF (Artificial Lysosomal Fluid) as lung 
fluid for 24 h for  PM2.5 filters, and gastric fluid for 1 h 
for  PM10-2.5 filters, in an incubation system (MRHX-
04, LSCI) at 37 °C with end-to-end rotation (SBS) at 
30  rpm. After the leaching assay, the samples were 
centrifuged (Mistasel-BL/Selecta) and the superna-
tants were filtered using polypropylene syringe filters 
with a pore size of 0.45 µm. The choice of fluids and 
composition is described in detail in Expósito et  al. 
(2021). Then, the insoluble fraction (non-bioacces-
sible fraction) was digested based on the European 
standard method "EN-UNE 14,902:2006", which con-
sisted of an acid digestion of each filter in a  HNO3/

H2O2 solution in a 4/1 (v/v) ratio, up to 220 °C. The 
ALF extracts were stored until analysis at 4 °C for a 
maximum of 48 h.

Metal(loid) analysis

Mass spectrometry inductively coupled plasma (ICP/
MS, Agilent 7500 CE) was used for the analysis of 
55Mn, 56Fe, 63Cu, 66Zn, 75As, 111Cd and 207Pb in the 
different samples. Internal standards (89Y, 103Rh and 
185Re) were added to each vial to correct for instru-
mental drifts, and a collision cell with a helium flow 
rate of 4.8  mL/min was used to minimise spectral 
interferences. Since whole blood, ALF and gastric 
fluid can cause spectral and non-spectral interferences 
(matrix effects) during ICP/MS analysis, the deter-
mination of the concentration of the metals studied 
in these samples was performed by adding the same 
solution to the Multi-Element Standard Solution used 
to calibrate the instrument. In the case of samples 
from acid digestion, the calibration standards were 
simply prepared in dilute nitric acid (1 N). Seven cali-
bration points between 0 and 25 ppb were used and 
samples were diluted when necessary.

Limits of detection (LOD)  were calculated based 
on the variability of 10 procedural blanks (two-tailed 
Student’s t-test with 95% confidence for n-1 samples 
(2.26) times the standard deviation of the blanks), 
being constant for each metal(loid) for whole blood 
and filters, and variable for scalp hair and finger-
nails, depending on the weight of sample from each 
volunteer. Limit of quantification was determined as 
10 times the SD of blanks (Al-Hakkani, 2019) (see 
Supplementary Table 1). Measurements of these pro-
cedural blanks also allowed checking for possible 
contamination of containers and reagents. The mean 
values of the studied metal(loid)s measured in these 
blanks were subtracted from all samples except for 
whole blood because both calibration points and sam-
ples were prepared in the same solution. Results were 
presented for elements with a minimum of 50% of the 
samples above the limit of detection.

The analytical methods described were vali-
dated using certified reference material for whole 
blood and human hair (Seronorm™ Trace Elements 
Whole Blood L-1 and ERM®-DB001, respectively), 
but no reference material was found for fingernails. 
The recoveries obtained for the different certified 
metal(loid)s range from 94 to 110% for whole blood 



4600 Environ Geochem Health (2022) 44:4595–4618

1 3
Vol:. (1234567890)

and from 93 to 110% for hair (see Supplementary 
Table  2). A worse recovery was obtained for Mn in 
hair (144%), but its metal content was not certified 
in ERM®-DB001, because only one laboratory pro-
vided results on hair Mn concentration. The diges-
tion method was validated in the research group as 
described in Hernández-Pellón et al. (2018). In addi-
tion to the use of certified reference materials, after 
calibration and at the end of each analytical run, qual-
ity control standards covering the concentration range 
of interest were measured to check the accuracy of 
the measurements.

Wind-weighted distance calculation procedure for 
exposure metrics

To study the correlation between the levels of 
metal(loid)s in the short-term markers (whole blood 
and PM) and the distance between each volunteer’s 
residence and the main metal(loid) source weighted 
by wind, hourly wind data were taken for the personal 
sampling time slots of each subject. For this purpose, 
hourly wind direction and speed data from the San-
tander—Parayas Airport weather station provided by 
Openair thorough the World Met package (R version 
4.0.5) were used.

The procedure described by Haynes et  al. (2012) 
was followed to calculate the wind-weighted source/
home distance. First, Wind Index (WI), a parameter 
between 0–1 indicating whether the subject is upwind 
(0) or downwind (1) of the source, was calculated, 
according to Eq. (1), where αhomesource is the direction 
of the home from the source (rad) and θm represents 
the average wind direction at the selected meteorolog-
ical station in the sampling period in which the volun-
teer wore the personal sampler (rad):

The average wind direction (θm) was calculated 
from hourly data considering the wind speed. To 
calculate the average direction in each period, it was 
necessary to first determine the Umean and Vmean com-
ponents from Eqs.  2 and 3, where N is number of 
hours of sampling, ui is the hourly wind speed (m/s) 
and θi is the hourly wind direction (rad).

