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Abstract With the expansion of the global novel

coronavirus disease (COVID-19) pandemic, unprece-

dented interventions have been widely implemented in

many countries, including China. In view of this

scenario, this research aims to explore the effective-

ness of population mobility restriction in alleviating

epidemic transmission during different stages of the

outbreak. Taking Shenzhen, a city with a large

immigrant population in China, as a case study, the

real-time reproduction number of COVID-19 is esti-

mated by statistical methods to represent the dynamic

spatiotemporal transmission pattern of COVID-19.

Furthermore, migration data between Shenzhen and

other provinces are collected to investigate the impact

of nationwide population flow on near-real-time

dynamic reproductive numbers. The results show that

traffic flow control between populated cities has an

inhibitory effect on urban transmission, but this effect

is not significant in the late stage of the epidemic

spread in China. This finding implies that the govern-

ment should limit international and domestic popula-

tion movement starting from the very early stage of the

outbreak. This work confirms the effectiveness of

travel restriction measures in the face of COVID-19 in

China and provides new insight for densely populated

cities in imposing intervention measures at various

stages of the transmission cycle.

Keywords Real-time reproduction number �
COVID-19 � Population mobility � Correlation
analysis � Shenzhen

Introduction

Novel coronavirus disease (COVID-19) was first

reported in Wuhan, Hubei Province, in December

2019 and then spread rapidly to other parts of China

(Chen et al., 2020). COVID-19 is different from

previous severe acute respiratory syndrome (SARS)

and Middle East respiratory syndrome (MERS),

although the three coronavirus infections are usually

characterized by fever and cough (Li et al., 2020b).
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Compared to that of the latter two, the overall case

fatality rate of COVID-19 is lower, but the total

number of deaths is higher due to the larger number of

cases. Because of the high infectivity of COVID-19,

the World Health Organization (WHO) defined

COVID-19 as a global pandemic on 11 March 2020.

With continuously rising numbers of confirmed cases,

COVID-19 has become a global health threat (Lau

et al., 2020).

As a responsible nation and one of the earliest

outbreak areas in the world, China has quickly taken

several unprecedented prevention and control mea-

sures in response to the spread of this highly infectious

disease. Most of China’s regions, especially Beijing,

Shanghai, Guangdong, Hubei and other provinces

with large population mobility, were subject to strict

traffic control. With the restrictions of population

mobility and other social distancing policies enacted

across the country, the number of confirmed cases has

shown a decreasing trend, which may indicate that

these combinedmeasures have curbed the rapid spread

of the epidemic to a certain extent. By 21 June 2020,

China had 84,997 confirmed cases and 4646 deaths

from COVID-19, making China the country with the

lowest infection rate and mortality rate worldwide

(WHO, 2020). However, with COVID-19 spreading

worldwide, new imported cases or local transmission

cases are still reported sporadically.

Population mobility has been found by many recent

studies to have significant effects on disease spread

(Kraemer et al., 2020; Li et al., 2020a). Rapid

urbanization process and the large-scale movement

of the population into cities lead to changes in

environmental factors, such as climate change, that

exacerbate the incidence and mortality of large-scale

infectious diseases in cities (Ye et al., 2021). During

the rapid spread of the epidemic, the pathogen

travelled like a blind passenger (Kuebart & Stabler,

2020). Several works have taken population mobility

into consideration to model the spread of the virus

(Balcan et al., 2009); for example, human transporta-

tion data were integrated by Chinazzi et al. (2020) into

epidemiological data using the global epidemic and

mobility model (GLEAM). Their work also proposed

the relative risk of case importation to other countries

given the flow strength and disease dynamics of a

certain city in mainland China. Qiu et al. (2020)

considered the within-city and between-city flow as

factors influencing the daily new case number in a

certain city, and flow from the outbreak source region

posed a higher risk to destination regions than did

other factors. Additionally, the risk of transportation

of infectious cases from Wuhan to other cities was

estimated by Du et al. (2020) using population

mobility.

The apparent effect of population mobility restric-

tions on alleviating the epidemic could be explained

by the properties of infectious viruses based on

historical studies. Merler and Ajelli (2010) found that

the spread of a virus affects the fluidity of the pathogen

and the characteristics of the host. Epidemics spread to

a certain level because of long-distance migration,

such as the Europeans bringing the smallpox virus

to America (Patterson & Runge, 2002), or short-term

migration, such as the outbreak of SARS in 2003

(Ruan et al., 2005). Camitz and Liljeros (2006) found

that a[ 50 km travel ban would drastically reduce the

spread of SARS outbreaks. Studies have shown that

travel restrictions can be useful in the early stages of

an outbreak (Kraemer et al., 2020). The blockade of

Wuhan City, Hubei Province, and the travel restric-

tions on quarantine across the country on 23 January

2020 have effectively delayed the general epidemic

both nationally and internationally (Chinazzi et al.,

2020). Many other works have focused on the early

stage of the outbreak; for example, Du et al. (2020)

conducted research on data before the Wuhan travel

ban, Fang et al. (2020) adopted data after the Wuhan

lockdown, and Qiu et al. (2020) focused on the early

stage and outbreak of the epidemic in mainland China.

Nevertheless, travel bans and restrictions on move-

ment impact the economy and geopolitics (Grydehøj

et al., 2020).

