
ORIGINAL PAPER

Game-theoretical model for the sustainable use of thermal
water resources: the case of Ischia volcanic Island (Italy)
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Abstract The Island of Ischia, one of the Italian

active volcanoes, is a famous tourist resort for spa

treatments. Spas are supplied by withdrawals from

groundwaters which are characterized by a wide range

of chemical compositions, salinity and temperature. In

natural conditions, the hydrogeological system is

recharged by rainfall and by deep fluids; the discharge

is towards the sea and the springs. During the peak of

the tourist season, when approximately 240 wells are

operating simultaneously, a significant additional

recharge of the aquifers derives from seawater and

from upwelling increase in deep fluids. Although this

does not compromise the availability of groundwater,

the pumping often determines variation in composi-

tion and temperature of groundwater over time.

Conversely, the maintenance of a stable quality of

thermal waters represents one of the requirements for

their therapeutic use in the spas. The study aims to

establish game-theoretical modeling of the optimal

sustainable exploitation of the groundwater resources

of the island by competing users (spas) falling in the

same flow tube of the aquifer. In the game the spas are

the players, the strategy of a player consists of a fixed

pumping rate and daily time durations of pumping,

and the player’s utility or payoff is proportional to the

total quantity of withdrawn thermal water in a given

time period. A special constrained Pareto optimal

strategy choice is obtained, considered as a coopera-

tive solution of the game. Pareto optimality means that

there is no other strategy choice that makes one player

better off without making some other player worse off.

Keywords Thermal water � Sustainable yield �
Game-theoretical modeling � Island of Ischia

Introduction

Thermal waters are widely used all over the world as a

resource for health, wellness and recreational tourism

with important impact on global economy (Global

Wellness Institute, 2017). Business related to this

market depends on maintaining the quality and

quantity of thermal waters. Since the thermal waters

are groundwaters originated by specific circuits in the

aquifers determining their chemical–physical proper-

ties, their sustainable management implies a use of

these resources ‘‘in a manner that can be maintained

for an indefinite timewithout causing unacceptable en-

vironmental, economic, or social consequences’’ (Al-

ley and Leake, 2004). In the few cases reported in the
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literature (Atkinson & Davison, 2002; Buday et al.,

2015; Fabbri et al., 2017; Piscopo et al., 2019), the

assessment of the sustainable use of thermal waters

has been addressed by means of groundwater flow

models or analysis of the potentiometric level trend

over time.

The volcanic island of Ischia represents one of the

few cases in the world where there is a very high

concentration of groundwater withdrawals used for

health, wellness and recreational tourism. This is due

to the presence of an active hydrothermal system

which gives rise to a wide variety of groundwaters,

very different in chemical composition (from calcium-

bicarbonate to alkali-chloride waters), salinity (from 1

to 42 g/L) and temperature (from 13 to 90 �C). 264
groundwater tapping points (244 wells and 20 springs)

are distributed over an area of about 20 km2, mainly

near the coast, and supply spas and tourism facilities.

In natural conditions, the hydrogeological system of

the island is mainly recharged by rainfall and by deep

fluids. The pumping from the numerous wells present

in the coastal area significantly increases the recharge

of the island with seawater intrusion and upwelling of

deep fluids. Although this does not compromise the

availability of groundwater in quantitative terms, the

pumping modulates the quality of the water captured

by the wells often determining variation in composi-

tion and temperature of groundwater over time. A

qualitative decay of the thermal waters can have a

relevant economic impact, given that the European

and Italian legislations establish that composition and

temperature of thermal waters used for therapeutic

purposes must remain constant over time (Piscopo

et al., 2020a).

The purpose of this research is to evaluate the

sustainable yield of the wells that supply the various

spas, maximizing the profit of the spas and limiting the

qualitative decline of the thermal waters. To achieve

this goal, the hydrogeology of the system, the aquifer

response to the pumping and the distribution of

groundwater withdrawals were considered, in order

to develop a game-theoretical model.

Game-theoretical modeling is a widely used

approach to optimization problems in conflict situa-

tions. For the general methodology and the theoretical

background of game theory we refer to the mono-

graphs of von Neumann and Morgenstern (1944) (a

classical one) and Mazalov (2014) (a more recent one,

with a variety of application fields). Game-theoretical

approach to water resource management goes back to

several decades (e.g., Bogárdi & Szidarovszky, 1976).

Examples for recent developments are Kicsiny et al.

(2014a), where a dynamic a Stackelberg game model

was applied to water rationalization in drought emer-

gency; in Kicsiny et al. (2014b) and Kicsiny (2017) its

methodological background was worked out; in Kic-

siny and Varga (2019) a differential game model with

discretized solution was applied to the conflict situa-

tion concerning the time-dependent use of limited

water resources.

Study area

The Island of Ischia is one of the active volcanoes of

the Neapolitan area (Fig. 1). From 150 ka to AD 1302,

volcanism of Ischia gave rise to lava flows, lava domes

and pyroclastic deposits, ranging in composition

mainly from trachyte to phonolite, epiclastic deposits,

marine sediments and landslide deposits. The most

remarkable eruption was the Mt. Epomeo Green Tuff

eruption (55 ka) accompanied by the caldera collapse,

followed by a resurgence phenomenon producing an

uplift of the Mt. Epomeo block over time (Sbrana &

Toccaceli, 2011; Vezzoli, 1988) (Fig. 1).