(1)WI =
1 − cos

(

�
homesource

− �
m

)

2

To obtain the average direction (θm), Eq.  4 was 
applied (Grange, 2014), where FLOW =  + 180 
when ArcTan < 180 and FLOW =  − 180 when 
ArcTan > 180:

Then, the weighted distance (dw) was calculated 
for each subject by dividing the actual distance (d) by 
the WI, as shown in Eq. (5).

With respect to the long-term markers, to calculate 
the weighted source/home distance, wind data were 
taken for the months prior to fingernails and scalp 
hair sampling for each subject (6 months for finger-
nail samples and 2  months for scalp hair samples). 
For these longer periods, the procedure shown in 
Eqs.  (1–5) sometimes failed, due to the lack of rep-
resentativeness of the average wind direction over 
these periods. To address this, an alternative proce-
dure was developed to calculate the weighted distance 
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frequency with which the wind blows downwind (i.e. 
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ing each residence a wind sector. Next, the frequency 
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distance between the source and the subject’s home 
was weighted by dividing the raw distance by this 
weighting factor (Eq. 6).
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Statistical analysis

Data analysis was performed with IBM SPSS Sta-
tistics software (version 22) and R software (version 
4.0.5). Statistical analysis was only performed when 
at least 50% of the data above the LOD was availa-
ble. For metal(loid) concentrations in biomarkers and 
PM samples below the LOD, a value of LOD/2 was 
assigned.

All quantitative variables in the study were tested 
for normality using the Kolmogorov–Smirnov test 
with Lilliefors correction, and the homogeneity of 
variances was tested using Levene’s test. Student’s 
t-test (normal distribution and homogeneity of vari-
ances), Welch’s t′-test (normal distribution and non-
homogeneous variances) and the Mann–Whitney U 
test (non-normal distribution) were used to compare 
means/medians between the established groups.

To study the potential effect of confounders on the 
differences between groups as a function of source 
distance (i.e. highly exposed vs. moderately exposed), 
linear regression models were used to calculate 
crude and adjusted Mean Differences (MDs) of each 
metal(loid) concentration with their 95% confidence 
intervals (CI). Age (as a continuous variable), sex and 
study level (ordinal categorised) were pre-established 
as confounders and included in a first multivariate 
model. Also, a second multivariate model added as 
confounders employment status, tobacco smoking 
and dietary habits: Mn supplement intake and high 
Mn food consumption (nuts, tea ≥ 5/week, fish as 
tunas or salmon families… ≥ 3/week).

Spearman correlation coefficients were calculated 
between the metal(loid)s of each matrix and between 
the matrices for each metal(loid). Finally, correlations 
were also calculated between the biomarkers stud-
ied, the levels in PM and the wind-weighted distance 
between each volunteer’s residence and the main 
metal(loid) source, as well as the age of the subjects. 
The Chi-square test was applied to determine whether 
there was any relationship between exposure (catego-
rised as highly/moderately exposed) and the categori-
cal variables used in the description of the population 
(sex, education level, smoking status). All tests were 
bilateral, and the alpha error was set at 5%.

Results

Description of the study population

Table  1 shows the socio-demographic character-
istics of the studied population divided according 
to exposure (moderately exposed/highly exposed) 
with an age range between 20 and 71  years, with 
an average of 41.75 ± SD = 13.97  years. The highly 
exposed population lives within a radius of 0.8  km 
(0.25–1.5  km) from the ferromanganese factory as 
the main source of contamination, while the moder-
ately exposed population resides within an average 
radius of 7.3  km (2–34  km). Significant differences 
were seen between exposure by years of residence, 
higher for the most exposed group (p < 0.001); by 
educational level, lower for the most exposed popu-
lation (p = 0.005); and by employment status, with 
more people employed full time in the moderately 
exposed population (p = 0.045). However, no differ-
ences were seen by sex and smoking habits or alcohol 
consumption. Regarding to diet, none participant was 
vegetarian and the consumption of grains, greenpeas 
and beans was similar. Furthermore, the study popu-
lation comes from an urban/industrial area, so their 
diet is mainly based on products purchased in super-
markets, thus ruling out the intake of potentially con-
taminated food grown in local soils. In addition, the 
ingestion of water was not considered because of the 
low metal(loid) content determined in local tap water. 
The rest of dietary characteristics are also included in 
Table 1.