In addition, the spread of the virus and the

relationship between the status of the epidemic and

population mobility must be measured in an appro-

priate manner. In terms of the metrics of epidemic

transmission, most previous studies applied the cumu-

lative number of infective cases or daily new cases

(Fang et al., 2020; Qiu et al., 2020) as a measurement

for the spread of the virus, while Kraemer et al. (2020)

employed the cumulative case rank. Instead of directly

using case number-related metrics, the reproduction

number of the infectious disease, defined as the

average number of new cases generated by each case,

has been applied in many studies to measure the

severity of the epidemic (Bandyopadhyay, 2020;

Zhang et al. 2020). A tendency towards a reduction
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in basic reproduction number was found to be

associated with travel restrictions (Bandyopadhyay,

2020), indicating the capability of the reproduction

number to represent the spread of COVID-19 in

relation to human travel volume. While the basic

reproduction number represents the transmission of a

disease at a certain stage of an epidemic (Chen et al.,

2016; Wu & Riley, 2016), the real-time reproduction

number represents the time-dependent transmission of

a disease over time (Cori et al., 2013; Zhang et al.,

2020). To measure the relationship between popula-

tion mobility and disease outbreak, Kraemer et al.

(2020) investigated the contribution of Wuhan mobil-

ity to other provinces in China, finding a linear

correlation between the cumulative case rank and the

mobility rank from Wuhan in each province at the

early stage of the epidemic: the growth rates of

different provinces showed a positive correlation with

migration strength from Wuhan before the Wuhan

travel ban and a negative correlation afterwards.

Cross-city and within-city population mobility after

theWuhan lockdown was modelled simultaneously by

Fang et al. (2020), and the correlations of the number

of daily new cases in cities outside Hubei and inflows

from all Hubei cities were obtained by regression

analysis.

To examine the importance of travel restrictions

during epidemics, the aim of this research is to verify

the effectiveness of China’s national control measures

to suppress COVID-19 from the perspective of

population mobility. This research has innovations

mainly in two aspects. First, instead of analysing

mobility data from a certain city, this research

considers province-level migration from multiple

provinces into Shenzhen. In terms of the metrics for

the spread of COVID-19 in Shenzhen, this research

employs the best fitted estimation for the real-time

reproduction number and assesses the correlation

between migration and the dynamics of the epidemic.

Second, to provide a reference for decision making

related to work and travel migration policy, this

research explores the long-term epidemic, starting

from the outbreak to the end period in China, with data

from March and April. The results provide important

information about the efficiency of the travel ban in

China and can be used to improve policy guidance for

the gradual return to work in mainland China. In

addition to emphasizing the necessity of continuing

prevention and control policies in the future, this

research proposes ways to flexibly use prevention and

control policies at different stages throughout the

epidemic to provide ideas for containment of the

global epidemic.

Methodology

Study area

The Guangdong-Hong Kong-Macao Greater Bay Area

(GBA), as a world-class example of urban agglomer-

ation, has the highest degree of openness in China, and

Shenzhen is the core engine of the GBA. The frequent

passenger flow and interflow of goods and materials

make this city one of the most important global trading

ports. Travel restrictions and distancing policies are

necessary for areas with complex population struc-

tures and large population mobilities. In terms of

population density, the effect of spatial heterogeneity

means that the virus will reach urban areas earlier than

rural areas (Merler & Ajelli, 2010). However, most

studies have focused on disease transmission in Hubei

or the impact of the lockdown of Wuhan (Chinazzi

et al., 2020; Du et al., 2020; Kraemer et al., 2020)

rather than cities at potential risk of the epidemic

caused by population mobility. As a first-tier city with

a high population concentration and high mobility in

Guangdong Province, it is of great realistic meaning to

probe the relationship between interprovincial popu-

lation flow and transmissibility in Shenzhen to provide

a deeper understanding of epidemic transmission

patterns and contribute to formulating targeted

measures.

Data collection

This research used daily cumulative confirmed, cured

and dead case data in Shenzhen from 13th January to

3rd May with data preprocessing and daily migration

data during the same period. All the available daily

cumulative confirmed, cured, dead case data in

Shenzhen before 3rd May 2020 were collected from

the open platform of the Shenzhen Municipal Health

Commission (SMHC, 2020). The daily cumulative

confirmed data indicate unreported and unidentified

infected cases in the early stage of the outbreak of

COVID-19, especially before 24th January. Consid-

ering that confirmed cases from 24th January to 30th
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January follow an exponential growth model, this

research estimates the exponential growth rate c using
the data during this period and redistributes the daily

number of confirmed cases from 13th January to 24th

January using exponential growth methods (Zhao

et al., 2020).

It ¼ I0 exp ctð Þ ð1Þ

ln It ¼ ln I0 þ ct ð2Þ

where It is the cumulative number of confirmed cases

and c is the intrinsic exponential growth rate.

Therefore, the daily data from 13th January to 3rd

May were used to estimate the dynamic change in

reproductive number. Table 2 in ‘‘Appendix’’ lists the

summary statistics of the daily data. The serial

interval, denoted as w, is well described by a gamma

distribution with shape parameter a and scale param-

eter b, with values corresponding to a mean serial

interval of 8.4 days and a standard deviation of

3.8 days, according to Wallinga and Teunis (2004).

The interprovincial migration indicators are con-

structed based on near real-time people movement

statistics from Baidu from 13th January to 3rd May

(Baidu Migration, 2020). Based on GPS tracking, the

data allow quantification of the population of inter-

provincial migration. Since the data obtained are the

logarithm of the population migrant amounts from all

other provinces to Shenzhen, they are multiplied by

the moving-in migration ratio of each province to

obtain the interprovincial migration index for each

province.