The volcanic island is characterized by an active

geothermal system linked to the presence of a shallow

magmatic body, whose surface manifestations are hot

waters, fumaroles and steaming grounds. Geochemi-

cal studies conducted on the waters and fumaroles of

the island have highlighted the presence of a complex

hydrothermal system resulting from overlapping and

interconnected reservoirs fed by meteoric waters,

seawater and magma-derived or mixed magmatic-

crustal gases (e.g., De Gennaro et al., 1984; Di Napoli

et al., 2009; Panichi et al., 1992).

The groundwater flow in the first 200 m of depth,

that is the depth crossed by the wells of the spas, is

cFig. 1 Geological and hydrogeological framework of the Island

of Ischia (modified from Piscopo et al., 2020a). a Simplified

geological map: (1) landslide and reworked pyroclastic deposits,

(2) pyroclastic deposits and lavas (\ 18 ka), (3) pyroclastic fall

deposits, tuffs and lavas (33–18 ka), (4) tuffs and pyroclastic fall

deposits (55–18 ka), (5) marine epiclastic deposits, (6) Mt.

Epomeo Green Tuff (75–55 ka), (7) lavas and pyroclastic

deposits ([ 75 ka), (8) fault, (9) fumarole field, (10) caldera rim,

(11) resurgent area, (12) elevation in m ASL. b Simplified

hydrogeological map with the study area
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strongly conditioned by the volcano-tectonic structure

of the island. Piscopo et al. (2020a) recognize an

independent and uplifted basal groundwater circula-

tion in the resurgent block of Mt. Epomeo (Fig. 1),

where the marginal faults bordering the resurgent

block constitute partial barriers to the basal ground-

water flow and preferential ways of ascending deep

fluids. Groundwater flow in the peripheral area of Mt.

Epomeo is mainly influenced by the nature of the

aquifer formations: in the northern, western and

southern areas, a continuous basal aquifer and local

discontinuous perched aquifers can be distinguished

given the succession of tuffs, ignimbrites and epiclas-

tic deposits; in the north-eastern area, characterized by

the most recent volcanic deposits of the island, a single

and continuous basal aquifer with the highest perme-

ability in the island results (Fig. 1). In natural condi-

tions, the hydrogeological system is recharged by

rainfall (250–290 L/s) and by deep fluids (at least 90

L/s); the discharge is towards the sea and the springs.

In the peripheral areas of Mt. Epomeo, when a total

discharge of about 600 L/s is pumped simultaneously

during the peak tourist season for the supply of spas, a

significant additional recharge of the aquifers derives

from seawater and from upwelling increase in deep

fluids (Piscopo al., 2020a).

The quality of groundwater extracted from the

wells depends not only on natural phenomena (mete-

oric recharge, seawater intrusion and rising of deep

hydrothermal fluids), but also relies on the island

sector where groundwater is pumped and on the

pumping method. The distance of the wells from the

coast, the well depth, the local transmissivity of the

aquifer, the operating flow rate of the wells, the

achievement or not of a steady-state drawdown

condition during pumping are the main factors that

determine variation in composition and temperature of

groundwater over time (Piscopo et al., 2020b).

Specifically, the waters extracted from the wells

located near the coast are influenced by seawater,

depending on the local elevation of the groundwater

level and on the drawdown induced by pumping. For

wells located far from the coast, where the seawater

interface is deeper as a consequence of the higher

elevation of the groundwater level, an increase in

upwelling of deep hydrothermal fluids during pump-

ing can occur, depending on the drawdown induced by

pumping. In both cases, variations in the composition

and temperature of the water extracted from the wells

over time were verified (Piscopo et al., 2020b).

Materials and methods

Hydrogeological constraints for the use of thermal

waters

One of the sectors of the island with the highest density

of groundwater withdrawal is the north-eastern area

(Fig. 1). Under undisturbed conditions (i.e., without

pumping from wells), a natural groundwater flow of

approximately 0.05 L/s per unit length of coastline

occurs from inland towards the sea. In the pumping

period (i.e., in the operating season of spas), an

increase in inflow from the upstream boundary of 14%

occurs during the pumping and 19% of the water

pumped from the wells derives from seawater (Pis-

copo et al., 2020a). From the analysis of the water

extracted from certain wells monitored in the period

2006–2019, it appears that the composition and

temperature of the water vary over time mainly as a

function of the pumping flow rate, the proximity of the

wells to the coast line, the local transmissivity of the

aquifer and the elevation of the potentiometric level

under undisturbed conditions (Piscopo et al., 2020b).

The north-eastern area of the island (Fig. 2) has

been selected to assess the sustainability of ground-

water withdrawals with the following objectives:

(a) containing the qualitative decline of the waters

supplying the spas; and (b) maximizing their use.