(Bio)markers

Tables 2 and 3 show the concentration of the studied 
metal(loid)s by sex (arithmetic mean (AM), standard 
deviation (SD), median and reference values (RV) 
with 95% confidence interval) in the short-term (bio)
markers (personal filters and whole blood), as well as 
in the long-term biomarkers (scalp hair and finger-
nails), respectively. Metal(loid)s with at least 50% 
values above the LOD in each matrix are shown. Ref-
erence values were calculated for biological matri-
ces only, as the  95th percentile with a 95% confi-
dence interval, as specified by Saravanabhavan et al. 
(2017). With respect to whole blood as short-term 
biomarker, significant sex differences were observed 
for Fe (p = 0.039), Cu (p = 0.006) and Pb (p = 0.001), 
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Table 1  Socio-demographic characteristics of the study population divided according to the exposure groups (highly exposed (HE) 
(≤ 1.5 km) versus moderately exposed (ME) (> 1.5 km)

Characteristics ME (> 1.5 km) 
N = 65

HE (≤ 1.5 km) 
N = 65

Total N = 130 p-value

Source distance from main point (m)
 Arithmetic Mean, SD 7294.68 5258.64 799.24 297.94 4046.96 4938.92
 Geometric Mean 6212.08 747.87 2155.42
 Median, P95 6085.55 18782.14 743.19 1447.45 1770.40 17910.06
 Range: min, max 2040.80 33984.74 268.07 1500.00 268.07 33984.74
 Interquartile Range (P25, P75) 4969.84 7254.11 594.43 946.25 728.56 6089.44

Age
 Arithmetic Mean, SD 39.77 13.45 43.66 14.31 41.72 13.97 0.092**
 Range: min, max 20 71 20 71 20 71

Years residing
 Arithmetic Mean, SD 11.62 12.42 18.85 13.96 15.23 13.65  < 0.001**
 Range: min, max 1 60 1 71 1 71

Sex (n, %) 0.553*
 Female 46 70.8% 49 75.4% 95 100.0%
 Male 19 29.2% 16 24.6% 35 100.0%

Studies (n, %) 0.005*
 Primary education 3 4.6% 3 4.6% 6 4.6%
 Secondary Education/Vocational education and  

Training
7 10.8% 15 23.1% 22 16.9%

 High school level/Certificate of Higher Education 10 15.4% 20 30.8% 30 23.1%
 University studies (Bachelor’s Degree) 8 12.3% 11 16.9% 19 14.6%
 University studies (University Degree) 37 56.9% 16 24.6% 53 40.8%

Employment status (n, %) 0.045*
 Employed full time 54 83.1% 43 66.2% 97 74.6%
 Unemployed 1 1.5% 4 6.2% 5 3.8%
 Housewife 0 5 7.7% 5 3.8%
 Retired 7 10.8% 6 9.2% 13 10.0%
 Full-time student 3 4.6% 7 10.8% 10 7.7%

Smoking status (n, %) 0.498*
 Non-smoker 42 64.6% 42 64.6% 84 64.6%
 Former 9 13.8% 13 20.0% 22 16.9%
 Current 14 21.5% 10 15.4% 24 18.5%

Alcohol status 0.597*
 Never 34 52.3% 37 56.9% 71 54.6%
 Ever 31 47.7% 28 43.1% 59 45.4%

Average of pure ethanol (g/week) (n, %) 0.245*
 0 g/week 34 52.3% 37 56.9% 71 54.6%
 1–24 g/week 11 16.9% 11 16.9% 22 16.9%
 25–74 g/week 16 24.6% 17 26.2% 33 25.4%
  ≥ 75 g/week 4 6.2% 0 0.0% 4 3.1%

Mn food supplements intake (n, %) 0.154*
 No 63 96.9% 65 100.0% 128 98.5%
 Yes 2 3.1% 0 0.0% 2 1.5%

Nuts ≥ 5/week (n, %) 0.456*
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with higher concentrations of Fe and Pb for males 
(492,650  µg/L vs. 466,302  µg/L and 11.40  µg/L vs. 
8.49  µg/L, respectively), and higher levels of Cu in 
females (824.5  µg/L vs. 716.4  µg/L). Regarding to 
long-term biomarkers, significant sex differences 
were shown for Mn (p = 0.008), Cu (p = 0.021), Zn 
(p = 0.009), Cd (p = 0.020) and Pb (p = 0.007) in scalp 
hair, with higher concentrations for all metals except 
Cu in males (10,639  ng/g vs. 8450  ng/g), while no 
significant differences for any metal in the case of 
fingernails were found. The possible influence of nail 
varnish on the metal levels was not considered, since 
only four female volunteers had polished fingernails. 
In addition, according to the research of Ceballos 
et al. (2021), the internal levels of metal(loid)s meas-
ured in nail technicians’ toenails were comparable to 
those reported in other studies in females, except for 
antimony, arsenic, chromium, mercury, and nickel.