This work takes into account not only the national

population but also the inflow from several important

provinces. In addition to the most severe epidemic

area, Hubei, this work considers Beijing, where

approximately 1000 accumulated confirmed cases

were reported. The four cities with the largest

population mobility in China are Shanghai, Guangz-

hou, Shenzhen and Beijing. Because Beijing is the

capital city with a complex population structure,

ignoring Beijing would make the results of this study

incomplete. Shanghai, which is located in the Yangtze

River Delta urban agglomeration area with the largest

economic volume in China, has a strong economic

foundation. Considering that the frequency and quan-

tity of the local permanent resident population flowing

to other provinces are limited and most of the

population migration is into other cities in the Yangtze

River Delta, Shanghai is not taken as the study area in

this research. In addition, four regions with the highest

index since January 2020, namely Guangdong, Hunan,

Guangxi and Jiangxi, are selected for the correlation

calculation. Figure 1 shows the proportion of these

five regions and total areas moving into the Shenzhen

Index from 13th January to 3rd May. According to the

similarity of the correlation change trend, relevant

analysis is conducted for four regions: (1) Guangdong,

(2) Hunan, Jiangxi and Guangxi, (3) Hubei and (4)

Beijing. Table 4 in ‘‘Appendix’’ lists the summary

statistics of the interprovincial migration index into

Shenzhen from the above regions and total areas.

Five methods to estimate the reproduction number

of COVID-19

The real-time reproduction number of COVID-19

quantitatively reflects the spread of the virus. To

determine the relationship between the migration and

spread of COVID-19 over time in Shenzhen, this

research collected the migration index of moving into

Shenzhen from other Chinese provinces applied the

best-fitted method to estimate the real-time reproduc-

tion number and finally computed the correlation

between these values.

The real-time reproduction number Rt can be

estimated via diverse methods. A generic Bayesian-

based generation time-weighted tool was developed to

estimate time-varying reproduction numbers during

five historical epidemics (Cori et al., 2013). The

Bayesian method was used to estimate the effective

reproduction number for pandemic influenza A H1N1

in Guangdong Province, China (Yang et al., 2013).

You et al. (2020) adopted the Poisson likelihood (ML)

method to estimate the time-varying controlled repro-

duction number of COVID-19 in China. A method

based on the maximum likelihood was proposed by

Chintalapudi et al. (2020). Akhmetzhanov et al. (2019)

applied the maximum likelihood estimation (MLE)-

based extrapolation approach for Ebola in the Demo-

cratic Republic of the Congo (DRC).

This research compares the five most popular

estimates of Rt, including the exponential growth

(EG) method (Zhao et al., 2020), MLE (White &

Pagano, 2008), sequential Bayesian (SB) method

(Bettencourt & Ribeiro, 2008), time-dependent repro-

duction numbers (TD) (Wallinga & Teunis, 2004), and

the EpiEstim R package (Cori et al., 2013). To
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estimate daily Rt in the EG method, we set a fixed

length period Dt ¼ 7 as the time window, and the

dynamic change in reproduction number was esti-

mated by the following equations:

ct ¼
ln

It
It�Dt

� �

Dt

ð3Þ

Rt ¼ 1þ ct
b

� �a

ð4Þ

where It is the cumulative confirmed cases on day t; ct
is the intrinsic exponential growth rate during the last

7 days on day t; and a and b are the shape parameter

and scale parameter of the SI distribution,

respectively.

The MLE method also sets 7 days as a time

window, and the calculation formula of Rt is described

below.

Rt ¼
Pt

k¼1 DNkPt
k¼1

Pk
i¼1 Nk�iwi

ð5Þ

where DNk identifies the number of new infected cases

on day k and the parameter wi comes from the

probability distribution function of the serial interval,

which follows a gamma distribution.

The SB, TD and EpiEstim R package methods

provide direct estimates of the real-time Rt. In the SB

method, Bayesian estimation of Rt (Bettencourt &

Ribeiro, 2008) is based on the equation:

P RjN0;...;Ntþ1ð Þ¼P Ntþ1jR;N0;...;Ntð ÞP RjN0;...;Ntð Þ
P N0;...;Ntþ1ð Þ

ð6Þ

where Ntþ1 denotes the number of infected people on

day t þ 1; which is approximately Poisson distributed

with mean N tð Þe c R�1ð Þð Þ, c�1 is the average duration of

the infectious period and P kf g denotes a discrete

probability distribution with mean k.
The TD method calculates the likelihood that case i

was infected by case j, denoted as pij, which can be

expressed as Eq. (7).

pij ¼
w ti � tj
� �

P
k 6¼i w ti � tkð Þ ð7Þ

where ti�tj is the generation interval time from case i

onset to case j onset. w sð Þ is the probability density

function for the generation interval s.
The formula of Rt is expressed below:

Rt ¼
1

DNt

X
tj¼tf g

Rj ð8Þ

where Rj ¼
P

pij indicates the effective reproduction

number of an ongoing epidemic for case j and DNt is

the number of all reported infected confirmed people

on day t.

This research also provides the 95% confidence

interval for the estimation of Rt.

Fig. 1 Proportion map of the migration index of five regions and total areas into Shenzhen
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Comparison of estimation methods

Two metrics are adopted to select the best Rt

estimator, directly compare the width of the confi-

dence interval of Rt and estimate the daily number of

new cases from Rt. To estimate the daily number of

new cases DNi (Marquetoux et al., 2012):

Rt ¼ btT ð9Þ

bt ¼
DNtþ1Kt

StNt
ð10Þ

where T is the duration of the infectious period, bt is
the transmission rate on day t, Kt ¼ St þ Nt, St is the

number susceptible to infection on day t, Ntþs is the

number of infected cases on day t, and DNtþs is the

number of new cases on day t þ s.
Therefore, an estimate of the daily number of new

cases can be obtained by the following formula:

DNtþs ¼
RtStNt

T St þ Ntð Þ ð11Þ

Assuming that all people except cured, dead and

confirmed cases are susceptible to COVID-19, St
equals the population in Shenzhen minus the daily

cumulative confirmed cases plus daily cumulative

cured cases.