For the spa facilities falling in the area (Fig. 2),

groundwater volumes required from the different plants

were estimated, distinguishing volumes needed to fill

the pools with thermal waters (VP) and those required

for spa treatments (VF). This distinction is necessary as

the daily income for the two uses is different: VP and

VF were estimated at 5 and 80 € per m3, respectively.

During the peak of the tourist season, that lasts about

180 days, the spa treatments require the VF volume for

6 h every day (from8 am to 2 pm),while the swimming

pools can be filled in the remaining 18 h.

The various groundwater users were then located in

the hydrogeological context of the area. As shown in

Fig. 2, the different plants and therefore the different

groundwater withdrawal centers are not homoge-

neously distributed. Based on the potentiometric

surface contour map, reconstructed through the
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groundwater level measurements under undisturbed

conditions, five flow tubes of the aquifer with inde-

pendent groundwater flow can be identified. For each

flow tube, the following characteristics have been

estimated (Table 1): (i) the groundwater flow rate

(Q) and daily volume in natural conditions (V),

considering the average flow of the aquifer per meter

of width reported in the literature (0.05 L/s per m, in

Piscopo et al., 2020a); (ii) the volumes VP and VF of

groundwater withdrawals expected by the users falling

in the each flow tube.

In order to avoid a significant seawater intrusion

and an increase in upwelling of deep fluids during

pumping, which would lead to a decay of the quality of

the water extracted from the wells, three constraints

have been considered for each flow tube:

R VFþ VPð Þ�V

RQw �Q

Qemin �Qw �Qemax

where Qw is the sustainable flow rate of the well

supplying each plant, Qemin and Qemax are the

minimum and maximum flow rate of pumping of each

well.Qemin andQemax depend on the local elevation of

the groundwater above sea level (ASL) before pump-

ing and its variation over time due to recharge and

tides, and on the drawdown induced by pumping. To

estimate Qemin and Qemax the following constraints

can be adopted:

hp � 0:1m

Dh� 0:9m

Fig. 2 North-eastern area of the island under consideration showing the different plants within the distinguished flow tubes; the flow

tube 3 was selected for the mathematical model

Table 1 Main characteristics of flow tubes of the area under

examination: Q groundwater flow rate, V daily volume of

groundwater flow, VP groundwater volume required to fill the

pools, VF daily groundwater volume required for spa

treatments

Flow tube Q (L/s) V (m3/day) VP (m3) VF (m3)

1 24.6 2125 480 68

2 17.3 1495 840 258

3 7.3 631 1680 196

4 10.5 907 1150 137

5 20.4 1763 1040 119
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where hp is the elevation of the groundwater level ASL

under pumping and Dh is the drawdown induced by

pumping. These constraints are addressed to contain

the seawater upconing for wells that are close to the

coast, and the increase in upwelling of deep hydrother-

mal fluids in the innermost areas of the island. To

determine the values ofQemin andQemax, the values of

the specific capacity of the wells (SC = Qw/Dh) and
the range of groundwater level ASL before pumping

were considered.

As shown in Table 1, critical conditions (R(VF ?

VP)[V) exist for flow tubes 3 and 4.

The flow tube 3, the one with the greatest difference

between required volume (R(VF ? VP)) and avail-

able volume (V), was selected by way of example for

mathematical modeling. On the basis of previous

assumptions, the minimum (Qemin) and maximum

flow rate of pumping from wells (Qemax) were

determined considering the average value of the

specific capacity for the sector under examination

(SC = 8.2 9 10-3 m2/s), the local elevation of

groundwater level ASL before pumping and its

variation due to recharge and tides (Piscopo et al.,

2020b). In Table 2, Qemin and Qemax are reported for

each thermal plant, as well as the thermal water

volumes requested and the daily income expected

from the required volumes.

The mathematical model was set on these assump-

tions in order to determine the maximum profit for the

thermal plants, in accordance with the aforementioned

constraints.

Mathematical model

The mathematical model was based on a game-

theoretical model. Such models are appropriate to

describe and solve optimization problems in conflict

situations. As described in the previous section, the

modeling approach can be applied to flow tubes. We

note that, for the convenience of numerical calcula-

tions, we use physical units which are different from

the usual units of Tables 1 and 2.

Let us suppose that in a given flow tube there are

n units (thermal plants) considered as players in the

game. Every unit operates two services: the filling of

swimming pools and spa treatments.

For each unit i = 1,…,n let

• xi be the pumping flow rate, it should be in m3/h,

between Qemini and Qemaxi,

• ti the time duration of pumping for the spa

treatments, it should be in hours, between 0 and

6 h (actually operating from 8 am to 2 pm),

• si the time duration of pumping for filling of

swimming pools, it should be in hours, i.e.,

between 0 and 18 h (actually operating from

2 pm to 8 am next day),

• p1 and p2 the economic values of 1 m3 of water

used for spa treatments and pool, respectively.