Figures 2, 3 and 4 show the levels of the selected 
metal(loid)s in the studied short- and long-term indi-
cators, according to the degree of exposure (highly 
vs. moderately exposed). In terms of exposure, signif-
icant differences of medians were only observed for 
As in whole blood (p = 0.002), Mn and Cu in scalp 
hair (p = 0.008 and 0.001, respectively) and Mn and 
Pb in fingernails (p < 0.001 and 0.025, respectively), 
all concentrations being higher for the highly exposed 
group with the exception of Cu in scalp hair. For fil-
ters, the most exposed population showed signifi-
cantly higher concentrations for all the Mn fractions 
analysed  (PM10-2.5 and  PM2.5, both bioaccessible 
and non-bioaccessible), as observed in Fig. 2. These 

differences were maintained statistically significant 
after adjusting for the potential confounders men-
tioned in Methodology, as shown in Table 4, except 
for Cu in scalp hair and Mn in the non-bioaccessible 
fine fraction, which lost significance in the multivari-
ate models.   

Correlation analysis

Spearman’s correlation coefficients between the 
concentration of metal(loid)s in each matrix (filters, 
whole blood, scalp hair and fingernails) and wind-
weighted distance are shown in Table 5.

For short-term markers, PM-bound Mn showed a 
significant negative correlation for all the analysed frac-
tions with respect to the weighted distance from the 
most important source, in which those subjects who 
live closest to the Mn alloy factory (i.e. in the munici-
pality of Maliaño) were more exposed. Table  5 also 
shows the lack of correlation between Mn in whole 
blood and weighted distance (r = 0.055, p = 0.563). On 
the other hand, a significant negative correlation of As 
in whole blood was found with distance (r =  − 0.239, 
p = 0.011), but as we will see later, it is not possible to 
confirm that inhalation was the main route of exposure, 
since its levels in PM filters were below the LOD.

For long-term biomarkers, Mn showed negative cor-
relations with weighted distance, in agreement with 
that shown in Fig. 4 for both scalp hair and fingernails, 
respectively. However, this correlation was only statisti-
cally significant for fingernails (r =  − 0.607, p < 0.001). 
A significant negative correlation with distance to 

Table 1  (continued)

Characteristics ME (> 1.5 km) 
N = 65

HE (≤ 1.5 km) 
N = 65

Total N = 130 p-value

 No 57 87.7% 54 83.1% 111 85.4%
 Yes 8 12.3% 11 16.9% 19 14.6%

Tea ≥ 5/week (n, %) 0.019*
 No 59 90.8% 49 75.4% 108 83.1%
 Yes 6 9.2% 16 24.6% 22 16.9%

Fish as tunas or salmon ≥ 3/week (n, %) 0.784*
 No 58 89.2% 57 87.7% 115 88.5%
 Yes 7 10.8% 8 12.3% 15 11.5%

Bold implies that the p-value is significant
* Chi-square test
** Mann–Whitney U test
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the source was also observed for Zn in scalp hair 
(r =  − 0.207, p = 0.035), but not in fingernails. Copper 
and Fe show no correlation with distance in fingernails, 
but a positive and significant correlation in scalp hair: 
Fe (r = 0.269, p = 0.006), Cu (r = 0.311, p = 0.001). 
With respect to Pb, contradictory results were found: 
a positive correlation with distance in scalp hair and 
negative in fingernails, both significant. Negative but 
no significant correlations were obtained in the bioac-
cessible fine fraction and whole blood.

The correlations between the metal(loid) con-
centrations in each matrix and the age of the sub-
jects were also studied (Supplementary Table  3). In 
whole blood, there was a significant positive correla-
tion of As and Pb with age (r = 0.367, p < 0.001 and 
r = 0.451, p < 0.001, respectively), and a significant 
negative correlation of Cu with age (r =  − 0.239, 
p = 0.006), with younger volunteers having higher 
concentrations, which was also observed in scalp hair 
(r =  − 0.337, p < 0.001). In fingernails, a significant 
positive correlation of Mn concentration with age 
(r = 0.315, p = 0.001) was observed.

Between metal(loid)s correlations in whole blood, 
scalp hair and fingernails are shown in Supplemen-
tary Tables  4–6, respectively. In whole blood, there 
were significant positive correlations between Mn/
Fe (r = 0.191, p = 0.030), Fe/Zn (r = 0.283, p = 0.001), 
Cu/Zn (r = 0.180, p = 0.040) and As/Pb (r = 0.443, 
p < 0.001). Regarding to scalp hair, all of them 
were positive: Mn/Fe (r = 0.282, p = 0.002), Mn/Cd 
(r = 0.442, p < 0. 001), Mn/Pb (r = 0.348, p < 0.001), 
Fe/Cd (r = 0.288, p = 0.001), Cu/Cd (r = 0.189, 
p = 0.037), Cu/Pb (r = 0.345, p < 0.001) and Cd/Pb 
(r = 0.504, p < 0.001). Finally, the correlations in fin-
gernails between Mn/Fe (r = 0.268, p = 0.004), Mn/
Pb (r = 0.414, p < 0.001), Fe/Zn (r = 0.340, p < 0.001), 
Fe/Pb (r = 0.253, p = 0.013) and Cu/Pb (r = 0.211, 
p = 0.039) were also significant.