Correlation analysis and hypothesis test

Tostudy the impactofpopulationmobilityon the spreadof

the epidemic, correlation analysis is conducted betweenRt

and population mobility to indicate the effectiveness

of travel restrictions and other social distancing

methods. Only the moving-in data are used consider-

ing that the moving-out part of the population may not

influence the epidemic intercity or interprovince. The

biweekly rolling Pearson correlation coefficients

between Rt and interprovincial migration index data

represent the relationship between virus transmission

and population mobility (Ainslie et al., 2020).

Furthermore, the correlation differences in different

provinces or cities are studied to determine if infor-

mation on several provinces or cities can be obtained.

Considering that the hypothesis test is based on two

dependent and overlapping groups using the same

variable Rt, Williams’s test is used to conduct the

hypothesis test on correlation differences in different

provinces or cities (Lauer et al., 2020; Steiger, 1980).

Then, hypothesis tests can be conducted to determine

whether the correlations in different cities or provinces

are different:

H0 : qjk � qjh ¼ 0

Ha : qjk � qjh 6¼ 0
ð12Þ

The above methods are used to estimate the daily

real-time reproduction number Rt and the 95% con-

fidence interval for each method. To compare and

measure the effect of the estimation, this research first

compares the fitness of every Rt based on the

confidence intervals, calculates the number of daily

existing infections using the output daily Rt and

compares the results with the actual daily data. The

best-fitted estimation of Rt is adopted to estimate the

daily reproduction number in Shenzhen from 19th

January to 3rd May and to analyse the relationship

between the reproduction number and the migration

trend from other provinces.

Results

Estimation results of the COVID-19 reproduction

number

The daily real-time reproduction number Rt and the

associated 95% confidence interval are estimated by

five methods. Specifically, this research uses the

est.R0.EG, est.R0.ML, est.R0.SB and est.R0.TD in

the Ro package (Fraser, 2007; Obadia, et al., 2012) and

estimate_R in the EpiEstim package (Cori et al.,

2013). Table 3 in ‘‘Appendix’’ lists the summary

statistics of the Rt values estimated by the fivemethods

and the width of the associated 95% confidence

interval. The results of the 5 methods are shown in

Fig. 2.

The Rt values obtained by these methods show a

general downward trend along with the narrowing of

the confidence interval. The overall trends of theMLE,

TD and EpiEstim R packages are very similar,

showing a relatively large decline in the initial stage

and then a slower decline towards a stable level. After

the end of January, they continued to decline signif-

icantly and eventually tended to 1, which may have

resulted from the issuance of the travel restriction and

social distancing policy. The intrinsic exponential

growth rate decreases rapidly, which shows the
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turning point at the end of January in the Rt curve of

the EG method.

After estimating Rt by these 5 methods, the daily

number of new cases is estimated. This research uses

the cumulative number of infections per day minus the

cumulative number of deaths and the cumulative

number of cures to obtain the daily number of

infections Nt and then subtracts the cumulative

number of diagnoses per day from the total population

to obtain the number of susceptible persons per day St.

Take 12.75 as T and 5 days as the length of the

incubation period s (Health People, 2020). Rt, Nt, St,

T and s are substituted into Eq. 11 to obtain the daily

new cases on day t ? 5, denoted by DNtþ5. The

number of new infections every day is added to the

actual cumulative number of infections of the previous

Fig. 2 Estimation of Rt and 95% confidence intervals by five methods: a exponential growth method (EG); b maximum likelihood

estimation (MLE); c sequential Bayesian method (SB); d time-dependent reproduction numbers (TD); e EpiEstim R package (Epi)
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day to obtain the cumulative number of infections for

that day, which is Itþ5 ¼ Itþ4 þ DNtþ5. Because the

actual cumulative number of infected people on the

previous day is substituted during this process, the

comparison effect of various methods is not strong.

Therefore, the estimated daily existing infections,

which are calculated by using the estimated cumula-

tive number of infections minus the actual cumulative

number of deaths and the actual cumulative number of

cured, are chosen as a comparison indicator. Table 2 in

‘‘Appendix’’ lists the summary statistics of the

estimated daily existing infections. A comparison

figure of the results is shown in Fig. 3.

Figure 3 shows that the TD method has the best

fitting effect. It also reflects the changing trend of

existing infections, which gradually increased from

the starting point until reaching the maximum on 4th

February and then gradually declining. The magnitude

of the error is judged by comparing the width of the

confidence intervals, as shown in Fig. 4. Additionally,

the ranking of the methods in terms of accuracy was

obtained. The results of TD have the narrowest

confidence interval, followed by SB, EpiEstim, MLE

and EG. However, all confidence intervals begin to

decline towards 0 on 6th February. The width of the

confidence interval of TD appears abnormal on 8th

March, but this issue can be ignored in this research.

On the basis of these two aspects, the TD method has

the highest accuracy and the closest matching rela-

tionship with the actual infective data, and the number

of infected people estimated by Rt obtained by TD is

closest to the actual data. Therefore, the TD method is

adopted for estimating Rt and is applied to the

correlation analysis.

Correlation analysis between Rt

and the interprovincial migration index

Considering that the scale of interprovincial migra-

tion after unblocking would take a quantum leap once

people from all over the country, even the whole

world, were back to work, it is of crucial importance to

assess the effectiveness of the early travel restriction

measures in moderating the epidemic’s transmission.