Player i chooses a strategy ðxi; ti; siÞ from strategy

set

Di ¼ ½Qemin
i
;Qemax

i
� � ½0; 6� � ½0; 18� ð1Þ

The payoff (or utility) function of player i can be

defined as the total daily income

fiððx1; t1; s1Þ; ðx2; t2; s2Þ; . . .; ðxn; tn; snÞÞ
¼ p1xiti þ p2xisi ð2Þ

The n-tuples ððx1; t1; s1Þ; ðx2; t2; s2Þ; . . .; ðxn; tn; snÞÞ
are called multi-strategies of the game. It should be

noted that formally all payoffs are considered as

functions of all strategies, since the strategy choice of

each player is limited by the following constraints:

• the total pumping flow rate for the given flow tube

is limited by Q:

Table 2 Parameters of the

flow tube 3
Plant VP (m3) VF (m3) Qemin (L/s) Qemax (L/s) Current daily income (€)

5 260 30 0.63 2.46 3700

6 170 21 0.63 2.46 2530

7 350 41 0.63 2.46 5030

9 250 30 0.63 2.46 3650

17 250 30 0.63 6.56 3650

27 230 27 0.63 7.30 3310

36 170 17 0.63 7.30 2210

123

2026 Environ Geochem Health (2022) 44:2021–2035



Xn

i

xi �Q; ð3Þ

• and the total volume derived in one day is limited

by V:

Xn

i

xiti þ
Xn

i

xisi �V : ð4Þ

A particular feature of this game is that the players

are not free to choose a multi-strategy

ððx1; t1; s1Þ; ðx2; t2; s2Þ; . . .; ðxn; tn; snÞÞ

from the Cartesian product (1), since this choice is

constrained by the sustainability conditions (3) and

(4). This type of game-theoretical model can also be

considered as a mathematical description of a partic-

ular allocation problem of resource management

(Ibaraki and Naoki, 1988).

It is at hand to introduce the set of admissible multi-

strategies

As for the solution concepts of such games, there

are two main paradigms: cooperative and non-coop-

erative approaches. The present game-theoretical

study is primarily based on the cooperative (but not

coalitional) approach, so that any solution of the

associated constrained vector optimization problem

will be considered as a cooperative solution of the

game. In fact, defining the vector-valued function

F ¼ ðf1; f2; . . .; fnÞ;

let us consider the constrained vector-valued opti-

mization problem

FðzÞ ! max

z 2 G;
ð6Þ

that is, the restriction F Gj of function F to setG, should

be optimized in multi-criterial sense, based on the

concept of Pareto optimality.

Pareto optimality and cooperative solution of a game

Point z* (and also the corresponding function value

F(z*)) is said to be Pareto optimal, if there is no

z 2 G such; that fiðz�Þ� fiðzÞ ði ¼ 1; . . .; nÞ;

and at least for one i, the inequality is strict. In this

case, z* is also called a cooperative solution of the n-

person game with strategy sets Di, payoff functions

f1; f2; . . .; fn and constraints (3)–(4). The set P of the

above Pareto optimal function values F(z*) is called

the Pareto frontier of function F Gj (Blasco et al.,

2008):

P ¼ FðzÞ z 2 G is Pareto optimal for FjG
��� �

In principle, we can effectively find a large number

Pareto optimal function values, by the following

‘‘scalarization’’ of the corresponding vector optimiza-

tion problem:for every k ¼ ðk1; . . .; knÞ 2 D
�

n
(the rel-

ative interior of the standard simplex in Rn, consisting

of vectors with positive components summing 1),

G ¼ z ¼ ððx1; t1; s1Þ; ðx2; t2; s2Þ; . . .; ðxn; tn; snÞÞ ðxi; ti; siÞ 2 Diði ¼ 1; . . .; nÞ;
Xn

i

xi �Q;
Xn

i

xiti þ
Xn

i

xisi �V

�����

( )

ð5Þ

Table 3 Fulfillment of sustainability conditions for Solutions

A and B for the flow tube 3

Plant Solution A Solution B

VP (m3) VF (m3) VP (m3) VF (m3)

5 67.5 22.5 40.824 13.608

6 67.5 22.5 40.824 13.608

7 67.5 22.5 40.824 13.608

9 67.5 22.5 40.824 13.608

17 67.5 22.5 130.914 43.638

27 67.5 22.5 89.424 29.808

36 67.5 22.5 89.424 29.808

Total flow 472.5 157.5 473.058 157.686

VP ? VF = 630 VP ? VF = 630.744
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define the weighted sum Fk ¼
Pn

i¼1

kifi. Then, for any

k 2 D
�

n
, any solution z�k of the constrained scalar

optimization problem

FkðzÞ
z2G

! max ð7Þ

is Pareto optimal for the constrained vector optimiza-

tion problem (6), and hence a cooperative solution of

the considered game (Geoffrion, 1968).

Remark 1 By giving equal weights to all players,

with k ¼ 1
n ; :::;

1
n

� �
, we obtain a cooperative solution

providing a maximum total payoff to all players.

Remark 2 Except for some degenerate cases, all

points of the Pareto frontier can be obtained by solving

the scalar optimization problem (7), for all k 2 D
�

n

(Geoffrion, 1968). In this way, in general, we obtain an

infinite set of cooperative solutions with different

weighting for the n players. In what follows, we

propose a particular way to select a single solution

from this variety.