Between matrices correlations for detected 
metal(loid)s are shown in Supplementary Tables  7 
(a-e). Regarding to Mn, no significant correlations 
between whole blood and any of the Mn fractions 
analysed in PM nor other biomarkers were observed; 
however, scalp hair Mn showed significant positive 
correlations with bioaccessible and total Mn in both 
fractions (coarse and fine), and fingernails Mn cor-
related well with all PM fractions analysed. Signifi-
cant positive correlations were also observed for Fe 
between concentrations in scalp hair and fingernails 

(r = 0.228, p = 0.018) and between Pb concentrations 
in whole blood and scalp hair (r = 0.210, p = 0.020).

Discussion

The discussion is first focused on Mn, because the 
study area is characterised by the presence of a fer-
romanganese alloy factory as the main source of 
metal(loid) emissions (Hernández-Pellón & Fernán-
dez-Olmo, 2019; Hernandez-Pellón et al., 2017), and 
due to the lack of consensus for the choice of a suit-
able biomarker for Mn, which is further difficulted by 
its role as a micronutrient (Aschner & Aschner, 2005; 
Hassani et  al., 2016; Jursa et  al., 2018). In addition, 
according to a previous study, this plant is practi-
cally the only source of airborne Mn in the study area 
(Otero-Pregigueiro et al., 2018).

In general, Mn levels in the studied markers are 
higher in the highly exposed group, with the excep-
tion of whole blood. This is corroborated when the 
correlation between Mn levels in these (bio)markers 
is analysed. Among the studied indicators of the Mn 
exposure, the PM-bound Mn concentration showed 
the highest differences between exposure groups, 
mainly for the bioaccessible fractions (see Figs. 2, 3, 
4). Effect sizes and statistical significance were main-
tained after adjusting for potential confounders except 
for the non-bioaccessible fine fraction (see Table 4), 
highlighting the importance of the inhalation route 
of exposure to Mn from the ferromanganese indus-
try emissions, in agreement with previous modelling 
and stationary sampling studies (Hernández-Pellón 
& Fernández-Olmo, 2019; Otero-Pregigueiro et  al., 
2018), with the improvement of accurate 24-h expo-
sure monitoring in which each volunteer carried the 
personal sampler. Table 5 also confirmed this hypoth-
esis, since the highest correlations between Mn levels 
and weighted distance were obtained for PM filters, 
with higher correlation coefficients for the bioacces-
sible fractions with respect to the non-bioaccessible 
fractions.

Although the measured Mn levels in biomark-
ers can result from the three routes of exposure, the 
results discussed above on PM-bound Mn concentra-
tions and the importance of the bioaccessible frac-
tion can explain the results obtained when scalp hair 
and fingernails are used. Thus, as shown in Fig.  4, 
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we can consider scalp hair and mainly fingernails as 
potential biomarkers of long-term airborne Mn expo-
sure. The most exposed population showed medians 
of 321.6  ng/g and 917.9  ng/g in scalp hair and fin-
gernails, respectively, with these concentrations 
being notably lower for the less exposed population 
(132.7  ng/g and 331.3  ng/g, respectively), as evi-
denced in other studies (Coetzee et al., 2016; Haynes 
et al., 2015; Levin-Schwartz et al., 2021). These dif-
ferences are again maintained after adjusting for 
potential confounders (see Table 4). The appropriate-
ness of these biomarkers is also corroborated by the 
results of the calculation of between matrices correla-
tions for Mn. We observed positive correlations with 
bioaccessible and total Mn in both fractions (coarse 
and fine) in the case of scalp hair, and with all PM 
fractions analysed in the case of fingernails.

Our results also suggest that whole blood is not a 
good biomarker of short-term airborne Mn exposure 
(see Fig.  3), being unable to differentiate between 
highly and moderately exposed groups (medians 

9.16 µg/L vs. 9.18 µg/L, p = 0.865), even after adjust-
ing for potential confounders. This is in agreement 
with previous studies reporting that Mn levels are 
tightly regulated in this matrix, with excess being 
quickly eliminated by the liver and excreted in bile 
and urine (Gurol et al., 2022). The correlation analy-
sis also confirmed that whole blood cannot be used as 
biomarker of environmental exposure to Mn with epi-
demiological purposes, as it did not show significant 
correlations with any of the Mn fractions analysed in 
PM, nor with other biomarkers, nor with distance to 
the source.