The results of the correlation analysis cover the main

period of transmission of COVID-19 in China. Table 5

Fig. 3 Existing infection cases for the actual data and estimated

results based on Rt. a The estimation period of EG starts on 19th

January; b the estimation period of MLE starts on 19th January;

c the estimation period of SB starts on 14th January; d the

estimation period of TD starts on 13th January; e the estimation

period of Epi starts on 21st January. Note that this figure presents

data from 19th January to 3rd May
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in ‘‘Appendix’’ lists summary statistics of the corre-

lation between Rt and the interprovincial migration

index in Shenzhen from different regions.

Correlation curve of total areas and Guangdong

According to the proportion map of the migration

index into Shenzhen (Fig. 1), Guangdong accounts for

the largest proportion of migration to Shenzhen. This

can explain why the trend of total migration into

Shenzhen is basically consistent with the correlation

influence of Guangdong on Shenzhen’s migration.

The general trend of Rt is declining in Fig. 2, which is

believed to be the result of China’s efforts to fight the

epidemic starting from the end of January. At the end

of January, there appears to be an initial negative

correlation, possibly because of the home segregation

policy. Despite the increase in the migration index, Rt

maintains a large decline, so it shows a negative

correlation. From 8th February, some enterprises

resumed work. During this period, Rt is positively

correlated with population movement, indicating that

in approximately 2 weeks, population movement

aggravated the epidemic to some extent. Starting on

20th February, Shenzhen adopted the green code as a

passable health certificate and set up multiple epi-

demic prevention checkpoints. Because of strict

inspection measures for migration into Shenzhen,

coupled with a policy of isolation for 14 days, despite

the large inflow caused by the reinstatement of labour,

Rt maintains a downward trend, showing an overall

negative correlation (Fig. 5).

With the continuous spread of overseas epidemics

in late March, overseas imports gradually had a greater

impact on the epidemic in China, especially in

Guangdong and Beijing. Therefore, there is a positive

correlation between population mobility and Rt.

However, as the government and community

responded to overseas imports in a timely manner,

the correlation again became negative in April. The

negative correlation may be due to the strict preven-

tion and control and medical measures to suppress the

impact of population inflow on Rt. In this process,

epidemic prevention inspections, green codes and

home isolation measures have a considerable effect.

However, the correlation trend shows that prevention

and control are still required in the future, with

necessary attention given to the impact of liquidity on

the epidemic (Fig. 5).

Correlation curve of Hunan, Guangxi and Jiangxi

Since the three provinces of Hunan, Jiangxi and

Guangxi border Guangdong, their correlation changes

are very similar to those of Guangdong. The two

negative correlations before April also illustrate the

effect of home isolation and other measures on the

epidemic. Notably, since Jiangxi, Hunan and Guangxi

are geographically in the middle of Hubei and

Guangdong, the resumption of work in Hubei also

impacted the correlation of these three provinces. At

Fig. 4 Width of confidence intervals resulting from the five methods
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the end of March, due to the impact of the resumption

of labour and the fact that Hubei, except Wuhan, was

unsealed, population movement is positively corre-

lated with Rt. After the unblocking of Wuhan on 8th

April, negative correlations are again observed in the

three regions. This phenomenon may be the result of

Wuhan’s counterwork and strengthening prevention

and control. The range of population mobility

continues to increase, and the positive correlation is

more obvious, indicating that attention still needs to be

paid to interprovincial population mobility (Fig. 6).

Correlation curve of Beijing

Although the index of Beijing’s migration to Shen-

zhen since late January is very small, the overall trend

Fig. 5 Correlation between Rt and the migration index for total areas and Guangdong

Fig. 6 Correlation between Rt and the migration index for Hunan, Guangxi and Jiangxi
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of the correlation is positive before late February,

similar to the overall situation. The correlation

between Rt and the Beijing moving-in index changes

from positive to negative on 24th February. The

Beijing moving-in index continued to decline before

24th February and beginning to increase after 24th

February. The negative correlation at the end of

February is likely the result of the green code and other

measures that have had a substantial effect on the

epidemic, coupled with the remote location of Beijing.

The correlation fluctuated around 0 after early March,

which indicates the initial success of controlling the

epidemic transmissibility from population mobility

between Shenzhen and Beijing. However, the corre-

lation remains positive. Considering the impact of

overseas imports, the migration from Beijing to

Shenzhen requires special focus (Fig. 7).

Correlation curve of Hubei

After the closure of Hubei, population inflows plum-

meted, and the migration index remained low. From

mid-February to mid-March, even with a small

population inflow from Hubei, Rt continues to

decrease, showing a negative correlation. After

March, the range of population mobility increased,

and the positive correlation is more obvious. From

April, the correlation shows a clear positive trend,

indicating that attention should be paid to population

mobility from the areas hardest hit by the

epidemic (Fig. 8).

In general, the correlation between Rt and migra-

tion into Shenzhen is low in late February, which

illustrates the initial success of the social distancing

policy. When domestic interprovincial flows increased

in early March because of work resumption, Rt and the

migration index become positively correlated, which

shows that the movement of people between regions

impacts the epidemic. The continuous spread of

overseas epidemics in late March increased overseas

imports into China, which had a greater impact on the

epidemic in Guangdong and Beijing. During this

period, the correlation between population mobility

and Rt presents an obvious positive trend and quickly

decreases as the government and community

responded to overseas imports in a timely manner.

From April, the correlation shows a clear positive

trend, indicating that attention still needs to be paid to

population mobility. To conclude, the two measures of

home isolation and strict inspection during population

migration have effectively suppressed the impact of

population mobility on the epidemic. However, the

correlation increases at the beginning of April, show-

ing that the spread of the epidemic increased when

people from all around the Chinese mainland started

returning to work in batches from province to province

and city to city.