Ideal value of the game

Since set G of admissible multi-strategies is compact

and the payoff functions fi are continuous, we can

define xi ¼ max
z2G

fiðzÞ (i = 1,…,n), and

X ¼ ðx1;x2; . . .;xnÞ. X can be called the ideal value

of the game, since xi would be the best payoff for

Player i but it is extremely rare that maxima xi are

taken at the same z for all i. In other words, in general,

X does not belong to the range of the vector-valued

function FjG, but we can try to find a point Fðz0Þ on

the Pareto frontier P of the restriction FjG, closest to
the ideal value of the game:

dðX;PÞ ¼ inf
p2P

X	 pj j ¼ X	 Fðz0Þ
�� �� .

Now such multi-strategy z0 will be called nearly

ideal cooperative solution of the game (Salukvadze,

1974; Varga, 1978).

Remark 3 We note that if the Pareto frontier P is a

closed set, then the distance dðX;PÞ is actually

reached at a point p 2 P. Nevertheless, the Pareto

frontier is not necessarily closed, except the linear case

(Greenberg, 2010). If P is closed and convex, the

distance dðX;PÞ is reached at a unique point of P. In

the present application, the numerical realization will

deal with a finite subset of the Pareto frontier, so the

corresponding minimum distance will be obviously

reached.

Results

For an illustration of our general game-theoretical

model (1)–(6) presented in the previous section, in the

following examples, based on Tables 1 and 2, we

consider the flow tube 3, which consists of seven

players (thermal plants) of three different kinds (with

different maximal flow rate values). In order to

understand the roles of different kinds of players, we

analyze three different game structures, that is, a game

with two, three and seven players.

Table 4 Comparison of

current daily incomes of

plants (units) and the

incomes resulting from the

game model for the flow

tube 3

Plant Current daily income (€) Daily income (€)
Solution A

Daily income (€)
Solution B

5 3700 2139 1292.8

6 2530 2139 1292.8

7 5030 2139 1292.8

9 3650 2139 1292.8

17 3650 2139 4145.6

27 3310 2139 2831.5

36 2210 2139 2831.5

Total income 24,080 14,973 14,979.8
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Data of flow tube 3 (for seven players)

n = 7

Qemin1 ¼ 2:27m3=h; Qemax1 ¼ 8:86m3=h

Qemin2 ¼ 2:27m3=h; Qemax2 ¼ 8:86m3=h

Qemin3 ¼ 2:27m3=h; Qemax3 ¼ 8:86m3=h

Qemin4 ¼ 2:27m3=h; Qemax4 ¼ 8:86m3=h

Qemin5 ¼ 2:27m3=h; Qemax5 ¼ 23:62m3=h

Qemin6 ¼ 2:27m3=h; Qemax6 ¼ 26:27m3=h

Qemin7 ¼ 2:27m3=h; Qemax7 ¼ 26:27m3=h

Q ¼ 26:28m3=h; V ¼ 630:7m3

p1 = 80 €/m3 and p2 = 5 €/m3.

With the above data the game model (1)–(5) has

been considered.

The Matlab software (Etter et al., 2004) and its

fmincon command was used to carry out the numerical

calculations with respect to the constrained scalar

optimization problem (7) in the below examples.

Example 1 Cooperative solution with maximum

total payoff to the community of all players.

Based on Remark 1 of the previous section, with

choice k ¼ 1
7
; . . .; 1

7

� �
, we have to solve the scalar

optimization problem

FkðzÞ
z2G

! max

For the solution z� ¼ ððx�1; t�1; s�1Þ; . . .; ðx�7; t�7; s�7ÞÞ,
we obtain

z� ¼ 3:75; 6; 18; 3:75; 6; 18; 3:75; 6; 18; 3:75; 6; 18;ð
3:75; 6; 18; 3:75; 6; 18; 3:75; 6; 18Þ:

This means that every unit has to use the same

strategy:

ðx�i ; t�i ; s�i Þ ¼ ð3:75; 6; 18Þ ði ¼ 1; . . .; 7Þ,with
maximal objective value.

Fkðz�Þ ¼
P7

i¼1

1
7
fiðx�i ; t�i ; s�i Þ ¼ 2139:9,and the total

payoff (total daily income) is 7 9 2139.9 = 14,975

(€).

The above symmetric strategy choice of each player

(with 3.75 m3/h, 6 h and 18 h) serves with the

maximal sum of the payoffs of the separated players

(maximal total payoff of the game) with the same

2139.9 € payoff for each player.

For what follows, we note that the geometric

illustration of the Pareto frontier for more than three

players is a rather complicated issue (Blasco et al.,

2008). We solve this problem below, in part by

considering certain ‘‘subgames’’ of lower dimension,

in part by considering 2- and 3-dimensional projec-

tions of the original, 7-dimensional construction. Q ¼
26.28 m3/h, V ¼ 630.72 m3, p1 = 80 €/m3 and p2 = 5

€/m3 are general parameter values of the examples

below.

Example 2 Finding nearly ideal cooperative solution

in case of two players.

Now n = 2. For Player 1, Qemin1 = 2.27 m3/h,

Qemax1 = 8.86 m3/h. For Player 2, Qemin2 = 2.27

m3/h, Qemax2 = 23.62 m3/h.