With respect to Pb, Zn and Fe, their presence in 
the study area was also mainly attributed to the fer-
roalloy factory (Hernández-Pellón & Fernández-
Olmo, 2019). This was supported by the significant 
positive correlations between Mn, Pb, Zn and Fe 
found in fingernails. However, other nearby emission 
sources such as a steel plant for Pb, Zn and Fe and 
non-exhaust road traffic for Zn and Fe cannot be ruled 
out. Regarding to Pb, blood has been considered as 

Fig. 2  Levels of Mn in filters from personal sampling accord-
ing to the exposure to the main Mn source: moderately 
exposed (ME) versus highly exposed (HE): (a) bioaccessible, 

 PM10-2.5; (b) non-bioaccessible,  PM10-2.5; (c) total,  PM10-2.5; 
(d) bioaccessible,  PM2.5; (e) non-bioaccessible,  PM2.5; (f) total, 
 PM2.5



4609Environ Geochem Health (2022) 44:4595–4618 

1 3
Vol.: (0123456789)

a reliable biomarker of exposure (Barbosa et  al., 
2005). However, although the levels of Pb in whole 
blood were higher in the highly exposed group (see 
Fig. 3), the difference was not statistically significant 
(p = 0.106). It should be noted that the steel plant is 
located only 3.5  km  N from the ferroalloy factory, 
so its emissions can affect both the highly and the 
moderately exposed groups. Moreover, contradic-
tory results were found for long-term biomarkers: a 
positive correlation with distance in scalp hair and 
negative in fingernails, both significant (see Table 5). 
Thus, while Fig.  4 depicts significant differences 
between groups in fingernails, with higher levels 
in the highly exposed group (103.3 vs. 82.8  ng/g, 
p = 0.025), but contrary to our hypothesis, Pb concen-
tration in scalp hair was slightly higher in the moder-
ately exposed group (p = 0.088). Although it is well 
known that blood and nails can be effective biomark-
ers of Pb exposure (Barbosa et  al., 2005; Olympio 
et al., 2020), the contradictory results shown here for 
the three biomarkers studied need further research 

to elucidate (i) the suitability of these biomarkers to 
account for the exposure to airborne Pb, and (ii) the 
contribution of local emission sources other than fer-
roalloy smelting.

This study also confirmed that the actual levels 
of whole blood Pb are much lower than those of 
previous decades, even in industrial areas like 
Santander Bay, due to the strict regulations given 
worldwide. For example, RVs of 70 and 90  µg/L 
was derived by the Human Biomonitoring (HBM) 
Commission for women and men, respectively, in 
the period 1997–1999 (Schulz et  al., 2011), much 
higher than the RV of 24.82  µg/L measured in this 
work. It also agrees with the report produced by 
the US Department of Health and Human Services 
(2018), with a  P95 of 23.9 µg/L in 2015/2016. Other 
recent studies showed similar levels, such as those 
shown by Saravanabhavan et al. (2017) in a Canadian 
biomonitoring study, with a  P95 of 33  µg/L, or by 
Ferreira et  al. (2019) in an unexposed population in 
Brazil  (P95 = 22.5 µg/L). In Spain, a former national 

Fig. 3  Levels of metal(loid)s in whole blood as short-term biomarker according to the exposure to the main Mn source: moderately 
exposed (ME) versus highly exposed (HE): (a) Mn; (b) Fe; (c) Cu; (d) Zn; (e) As; (f) Pb
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biomonitoring study carried out between 2009 
and 2010 (BIOAMBIENT) reported a  P95 value 
of 56.8  µg/L (Cañas et  al., 2014), evidencing this 
progressive decrease of Pb levels in blood.

With respect to Zn and Fe, a significant negative 
correlation with distance to the source was observed 
for Zn in scalp hair (r =  − 0.207, p = 0.035), but not 
in fingernails (r =  − 0.032, p = 0.754), while no cor-
relation with distance in fingernails and even positive 
significant correlation in scalp hair was found for Fe 
(r = 0.269, p = 0.006). Again, the presence of other 
sources of these metals in the area makes it difficult 
to interpret these results. In addition, Zn and Fe are 
essential trace elements that can enter into the body 
by other routes.

Copper shows no significant differences as a 
function of exposure in whole blood and finger-
nails, although it does in scalp hair, but losing sig-
nificance after adjusting for the selected confounders, 
mainly attributed to age differences (older people in 
the highly exposed group, as shown in Table 1, and 
negative correlation between scalp hair Cu and age, 
as shown in Supplementary Table  3). In any case, 
higher scalp hair Cu levels are measured in the mod-
erately exposed population, in agreement with a posi-
tive significant correlation with distance (r = 0.311, 
p = 0.001), concluding that the origin of this metal 
is not due to the ferroalloys plant. According to the 
literature, airborne Cu originates mainly from non-
exhaust emissions due to brake wear (Amato et  al., 
2010; Bäckström et al., 2003; Johansson et al., 2009). 
These results are consistent, as road traffic is similar 
or even higher in Santander area, where most of the 
moderately exposed group lives.