Fig. 7 Correlation between Rt and the migration index for Beijing
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Hypothesis test on correlation differences

in different provinces or cities

The significance level was set to a ¼ 0:1, and coloured

blocks and blanks in the figures denote similar

correlations (reject H0) and different correlations (fail

to reject H0) in different provinces or cities, respec-

tively. Figures 9 and 10 show the results between the

neighbouring provinces of Shenzhen and the correla-

tion difference in Beijing or Hubei and the neighbour-

ing provinces.

There were periods in which the correlations

between Guangdong and other neighbouring pro-

vinces (Guangxi, Hunan and Jiangxi) were similar,

especially during mid-February to early March and the

first half of April (Fig. 9). Similar correlations may

indicate a similar influence of the moving-in index of

these three neighbouring provinces and Guangdong,

which may be due to the migration of neighbouring

provinces into Shenzhen through Guangdong.

Clearly, the correlations are different in Beijing or

Hubei and neighbouring provinces, and the correlation

between the Beijing or Hubei moving-in index and Rt

could hardly be obtained by observing the correlation

between the neighbouring provinces’ moving-in index

and Rt (Fig. 10). The geographical distance of Beijing

from the neighbouring provinces and the epidemic

control measures in Hubei may contribute to this

Fig. 8 Correlation between Rt and the migration index for Hubei

Fig. 9 Hypothesis test on correlation differences between neighbouring provinces: a Guangdong and Hunan; b Guangdong and

Guangxi; c Guangdong and Jiangxi
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phenomenon. For the correlation differences in the

other provinces or cities, similar and different corre-

lations alternately appear throughout the entire period,

as shown in ‘‘Appendix’’, which provides a few useful

observations. In general, the correlations in different

cities or provinces are different. Although several

periods may show similar correlations, it is difficult to

obtain the correlations in one province or city directly

through the correlations in another province or city.

Therefore, correlation analysis should be conducted in

different provinces or cities individually rather than

observing one case to replace the other.

Conclusions and policy implications

This paper examines the impact of population mobility

on the transmission dynamics of COVID-19 in China,

considering between-province transmissions into

Shenzhen, Guangdong. Based on the migration data

over a long period from 19th January to 3rd May, this

research covers different stages from the initial

outbreak stage, peak stage, containment stage and

end period in Shenzhen, China, to provide a compre-

hensive perspective of the whole epidemic. As Shen-

zhen is a typical city with high population mobility,

this study also provides insight into the policy of

population mobility control during the epidemic

period nationwide. Five different methods are

employed, and the TD method is chosen to estimate

the real-time reproduction number, which represents

the time-dependent spreading of the pandemic.

Correlation analysis is conducted by calculating and

comparing the correlation between Rt and the migra-

tion index of five regions and the total areas. With

consideration of government policy, community pre-

vention and medical control measures in Shenzhen

and five regions, recommendations are made for

population mobility restriction policies in different

types of areas.

Three major conclusions are as follows: (1) at the

initial outbreak stage, the correlation of population

mobility from different regions into Shenzhen and the

spread of COVID-19 presents a positive trend; (2)

during the outbreak and peak periods, China’s national

travel ban policy achieved unprecedented effective-

ness, and the correlation shows a significant decrease

tendency; (3) in the containment period, the correla-

tion no longer shows a clear positive trend, the

national restrictions can be appropriately liberalized

and appropriate economic recovery policies can be

adopted properly, but attention still needs to be paid to

large-scale mobility domestically and especially inter-

nationally in the long run, especially for high-risk

areas.

National restriction of population mobility is an

abnormal tool for epidemic prevention that has rarely

been implemented during previous infectious disease

control but achieved unprecedented results during the

epidemic period of COVID-19. Considering the

importance of resuming work and production in

Shenzhen, restriction adjustment should be performed

in different stages of the epidemic. During the initial

outbreak stage, strict travel restrictions should be

Fig. 10 Hypothesis test on correlation differences in Beijing or Hubei and the neighbouring provinces: a Hubei and Hunan; b Hubei

and Guangxi; c Hubei and Jiangxi; d Beijing and Hunan; e Beijing and Guangxi; f Beijing and Jiangxi
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considered and implemented rapidly. In this process,

the isolation measures adopted by the government and

the high protection awareness of society can effec-

tively weaken this relation and result in negative

correlations. In this stage, given the characteristics of

infectious diseases, such as acute onset, rapid spread,

untraceable sources of infection and serious conse-

quences, stricter control policies for population mobil-

ity can achieve better results. In the peak period,

population mobility restrictions, including travel

restrictions and social distancing measures, should

be implemented continuously, and people in the same

region should be classified and isolated. In the

containment period, for cities with a large migrant

population, such as Shenzhen, an appropriate restric-

tion adjustment tool should be applied to account for

economic recovery and people’s livelihood demands.

Restriction policies or measures should be flexible for

people from different areas with different epidemic

risk levels; for example, health code measures of the

health commission could be widely used.

At present, the epidemic is still in the developing

stage in many countries, so it is necessary to impose

restrictions on both international and domestic mobil-

ity, especially for high-risk countries. Protective

measures such as controlling the occupancy rate of

vehicles for domestic travel, prohibiting mass socially

aggregative activities and keeping quarantined for at

least 14 days are still necessary. More research could

be conducted on international mobility around the

world, and similar results will hopefully show the

influence of population mobility on the spread of the

epidemic. Countries currently under the very difficult

time of COVID-19 should learn from the experiences

of other countries that controlled social distance and

implemented travel bans. Additionally, for future

infectious diseases, lockdown decisions should be

made more quickly to control transmission, and

international, domestic, intercity and intracity popu-

lation mobility should all be restricted in the face of

the outbreak of a disease. Even when COVID-19 is

effectively controlled globally in the future, there is

still a long way to go in learning from the epidemic and

preparing for the next potential pandemic.