First, the ideal value of the game is determined. Its

i-th coordinate is xi ¼ p1 � Qemaxi �6þ p2�
Qemaxi �18.

Then the scalar optimization procedure is run for

9,999 k ¼ k1; k2ð Þ vectors, based on uniform divisions

of interval [0,1]. The nearly ideal cooperative solution

(more precisely its approximation) is selected from the

gained Pareto optimal points, according to the mini-

mum distance from the ideal value (see Remark 3).

The results are the following:

Ideal value of the game

X ¼ 5047:9; 13; 461:1ð Þ

Nearly ideal cooperative solution
Obtained for k = (0.5;0.5).

Corresponding multi-strategy z0 ¼ x1; t1; s1ð Þ;ð
x2; t2; s2ð ÞÞ ¼ 7:26; 6; 18ð Þ; 19:02; 6; 18ð Þð Þ,
Payoff vector F z0ð Þ ¼ 4183:3; 10; 841:3ð Þ.
Figure 3 shows the gained Pareto optimal payoff

vectors/points as blue dots, among which the one

F z0ð Þð Þ with respect to the nearly ideal cooperative

solution of the game (z0) is highlighted as a large blue

asterisk. The ideal value of the game is also high-

lighted as a large red asterisk. The black arrow

indicates the projection of the ideal value to the Pareto

frontier.
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Example 3 Finding nearly ideal cooperative solution

in case of three players.

Now n = 3. For Player 1, Qemin1 = 2.27 m3/h,

Qemax1 = 8.86 m3/h. For Player 2, Qemin2 = 2.27

m3/h, Qemax2 = 23.62 m3/h. For Player 3,

Qemin3 = 2.27 m3/h, Qemax3 = 26.27 m3/h.

After determining the ideal value of the game,

based on uniform divisions of interval [0,1], the scalar

optimization procedure is run for 19,486 k ¼
k1; k2; k3ð Þ vectors (or Pareto optimal points), from

which the nearly ideal cooperative solution is selected

according to the minimum distance from the ideal

value. The results are the following:

Ideal value of the game

X ¼ 5047:9; 13; 461:1; 14; 975:5ð Þ

Nearly ideal cooperative solution
Obtained for k ¼ 0:02; 0:49; 0:49ð Þ;
Multi-strategy z0 = x1; t1; s1ð Þ; x2; t2; s2ð Þ; x3; t3;ðð
s3ÞÞ ¼ 2:27; 6; 18ð Þ; 10:56; 6; 18ð Þ; 13:45; 6; 18ð Þð Þ;

Payoff vector F z0ð Þ ¼ 1292:8; 6020:3; 7666:5ð Þ:
Figure 4 shows the gained Pareto optimal payoff

vectors/points as blue dots, among which the one

F z0ð Þð Þ with respect to the nearly ideal cooperative

solution of the game (z0) is highlighted as a large blue

asterisk. The ideal value of the game is also high-

lighted as a large red asterisk. The black arrow

indicates the projection of the ideal value to the Pareto

frontier.

Figures 5, 6 and 7 show the two-dimensional

projections of Fig. 4 from the viewpoint of any two

players from the three ones. Naturally, because of the

missing third dimension, F(z0) must not seem to be the

closest point to X among the Pareto optimal points

(blue dots) in Figs. 5, 6 and 7.

Example 4 Finding nearly ideal cooperative solution

in case of seven players.

The parameter values of the game are as given at the

beginning of the present Section.

After determining the ideal value of the game,

based on uniform divisions of interval [0,1], the scalar

optimization procedure is run for 27,132 k ¼
k1; k2; . . .; k7ð Þ vectors (or Pareto optimal points),

from which the nearly ideal cooperative solution is

selected according to the minimum distance from the

ideal value. The results are the following:

Fig. 3 Pareto optimal payoff vectors/points and the ideal value

in the two-player game

Fig. 4 Pareto optimal payoff vectors/points and the ideal value

in the three-player game

Fig. 5 Pareto optimal payoff vectors/points and the ideal value

in the three-player game, from the viewpoint of Players 1 and 2
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Ideal value of the game

X ¼ 5047:9; 5047:9; 5047:9; 5047:9; 13; 461:1;ð
14; 975:5; 14; 975:5Þ

Nearly ideal cooperative solution
Obtained for k ¼ 0:1; 0:1; 0:1; 0:1; 0:2; 0:2; 0:2ð Þ;
Multi-strategy z0 ¼ x1; t1; s1ð Þ; x2; t2; s2ð Þ; . . .; x7;ðð
t7; s7ÞÞ ¼ 2:268;6;18ð Þ; 2:268;6;18ð Þ;ð 2:268;6;18ð Þ;
2:268;6;18ð Þ; 7:273;6;18ð Þ; 4:968;6;18ð Þ; 4:968;6;ð
18ÞÞ;.