Finally, As exhibited important differences in 
whole blood (see Fig. 3), with the most exposed pop-
ulation showing statistically significant higher levels 
(4.24 µg/L vs. 2.81 µg/L, p = 0.002). This agrees with 
a significant negative correlation found with the dis-
tance to the factory (r =  − 0.239, p = 0.011). However, 
it seems that it does not bioaccumulate long-term in 
the body, remaining below the LOD in both scalp hair 

and fingernails. The origin of As in this area needs 
further investigation, since although it was measured 
in previous studies both in  PM10 collected by station-
ary samplers (Hernández-Pellón & Fernández-Olmo, 
2019) and in soil (Boente et al., 2020) near the ferro-
manganese plant, the levels of As in the bioaccessible 
and non-bioaccessible fractions of the personal filters 
collected in the present study were below the LOD, 
so other sources and routes of exposure are not ruled 
out.

The differences with respect to the sex of the par-
ticipants are in line with those reported in previous 
studies (Bocca et al., 2011; Coelho et al., 2014; Sara-
vanabhavan et  al., 2017; Stojsavljević et  al., 2019). 
Coelho et  al. (2014) reported higher levels of Mn 
in toenails in females, in agreement with our results 
using fingernails. The higher whole blood Pb con-
centrations found in males are in accordance with 
those reported by Batáriová et  al. (2006), Coelho 
et al. (2014), Schulz et al. (2011), Stojsavljević et al. 
(2019) and Zhang et al. (2015). Moreover, the higher 
whole blood Cu levels in females are in agreement 
with Bocca et al. (2011) and Zeng et al. (2019), and 
may be due to the fact that estrogen-induced cerulo-
plasmin synthesis in the liver, can lead to increased 
blood Cu levels in females (Prasad et al., 2014). On 
the other hand, no significant sex differences in whole 
blood Mn and As levels have been found, supported 
by Freire et  al. (2015), Haynes et  al. (2010), Nisse 
et  al. (2017), Stojsavljević et  al. (2019) and Zeng 
et  al. (2019). However, contrary to us, Zeng et  al. 
(2019) reported higher levels of Zn, Fe and As in the 
whole blood of males.

For males, significant higher levels of Mn in scalp 
hair were also observed, which is in agreement with 
Viana et  al. (2014), although the significance they 
reported is limited. Nonetheless, other literature stud-
ies reported no significant differences in hair Mn lev-
els according to sex (Haynes et  al., 2010; Menezes-
Filho et al., 2009; Riojas-Rodríguez et al., 2010).

The biomonitoring levels obtained in this study 
were also compared with the available literature. 
In the case of whole blood, our biomonitoring val-
ues were within the range or slightly below those 
reported in the literature with the exception of As; for 
this metal(loid), some outliers were measured, corre-
sponding to participants living in the vicinity of the 
main source of metals in Maliaño. It is unusual to 
find As values in whole blood higher than 15  µg/L, 

Fig. 4  Levels of metals in long-term biomarkers according 
to the degree of exposure to the main Mn source: moderately 
exposed (ME) versus highly exposed (HE): (a) scalp hair Mn; 
(b) scalp hair Fe; (c) scalp hair Cu; (d) scalp hair Zn; (e) scalp 
hair Cd; (f) scalp hair Pb; (g) fingernails Mn; (h) fingernails 
Fe; (i) fingernails Cu; (j) fingernails Zn; k) fingernails Pb

◂
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although there have been previous studies report-
ing As levels similar to our outliers, such as those 
of Tratnik et  al. (2019) (maximum As in women 
of 28.9 µg/L and in men of 22.4 µg/L), Freire et  al. 
(2015), (maximum As in women of 26.28  µg/L and 
in men of 30.75  µg/L), Henríquez-Hernández et  al. 
(2018) (maximum As of 29.12  µg/L in population 
aged 20–40 years in the Canary Islands (Spain)), and 
Kim et  al. (2017) in South Korea (maximum As of 
59.8 µg/L in women and 53.1 µg/L in men).B
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3 Table 5  Spearman’s correlation coefficients between concen-
trations of all employed (bio)markers and wind-weighted dis-
tance; markers are shown in two groups according to the dis-
tance weighting methods used: short-term and long-term