This paper focuses on migration to one city from

several provinces in China and does not consider

population outflow. Additional studies could be con-

ducted on larger-scale regions domestically in China

or even globally in terms of mobility between different

counties, with other factors contributing to the spread

of the epidemic in addition to the inclusion of the

migration index.
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Appendix

See Tables 1, 2, 3, 4 and 5.

123

3128 Environ Geochem Health (2022) 44:3115–3132



Table 2 Summary statistics of It, Nt, REt, Dt and estimated infected cases

Variables It Nt REt Dt Nt_EG Nt_MLE Nt_SB Nt_TD Nt_Epi

Minimum 5.00 3.00 0.00 0.00 3.63 3.70 3.69 3.63 3.63

Maximum 462.00 325.00 456.00 3.00 426.88 447.18 375.80 352.94 443.65

Mean 377.10 89.31 285.66 2.13 105.28 112.31 102.52 98.68 110.22

Q3(.75) 462.00 320.00 455.00 3.00 415.47 437.93 370.43 346.79 431.79

Q1(.25) 5.00 3.00 0.00 0.00 3.63 3.70 3.69 3.63 3.63

Median 420.00 30.50 393.50 3.00 32.52 33.36 32.84 32.52 32.52

Stdev 133.28 103.44 171.97 1.33 124.81 134.26 117.94 111.51 131.76

Kurtosis 2.53 0.02 - 1.21 - 1.03 0.44 0.40 0.02 - 0.07 0.46

Skewness - 1.98 1.24 - 0.71 - 0.96 1.34 1.34 1.24 1.20 1.36

The definitions of It, Nt, REt , and Dt are shown in Table 1, and Nt_EG, Nt_MLE, Nt_SB, Nt_TD, and Nt_Epi represent the number of

existing infected cases on day t estimated by the EG, MLE, SB, TD and Epi methods, respectively.

Table 1 Definitions of all

variables and abbreviations
Variable Definition Unit of measurement

Rt Real-time production number

EG The exponential growth method

MLE The maximum likelihood estimation

SB The sequential Bayesian method

TD The time-dependent reproduction numbers

Epi EpiEstim R package method

It Cumulative confirmed cases People/day

Nt The number of existing infected cases on day t People/day

REt The number of recovered cases on day t People/day

Dt The number of dead cases on day t People/day

St The number of susceptible to the infection on day t People/day

c The intrinsic growth rate of the exponential growth

c�1 The average duration of the infectious period Day

w The serial interval

a The shape parameter of SI distribution

b The scale parameter of SI distribution

P kf g A discrete probability distribution with mean k

pij The likelihood that case i was infected by case j

w sð Þ The probability density function for the generation interval s

T The duration of the infectious period Day
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Table 3 Summary statistics of Rt estimated by five methods and the width of the 95% confidence intervals

Variables EG_Rt MLE_Rt SB_Rt TD_Rt Epi_Rt EG_CI_W MLE_CI_W SB_CI_W TD_CI_W Epi_CI_W

Minimum 1.00 1.11 1.09 1.00 1.00 0.00 0.03 0.17 0.14 0.00

Maximum 9.07 16.13 3.68 6.89 9.93 31.98 21.96 6.56 4.60 6.97

Mean 2.13 2.81 1.62 1.57 2.14 2.12 0.94 0.71 0.40 0.43

Q3(.75) 8.72 10.41 3.43 6.67 7.83 18.14 10.43 5.40 3.32 4.21

Q1(.25) 1.00 1.11 1.09 1.00 1.00 0.00 0.03 0.17 0.14 0.00

Median 1.01 1.72 1.22 1.00 1.00 0.39 0.11 0.26 0.18 0.07

Stdev 2.44 2.77 0.78 1.46 2.29 5.11 2.93 1.23 0.72 1.07

Kurtosis 2.13 5.83 0.87 6.23 2.09 14.88 29.86 10.22 16.88 18.04

Skewness 1.96 2.33 1.56 2.73 1.90 3.65 5.10 3.23 4.02 4.03

EG_Rt, MLE_Rt, SB_Rt , TD_Rt, and Epi_Rt refer to Rt estimated by the EG, MLE, SB, TD and Epi methods, respectively.

EG_CI_W, MLE_CI_W, SB_CI_W, TD_CI_W, and Epi_CI_W represent the widths of their respective 95% confidence intervals.

Table 4 Summary statistics of the interprovincial migration index into Shenzhen

Variables SZ_total Hubei_SZ Beijing_SZ Hunan_SZ Guangd_SZ Guangx_SZ Jiangxi_SZ

Minimum 1.96 0.29 0.39 7.03 107.38 2.91 3.79

Maximum 10.47 69.68 7.91 121.45 782.33 84.99 62.09

Mean 5.03 14.21 1.26 39.17 321.33 27.50 22.23

Q3(.75) 9.03 67.85 7.09 96.13 654.69 75.18 47.55

Q1(.25) 1.96 0.29 0.39 7.03 107.38 2.91 3.79

Median 4.99 5.79 0.89 29.30 308.62 21.06 17.36

Stdev 1.43 19.33 1.39 23.76 129.85 18.60 13.17

Kurtosis 2.09 1.91 13.16 0.84 1.42 1.54 - 0.31

Skewness 0.60 1.75 3.65 1.23 0.84 1.43 0.89

SZ_total, Hubei_SZ, Beijing_SZ, Hunan_SZ, Guangd_SZ, Guangx_SZ and Jiangxi_SZ refer to interprovincial migration index into

Shenzhen for Total areas, Hubei, Beijing, Hunan, Guangdong, Guangxi and Jiangxi, respectively