Payoff vector F z0ð Þ ¼ 1292:8; 1292:8; 1292:8;ð
1292:8; 4145:6; 2831:5; 2831:5Þ:

From the viewpoint of the three different kinds of

players (namely Players 4, 5 and 6), Fig. 8 shows the

three-dimensional projection of the gained Pareto

optimal payoff vectors/points as blue dots and the

ideal value of the game as a large red asterisk. The

black arrow indicates the projection of the ideal value

to the Pareto frontier. Among the Pareto optimal

payoff vectors, the one F z0ð Þð Þ with respect to the

nearly ideal cooperative solution of the game (z0) is

highlighted as a large blue asterisk. Naturally, because

of the missing four dimensions, F z0ð Þmay not seem to

be the closest point to X among the Pareto optimal

points (blue dots) in the figure.

Figures 9, 10 and 11 show the two-dimensional

projections of Fig. 8 from the viewpoint of any two

players from thementioned three ones (from Players 4,

5 and 6). Naturally, because of the missing five

dimensions, F z0ð Þmay not seem to be the closest point

to X among the Pareto optimal points (blue dots) in

Figs. 9, 10 and 11.

Remark 4 We note that relatively few points (blue

dots) can be seen in Figs. 3–11, in comparison with the

relatively large number of k vectors (9,999, 19,486 and
27,132). The reason must be that the used scalar

optimization procedure results in the same Pareto

optimal point for many different lambda vectors.

Remark 5 In Tables 3 and 4, for short we call

Solution A that maximizes the total daily income

(Example 1), and Solution B is the nearly ideal

cooperative solution (Example 4), in both cases for

flow tube 3.

In Table 3, for both Solutions A and B, the volume

limit is analyzed. The prescribed sustainability limit

for the total daily volume was V ¼ 630.72 m3, and, as

we can see in both solutions, the available resource (up

to roundup error) is exhausted. Similar result is easily

Fig. 8 Pareto optimal payoff vectors/points and the ideal value

in the seven-player game, from the viewpoint of Players 4, 5

and 6
Fig. 6 Pareto optimal payoff vectors/points and the ideal value

in the three-player game, from the viewpoint of Players 1 and 3

Fig. 7 Pareto optimal payoff vectors/points and the ideal value

in the three-player game, from the viewpoint of Players 2 and 3
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obtained for the total pumping flow rate: constraint (4)

is fulfilled as equality.

In Table 4, sustainable solutions are compared to

the current practice in economic terms. First of all, in

both Solutions A and B (obtained in Examples 1 and 4,

respectively) the total income is substantially reduced

by the sustainability constraints. In Solution A, the

reduced total income is uniformly distributed among

plants. In Solution B, from the same available total

daily income, the plants with higher capacity (max-

imum flow rate of pumping, Qemax) would earn even

more than their current income. The all over decrease

in daily income in Solution A, with respect to the

current daily income, is obviously the cost of

sustainability.

Finally, we emphasize that letting run the vector k
of weights, in principle, an infinite variety of cooper-

ative solutions can be obtained, among them one can

decide according to a further criterion.

Discussion

The mathematical model developed through the

theory of games has been addressed to verify possible

solutions for a sustainable use of hydrothermal

resources of the Island of Ischia. On the island, there

is a considerable concentration of groundwater extrac-

tion from wells, especially in the coastal areas, for the

supply of the many spas on which the local economy

depends. The absence of a regulatory plan for

groundwater withdrawals may give rise to variations

in the quality of the thermal waters used for thera-

peutic purposes during the peak of the tourist season

(Piscopo et al., 2020a, b). The model has been

implemented to resolve the conflict between the

different users of hydrothermal resources who insist

on the same portion of the aquifer, considering the

main hydrogeological constraints to contain the vari-

ations of the quality of the water pumped from wells

and the maximum profit to the users of the resource.

The model was applied to one of the sectors of the

island where critical conditions between yield of the

groundwater resources and withdrawals exist.

The results of the model in the specific critical

sector of the island were summarized in terms of flow

rates and volumes of water that can be extracted by

Fig. 9 Pareto optimal payoff vectors/points and the ideal value

in the seven-player game, from the viewpoint of Players 4 and 5

Fig. 10 Pareto optimal payoff vectors/points and the ideal

value in the seven-player game, from the viewpoint of Players 4

and 6

Fig. 11 Pareto optimal payoff vectors/points and the ideal

value in the seven-player game, from the viewpoint of Players 5

and 6
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individual users and related income (Tables 3 and 4).

The different possible solutions, synthesized in those

called Solution A and Solution B, that respect the

hydrogeological constraints for maintaining the qual-

ity of the water extracted from the wells over time,

imply a reduction in the quantity of pumping from the

single well.

Solution A, which implies an equal distribution of

resources among the different users, gives rise to a

percentage reduction in the daily volumes for spa

treatments (VF) not exceeding 45%; for two plants no

reduction in VF occurs. This has the most influence on

the reduction in the daily income of the single plant.

All plants, on the other hand, suffer a reduction in the

daily volumes for the filling of the pools (VP), which

has a lower impact on total daily income.

Solution B, which implies an unequal distribution

of resources among the different users in relation to

local hydrogeological constraints, gives rise to a

higher percentage reduction in VF (up to 67%) for

the plants closest to the coast. This is due to the low

initial elevation of the groundwater level ASL and the

restraint of the drawdown induced by pumping.