Bold implies that the p-value is significant

r p-value

Short-term (bio)markers
Mn coarse fraction bioaccessible (ng/m3)  − 0.609  < 0.001
Mn coarse fraction non-bioaccessible (ng/

m3)
 − 0.44  < 0.001

Mn coarse fraction total (ng/m3)  − 0.612  < 0.001
Mn fine fraction bioaccessible (ng/m3)  − 0.449  < 0.001
Mn fine fraction non-bioaccessible (ng/

m3)
 − 0.319 0.001

Mn fine fraction total (ng/m3)  − 0.439  < 0.001
Mn total  (PM10) (ng/m3)  − 0.549  < 0.001
Fe coarse fraction bioaccessible (ng/m3)  − 0.343  < 0.001
Fe fine fraction non-bioaccessible (ng/m3)  − 0.150 0.114
Pb fine fraction bioaccessible (ng/m3)  − 0.179 0.057
Whole blood Mn (µg/L) 0.055 0.563
Whole blood Fe (µg/L) 0.065 0.495
Whole blood Cu (µg/L) 0.152 0.109
Whole blood Zn (µg/L) 0.028 0.766
Whole blood As (µg/L)  − 0.239 0.011
Whole blood Pb (µg/L)  − 0.063 0.506
Long-term biomarkers
Scalp hair Mn (ng/g)  − 0.104 0.291
Scalp hair Fe (ng/g) 0.269 0.006
Scalp hair Cu (ng/g) 0.311 0.001
Scalp hair Zn (ng/g)  − 0.207 0.035
Scalp hair Cd (ng/g) 0.151 0.127
Scalp hair Pb (ng/g) 0.300 0.002
Fingernails Mn (ng/g)  − 0.607  < 0.001
Fingernails Fe (ng/g) 0.041 0.682
Fingernails Cu (ng/g)  − 0.039 0.725
Fingernails Zn (ng/g)  − 0.032 0.754
Fingernails Pb (ng/g)  − 0.344  < 0.001
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In the case of Mn, the median (9.76  µg/L) was 
slightly higher than that found in the USA from the 
Fourth National Report on Human Exposure to Envi-
ronmental Chemicals, 9.52  µg/L in 2015/2016 from 
a sample of 4987 participants (US Department of 
Health & Human Services, 2018). The highest values 
of Mn in whole blood corresponded to participants 
living near the manganese alloy plant, but their maxi-
mum (26.76  µg/L) was clearly below some values 
reported near industrial sources of Mn: for example, 
Santos-Burgoa et  al. (2001) reported a maximum of 
88 µg/L near Mn ore mines in Mexico.

With respect to scalp hair, our values were in gen-
eral well below those documented, except for Zn and 
Cu, which were within the range of other studies. 
This may be due to the fact that our cleaning proto-
col is much more thorough than most protocols used 
by other authors, leading to a complete removal of 
exogenous contamination of scalp hair by trace met-
als. The influence of pre-treatment steps on the levels 
of metals in hair has been discussed in the literature 
(Eastman et  al., 2013). These differences were also 
observed in the case of fingernails, with the peculiar-
ity that the literature studies available to compare our 
range of values were more limited.

Our ranges of concentrations in scalp hair and 
fingernails were in the same order of magnitude as 
those obtained by Butler et al. (2019), who used the 
same cleaning protocol previously reported by East-
man et  al. (2013). For example, for Mn, Cu and Pb 
in scalp hair, they obtained medians of 0.08, 9.57 
and 0.17  µg/g, respectively, compared to the medi-
ans obtained in this study of 0.19, 9.79 and 0.15 µg/g, 
respectively. However, studies in which a less thor-
ough cleaning protocol was used showed much higher 
Mn levels in hair (e.g. 6.9–31.3  µg/g in Menezes-
Filho et al. (2009), 12 µg/g in Mohmand et al. (2015), 
and 9.7  µg/g for males and 4.4  µg/g for females in 
Viana et  al. (2014)). For nails, something similar 
occurred, as Butler et  al. (2019) obtained medians 
for Mn, Cu and Pb of 0.19, 2.66 and 0.1 µg/g, respec-
tively, while for the same metals our medians were 
0.56, 3.63 and 0.1 µg/g, respectively.

Conclusions

Among the studied indicators of Mn exposure, 
PM-bound Mn concentrations showed the largest 

differences between the highly exposed and mod-
erately exposed, highlighting the importance of the 
inhalation route of exposure to Mn from emissions of 
the ferromanganese industry. The higher fingernails 
Mn levels of people living near the Mn source and the 
significant positive correlations between fingernails 
Mn and all PM fractions (bioaccessible/non-bioacces-
sible coarse and fine) confirm it as the best biomarker 
of long-term exposure to Mn, the main pollutant in 
Santander Bay according to WHO guidelines.

With respect to Pb, Zn and Fe, their presence in the 
study area was also mainly attributed to the ferroalloy 
factory; however, other nearby emission sources can-
not be ruled out, such as a steel plant for Pb, Zn and 
Fe and non-exhaust road traffic for Zn and Fe; moreo-
ver, Zn and Fe are essential trace elements that can 
enter the organism by other routes. The contradictory 
results shown here for the three studied biomarkers, 
mainly for Pb, indicate the difficulties in interpreting 
the results when different environmental metal(loid) 
sources and routes of exposure to them may occur. 
Finally, this study also confirmed that current 
whole  blood Pb levels, even in an urban-industrial 
mixed area, are much lower than in previous decades.
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