Table 5 Summary

statistics of the correlation

between Rt and the

interprovincial migration

index in Shenzhen from

different regions

Regions Total areas Guangdong Hunan Guangxi Jiangxi Hubei Beijing

Mean - 0.09 - 0.03 - 0.13 - 0.19 - 0.12 0.28 0.22

Median - 0.05 - 0.04 - 0.25 - 0.26 - 0.25 0.53 0.26

Stdev 0.41 0.37 0.59 0.60 0.61 0.61 0.48

Kurtosis - 0.86 - 0.30 - 1.49 - 1.17 - 1.50 - 1.42 - 1.03

Skewness - 0.12 - 0.15 0.26 0.43 0.17 - 0.42 - 0.15

Minimum - 0.84 - 0.79 - 0.89 - 0.94 - 0.93 - 0.85 - 0.71

Maximum 0.85 0.86 0.83 0.93 0.87 0.98 0.97

Q3(.75) 0.53 0.61 0.82 0.90 0.83 0.98 0.95

Q1(.25) - 0.84 - 0.79 - 0.89 - 0.94 - 0.93 - 0.85 - 0.71
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Obadia, T., Haneef, R., & Boëlle, P. (2012). The R0 package: A

toolbox to estimate reproduction numbers for epidemic

outbreaks. BMC Medical Informatics and Decision Mak-
ing, 12, 147.

Patterson, K. B., & Runge, T. (2002). Smallpox and the native

American. The American Journal of the Medical Sciences,
323(4), 216–222.

Qiu, Y., Chen, X. & Shi, W. (2020). Impacts of social and

economic factors on the transmission of coronavirus dis-

ease 2019 (COVID-19) in China. Journal of Population
Economics, 33, 1127–1172.

Ruan, S., Wang, W., & Levin, S. A. (2005). The effect of global

travel on the spread of sars.Mathematical Biosciences and
Engineering, 3, 205–218.

Shenzhen Municipal Health Commission. (2020). Daily con-

firmed cases statistics of COVID-19 in Shenzhen. https://

opendata.sz.gov.cn/data/dataSet/toDataDetails/29-200_

01503670.

Steiger, J. H. (1980). Tests for comparing elements of a corre-

lation matrix. Psychological Bulletin, 87, 245–251.
Wallinga, J., & Teunis, P. (2004). Different epidemic curves for

severe acute respiratory syndrome reveal similar impacts

of control measures. American Journal of Epidemiology,
160(6), 509–516.

White, F., & Pagano, M. (2008). A likelihood-based method for

real-time estimation of the serial interval and reproductive

123

Environ Geochem Health (2022) 44:3115–3132 3131

https://qianxi.baidu.com/
http://health.people.com.cn/n1/2020/0204/c14739-31570937.html
http://health.people.com.cn/n1/2020/0204/c14739-31570937.html
https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29-200_01503670
https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29-200_01503670
https://opendata.sz.gov.cn/data/dataSet/toDataDetails/29-200_01503670


number of an epidemic. Statistics in Medical Journals,
27(16), 2999–3016.

World Health Organization. (2020). WHO Director-General’s

opening remarks at the media briefing on COVID-19.

Retrieved 26 May, 2020, from https://www.who.int/dg/

speeches/detail/who-director-general-sopening-remarks-

at-the-media-briefing-on-covid-19—11-march-2020.

Wu, K. M., & Riley, S. (2016). Estimation of the basic repro-

ductive number and mean serial interval of a novel

pathogen in a small, well observed discrete population.

PLoS ONE, 11(2), e0148061.
Yang, F., Yuan, L., Tan, X., et al. (2013). Bayesian estimation of

the effective reproduction number for pandemic influenza

A H1N1 in Guangdong Province, China. Annals of Epi-
demiology, 23, 301–306.

Ye, B., Jiang, J., Liu, J., et al. (2021). Research on quantitative

assessment of climate change risk at an urban scale:

Review of recent progress and outlook of future direction.

Renewable and Sustainable Energy Reviews, 135, 110415.

You, C., Deng, Y., Hu, W., et al. (2020). Estimation of the time-

varying reproduction number of COVID-19 outbreak in

China. International Journal of Hygiene and Environ-
mental Health, 228, 1135.

Zhang, S., Diao, M. Y., Duan, L., et al. (2020). The novel

coronavirus (SARS-CoV-2) infections in China: Preven-

tion, control and challenges. Intensive Care Medicine, 46,
591–593.

Zhao, S., Musa, S. S., Lin, Q., et al. (2020). Estimating the

unreported number of novel coronavirus (2019-nCoV)

cases in China in the first half of January 2020: A data-

driven modelling analysis of the early outbreak. Journal of
Clinical Medicine, 9, 388.

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

3132 Environ Geochem Health (2022) 44:3115–3132

https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
https://www.who.int/dg/speeches/detail/who-director-general-sopening-remarks-at-the-media-briefing-on-covid-19---11-march-2020

	The effectiveness of travel restriction measures in alleviating the COVID-19 epidemic: evidence from Shenzhen, China
	Abstract
	Introduction
	Methodology
	Study area
	Data collection
	Five methods to estimate the reproduction number of COVID-19
	Comparison of estimation methods
	Correlation analysis and hypothesis test

	Results
	Estimation results of the COVID-19 reproduction number
	Correlation analysis between R_{t} and the interprovincial migration index
	Correlation curve of total areas and Guangdong
	Correlation curve of Hunan, Guangxi and Jiangxi
	Correlation curve of Beijing
	Correlation curve of Hubei

	Hypothesis test on correlation differences in different provinces or cities

	Conclusions and policy implications
	Acknowledgements
	Appendix
	References