Instead, the wells of the island’s innermost plants

could also increase the volumes of the pumped water,

therefore increasing their daily income (Tables 2, 3

and 4). Even for this solution, a reduction in VP

results. While the thermal waters for spa treatments

(i.e., VF) must necessarily be pumped daily by users,

an alternative plan for filling pools can be found by

distributing the VP withdrawal over more days.

We note that we have presented our game-theoret-

ical approach to sustainable management only for flow

tube 3, as an illustration. Taking into consideration the

particular features of the corresponding datasets,

similar game-theoretical models can be applied to

the rest of the five flow tubes of the area under

examination or the other areas of the island. In

addition, the solutions resulting from the model only

consider the hydrogeological and economic aspects of

the problem, assuming the current location and depth

of wells as constraints. Instead, what results from

Solution B suggests that new scenarios for sustainable

resource management including, for example, the

repositioning of wells within the flow tube (one of the

factors that affect the containment of the change in

water quality during pumping) may be possible.

It should also be noted that the hydrogeological

constraints, adopted on the basis of the containment of

the variation in the quality of water pumped from

wells, relate to a simplification of the distribution of

the hydraulic head, the transmissivity of the aquifer

and the specific capacity of wells within the flow tube.

More detailed knowledge of the distribution of these

parameters within the flow tube can be included in the

model, resulting in a variation of coordinate xi of the

model.

In more general terms, the developed model

indicates that for i = 1,…,n, player i’s payoff (2)

depends directly only on the coordinates of its strategy

ðxi; ti; siÞ in a strictly monotonically increasing way.

This means that for any Pareto optimal multi-strategy,

xi = Qemaxi, ti = 6 h, si = 18 h (i = 1,…,n) and/or
Pn

i

xi ¼ Q (see constraint (3)) and/or

Pn

i

xiti þ
Pn

i

xisi ¼ V(see constraint (4)) hold, other-

wise, at least one of the players’ strategies (more

precisely, either xi, ti or si for some i = 1,…,n) could

be improved (increased) to increase the corresponding

player’s payoff, without decreasing others’ payoffs.

That is, the considered multi-strategy would not be

really Pareto optimal. It also follows from this that

each Pareto optimal multi-strategy is also a Nash

equilibrium of the game, since with respect to a Pareto

optimal point, no player can increase any coordinate of

its strategy vector (according to the above strategy

maximizing equalities) and consequently, its payoff

value. A multi-strategy is called a Nash equilibrium,

or non-cooperative solution of the game if neither

player can deviate unilaterally from this multi-strategy

(while the others do not deviate from it) to increase its

own payoff (regardless of the others’ payoffs).

In a further development of the present work, the

authority responsible for the management and safe-

guarding of the hydrothermal resources can be

included as an additional actor, in the role of a

distinguished player which adjusts other constraints in

the use of resources. Furthermore, this authority may

have priority in time before the other players (the

thermal plants), which leads us to the special game-

theoretical field of Stackelberg (or leader–follower)

games. Such type of games and their solutions with

connections to water resource management can be

found in Kicsiny et al. (2014a) and Kicsiny (2017).

Additionally, it may be worth working out the

dynamic version of the proposed game taking into
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account the (interconnected) effects of the time-

dependency of the players’ consumptions, similarly

as in the differential game model of Kicsiny and Varga

(2019).

Conclusions

This study proposes a new approach to managing

groundwater pumping from the volcanic aquifer of the

Island of Ischia, an active hydrothermal system where

numerous spas extract thermal waters that are signif-

icantly different in temperature, salinity and chemical

compositions. A game-theoretical modeling was

implemented to obtain the optimal sustainable

exploitation of the groundwater resources, in order

to maintain the quality of thermal waters over time and

maximize the profit of the different competing users of

the resource (spas) falling in the same flow tube of the

aquifer. In the game the spas are the players, the

strategy of a player consists of a fixed pumping rate

and daily time durations of pumping, and the player’s

utility or payoff is proportional to the total quantity of

withdrawn thermal water in a given time period. A

special constrained Pareto optimal strategy choice is

obtained, considered as a cooperative solution of the

game. Pareto optimality means that there is no other

strategy choice that makes one player better off

without making some other player worse off.

Although the model has been tested only one flow

tube of one of the areas with the highest density of

island’s wells, it is evident that future management of

the island’s hydrothermal resources requires a new

approach based on local hydrogeological conditions

(mainly elevation of the groundwater level and

drawdown induced by pumping) and on the balance

between natural flow and quantity of volumes

extracted from the single flow tube. As for the latter

point, at least, participatory management in the use of

this important hydrothermal resource, on which the

economy of the island directly and indirectly depends,

is necessary. The mathematical model implemented

can represent a useful tool for this purpose, as well as

for other hydrothermal systems, where typically

quality and quantity of water extracted determine the

economic return of spas.

Finally, as for the novelty of our mathematical

modeling approach, we note that Pareto optimality has

already been widely used in conflict situations like

resource allocation, a very recent overview on that is

Null et al. (2020). However, the main part of our

game-theoretical modeling, the application of the

nearly ideal cooperative solution in water resource

management, seems to be a promising new solution for

further applications to more complex resource alloca-

tion problems.
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